
Updating the regularization parameter
in the adaptive cubic regularization
algorithm

NIM Gould, M Porcelli, PL Toint

February 2011

 Technical Report
RAL-TR-2011-007

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Updating the regularization parameter

in the adaptive cubic

regularization algorithm

Nicholas I. M. Gould1,2, Margherita Porcelli3 and Philippe L. Toint3

ABSTRACT

The adaptive cubic regularization method (Cartis, Gould & Toint, Math. Programming,

DOI: 10.1007/s10107-009-0286-5& 10.1007/s10107-009-0337-y) has been recently proposed

for solving unconstrained minimization problems. At each iteration of this method, the

objective function is replaced by a cubic approximation which comprises an adaptive regu-

larization parameter whose role is related to the local Lipschitz constant of the objective’s

Hessian. We present new updating strategies for this parameter based on interpolation

techniques, which improve the overall numerical performance of the algorithm. Numerical

experiments on large nonlinear least-squares problems are provided.

Keywords: unconstrained optimization, cubic regularization, numerical performance.

AMS classification: 49J52, 49M37, 65F22, 65K05, 90C26, 90C30, 90C55.

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU. Email: nick.gould@stfc.ac.uk .

Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.shtml”.

2 This work was supported by the EPSRC grant EP/E053351/1.

3 Department of Mathematics, Facultés Universitaires ND de la Paix,

61, rue de Bruxelles, B-5000 Namur, Belgium, EU.

Email : margherita.porcelli@fundp.ac.be, philippe.toint@fundp.ac.be .

Current reports available from “http://www.fundp.ac.be/∼phtoint/pht/publications.html”.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

February 25, 2011

2 N. I. M. Gould, M. Porcelli and Ph. L. Toint

1 Introduction

We consider the unconstrained minimization problem

min
x∈IRn

f(x), (1.1)

where f is a twice continuously differentiable function of the variables x ∈ IRn. A sim-

plistic method for solving this problem is to compute an improving step sk by minimizing

a quadratic Taylor-series model of the objective function around the current iterate xk.

Unfortunately, it is well-known that an iteration based on this simple idea may not always

be well-defined (when the Taylor model is nonconvex), nor converge globally. These draw-

backs may be overcome by restricting the model minimization to a trust region containing

xk [8]. Clearly, trust-region strategies may be considered as regularization techniques be-

cause they control the difference between two consecutive iterates by explicitly imposing

a restriction on the stepsize.

The main motivation for this paper is a series of recent papers where alternative reg-

ularization strategies are introduced [2, 3, 7, 17, 20, 24]. These procedures are based

on the minimization of quadratic or cubic models for the objective function in a neigh-

bourhood implicitly defined by a regularization term that penalizes the step length. In

particular, the adaptive cubic regularization (ARC) algorithm is proposed in [3] for solv-

ing problem (1.1). At each iteration, the objective function is locally replaced by a cubic

approximation, in which third- and higher-order Taylor-series terms are replaced by a cu-

bic regularization term, and an adaptive estimation of the local Lipschitz constant of the

objective function’s Hessian is employed. The method has been shown to have excellent

global and local convergence properties and numerical experiments indicate that the new

procedure may be competitive with the trust region approach when solving small-scale

problems [3]. Additionally, and of theoretical interest, ARC possesses a better worst-case

evaluation-complexity bound than its trust-region competitor [5].

The purpose of this paper is twofold. Firstly, we propose alternative updating rules

for the regularization parameter of the ARC algorithm which are based on interpolation

techniques. In particular, in the trust-region case, the restriction on the stepsize is explicitly

imposed by the trust-region constraint. By contrast, in the cubic regularization case the

control on the stepsize is nonlinear and is defined implicitly. This suggests a need to

design an efficient updating rule for the regularization parameter that is able to control

the stepsize in a flexible way.

Secondly, we shall apply these ideas and report on extensive numerical experiments on

the solution of large nonlinear least-squares problems, that is problems of the form

min
x∈IRn

f(x) =
1

2
‖h(x)‖22, (1.2)

where h : IRn → IRm is a given continuously differentiable mapping. By limiting our

discussion to this problem, we may specialize the models employed in both the ARC

and trust-region algorithms to those that are suited to solving nonlinear least-squares

Updating the regularization parameter in the adaptive cubic regularization algorithm 3

problems, specifically using regularized Gauss-Newton-based models, and consequently to

take advantage of the ideas and implementations details proposed in [7] for the solution of

large regularized linear least-squares problems. Since we are primarily interested in large

problems for which matrix factorization often has prohibitive computational cost, we shall

focus on iterative algorithms for the subproblems, particularly on those implemented as

part of version 2.4 of the GALAHAD optimization library [16]. Such procedures are based

on the minimization of the local model of the objective function over a sequence of (nested)

subspaces associated with the Lanczos procedure. As a result, they are especially suited to

the large-scale setting and allow us to test the methods on large problems from the CUTEr

test collection [15]. In particular, the new updating rules for the regularization parameter

of the ARC algorithm are experimentally validated and a comparison with the trust-region

algorithm is performed on problem (1.2).

The paper is organized as follows. In Section 2 we review the standard trust-region

algorithm and the ARC algorithm for the solution of problem (1.1). New updating rules

for the regularization parameter in the ARC algorithm are introduced in Section 3. Section

4 is dedicated to numerical experiments and, finally, in Section 5 we draw some conclusions.

Throughout the paper we use the following notation. The Euclidean (ℓ2) norm is

denoted by ‖ · ‖, and I represents the identity matrix. Given a sequence of vectors {xk},
for any generic function h we let hk = h(xk). Let g(x) = ∇f(x) where f is the objective

function in (1.1) and let J(x) denote the Jacobian matrix of the residual function h(x) in

(1.2). Finally, ǫm ≈ 10−16 denotes the relative machine (double) precision.

2 The algorithms

In this section, we describe the kth iteration of two globally convergent algorithms for

the solution of problem (1.1): the standard trust-region algorithm (e.g. [8]) and the ARC

algorithm ([3]).

In the trust-region framework, a quadratic model of f(x) around xk is constructed by

defining the model of the objective function to be

qk(s) = fk + gTk s+
1

2
sTHks, (2.1)

where Hk is a symmetric approximation to the local Hessian ∇xxfk. Then, a trial step sk
is computed by solving (possibly only approximately) the subproblem

min
s∈IRn

{qk(s) : ‖s‖ ≤ ∆k}, (2.2)

where ∆k > 0 is the so-called trust-region radius.

By contrast, assuming that the objective’s Hessian ∇xxf is globally Lipschitz continu-

ous on IRn with Lipschitz constant L, the cubic model used in the ARC algorithm is based

4 N. I. M. Gould, M. Porcelli and Ph. L. Toint

on the bound

f(xk + s) = fk + sTgk +
1

2
sT∇xxfks+

∫ 1

0

(1− τ)sT [∇xxf(xk + τs)−∇xxfk]s dτ

≤ fk + sTgk +
1

2
sT∇xxfks+

1

6
L‖s‖3 def

= lk(s), (2.3)

which holds for for all s ∈ IRn. Thus, so long as lk(sk) < lk(0) = fk, the new iterate

xk+1 = xk + sk improves f(x). In [3], a dynamic positive parameter σk replaces the

Lipschitz constant L/2 and a symmetric approximation Hk to the local Hessian ∇xxfk is

allowed. At each iteration, the cubic model

ck(s) = fk + sTgk +
1

2
sTHks+

1

3
σk‖s‖3, (2.4)

is employed as an approximation to the objective f and the subproblem

min
s∈IRn

ck(s) (2.5)

is solved. The parameter σk plays a crucial role in the description of the ARC algorithm

as it measures the discrepancy between the objective function and its second order Taylor

expansion and of the difference between the exact and the approximate Hessian [3].

It is important to note that the restriction on stepsize is explicitly imposed by the

trust-region constraint in the trust-region case, while stepsize control is defined implicitly,

indeed nonlinearly, in the cubic case. In fact, a step sk derived by reducing (2.5) is always

bounded [3, Lem.2.2] by

‖sk‖ ≤ 3max

‖Hk‖
σk

,

√

‖gk‖
σk

 .

Such a bound suggests that the regularization parameter σk for the ARC algorithm may

loosely be interpreted as the reciprocal of the trust-region radius ∆k. This observation in

turn suggests choosing updating rule for the parameter σk by analogy with the trust-region

case. In a standard trust-region scheme, the trust-region radius may be enlarged if there is

a sufficient decrease in f(x), computed by some measure of the relative objective changes,

and it is reduced otherwise. In the regularization case, the parameter σk is decreased if

there is a sufficient agreement between the objective function and the model, but increased

or left unchanged otherwise.

In both algorithms, the agreement between the model and the objective function is

given by the standard ratio of the achieved to the predicted reduction, and the size of

this ratio is used to decide whether or not to accept the trial step and to change the

regularization parameter. This ratio takes the form

ρq(sk) =
fk − f(xk + sk)

qk(0)− qk(sk)
, (2.6)

Updating the regularization parameter in the adaptive cubic regularization algorithm 5

in the trust-region case, and

ρc(sk) =
fk − f(xk + sk)

ck(0)− ck(sk)
, (2.7)

in the the cubic regularization case, where the models qk and ck are defined in (2.1) and

(2.4) respectively. Without ambiguity, let ρ(s) represent both ρc(s) and ρq(s), and let

η1, η2 be constants such that 0 < η1 < η2 < 1. We say that the iteration k is very

successful if ρ(sk) ≥ η2, successful if ρ(sk) ∈ [η1, η2), unsuccessful otherwise. When it is

useful to distinguish the case ρ(sk) < 0 within the unsuccessful case, we refer to a very

unsuccessful iteration.

The general framework of the methods described so far is presented in Algorithm 2.1.

The string METHOD denotes the name of the method, i.e. it is either ‘TRUST-REGION’ or

‘ARC’. Sections 2.1 and 3 give further insight into Steps 1 and 4.

2.1 Computing a trial step

Step 1 of Algorithm 2.1 leaves substantial implementation freedom, which may be used

according to context. The focus of this paper is on the case where matrix factorizations of

the Hessian matrix are not feasible, implying that iterative methods for computing a trial

step are needed. We consider the class of subspace minimization methods, i.e. methods

that find an approximate solution by solving a sequence of minimization problems with the

additional constraint that s is contained in a subspace. This class may be divided into two

subclasses depending on the construction of the sequence of subspaces. The first consists of

expanding subspaces methods. The Conjugate Gradient (CG) method belongs to this sub-

class as it may be viewed as a subspace minimization method for finding an unconstrained

minimizer of a strictly convex quadratic function, where, at each successive iteration, the

quadratic function is minimized by restricting the variable to a sequence of nested Krylov

subspaces. In [3, 14], methods based on this approach have been proposed for solving

the regularized cubic problem (2.5) and the trust-region problem (2.2), respectively. The

second subclass comprises low-dimensional subspace methods, i.e. methods that always

generate subspaces of low-dimension. Such methods have been proposed in literature only

for solving problem (2.2) and differ in the choice of the subspaces [11, 12, 18, 19]. In

order to apply the same subspace approach to both the trust-region and the cubic case,

we consider the former subclass of methods to perform Step 1.

Consider the nonlinear least-squares problem (1.2). At the current iterate xk, the exact

Hessian of the objective function f has the form

∇xxfk = JT
k Jk + Sk,

where Sk contains the second-order information on the residual. If Sk is small, it is reason-

able to consider the first order approximation Hk = JT
k Jk. This is the case, for instance, in

6 N. I. M. Gould, M. Porcelli and Ph. L. Toint

Algorithm 2.1: Generic trust-region/cubic regularization method

An initial point x0 as well as constants 0 < η1 < η2 < 1 and γ > 1 are given.

If METHOD = ‘TRUST-REGION’, set the initial radius ∆0 > 0 and the constants τ1, τ2
such that 0 ≤ τ1 ≤ τ2 ≤ 1. Else set the intial regularization parameter σ0 > 0 and

the constants ν1, ν2 such that 1 < ν1 ≤ ν2.

For k = 0, 1, . . . , until convergence,

Step 1: Trial step computation. If METHOD = ‘TRUST-REGION’, compute sk as an

(approximate) solution of problem (2.2). Else, compute sk as an (approximate)

solution of problem (2.5).

Step 2: Step acceptance. If METHOD = ‘TRUST-REGION’, compute ρ(sk) = ρq(sk) as

in (2.6). Else, compute ρ(sk) = ρc(sk) as in (2.7).

If ρ(sk) ≥ η1, let xk+1 = xk + sk; otherwise let xk+1 = xk.

Step 4: Regularization parameter update. If METHOD = ‘TRUST-REGION’ set

∆k+1 ∈

[∆k, ∞) if ρ(sk) ≥ η2 [very successful iteration]

[τ2∆k,∆k] if ρ(sk) ∈ [η1, η2) [successful iteration]

[τ1∆k, τ2∆k] otherwise [unsuccessful iteration]

. (2.8)

Else set

σk+1 ∈

(0, σk] if ρ(sk) ≥ η2 [very successful iteration]

[σk, ν1σk] if ρ(sk) ∈ [η1, η2) [successful iteration]

[ν1σk, ν2σk] otherwise [unsuccessful iteration]

. (2.9)

a neighborhood of a zero residual solution of problem (1.2), [10]. Using the approximation

Hk = JT
k Jk, the quadratic model in (2.1) takes the form

qk(s) =
1

2
‖Jks+ hk‖2, (2.10)

which is the Gauss-Newton model for f , and the cubic model in (2.4) becomes

ck(s) =
1

2
‖Jks+ hk‖2 +

σk

3
‖s‖3, (2.11)

yielding a Gauss-Newton model regularized by a cubic term.

Procedures have been proposed in [7] to solve the subproblems (2.2) and (2.5) in the

special case where the models are given in (2.10) and (2.11) respectively. The core com-

ponent of these procedures is the Golub and Kahan bi-diagonalization process [13] that

Updating the regularization parameter in the adaptive cubic regularization algorithm 7

generates orthonormal basis of a sequence of expanding subspaces {Vj}j≥1. Let Vj ∈ IRn×j

be the orthonormal matrix whose columns span Vj. The solutions of problems (2.2) and

(2.5) are found by computing the sequence of minimizers yj of the reduced problems

min
y∈IRj

{qk(Vjy) : ‖y‖ ≤ ∆k}, (2.12)

and

min
y∈IRj

ck(Vjy), (2.13)

respectively, increasing the dimension j of the subspaces until sj = Vjyj is sufficiently

accurate. At that point, the step sk in the full space is taken as the last computed sj [7].

It is interesting to note, that if the LSQR algorithm [21] is used to solve the uncon-

strained problem mins qk(s), a basis of the Krylov subspaces

Kj =
{

(JT
k Jk)

iJT
k hk

}j−1

i=0
,

is given by the columns of Vj. Due to the equivalence between the LSQR and CG meth-

ods, the sequence sj generated by LSQR has the favorable property to be monotonically

increasing in norm [23]. Thus, either LSQR finds a solution in the interior of the trust-

region, or finds an iterate sj s.t. ‖sj−1‖ ≤ ∆k < ‖sj‖ and in this case we may conclude

that the solution of the problem (2.2) lies on the boundary of the trust-region. When

this happens two alternative strategies can be followed: either the so-called Steihaug-Toint

point [8, §7.5.1] is computed or a solution on the boundary is computed to any prescribed

accuracy. The Steihaug-Toint strategy interpolates the last interior iterate sj−1 with the

newly discovered exterior one sj to find the boundary point between them. The resulting

step has the favorable property that the optimal decrease of qk at the exact solution of

the trust-region problem (2.2), is no more than twice that achieved at the Steihaug-Toint

point (see [25] or [8, Thm.7.5.9]). On the negative side however, it makes no attempt

to find a constrained solution with prescribed accuracy. A more refined strategy solves

a sequence of constrained reduced problems (2.12) increasing j until sj is sufficiently ac-

curate [7]. Note that this strategy specializes to problem (2.12) the GLTR method [14]

for the general trust-region problem (2.2) in which the CG method is used as long as the

iterates are in the interior of the trust-region and the expanding subspaces are defined by

the Lanczos vectors.

3 Updating rules for the regularization parameters

Because of its central role, the definition of a procedure to update the regularization param-

eters at Step 4 of Algorithm 2.1 may have a crucial influence on its overall performance. In

this section, we first review two established updating strategies for the trust-region radius

∆k and then propose new strategies for the parameter σk for the ARC algorithm.

8 N. I. M. Gould, M. Porcelli and Ph. L. Toint

Clearly, the rule (2.8) in Algorithm 2.1 leaves considerable flexibility. A simple and

reasonable choice is to select

∆k+1 =

max{γ2‖sk‖,∆k} if ρq(sk) ≥ η2 [very successful iteration],

∆k if ρq(sk) ∈ [η1, η2) [successful iteration], and

γ1‖sk‖ otherwise [unsuccessful iteration],

(3.1)

where γ1 and γ2 are constants such that 0 < γ1 < 1 ≤ γ2, but further refinements are

possible using interpolation techniques in the unsuccessful case. If ρq(sk) is negative, the

agreement between the model and the objective function is extremely poor and some

drastic action might be warranted. In this case, we presume for simplicity that sk+1 will

be aligned with sk and we compute a trust-region radius small enough to ensure that the

new step gives at least a successful iteration [8, Chapter 17]. To compute such a radius,

we consider a step of the form αsk with α > 0 and we set ∆k+1 = αbad
η ∆k where αbad

η solves

ρq(αsk) = η, which is equivalent to the scalar nonlinear equation

fk − f(xk + αsk) = η(qk(0)− qk(αsk)), (3.2)

with η ∈ [η1, 1) and η1 as given in Algorithm 2.1. To avoid the expense of computing the

extra function value f(xk + αsk) and to simplify the solution of (3.2), the scalar function

f̂(α) = f(xk + αsk), α > 0 is replaced by a quadratic interpolating polynomial for f̂ . The

polynomial tf (α) such that tf and t′f agree with f̂ and f̂ ′ at 0, and tf (1) = f̂(1) = f(xk+sk),

is given by

tf(α) = fk + gTk skα +
(

f(xk + sk)− fk − gTk sk
)

α2.

Substituting this value for f(xk +αsk) into (3.2) and solving for α, yields the value of αbad
η

given by

αbad
η =

(1− η)gTk sk
(1− η)(fk + gTk sk) + η qk(sk)− f(xk + sk)

. (3.3)

We may therefore modify (3.1) to use this information and obtain the more sophisticated

rule

∆k+1 =

max{γ2‖sk‖,∆k} if ρq(sk) ≥ η2 [very successful iteration],

∆k if ρq(sk) ∈ [η1, η2) [successful iteration],

γ1‖sk‖ if ρq(sk) ∈ [0, η1) [unsuccessful iteration], and

min{γ1‖sk‖,max{γ3, αbad
η }∆k} otherwise [very unsuccessful iteration],

(3.4)

where αbad
η is given by (3.3) and the constants γ1, γ2, γ3 are such that 0 < γ3 < γ1 < 1 ≤ γ2

[8].

Let us now consider the ARC framework with this in mind. The updating rule proposed

in [3] aims to try to reduce the model rapidly to match the Newton model once convergence

sets in, while maintaining some regularization before the asymptotic behaviour. The rule

used in the reported experiments was

σk+1 =

max{min{σk, ‖gk‖}, ǫm} if ρc(sk) ≥ η2 [very successful iteration],

σk if ρc(sk) ∈ [η1, η2) [successful iteration], and

γσk otherwise [unsuccessful iteration],

(3.5)

Updating the regularization parameter in the adaptive cubic regularization algorithm 9

with γ ≥ 1. Clearly, the relationship between the step length and the regularization

parameter in (3.5) is not as simple as in the updating rules (3.1) for the trust-region case

and the control of the first by the second is performed implicitly.

To relate the step size and the parameter σk in a more direct way, we now present an

alternative strategy for updating σk in the spirit of the interpolation procedures used with

the trust-region scheme. Specifically, we try to ensure, in the very unsuccessful case, that

the next iterate gives at least a successful iteration. In the very successful case we may also

exploit the overestimation property (2.3) measuring at each iteration the gap between the

current objective function value f(xk + sk) and the current model value ck(sk) and reduce

σk in order to decrease this gap (cf. [17, 24]). In particular, given the current xk, σk and

sk, we presume, as above, that sk+1 is of the form αsk, α > 0 and compute the value σk+1

to ensure suitable conditions on αsk.

As in the trust-region case, we avoid the need to compute the value of f(xk + αsk)

by using instead a suitable interpolating approximation. The interpolating cubic function

pf (α), α ≥ 0 we use here is built by requiring that pf (0) = fk, p′f(0) = gTk sk, p′′(0) =

sTkHksk and pf(1) = f(xk + sk), and hence takes the form

pf(α) = fk + gTk skα+
1

2
sTkHkskα

2 + pf 3α
3, (3.6)

where

pf 3 = f(xk + sk)− qk(sk). (3.7)

The quadratic model (2.1) along the direction sk may be written as

q(α) = fk + gTk skα +
1

2
sTkHkskα

2, (3.8)

while its regularized cubic counterpart (2.4) is

c(α, σ) = q(α) +
σ‖sk‖3

3
α3. (3.9)

We now define the current overestimation gap χf
k to be

χf
k = ck(sk)− f(xk + sk). (3.10)

Note that the model ck at sk overestimates f(xk+sk), i.e. χ
f
k ≥ 0, if and only if ρc(sk) ≥ 1.

Consider the very successful (χf
k > 0) case first, in which case the regularization pa-

rameter should be decreased. If the current gap χf
k is large enough, we aim at reducing it

by a factor β ∈ (0, 1). Assume first that f(xk + sk) ≥ qk(sk). Remembering that the next

step should minimize the cubic model (in particular along sk), we thus search for α and σ

such that

c(α, σ)− pf(α) = β χf
k and (3.11)

d

dα
c(α, σ) = 0, (3.12)

10 N. I. M. Gould, M. Porcelli and Ph. L. Toint

c(α, σ) and pf(α) given in (3.9) and (3.6). It follows from (3.11) that

σ = 3
βχf

k + pf 3α
3

α3‖sk‖3
≡ σk + 3

χf
k

‖sk‖3
(

β − α3

α3

)

, (3.13)

and substituting (3.13) into (3.12), we find that the required α satisfies the cubic scalar

equation

3βχf
k + gTk skα + sTkHkskα

2 + 3pf 3α
3 = 0. (3.14)

Thus, we determine the root α of (3.14) which exceeds 3
√
β by the least (if there is such

a root) and recover σ∗
k,β from (3.13). If there is no such α, or if α is too large, we simply

reduce σk by a factor δ1 ∈ (0, 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12
x 10

6

α

current model: c(α, σ
k
)

objective function: p
f
(α)

quadratic model: q(α)

next model: c(α, σ
k,β
*)

α*
β

Figure 3.1: Very successful iteration and f(xk + sk) ≥ qk(sk).

In Figures 3.1–3.3 the current cubic model c(α, σk), the approximated objective function

pf (α), the quadratic model q(α) and the next cubic model c(α, σ∗
k,β) are plotted. Figure

3.1 represents an example where the k-th iterate is very successful and f(xk+sk) ≥ qk(sk).

In this example, β = 0.5 and equation (3.14) has two positive roots. The largest one (α∗
β

in the figure) is larger than 3
√
β ≈ 0.7937 and gives σ∗

k,β such that σ∗
k,β < σk.

Consider now the case where f(xk + sk) < qk(sk). If we attempt to solve the system

(3.11)–(3.12), i.e. try to reduce the quantity ck(sk) − f(xk + sk) by a factor β, we might

reduce this gap too much, leading to undesirable value of the new σ. Figure 3.2-(a) illus-

trates the typical situation: in this example (β = 0.5), equation (3.14) only has one positive

solution (αχf
k ≈ 0.745 in the figure), but it is smaller than 3

√
β so that the corresponding

σ∗
k,β computed by (3.13) is larger than the current σk. To avoid this undesirable situation,

we instead attempt to reduce the following gap

χq
k = ck(sk)− qk(sk), (3.15)

Updating the regularization parameter in the adaptive cubic regularization algorithm 11

and search for α and σ such that

c(α, σ)− q(α) = β χq
k and (3.16)

d

dα
c(α, σ) = 0, (3.17)

with c(α, σ) and q(α) given in (3.9). Computing σ from (3.16), we then find that

σ = 3
βχq

k

α3‖sk‖3
≡ β

α3
σk, (3.18)

and substituting (3.18) in (3.17) yields that α solves the quadratic scalar equation

3βχq
k + gTk skα + sTkHkskα

2 = 0. (3.19)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
x 10

6

α

(a)

current model: c(α, σ
k
)

objective function: p
f
(α)

quadratic model: q(α)
next model: c(α, σ

k,β
*)

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

8

α

(b)

current model: c(α, σ
k
)

objective function: p
f
(α)

quadratic model: q(α)
next model: c(α, σ

k,β
*)

α
β
*αχ

k

f

Figure 3.2: Very successful iteration and f(xk + sk) < qk(sk).

As in the previous case, we compute the root of (3.19) which exceeds 3
√
β by the least

(if such a root exists) and compute the corresponding value σ∗
k,β using (3.18). Once again,

if there is no such α, or if α is too large, we simply reduce σk by a factor δ1 ∈ (0, 1). Figure

3.2-(b) illustrates the same example as in Figure 3.2-(a) but now solving the system (3.16)–

(3.17): equation (3.19) has 2 positive roots and one (α∗
β in the figure) is larger than 3

√
β,

so that the corresponding σ∗
k,β is smaller than σk.

Let us now turn to the very unsuccessful case, ρc(sk) < 0, where we wish to increase the

regularization parameter. We proceed as in the trust-region framework simply requiring

that αsk produces at least a successful iterate. We thus search for α and σ such that

fk − pf (α) = η(fk − c(α, σ)), and (3.20)

d

dα
c(α, σ) = 0, (3.21)

12 N. I. M. Gould, M. Porcelli and Ph. L. Toint

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

α

current model: c(α, σ
k
)

objective function: p
f
(α)

quadratic model: q(α)

next model: c(α, σ
k,β
*)

α*
η

Figure 3.3: Very unsuccessful iteration.

for some η ∈ [η1, 1). Computing σ from (3.21) we obtain that

σ =
−gTk sk − sTkHkskα

α2‖sk‖3
, (3.22)

and substituting this expression in (3.20), we find that α must be a root of the quadratic

scalar equation

2(3− 2η)gTk sk + (3− η)sTkHkskα + 6pf 3α
2 = 0, (3.23)

where pf 3 is positive since ρc(sk) < 0. The discriminant of the above equation is given by

(3− η)2(sTkHksk)
2 − 48(3− 2η)gTk skpf 3,

and as η < 3/2, it is always positive. In this case, the above equation as two roots of

opposite sign. If α∗
η is the positive one, we then compute σ∗

k,η from (3.22) with α = α∗
η.

Figure 3.3 shows an example of this case.

Combining these different cases together, we are now able to state the complete rule

for updating the current regularization parameter σk: it is described as Algorithm 3.1 on

page 14. This algorithm also safeguards against the case where equations (3.14) and (3.19)

do not admit a solution larger than 3
√
β, or where such a solution exists but may be very

much larger than this value, resulting in a tiny corresponding σ∗
k,β. In all these cases, we

simply choose a fraction of the current σk. On the other hand, note that, by definition,

the values of σ∗
k,β computed in (3.24) and (3.25) are positive and smaller than the current

σk. Figure 3.4 shows the value of σk+1 computed by Algorithm 3.1 as a function of the

objective function value f(xk + sk). This curve for σk+1 is a piecewise linear function

where the sloping pieces correspond to values of σk+1 computed by the interpolation rules

(3.24)–(3.26).

Updating the regularization parameter in the adaptive cubic regularization algorithm 13

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

f(x
k
+s

k
)

σ k+
1

χ
k
q

σ
k

σ
k+1

 = σ
k,β
*

σ
k+1

 = δ
2
 σ

k
(no gap)

σ
k+1

 = σ
k

σ
k+1

 = δ
max

σ
k

successful unsuccessfulvery successful

σ
k+1

 = δ
3
σ

k
σ

k+1
 = σ

k,η
*

χ
k
f

Figure 3.4: Plot of σk+1, computed by Algorithm 3.1 with parameters β = 0.01, αmax =

2, ǫχ = 10−8, δ1 = 0.1, δ2 = 1, η = η1, δ3 = 2, δmax = 30, as a function of f(xk + sk).

4 Numerical experiments

We now present numerical experiments on nonlinear least-squares problems (1.2), where

we study the numerical behaviour of the trust-region and the ARC algorithms employing

the different updating rules presented in Section 3 in a first stage, and, in a second stage,

compare the two algorithms using the best performing rules.

To compare the overall computational effort of the algorithms we use the performance

profiles proposed by Dolan and Moré [9] for a given set of test problems and a given

selection of algorithms. For each problem P in our testing set and each Algorithm A, we

let feP,A denote the number of function evaluations required to solve problem P using

Algorithm A and feP be number of function evaluations required by the best algorithm

to solve problem P , i.e. the algorithm which uses the fewest function evaluations. The

performance profile is defined for the algorithm A as

πA(τ) =
number of problems s.t. feP,A ≤ τ feP

number of problems
, τ ≥ 1. (4.1)

In what follows and in order to improve readability of the performance profile graphs, we

limit the plot πA(τ) to the interval [1, 4] and report the number of failures in the legend.

4.1 The problem set

Numerical results are given for problems from the CUTEr test collection [15]. The test

examples we consider are constructed using the CUTEr interactive select tool in order

to locate the problems with no objective function and with constraints that are sys-

tems of nonlinear equations. We exclude the problems CHEMRCTA, CHEMRCTB, DRCAVTY3,

14 N. I. M. Gould, M. Porcelli and Ph. L. Toint

Algorithm 3.1: Regularization parameter update

Given the current xk, sk, σk, let the constants η1 and η2 be fixed by Algorithm 2.1.

Let the positive threshold ǫχ and the constants δ1, δ2, δ3, δmax, β, η be chosen such that

0 < δ1 < δ2 ≤ 1 ≤ δ3 ≪ δmax, 0 < β < 1, 0 < η < 3/2, 1 < αmax.

Compute ρc(sk) by (2.7) and

χk = ck(sk)−max {f(xk + sk), qk(sk)} .

• If ρc(sk) ≥ 1 and χk ≥ ǫχ, then

– If f(xk + sk) ≥ qk(sk), solve equation (3.14) with χf
k = χk.

Let A∗ = {α | α is a root of (3.14) and α ≥ 3
√
β}.

∗ If A∗ = ∅, set σk+1 = max{δ1σk, ǫm}.
∗ If A∗ 6= ∅, let α∗

β = argmin{(α− 3
√
β) | α ∈ A∗}.

If α∗
β ≤ αmax, compute

σ∗
k,β = σk + 3

χk

‖sk‖3

(

β − α∗
β
3

α∗
β
3

)

, (3.24)

and set σk+1 = max{σ∗
k,β, ǫm};

If α∗
β > αmax, set σk+1 = max{δ1σk, ǫm}.

– Else if f(xk + sk) < qk(sk), solve equation (3.19) with χq
k = χk.

Let A∗ = {α | α is a root of (3.19) and α ≥ 3
√
β}.

∗ If A∗ = ∅, set σk+1 = max{δ1σk, ǫm}.
∗ If A∗ 6= ∅, let α∗

β = argmin{(α− 3
√
β) | α ∈ A∗}.

If α∗
β ≤ αmax, compute

σ∗
k,β =

β

α∗
β
3σk, (3.25)

and set σk+1 = max{σ∗
k,β, ǫm};

If α∗
β > αmax, set σk+1 = max{δ1σk, ǫm}.

• Else if ρc(sk) ≥ 1 and χk < ǫχ, set σk+1 = max{δ2σk, ǫm}.

• Else if ρc(sk) ∈ [η2, 1), set σk+1 = max{δ2σk, ǫm}.

• Else if ρc(sk) ∈ [η1, η2), set σk+1 = σk.

• Else if ρc(sk) ∈ [0, η1), set σk+1 = δ3σk.

• Else (ρc(sk) < 0), compute the positive root α∗
η of equation (3.23) and compute

σ∗
k,η =

−gTk sk − sTkHkskα
∗
η

α∗
η
2‖sk‖3

. (3.26)

Set σk+1 = min{max{σ∗
k,η, δ3σk}, δmaxσk}.

Updating the regularization parameter in the adaptive cubic regularization algorithm 15

FLOSP2HH, FLOSP2HL, FLOSP2HM, FLOSP2TH, FLOSP2TL, FLOSP2TM, HYDCAR20, SEMICON2 and

SEMICN2U as no algorithm succeeded in solving these problems for any tested parameter

choice. For some CUTEr problems, we considered variants that differ in the dimensions

(denoted with the superscript 2,3). The resulting testing set consists of 95 problems of the

form (1.2) whose names and dimensions are reported in Table 5.1 of Appendix. The prob-

lems ARGLALE, ARGBLE, GROWTH, HIMMELBD and OSCIPANE are large residual problems,

i.e. the objective function value at the computed solution is much greater than one, the

remaining are small or zero residual problems. Moreover, for 9 problems m > n, for 28

problems m < n, the remaining 58 ones being square.

4.2 Implementation issues

We implemented Algorithm 2.1 in Fortran 95, using the procedures presented in Section

2.1 to solve the subproblem at Step 1. We consider two implementations of the trust-region

algorithm (TR-ST and TR-bST) which use the GALAHAD’s package [16] LSTR and differ in

the computation of the boundary trust-region solution: TR-ST computes the Steihaug-

Toint point, TR-bST computes a more accurate solution as described in Section 2.1. The

tested version of the ARC algorithm for solving problem (1.2) has been implemented using

the GALAHAD’s packages LSRT and it is denoted by ARC-LS.

In Algorithm 2.1, we set the specific algorithmic constants

η1 = 0.01, η2 = 0.95, (4.2)

and the initial regularization parameters ∆0 and σ0 are chosen equal to one. The algorithm

is terminated as soon as either

‖JT
k hk‖ ≤ max{ǫga, ǫgr ‖JT

0 h0‖} or ‖hk‖ ≤ max{ǫfa, ǫfr ‖h0‖}, (4.3)

where ǫfa, ǫga, ǫfr, ǫgr > 0 are tolerances chosen as ǫfa = ǫga = 10−6, ǫfr = ǫgr = 10−12.

Moreover, we require that the trial step sk computed at Step 1 of Algorithm 2.1 satisfies

the inexact stopping criterion given by

‖∇mk(sk)‖ ≤ min{ǫin, ‖∇mk(0)‖1/2}‖∇mk(0)‖, (4.4)

where mk represents the models ck in (2.11) and qk in (2.10) and ǫin = 10−1 is fixed. If the

problem dimension n is lower than 50, we allow for the generation of the full space in the

Krylov sequence in order to compute a very accurate solution of the subproblems (2.12)

and (2.13). Furthermore, any run exceeding 2 hours of CPU time, performing more than

5000 outer iterations or if the magnitude of computed search direction is lower than 10ǫm,

is considered a failure. All other parameters in the GALAHAD’s packages are set at their

default values.

All our tests were performed on an Intel Xeon (TM) 3.4 Ghz, 1GB of RAM; the codes

are all double precision, and compiled under g95 without optimization (default).

16 N. I. M. Gould, M. Porcelli and Ph. L. Toint

4.3 Numerical results

We consider first the trust-region algorithm and the trust-region radius updating rules

described in Section 3. In particular we compare the updating rules (3.1) and (3.4) where

we used parameter values given by

γ1 = 1/2, γ2 = 2, γ3 = 0.0625, (4.5)

and tried the values η1 and η2 given in (4.2) for the parameter η in (3.3).

In Figure 4.1, the function evaluation performance profiles show that both TR-ST and

TR-bST are slightly more efficient using the updating rule (3.4) with η = η1. Moreover,

TR-bST is also a little more robust with this choice. The performance profile of Figure 4.2

summarizes the comparison between the two trust-region implementations using the best

performing rule with the best parameter choice. As one might hope, the figure suggests

that the extra effort required to solve the subproblem more accurately appears to offer

some overall benefit.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

TR−ST standard rule − fails = 2
TR−ST interpolation rule (η=η

2
) − fails = 3

TR−ST interpolation rule (η=η
1
) − fails = 2

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

TR−bST standard rule − fails = 3
TR−bST interpolation rule (η= η

2
) − fails = 3

TR−bST interpolation rule (η= η
1
) − fails = 2

Figure 4.1: The function evaluation performance profile: TR-ST (left) and TR-bST (right)

with (3.1) (“standard rule”) and (3.4) using η = η1, η2 (“interpolation rule”).

We now examine the sensitivity in number of function evaluations for the parameter

choices of the new updating rule for σk for the ARC algorithm. To this purpose, we

performed a small parametric study starting from the following reasonable values for the

parameters in Algorithm 3.1

β = 1/100, αmax = 2, ǫχ = 10−8, δ1 = 1/10, δ2 = 1, η = η1, δ3 = 2, δmax = 100, (4.6)

and varying one parameter at the time in some set to find the best performing value.

More precisely, let all the parameters be ordered as β, αmax, ǫχ, δ1, δ2, η, δ3, δmax and

be fixed as in (4.6). Let p be a parameter to be analyzed. Moreover, let Ip = {p1, . . . , pq}
be a set of trial values for p, Api be the ARC-LS algorithm run with p = pi and let πApi

(τ)

be the performance measure defined in (4.1) comparing the algorithms Api , pi ∈ Ip. To

Updating the regularization parameter in the adaptive cubic regularization algorithm 17

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

TR−ST interpolation rule (best parameters) − fails = 2
TR−bST interpolation rule (best parameters) − fails = 2

Figure 4.2: The function evaluation performance profile: TR-ST and TR-bST with the

interpolation rule (3.4) and the best parameter choice (η = η1).

estimate the efficiency of these algorithms, we compute the percentage of problems (%pbτ̂)

for which πApi
(τ) ≤ π̂ with π̂ & 1 and to evaluate their robustness, we compute the number

of failures. Taking into account these performance measures, we fix the “best” value for

the parameter p ∈ Ip and we proceed with the analysis of the subsequent parameter in

the list. In Table 4.1, we report the sets Ip for all the parameters in Algorithm 3.1, the

efficiency measure (%pbτ̂) for τ̂ = 1, 1.15, 1.25, 1.5, 2 and the number of failures (#fails).

We note that a more sophisticated choice, in which the globally optimal parameters for

our test set is determined [1], is possible but has not been performed.

For each set Ip, it is quite easy to find the best performing parameter choice. It results

from Table 4.1 that the new updating rule is not very sensitive to the parameter choice

and that ARC-LS performs slightly better with the following parameter assignment:

β = 1/100, αmax = 2, ǫχ = 10−10, δ1 = 1/10, δ2 = 1, η = η1, δ3 = 2, δmax = 100. (4.7)

We remark that in the experiments, a solution α∗
β of equations (3.14) and (3.19) was always

found and that only in few cases this values was larger than αmax. Moreover, the value σ∗
k,η

computed by (3.26) was very often positive and lower than the current σk. Consequently,

the regularization parameter was in fact updated by using the proposed interpolation

techniques most of the time.

In Figure 4.3, ARC-LS using Algorithm 3.1 and the parameters in (4.7) is compared with

ARC-LS using the old rule (3.5) and γ = 2 employed in [3]. The new rule clearly outperforms

the old one. A possible explanation of the relatively poor behaviour of ARC-LS with the

old rule may be found in what follows. In the experiments, we noticed that the norm of

the gradient oscillates considerably for some problems, resulting in high oscillations in the

updated σk through the iterations. Furthermore, we observed that, using (3.5), σk was

updated in several runs using a small ‖gk‖ and hence was considerably reduced; the next

iterate was then unsuccessful and doubling σk to recover an acceptable σk gave rise to

many unsuccessful iterations.

18 N. I. M. Gould, M. Porcelli and Ph. L. Toint

p Ip #fails %pbτ̂ , τ̂ = 1 %pbτ̂ , τ̂ = 1.15 %pbτ̂ , τ̂ = 1.25 %pbτ̂ , τ̂ = 1.5 %pbτ̂ , τ̂ = 2

0.001 3 58.95 90.53 92.63 93.68 95.79

0.005 4 55.79 86.32 92.63 93.68 95.79

β 0.01 3 68.42 91.58 95.79 95.79 96.84

0.05 3 51.58 82.11 89.47 93.68 95.79

0.1 4 51.58 81.05 89.47 95.79 95.79

1 4 42.11 69.47 75.79 91.58 94.74

2 3 60.00 88.42 92.63 94.74 94.74

3.5 3 55.79 85.26 90.53 92.63 92.63

αmax 5 3 61.05 84.21 90.53 92.63 92.63

10 3 63.16 86.32 90.53 91.58 92.63

50 4 61.05 84.21 89.47 90.53 91.58

10−12 3 81.05 92.63 93.68 95.79 95.79

10−11 3 83.16 93.68 95.79 95.79 96.84

10−10 2 80.00 95.79 96.84 96.84 97.89

ǫχ 10−9 3 76.84 92.63 93.68 94.74 96.84

10−8 3 73.68 92.63 92.63 94.74 94.74

10−6 4 65.26 78.95 82.11 86.32 90.53

0.01 6 69.47 85.26 88.42 91.58 92.63

0.05 3 65.26 92.63 94.74 95.79 95.79

δ1 0.1 2 71.58 94.74 97.89 97.89 97.89

0.25 3 62.11 87.37 93.68 95.79 95.79

0.5 3 58.95 83.16 92.63 95.79 95.79

0.25 3 61.05 74.74 85.26 91.58 94.74

0.5 3 53.68 78.95 85.26 90.53 96.84

δ2 0.75 4 57.89 86.32 91.58 94.74 95.79

0.9 4 57.89 85.26 90.53 93.68 95.79

1 2 58.95 89.47 95.79 97.89 97.89

η1 2 72.63 94.74 95.79 96.84 97.89

(η2 − η1)/2 4 68.42 88.42 91.58 94.74 95.79

η η2 5 62.11 81.05 88.42 91.58 94.74

1.25 3 63.16 78.95 87.37 89.47 90.53

1.50 4 69.47 89.47 93.68 94.74 94.74

2 2 72.63 93.68 96.84 97.89 97.89

δ3 2.5 4 66.32 89.47 91.58 94.74 95.79

3 4 65.26 88.42 94.74 95.79 95.79

4 3 66.32 83.16 92.63 94.74 96.84

10 4 66.32 86.32 90.53 91.58 93.68

50 4 70.53 89.47 93.68 95.79 95.79

δmax 100 2 74.74 95.79 97.89 97.89 97.89

500 4 71.58 91.58 93.68 93.68 94.74

1000 4 72.63 88.42 93.68 93.68 94.74

Table 4.1: Parametric study.

Finally, we compare TR-ST, TR-bST and ARC-LS using the best performing updating

rules for the regularization parameters, i.e. for the trust-region radius ∆k the rule (3.4)

with the parameters in (4.5) and η = η1 and for the regularization parameter σk, the rule

presented in Algorithm 3.1 with the parameter choice (4.7). The corresponding function

evaluation performance profiles are plotted in Figures 4.4 and 4.5. ARC-LS fails on problems

ARWHDNE, DRCAVITY2, TR-bST on problems DRCAVITY2, POROUS2 and TR-ST on problems

QR3D2, POROUS2. Evidently, ARC-LS is much more efficient than TR-ST. Compared to

TR-bST, it is better 68.42% of the runs and TR-bST is within a factor 2 of ARC-LS for the

88.10% of the runs.

Updating the regularization parameter in the adaptive cubic regularization algorithm 19

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

ARC−LS g−rule − fails = 6
ARC−LS interpolation rule (best parameters) − fails = 2

Figure 4.3: The function evaluation performance profile: ARC-LS with (3.5) (“g-rule”) and

ARC-LS with Algorithm 3.1 and parameters (4.7) (“interpolation rule (best parameters)”).

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

TR−ST interpolation rule (best parameters) − fails = 2
ARC−LS interpolation rule (best parameters) − fails = 2

Figure 4.4: The function evaluation performance profile: TR-ST rule (3.4) with η = η1
(“interpolation rule (best parameters)”) and ARC-LS with Algorithm 3.1 and parameters

(4.7) (“interpolation rule (best parameters)”).

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Function evaluation performance profile

τ

π A
(τ

)

TR−bST interpolation rule (best parameters) − fails = 2
ARC−LS interpolation rule (best parameters) − fails = 2

Figure 4.5: The function evaluation performance profile: TR-bST rule (3.4) with η = η1
(“interpolation rule (best parameters)”) and ARC-LS with Algorithm 3.1 and parameters

(4.7) (“interpolation rule (best parameters)”).

20 N. I. M. Gould, M. Porcelli and Ph. L. Toint

We report in the Appendix the complete set of results of the experiments described in

this section.

We also considered strategies for choosing the initial regularization parameter σ0 along

the lines of the strategy proposed in [22] for automatically computing the initial trust-

region radius. In particular, we tested a strategy in which one solves a one-dimensional

minimization problem (along the steepest descent direction) in the hope of estimating a

better value of σ0 for starting the minimization in the full space. However, these ex-

periments (not reported here) produced disappointing results in that it turned out to be

generally better to start minimization in the full-space from the start and not “waste”

additional function evaluations for estimating σ0. This is not entirely unexpected in our

context where we assume the cost of function evaluation to dominate the inner linear al-

gebra calculations. But it is also clear that any a priori user estimation of the Hessian

Lipschitz constant can be usefully exploited by selecting σ0 appropriately.

5 Conclusion

In this paper we propose a new reliable strategy to update the regularization parame-

ter in the cubic regularization algorithm (ARC). This strategy is based on analyzing the

adequacy between the objective function and its cubic model, and exploits its overesti-

mation property. Moreover, it has the favorable feature of not requiring extra function

values. We report numerical tests which show that the new rule considerably improves the

numerical performance of the ARC algorithm. We also provide a numerical comparison

between the ARC and trust-region frameworks on a set of large nonlinear least-squares

CUTEr problems. These suggest a numerical advantage of the former on our set of test

problems.

Acknowledgements

The second author wishes to thank Stefania Bellavia and Benedetta Morini for several

helpful discussions and for their continued encouragement and support.

References

[1] C. Audet, D. Orban, Finding optimal algorithmic parameters using derivative-free

optimization, SIAM Journal on Optimization, 17(3):642–664, 2006.

[2] S. Bellavia, C. Cartis, N. I. M. Gould, B. Morini, Ph. L. Toint, Convergence of a

Regularized Euclidean Residual Algorithm for Nonlinear Least-Squares, SIAM Journal

on Numerical Analysis, 48:1–29, 2010.

Updating the regularization parameter in the adaptive cubic regularization algorithm 21

[3] C. Cartis, N.I.M. Gould, Ph.L. Toint, Adaptive cubic overestimation methods for

unconstrained optimization. Part I: motivation, convergence and numerical results,

Mathematical Programming, Ser. A, (2009), DOI: 10.1007/s10107-009-0286-5.

[4] C. Cartis, N.I.M. Gould, Ph.L. Toint, Adaptive cubic overestimation methods for

unconstrained optimization. Part II: Worst-case function- and derivative-evaluation

complexity, Mathematical Programming, Ser. A, (2010a), DOI: 10.1007/s10107-009-

0337-y.

[5] C. Cartis, N.I.M. Gould, Ph.L. Toint, Complexity bounds for second-order optimal-

ity in unconstrained optimization, Technical Report NAXYS-11-2010, Department of

Mathematics, FUNDP - University of Namur, Namur, Belgium, 2010.

[6] C. Cartis, N.I.M. Gould, Ph.L. Toint, On the complexity of steepest descent, Newton’s

and regularized Newton’s methods for nonconvex unconstrained optimization, SIAM

Journal on Optimization, 20(6):2833–2852, 2010.

[7] C. Cartis, N.I.M. Gould, Ph.L. Toint, Trust-region and other regularisations of linear

least-squares problems, BIT, 49(1):21-53, 2009.

[8] A. R. Conn, N. I. M. Gould and Ph. L. Toint, Trust-Region Methods, SIAM, Philadel-

phia, USA, 2000.

[9] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles,

Mathematical Programming, 91:201–213, 2002.

[10] J.E. Dennis, R.B. Schnabel, Numerical methods for unconstrained optimization and

nonlinear equations, Prentice Hall, Englewood Cliffs, NJ, 1983.

[11] J.B. Erway, P.E. Gill, A Subspace Minimization Method for the Trust-Region Step,

SIAM Journal on Optimization, 20:1439–1461, 2009.

[12] J. B. Erway, P. E. Gill, J. D. Griffin, Iterative Methods for Finding a Trust-Region

Step, SIAM Journal on Optimization, 20:1110–1131, 2009.

[13] G. H. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a

matrix, SIAM Journal on Numerical Analysis, 2(2):205–224, 1965.

[14] N.I.M. Gould, S. Lucidi, M. Roma, Ph.L. Toint Solving the trust-region subproblem

using the Lanczos method, SIAM Journal on Optimization, 9(2):504–525, 1999.

[15] N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEr, a constrained and unconstrained testing

environment, revisited, ACM Transactions on Mathematical Software, 29(4):373–394,

2003.

22 N. I. M. Gould, M. Porcelli and Ph. L. Toint

[16] N.I.M. Gould, D. Orban, Ph.L. Toint, GALAHAD—a library of thread-safe Fortran 90

packages for large-scale nonlinear optimization, ACM Transactions on Mathematical

Software, 29(4):353–372, 2003.

[17] A. Griewank, The modification of Newton’s method for unconstrained optimization

by bounding cubic terms, Technical Report NA/12 (1981), Department of Applied

Mathematics and Theoretical Physics, University of Cambridge, United Kingdom,

1981.

[18] W.W. Hager, S.C. Park, Global convergence of SSM for minimizing a quadratic over

a sphere, Mathematics of Computation, 74:1413–1423, 2005.

[19] W.W. Hager, Minimizing a quadratic over a sphere, SIAM Journal on Optimization,

12:188-208, 2001.

[20] Yu. Nesterov, B.T. Polyak, Cubic regularization of Newton’s method and its global

performance, Mathematical Programming, 108(1):177–205, 2006.

[21] C.C. Paige, M.A. Saunders, ALGORITHM 583: LSQR: an algorithm for sparse linear

equations and sparse least squares, ACM Transactions on Mathematical Software,

8(2):195–209, 1982.

[22] A. Sartenaer, Automatic determination of an initial trust region in nonlinear program-

ming, SIAM Journal on Scientific Computing, 18(6):1788–1803, 1997.

[23] T. Steihaug, The conjugate gradient method and trust regions in large scale optimiza-

tion, SIAM Journal on Numerical Analysis, 20:626–637, 1983.

[24] M. Weiser, P. Deuflhard, B. Erdmann, Affine conjugate adaptive Newton methods for

nonlinear elastomechanics, Optimization Methods and Software, 22(3):413–431, 2007.

[25] Y. Yuan, On the Truncated Conjugate-Gradient Method, Mathematical Programming

Ser. A, 87(3):561–573, 1999.

Appendix

Table 5.1 contains the problem set information (name and dimensions). Tables 5.2-5.6

collect all the results of the experiments described in Section 4: we reported the total

number of function evaluation for each method and algorithmic option tested and we used

the following symbols for the failures: ‘∗’ for the time exceeding runs, ‘>’ for the runs

exceeding the maximum number of iteration allowed, ‘ss’ if the norm of the search step is

below the fixed treshold.

Updating the regularization parameter in the adaptive cubic regularization algorithm 23

Name n m Name n m Name n m

AIRCRFTA 8 5 DECONVNE 61 41 OSCIPANE 500 500

ARGAUSS 3 15 DRCAVTY1 196 100 PFIT1 2 2

ARGLALE 200 400 DRCAVTY2 4489 3969 PFIT2 2 2

ARGLBLE 200 400 EIGENA 110 110 PFIT3 2 2

ARGTRIG 200 200 EIGENA2 2550 2550 PFIT4 2 2

ARTIF 502 500 EIGENA3 4970 4970 POROUS1 1024 900

ARTIF2 5002 5000 EIGENB 110 110 POROUS12 5184 4900

ARWDHNE 500 998 EIGENB2 2550 2550 POROUS13 22500 21904

BDVALUES 102 100 EIGENC 462 462 POROUS2 1024 900

BDVALUS2 5002 5000 EIGENC2 2652 2652 POROUS22 5184 4900

BOOTH 2 2 GOTTFR 2 2 POROUS23 22500 21904

BRATU2D 484 400 GROWTH 3 12 POROUS24 62500 61504

BRATU2D2 5184 4900 HATFLDF 3 3 POWELLBS 2 2

BRATU2DT 484 400 HATFLDG 25 25 POWELLSQ 2 2

BRATU2DT2 5184 4900 HEART6 6 6 QR3D 610 610

BRATU3D 1000 512 HEART8 8 8 QR3D2 2420 2420

BRATU3D2 4913 3375 HIMMELBA 2 2 QR3DBD 457 610

BROWNALE 200 200 HIMMELBC 2 2 QR3DBD2 1717 2420

BROWNALE2 1000 1000 HIMMELBD 2 2 RECIPE 3 3

BROYDN3D 1000 1000 HIMMELBE 3 3 SINVALNE 2 2

BROYDN3D2 10000 10000 HS8 2 2 SPMSQRT 10000 16664

BROYDNBD 1000 1000 HYDCAR6 29 29 TRIGGER 7 6

BROYDNBD2 10000 10000 HYPCIR 2 2 WOODSNE 10000 7501

CBRATU2D 3200 2888 INTEGREQ 102 100 YATP1SQ 2600 2600

CBRATU3D 3456 2000 INTEGREQ2 502 500 YATP1SQ2 40400 40400

CHANDHEQ 100 100 METHANB8 31 31 YATP1SQ3 63000 63000

CHANNEL 2400 2398 METHANL8 31 31 YATP2SQ 2600 2600

CHANNEL2 9600 9598 MSQRTA 4900 4900 YATP2SQ2 40400 40400

CHNRSBNE 50 98 MSQRTA2 5625 5625 YATP2SQ3 63000 63000

CLUSTER 2 2 MSQRTB 4900 4900 YFITNE 3 17

COOLHANS 9 9 MSQRTB2 5625 5625 ZANGWIL3 3 3

CUBENE 2 2 NYSTROM5 18 20

Table 5.1: The problem set.

24
N
.
I.
M
.
G
o
u
ld
,
M
.
P
o
rc
el
li
a
n
d
P
h
.
L
.
T
o
in
t

TR-ST TR-bST TR-ST TR-bST

Name standard interpolation standard interpolation Name standard interpolation standard interpolation

η2 η1 η2 η1 η2 η1 η2 η1
AIRCRFTA 4 4 4 4 4 4 HIMMELBA 4 4 4 4 4 4

ARGAUSS 2 2 2 2 2 2 HIMMELBC 6 6 6 6 6 6

ARGLALE 6 6 6 6 6 6 HIMMELBD 41 25 30 42 24 30

ARGLBLE 5 5 5 5 5 5 HIMMELBE 4 4 4 4 4 4

ARGTRIG 9 9 9 9 9 9 HS8 7 7 7 6 6 6

ARTIF 20 20 20 22 20 22 HYDCAR6 458 530 600 425 381 438

ARTIF2 25 25 25 17 17 17 HYPCIR 5 5 5 5 5 5

ARWDHNE 398 ss ss ss ss 172 INTEGREQ 5 5 5 5 5 5

BDVALUES 43 43 43 62 62 62 INTEGREQ2 5 5 5 5 5 5

BDVALUES2 391 391 391 416 416 416 METHANB8 94 94 94 94 94 94

BOOTH 4 4 4 4 4 4 METHANL8 237 189 204 266 178 266

BRATU2D 7 7 7 5 5 5 MSQRTA 46 44 45 44 46 46

BRATU2DT2 12 12 12 10 10 10 MSQRTA2 54 57 55 54 61 53

BRATU2DT 24 19 22 14 13 14 MSQRTB 47 44 47 44 44 44

BRATU2D2 9 9 9 6 6 6 MSQRTB2 52 51 50 47 54 49

BRATU3D 8 8 8 7 7 7 NYSTROM5 223 268 198 140 149 129

BRATU3D2 10 10 10 8 8 8 OSCIPANE 8 8 8 8 8 8

BROWNALE 6 6 6 6 6 6 PFIT1 13 105 109 13 105 51

BROWNALE2 8 8 8 8 8 8 PFIT2 28 13 13 28 13 13

BROYDN3D 9 9 9 9 9 9 PFIT3 10 11 9 11 11 9

BROYDN3D2 11 11 11 11 11 11 PFIT4 14 169 14 9 9 9

BROYDNBD 19 19 19 18 18 18 POROUS1 47 51 44 41 39 35

BROYDNBD2 27 29 27 19 19 19 POROUS12 190 251 147 90 86 81

CBRATU2D 8 8 8 6 6 6 POROUS13 822 1016 888 168 183 154

CBRATU3D 9 9 9 8 8 8 POROUS2 2174 149 1788 > > >

CHANDHEQ 15 15 15 14 14 14 POROUS22 195 291 230 106 137 120

CHANNEL 213 451 293 154 185 154 POROUS23 1045 1204 914 200 281 186

CHANNEL2 270 381 159 106 103 115 POROUS24 2749 3124 2478 299 364 271

CHNRSBNE 61 75 64 48 60 48 POWELLBS 87 113 82 69 79 74

CLUSTER 8 8 8 8 8 8 POWELLSQ 98 19 18 109 19 108

COOLHANS 890 827 538 604 777 653 QR3D 621 497 573 186 165 153

CUBENE 6 6 6 6 6 6 QR3D2 > > > 915 700 916

DECONVNE 16 18 16 12 12 12 QR3DBD 342 307 353 74 92 74

DRCAVTY1 41 44 41 35 40 35 QR3DBD2 1252 1234 1249 678 506 686

DRCAVTY2 * * 490 * * * RECIPE 24 33 39 18 21 18

EIGENA 21 21 21 20 20 20 SINVALNE 27 30 24 25 30 24

EIGENA2 108 109 106 72 79 72 SPMSQRT 15 15 15 15 15 15

EIGENA3 166 171 171 84 87 84 TRIGGER 8 8 8 8 8 8

EIGENB 131 176 141 133 154 143 WOODSNE 42 39 39 35 33 33

EIGENB2 1047 1283 1050 687 862 936 YATP1SQ 41 47 36 29 30 29

EIGENC 93 102 104 70 79 66 YATP1SQ2 28 29 30 26 27 25

EIGENC2 834 751 904 245 263 249 YATP1SQ3 28 27 27 26 24 25

GOTTFR 11 16 11 11 16 11 YATP2SQ 30 30 30 31 31 31

GROWTH 54 71 54 11 71 54 YATP2SQ2 34 34 34 33 33 33

HATFLDF 9 23 29 8 32 30 YATP2SQ3 30 30 30 31 31 31

HATFLDG 8 8 8 9 11 9 YFITNE 46 50 62 46 50 61

HEART6 484 558 528 617 687 580 ZANGWIL3 8 8 8 8 8 8

HEART8 46 49 53 38 46 48

Table 5.2: Results for TR-ST and TR-bST.

U
p
d
a
tin

g
th
e
reg

u
la
riza

tio
n
p
a
ra
m
eter

in
th
e
a
d
a
p
tiv

e
cu
b
ic

reg
u
la
riza

tio
n
a
lg
o
rith

m
25

ARC-LS

β αmax ǫχ δ1
Name 0.001 0.005 0.01 0.5 0.1 1 3.5 5 10 50 10−12 10−11 10−10 10−9 10−6 0.01 0.05 0.25 0.5

AIRCRFTA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ARGAUSS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ARGLALE 6 6 6 6 6 6 5 5 4 4 6 6 6 6 6 5 5 6 7

ARGLBLE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ARGTRIG 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

ARTIF 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 20 20 23 24

ARTIF2 23 20 20 20 23 23 19 19 18 18 20 20 20 20 20 19 19 19 21

ARWDHNE ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss

BDVALUES 39 63 47 49 44 39 47 47 47 47 34 34 34 34 47 34 34 34 34

BDVALUES2 * * * * * * * * * 270 * * 270 * * * * * *

BOOTH 4 4 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4

BRATU2D 6 6 6 7 7 8 6 6 6 6 6 6 6 6 6 6 6 7 7

BRATU2D2 6 6 6 9 9 10 6 6 6 6 6 6 6 6 6 6 6 6 6

BRATU2DT 14 15 14 15 15 19 14 14 14 14 14 14 14 14 14 14 14 14 14

BRATU2DT2 10 10 10 11 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10

BRATU3D 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7

BRATU3D2 7 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7

BROWNALE 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BROWNALE2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

BROYDN3D 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8

BROYDN3D2 9 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9

BROYDNBD 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10

BROYDNBD2 11 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11

CBRATU2D 6 7 7 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7

CBRATU3D 7 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7

CHANDHEQ 19 19 19 19 19 15 19 19 19 19 19 19 19 19 20 17 18 19 19

CHANNEL 142 147 140 146 136 147 145 145 142 142 139 139 140 140 206 143 147 148 148

CHANNEL2 99 97 94 95 98 102 101 101 101 101 101 101 94 94 94 106 101 98 95

CHNRSBNE 40 40 41 41 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41

CLUSTER 10 10 10 10 10 9 10 10 10 10 10 10 10 10 11 10 10 10 10

COOLHANS 381 462 467 530 544 560 467 21 21 21 431 431 441 467 > 577 434 455 571

CUBENE 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

DECONVNE 38 36 36 38 39 13 36 36 36 36 17 17 19 33 36 19 19 19 19

DRCAVTY1 39 38 39 37 38 42 39 39 39 39 43 43 43 43 36 43 43 43 43

DRCAVTY2 * * * * * * * * * * * * * * * * * * *

EIGENA 23 21 20 21 22 20 20 20 20 20 20 20 20 20 20 20 20 20 20

EIGENA2 75 73 72 74 73 70 77 77 77 77 72 72 72 72 73 73 71 71 68

EIGENA3 92 92 92 91 91 86 92 92 92 92 92 92 92 92 92 93 92 91 93

EIGENB 171 140 143 150 135 200 147 147 147 147 179 172 156 149 141 151 152 151 161

EIGENB2 679 770 721 1085 681 1043 709 709 709 709 773 765 760 739 1233 1074 1006 960 788

EIGENC 65 68 65 63 66 64 67 67 67 67 65 65 65 65 64 74 68 66 64

EIGENC2 245 275 256 253 234 287 275 275 275 275 260 260 259 257 274 298 245 230 232

GOTTFR 8 8 8 9 8 10 8 8 8 8 8 8 8 8 8 8 8 8 8

GROWTH 58 56 53 57 59 56 53 53 53 53 53 53 53 53 53 56 55 55 57

HATFLDF 28 27 26 25 25 39 26 26 26 26 25 25 25 25 35 25 25 25 25

HATFLDG 11 9 7 9 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7

HEART6 164 164 159 160 163 275 159 159 163 163 159 159 159 159 164 162 162 162 162

HEART8 18 18 18 18 18 27 18 18 18 18 18 18 18 18 18 18 18 18 18

Table 5.3: Results for ACO-LS: parametric study for the interpolation rule (Algorithm 3.1).

26
N
.
I.
M
.
G
o
u
ld
,
M
.
P
o
rc
el
li
a
n
d
P
h
.
L
.
T
o
in
t

ARC-LS

β αmax ǫχ δ1
Name 0.001 0.005 0.01 0.5 0.1 1 3.5 5 10 50 10−12 10−11 10−10 10−9 10−6 0.01 0.05 0.25 0.5

HIMMELBA 4 4 4 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4

HIMMELBC 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

HIMMELBD 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39

HIMMELBE 6 6 6 5 5 6 5 5 5 5 6 6 6 6 6 5 5 6 6

HS8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

HYDCAR6 460 461 437 490 470 493 448 448 448 448 434 472 466 449 455 399 408 448 462

HYPCIR 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

INTEGREQ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

INTEGREQ2 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5

METHANB8 149 148 78 142 101 104 78 78 78 78 163 152 120 112 159 120 120 120 120

METHANL8 235 218 229 213 205 287 260 260 207 207 213 170 189 189 303 189 189 189 189

MSQRTA 40 40 40 40 40 35 40 35 35 35 40 40 38 40 44 39 39 39 37

MSQRTA2 50 50 46 50 50 47 46 46 46 46 45 45 45 47 52 48 51 49 46

MSQRTB 38 38 38 39 39 35 38 34 34 34 38 38 40 38 42 38 38 39 35

MSQRTB2 46 46 46 46 46 43 46 43 43 43 44 44 44 43 50 44 45 45 44

NYSTROM5 175 15 13 14 15 13 12 12 12 12 13 13 13 13 22 12 13 13 14

OSCIPANE 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

PFIT1 160 155 150 176 168 152 2510 2510 2510 2510 150 150 150 150 1212 164 168 154 137

PFIT2 207 206 217 223 223 221 217 198 198 198 216 216 217 217 475 225 224 3349 221

PFIT3 272 295 280 287 272 276 280 4001 4001 4001 279 279 279 279 280 3880 284 318 297

PFIT4 379 381 406 367 395 367 373 373 411 386 403 403 403 404 412 412 385 380 383

POROUS1 36 35 32 34 37 42 32 32 32 32 32 32 32 32 32 32 32 32 32

POROUS12 78 76 80 83 93 82 80 80 80 80 80 80 80 80 80 80 80 81 81

POROUS13 175 164 175 169 168 161 186 186 186 186 175 175 173 175 175 181 175 173 175

POROUS2 48 > 74 108 > > 74 78 146 146 74 74 74 74 74 > 1901 70 580

POROUS22 113 122 107 111 110 108 107 106 106 106 107 107 107 107 107 109 108 103 104

POROUS23 216 216 220 203 234 221 198 198 202 202 220 220 220 220 220 200 213 220 211

POROUS24 322 335 350 329 314 318 346 373 373 372 350 350 350 350 349 335 358 346 351

POWELLBS 169 192 181 180 160 168 181 181 181 181 90 88 99 133 528 99 99 99 99

POWELLSQ 13 13 13 13 13 13 417 417 417 417 13 13 13 13 13 13 13 13 13

QR3D 154 165 168 158 206 221 171 171 171 171 168 168 168 168 178 172 166 171 167

QR3D2 1027 1019 1005 1022 1013 1041 1041 1041 1041 1041 956 954 954 969 1197 957 949 953 951

QR3DBD 64 71 65 63 70 70 65 65 65 65 64 64 64 64 65 64 64 64 64

QR3DBD2 739 645 604 700 621 761 717 717 717 717 608 608 603 602 619 699 725 599 734

RECIPE 10 10 10 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10

SINVALNE 23 23 23 23 23 21 23 23 23 23 23 23 23 23 23 23 23 23 23

SPMSQRT 12 12 12 12 12 12 12 12 12 14 12 12 12 12 12 12 12 13 14

TRIGGER 9 9 9 10 10 10 9 9 9 9 9 9 9 9 14 9 9 9 9

WOODSNE 28 28 28 28 28 29 28 28 28 28 28 28 28 28 28 28 28 28 28

YATP1SQ 47 47 43 48 41 46 43 43 43 43 43 43 43 43 43 43 43 43 43

YATP1SQ2 23 23 23 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23

YATP1SQ3 23 22 22 20 20 20 22 22 22 22 22 22 22 22 22 22 22 22 22

YATP2SQ 10 10 10 10 10 10 10 10 10 > 10 10 10 10 10 > 11 12 11

YATP2SQ2 10 10 10 10 10 9 8 8 8 8 10 10 10 10 10 20 10 15 12

YATP2SQ3 10 10 10 10 10 10 10 10 10 > 10 10 10 10 10 > 11 12 11

YFITNE 44 44 44 44 44 42 41 41 41 41 44 44 44 44 44 42 43 46 52

ZANGWIL3 5 5 5 6 6 7 5 5 4 4 5 5 5 5 5 5 5 6 7

Table 5.4: Results for ACO-LS: parametric study for the interpolation rule (Algorithm 3.1).

U
p
d
a
tin

g
th
e
reg

u
la
riza

tio
n
p
a
ra
m
eter

in
th
e
a
d
a
p
tiv

e
cu
b
ic

reg
u
la
riza

tio
n
a
lg
o
rith

m
27

ARC-LS

δ2 η δ3 δmax g-rule

Name 0.25 0.5 0.75 0.9 (η2 − η1)/2 η2 1.25 1.5 2.5 3 4 10 50 500 1000

AIRCRFTA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ARGAUSS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ARGLALE 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 15

ARGLBLE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ARGTRIG 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

ARTIF 20 21 22 21 20 19 19 22 18 22 23 29 21 21 21 30

ARTIF2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 42

ARWDHNE ss ss ss ss ss ss ss ss ss ss ss 258 ss ss ss 795

BDVALUES 38 40 40 39 34 34 34 34 34 34 34 34 34 34 34 461

BDVALUES2 * * * * * * * * * * * * * * * *

BOOTH 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7

BRATU2D 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 12

BRATU2D2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 24

BRATU2DT 14 14 14 14 14 14 14 15 14 14 14 14 14 14 14 29

BRATU2DT2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 54

BRATU3D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 13

BRATU3D2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 24

BROWNALE 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

BROWNALE2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

BROYDN3D 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

BROYDN3D2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10

BROYDNBD 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

BROYDNBD2 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12

CBRATU2D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 20

CBRATU3D 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 16

CHANDHEQ 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 26

CHANNEL 159 141 133 129 142 151 164 146 141 148 146 146 145 139 139 237

CHANNEL2 111 98 91 89 105 102 107 99 98 99 102 101 96 94 97 214

CHNRSBNE 46 43 39 39 40 60 48 41 40 41 43 41 41 41 41 43

CLUSTER 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 9

COOLHANS 416 600 493 684 441 441 441 441 441 441 441 491 435 934 934 3403

CUBENE 14 14 14 14 14 14 14 14 14 14 14 14 13 14 14 13

DECONVNE 15 22 16 19 19 18 15 19 19 19 16 19 19 19 19 30

DRCAVTY1 42 43 42 47 45 42 49 43 43 43 42 61 47 40 40 53

DRCAVTY2 * * * * * * * * * * * * * * * *

EIGENA 22 21 20 19 20 20 20 20 21 20 20 20 20 20 20 32

EIGENA2 75 65 62 71 72 75 77 71 74 73 74 75 72 72 72 260

EIGENA3 96 87 80 86 93 92 95 91 92 92 93 92 92 92 92 425

EIGENB 192 174 173 155 149 224 213 151 160 164 172 173 166 153 150 173

EIGENB2 1034 1318 998 806 868 818 2309 757 792 762 822 758 954 878 1149 *

EIGENC 73 78 64 68 73 107 76 67 95 73 65 68 80 65 62 67

EIGENC2 325 309 294 273 258 272 568 276 273 269 272 248 250 230 224 463

GOTTFR 12 9 8 9 9 12 12 8 8 9 10 8 8 8 8 16

GROWTH 53 55 55 56 53 93 186 60 54 52 86 53 53 53 53 157

HATFLDF 26 22 24 25 25 26 27 25 25 25 25 25 25 25 25 19

HATFLDG 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 16

HEART6 165 144 151 158 158 171 171 164 164 168 169 132 159 159 159 554

HEART8 28 28 23 24 18 18 18 18 18 18 18 18 18 18 18 21

Table 5.5: Results for ACO-LS: parametric study for the interpolation rule (Algorithm 3.1) and g-rule (3.5) (last column).

28
N
.
I.
M
.
G
o
u
ld
,
M
.
P
o
rc
el
li
a
n
d
P
h
.
L
.
T
o
in
t

ARC-LS

δ2 η δ3 δmax g-rule

Name 0.25 0.5 0.75 0.9 (η2 − η1)/2 η2 1.25 1.5 2.5 3 4 10 50 500 1000

HIMMELBA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8

HIMMELBC 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

HIMMELBD 38 38 40 40 39 29 23 57 33 29 26 40 39 40 40 51

HIMMELBE 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8

HS8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

HYDCAR6 569 450 443 512 424 488 484 461 460 447 431 494 480 485 486 534

HYPCIR 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

INTEGREQ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

INTEGREQ2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6

METHANB8 81 156 124 129 120 120 120 120 120 120 120 120 120 120 120 81

METHANL8 263 241 152 224 188 181 203 191 186 194 283 307 202 212 200 391

MSQRTA 38 38 38 38 40 40 40 40 40 40 40 40 40 40 40 53

MSQRTA2 53 49 46 44 51 50 50 45 45 45 45 45 45 45 45 64

MSQRTB 36 36 37 36 38 38 38 38 38 38 38 38 38 38 38 53

MSQRTB2 44 40 41 42 45 46 46 44 44 44 44 45 43 44 44 59

NYSTROM5 11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 14

OSCIPANE 7 7 7 7 7 7 7 7 13 7 7 7 7 7 7 7

PFIT1 159 152 155 166 141 165 975 150 165 150 176 141 167 152 164 148

PFIT2 224 212 213 212 213 213 213 212 210 228 260 220 223 235 230 166

PFIT3 289 284 260 272 279 271 1892 264 291 327 317 3965 289 285 315 >

PFIT4 400 396 399 401 403 403 403 368 391 383 483 400 400 372 399 >

POROUS1 34 39 35 39 37 34 37 32 33 32 39 36 40 52 40 51

POROUS12 88 81 83 95 74 86 88 78 83 82 77 84 78 70 75 111

POROUS13 167 179 171 171 195 164 152 190 155 181 192 195 179 163 162 *

POROUS2 226 106 > > > > 210 > > > 90 > > > ss 61

POROUS22 97 114 125 110 128 127 116 114 104 112 115 222 111 119 129 125

POROUS23 230 219 227 188 223 216 226 218 229 197 224 228 204 212 240 271

POROUS24 333 328 343 322 341 * 352 323 303 367 334 * 349 335 324 467

POWELLBS 96 90 86 87 99 99 99 99 99 99 99 99 99 99 99 1314

POWELLSQ 13 13 13 13 12 13 14 17 18 17 16 13 13 13 13 16

QR3D 339 236 157 165 173 180 164 160 153 161 161 168 168 168 168 205

QR3D2 1538 1344 1069 1016 942 969 859 919 946 968 957 950 954 954 954 947

QR3DBD 91 80 68 63 64 63 64 69 70 63 63 64 64 64 64 122

QR3DBD2 868 954 713 697 769 733 640 686 670 737 716 667 604 593 593 728

RECIPE 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 15

SINVALNE 23 22 21 21 23 25 37 23 24 23 23 21 23 23 23 26

SPMSQRT 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 29

TRIGGER 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10

WOODSNE 23 26 27 28 28 28 28 28 28 28 28 28 28 28 28 41

YATP1SQ 41 46 43 43 46 45 52 43 43 43 46 49 47 41 43 39

YATP1SQ2 23 23 23 23 24 25 22 23 23 23 23 26 23 23 23 21

YATP1SQ3 22 22 22 22 23 22 19 22 22 22 22 23 22 22 22 20

YATP2SQ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 14

YATP2SQ2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 14

YATP2SQ3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 14

YFITNE 44 44 44 44 44 44 44 44 44 44 44 45 40 41 43 453

ZANGWIL3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 23

Table 5.6: Results for ACO-LS: parametric study for the interpolation rule (Algorithm 3.1) and g-rule (3.5) (last column).

	RAL-TR-2011-007-cover
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2011-007-report

