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We assess the range of anthropogenic warming rates over the coming 50
years which are consistent with the simulations of several climate models and
the emerging signal of climate change in the observations. Reconciling the
models with the observed signal improves agreement amongst the simulations
and provides an objective estimate of uncertainty in each prediction. The
use of pattern-based signals allows separate estimates of the contributions to
forecast uncertainty from greenhouse warming and sulphate aerosol cooling.
Since aerosol cooling has opposed greenhouse warming in the past, any
reduction in sulphate emissions over the coming 50 years not only increases
the “best guess” rate of global warming, but also significantly increases the
uncertainty range because a wider range of future warming rates would
then be consistent with the signal observed to date. The observed surface
temperature signal is still too weak to place useful bounds on long-term
equilibrium warming without additional information on the timescale of the
climate response.
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Given a scenario of future greenhouse gas concentrations, the range of uncertainty
in forecasts of anthropogenic climate change is generally estimated either from the
intercomparison of opinions elicited from climate experts [1] or through perturbation
analysis of simple [2, 3, 4, 5] or intermediate-complexity [6] climate models. The former
approach is necessarily subjective, while relying on models that predict only a limited
number of variables can make it difficult to separate out the roles of different contributors
to climate change [2, 5].

More recently, uncertainty analyses have been couched in terms of the range of
predictions from different atmosphere-ocean general circulation models (A-OGCMs). The
first five squares in figure 1 show predicted global mean temperature in the decade 2036-
46 relative to pre-industrial {control) climate for four A-OGCMs [7, 8, 9, 10] all driven
with approximately the same scenario (“IS92a” [11, 12}]) of greenhouse gas and sulphate
aerosol (GS) concentrations (the fourth square shows the impact of the inclusion of
indirect sulphate and tropospheric ozone concentrations in one model [9]).

Warming relative to pre-industrial in 2036-46
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Figure 1: Squares: temperature change relative to pre-industrial {control) climate in a range of climate
models for the decade 2036-46 under the “IS92a” scenario of greenhouse+sulphate forcing (greenhouse
only in rightmost case). Diamonds: scaled temperature change after reconciling model-simulated large-
scale patterns of near-surface temperature (expressed as anomalies about the 1896-1996 mean) over the
five decades 1946-96 with the corresponding observed signal using an optimal fingerprint algorithm.

Vertical bars: uncertainty in the scaled respense based on uncertainty in the scaling factor required to
reconcile the models with observed changes.

Predictions range from 1.1 to 2.3K, but translating inter-model spread into an
objective uncertainty range is problematic because these models do not necessarily span
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the full range of behaviour consistent with current knowledge. Their climate sensitivities
(equilibrium warming on doubling carbon dioxide), for example, all lie in the range 2.5-
3.5K: a significantly smaller range than even the most optimistic current estimate of
uncertainty in this parameter.

An alternative approach is suggested by the heavy solid line in figure 2. This shows
how the predicted warming by 2036-46 under the 1IS92a GS scenario varies with the
simulated rate of anthropogenic warming over the 20*® century as we vary the prescribed
climate sensitivity in a simple climate model [2]. The plot is close to a straight line
intercepting zero, indicating a simple linear relationship between the amplitude of the
signal observed to date and the size of mid-21lst-century warming. Almost the same
relationship emerges if we assume a different rate of oceanic heat uptake [13] (heavy
dotted line). Thus, in the context of this simple model, if the range of 20' century
warming trends attributable to anthropogenic influence were 0.25-0.5K/century, then
the uncertainty range in 2040s temperatures would be 1-2K, irrespective of the accuracy
of the model’s climate sensitivity or timescale of oceanic adjustment.

Transfer functions from simple climate model
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Figure 2: Heavy solid line, left-hand scale: Relationship between simulated global mean temperature
trends over the period 1896-1996 and the predicted total anthropogenic warming by the decade 2036-46,
obtained by varying the climate sensitivity in a simple climate model [2] under 1992a greenhouse and
sulphate forcing. Heavy dotted line: relationship obtained assuming a different rate of oceanic heat
uptake (effective vertical diffusivity of 0.25m?/s, vs. 2.0m?/s in the base case). Light solid and dotted

curves, right hand scale: corresponding relationships between simulated 1896-1996 temperature trends
and equilibrium climate sensitivity.

In contrast, the relationship between the observed signal and the equilibrium climate
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sensitivity is both non-linear and dependent on the assumed rate of oceanic heat uptake.
A 0.25-0.5K/century range in recent anthropogenic warming rates would translate into
an uncertainty in sensitivity of 1.5-4K if we assume the faster timescale of oceanic
adjustment (thin dotted line, right hand scale). With the slower timescale (thin solid
line), no useful upper bound could be placed on the climate sensitivity on the basis of
20" century temperature trends. Thus we cannot estimate climate sensitivity from recent
observed surface temperature trends without an independent estimate of the timescale of
oceanic adjustment (2, 13, 6]. Even if this response time were known, if it turns out to be
towards the slower end of the current uncertainty range, then it may still be impossible
to provide a useful upper bound on climate sensitivity on the basis of recent trends.

Figure 2 is derived from a very simple model, but we would expect similar relationships
to hold in more complex systems provided both the strength of atmospheric feedbacks
and the timescale of oceanic adjustment do not change in response to forcing of this
magnitude. The fact that the majority of A-OGCMs give an almost linear response
to a linear increase in radiative forcing (ref. [4], figure 6.4) provides some support for
this assumption, but direct perturbation analysis of more complex models with realistic
forcing trajectories is clearly required to explore its validity in full {14].

Confining our attention to the transient response, the problem now becomes: what
fraction of the recent observed warming should be attributed to anthropogenic influence?
Climate change detection techniques [15, 16, 17, 18, 19] provide an estimate of this
fraction (or, more specifically, an estimate of the factor by which we have to scale a
model-simulated trajectory to match the magnitude of the observed anthropogenic signal
[20]), together with an objective estimate of the corresponding range of uncertainty.

The diamonds in figure 1 show the various model predictions for total warming by
2036-46 after scaling their respective trajectories to match the amplitude of observed near-
surface temperatures (expressed as anomalies about the 1896-96 mean) over the 1946-96
period. By the mid-21%-century, sampling uncertainty in the raw model predictions is
small, particularly if ensemble simulations are available. Thus a factor-of-two uncertainty
in the scaling required on the model-simulated 20" century response translates into a
factor-of-two uncertainty in the scaled prediction.

Rather than simply using temperature trends as a measure of the strength of the
observed signal, we use a full spatio-temporal “fingerprint” [15, 19] of the various models’
GS response. The use of a fingerprint pattern provides an “optimal estimate” {21] of the
response amplitude, minimising uncertainty due to internal climate variability. Inter-
model consistency is improved, with predictions from un-responsive models being scaled
up and predictions from highly responsive models scaled down. The GFDL prediction
remains high relative to the other models: in physical terms, this means that the model
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simulations are diverging by more than we would expect if they were simply scaled
versions of the same underlying trajectory. The further we predict into the future, the
greater this divergence is likely to be, so this approach is only valid over timescales up to
the length of the observational record used. The estimated uncertainty in the amplitude
of the scaled response is shown by the vertical bars. These are in less good agreement,
reflecting differences between the models’ estimates of internal climate variability.

To demonstrate what happens if an important process is omitted, the sixth square in
figure 1a shows the predicted 2036-46 warming from the HadCM2 model forced with rising
greenhouse gases alone. The raw prediction is over half a degree warmer than the same
model under GS forcing, but the fingerprint analysis suggests that this model trajectory
would need to be scaled down significantly to be consistent with recent observations.
After application of this scaling, the resulting best-guess and uncertainty range is in
better agreement with the GS simulations. This point is important because another,
important but unknown, process may also have been omitted from all the GS simulations.
Provided this process has a proportionally similar impact on the signal observed to date
as on early 21% century warming (as would be the case for an atmospheric feedback
that scales with the surface temperature change) its omission from the models would not
affect the estimated scaled prediction.

Errors which only manifest themselves in the future, such as a failure to represent
a sudden shut-down in the thermohaline circulation, would not be accounted for in this
analysis. At presenf, most simulated circulation changes appear to be relatively gradual
over the timescales of interest [22], but the possibility of sudden non-linear climate
change remains a crucial caveat and limits the forecast lead time over which it would be
appropriate to pursue this approach. The assumption that the spatio-temporal patterns
of response are independent of the response amplitude appears to be acceptable for
large-scale surface temperature changes [16, 4], but it would not be valid for changes
in precipitation [23] or atmospheric circulation [24], nor for cases in which the forcing
changes abruptly over the period of interest.

Another important assumption underlying figure 1 is that the relative amplitude
of the responses to greenhouse gases and to sulphate aerosols is as simulated in these
GS experiments, so the combined response can be represented in each case by a single
spatio-temporal pattern. Given the considerable uncertainty in the sulphate forcing and
response, this is difficult to justify. For the HadCM2 climate model, we have separate
multi-member ensemble simulations of the greenhouse-gas-only and the GS response. The
fingerprinting approach allows separate estimates of the amplitude of both the greenhouse
and sulphate signals in the observations, together with their joint uncertainty range [25].

By scaling their individual contributions to model-predicted future warming accordingly,
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we arrive at an uncertainty estimate which does not depend on the amplitude of the
model-simulated response to either forcing agent.

Figure 3 shows the resulting range of uncertainty in the HadCM2 prediction of
decadal global mean temperature relative to pre-industrial under the IS92a scenario.
The solid line shows the original model prediction; the dashed line and shaded band
show the median and 5-95% uncertainty range after scaling the simulated greenhouse
and sulphate signals to match observed large-scale temperatures over the 1946-96 period.
The observed spatially-averaged global mean temperatures of the five decades 1946-1996
are shown (diamonds) for illustration only: scaling factors are estimated from the full
spatio-temporal pattern of temperature change. The figure shows range of uncertainty in
the underlying anthropogenic trend: superimposed on this would be uncertainty in the

temperature in individual decades due to internal variability, indicated by the vertical
bars on the observations.

Global temperature under 1592a
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Figure 3: Simulation and forecast of decadal global mean temperatures relative to pre-industrial
(control) as predicted by HadCM2 under the IS92a scenario. Solid line: mean of original 4-member
ensemble simulation. Dashed line: after scaling the model-simulated spatio-temporal patterns of response
to greenhouse and sulphate forcing individually to give the best combined fit to the observations over
the 1946-96 period. Shaded band: 5-95% confidence interval on scaled response. Diamonds show
observed decadal global mean temperatures (anomalies about the 1896-1996 mean, plotted about the

corresponding mean of the ensemble); vertical bars show 2 s.d. of decadal mean temperatures from
HadCM2 control.

Thus far, we have assumed that the observed record consists only of anthropogenic
signals and internal variability. While this assumption is consistent with the available
data [10, 19, 20|, we have prior reason to expect natural external factors also to have



M. R. Allen et al December 24, 1999 7

affected temperatures over the 20*" century [26, 18]. If we include the combined response
(as estimated by HadCM2 [19]) to solar variability and volcanic aerosols in a three-way
fingerprint analysis [27], the uncertainty range is almost unchanged because the inclusion
of this estimate of the natural signal does not have a detectable impact on this estimate
of the amplitude of the anthropogenic response (the use of decadal mean data minimises
the impact of individual volcanic eruptions and the 1l-year solar cycle). Nevertheless,
uncertainty in the amplitude of the response to natural forcing (and thus the fraction of
recent warming attributable to anthropogenic influence) remains an important caveat.

Surprisingly, estimating the greenhouse and sulphate signal amplitudes separately
does not appear to increase forecast uncertainty: the forecast- warming range by 2036-
46 in figure 3 is almost identical to the range based on the HadCM2-GS simulation
alone shown in figure 1. The reason is that the combination of greenhouse warming and
sulphate cooling predicted under the IS92a emissions scenario happens to be particularly
well constrained by the observed signal (at the global level — this would not necessarily
be the case for regional changes). This is shown graphically in figure 4. The dotted
contours show how projected warming over the 1996-2046 period depends on the scaling
factors applied to the model-simulated greenhouse and sulphate signals. The raw model
prediction is a 1.35K greenhouse warming and a 0.35K sulphate cooling over this period,
giving a net warming assuming both scaling factors are unity of 1K (the square). If we
scale the sulphate signal (either up or down) faster (by a factor of 1.35/0.35) than we
scale the greenhouse signal, the net warming is unchanged: hence the orientation of the
contours.

The cross and shaded region show the best guess and joint 90% uncertainty range on
the scaling factors required on the model-simulated greenhouse and sulphate response-
patterns to reproduce observed temperatures over the 1946-96 period. The uncertainty
range is strongly tilted, meaning the model could over- (or under-)estimate the magnitude
of recent greenhouse warming and still be consistent with the observed signal provided it
also over- (under-)estimates the magnitude of sulphate cooling. The principal axis of the
uncertainty region is close to parallel to the contours of future warming, so uncertainty
in predicted warming under the 1S92a scenario is relatively low (best-guess and 5-95%
range shown by the diamond and solid bar).

Any reduction in future sulphaté cooling not only increases the best-guess net future
warming, but it also substantially increases the uncertainty range. The reason is that the
two-dimensional confidence region would no longer be so well aligned with the isolines
of predicted warming. For example, if the predicted 0.35K cooling due to sulphates over
the 1996-2046 period is eliminated altogether (making the contours in figure 4 vertical),

the best guess net warming over this period increases by 0.2K, or about 20% (less than
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Figure 4: Dotted contours: isolines of global mean warming (in Kelvin) between the decade 1986-96
and the decade 2036-46 as a function of the scaling factors applied to the raw HadCM2 prediction of a 1K
warming (square). Cross and shaded region: best-guess and joint 90% confidence region on estimated
scaling factors required to reproduce observed large-scale near-surface temperatures over the 1946-96
period using response-patterns simulated by HadCM2. Diamond and solid error bar: best-guess and
5-95% range on forecast warming (read off from the contours) obtained by a probability-weighted surn
of “allowed” scaling factors along the isolines of future warming.

0.35K because the best-guess scaling on the sulphate signal in figure 4 is 0.6), whereas
the upper bound on the 5-95% range increases by almost 50%, from 1.2 to 1.7K. This
would also be the case for other factors, such as stratospheric ozone depletion, whose
influence on climate is less easy to detect than the agents considered here [20], but in
which trends are also expected to reverse over the next few years.

Methods

HadCM2-GS [12] and GFDL-GS [10] simulations are based on 4- and 5-member ensembles respectively
forced with observed greenhouse and parameterised direct sulphate forcing to 1990 followed by 1%/year
compound increase in CO; {close to the IS92a scenario in terms of radiative forcing {23]) and IS92a
projected sulphate loadings. ECHAMS3-GS two-member ensemble [8] and ECHAM4-GS single simulation
[9] are both based on observations followed by IS92a; ECHAM4-GSI single simulation [9] includes the
impact of indirect sulphate forcing and tropospheric ozone changes. Model-observation comparison is
based on decadal mean near-surface temperatures over the period 1946-1996. Data are expressed as
departures from the 1896-1996 mean, which exploits the fact that recent decades have been generally
warmer than the preceding half-century without attempting to fit the details of surface temperature
changes in poorly-sampled earlier decades. Ensemble members and 100-year segments of the control were
masked with the pattern of missing data in the observations before computing means and anomalies,
filtered to retain only scales greater than 5,000km [28, 19] and projected onto the 10 leading modes of
internal spatio-temporal variability of the individual model control simulations (ECHAMS3 control used
for ECHAM4). Scaling factors (diamond/square ratios in figure 3) are estimated using standard optimal
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fingerprinting [15] modified to account for the presence of sampling noise in model-simulated signals
(29, 30]. Uncertainty estimates reflect uncertainty in scaling factors given interdecadal variability in the
individual model control simulations (HadCM2: 1700 years, ECHAMS: 1900 years, GFDL: 1000 years).

In each case the first half of the control was used to define the detection space and for optimisation, the
second for uncertainty analysis.

References

0y
2l
(3]

4]
(5]
[6]
[7]

(8]
(9]

[10]
1]
[12]
[13]

[14]
[15]

[16]

[17]

M. G. Morgan and D. W. Keith. Subjective judgements by climate experts. Environmental Policy
Analysis, 29:468-476, 1995.

J. Hansen, G. Russell, A. Lacis, I. Fung, D. Rind, and P. H. Stone. Climate response times:
dependence on climate sensitivity and ocean mixing. Secience, 229:857-859, 1985.

T. M. L. Wigley and S. C. B. Raper. Sea level changes due to thermal expansion of the oceans.
In R. A. Warrick, E. M. Barrow, and T. M. L. Wigley, editors, Climaete and Sea Level Change:
Observations, Projections and Implications. Cambridge Univ. Press, Cambridge, U.K., 1993.

J. T. Houghton et al., editors. Climate Change 1995: The Science of Climate Change. Cambridge
Univ. Press, 1996.

T. M. L. Wigley, P. D. Jones, and 8. C. B. Raper. The observed global warming record: What does
it tell us? Prec. Nai. Acad. Sci., 94:8314-8320, 1997.

C. E. Forest, M. R. Allen, P. H. Stone, and A. P. Sokolov. Constraining uncertainties in climate
models using climate change detection techniques. Geophys. Res. Leti, 1999. to appear.

T. C. Johns, R. E. Carnell, J. ¥. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, 5. F. B. Tett,

and R. A. Wood. The Second Hadley Centre coupled ocean-atmosphere GCM: model description,
spin-up and validation. Climate Dynamics, 13:103-134, 1997.

R. Voss, R. Sausen, and U. Cubasch. Periodically synchronously coupled integrations with the
atmosphere-ocean general circulation model ECHAM3I/LSG. Climate Dynamics, 14:249-266, 1998.

E. Rockner, L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe. Transient climate change

simulations with a coupled atmosphere-ocean gem including the tropospheric sulfur cycle. J.
Climuate, 12:3004-3032, 1999.

T.R. Knutson, T.L. Delworth, K.W. Dixon, and R.J. Stouffer. Model assessment of regional surface
temperature trends (1949-1997). J. Geophys. Res., 1999. to appear.

J. T. Houghton et al., editors. Climate Change 1992, Supplemnent to the IPCC Scientific Assessment.
Cambridge Univ. Press, 1992.

J. F. B. Mitchell, T. C. Johns, J. M. Gregory, and S. F. B. Tett. Climate response to increasing
levels of greenhouse gases and sulphate aerosols. Nature, 376:501-504, 1995.

A. P. Sokolov and P. H. Stone. A flexible climate model for use in integrated assessments. Climate
Dynamics, 14:291-303, 1998.

M. R. Allen. Do-it-yourself climate prediction. Nature, 401:642, 1999.

K. Hasselmann. Optimal fingerprints for the detection of time dependent climate change. J. Climate,
6:1957-1971, 1993.

G. C. Hegerl, H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones. Detecting

greenhouse gas-induced climate change with an optimal fingerprint method. J. Climate, 9:2281-
2306, 1996.

G. Hegerl, K. Hasselmann, U. Cubasch, J. F. B. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz.

On multi-fingerprint detection and attribution of greenhouse gas and aerosol forced climate change.
Climate Dynamics, 13:613-634, 1997.



M. R. Allen et al December 24, 1999 10

it
i
[20]
21

[22]

[23]
[24]
[25]

(26]

[27]

[28]
[29]

(30]

G. R. North and M. J. Stevens. Detecting climate signals in the surface temperature record. J.
Climate, 11:563-577, 1998.

S. F. B. Tett, P. A, Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell. Causes of twentieth
century temperature change near the earth's surface. Neture, 399:569-572, 1099.

M. R. Allen and 5. F. B. Tett. Checking internal consistency in optimal fingerprinting. Climate
Dynamics, 15:419, 1999,

T. L. Bell. Theory of optimal weighting to detect climate change. J. Atmos. Seci., 43:1694-1710,
1986.

R. A. Wood, A. B. Keen, J. F. B. Mitchell, and J. M. Gregory. Changing spatial structure of

the thermohaline circulation in response to atmospheric cos forcing in a climate model. Neture,
399:572-575, 1999,

J. F. B. Mitchell and T. C. Johns. On modification of global warming by sulphate aeroscls. .J.
Clirate, 10:245-266, 1997.

5. Corti, I'. Molteni, and T. N, Palmer. Signature of recent climate change in frequencies of natural
atmospheric circulation regimes. Nature, 398:799-802, 19929,

K. Hasselmann. On multifingerprint detection and attribution of anthropogenic climate change.
Climate Dynamics, 13:601-611, 1997,

U. Cubasch, R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley. Simulation of the influence
of solar radiation variations on the global climate with an ocean-atmosphere general circulation
model. Climate Dynamies, 13:757-767, 1997.

P. A. Stott, S. F. B. Tett, G. S. Jones, M. R. Allen; W. J. Ingram, and J. F. B. Mitchell. Attribution

of twentieth century climate change to natural and anthropogenic causes. Climate Dynamics, 1999.
submitted.

P. A. Stott and S. I. B. Tett. Scale-dependent detection of climate change. J. Climeate, 11:3282-
3294, 1998.

B. D. Ripley and M. Thompson. Regression techniques for the detection of analytical bias. Analyst,
112:377-383, 1987.

S. van Huffel and J. Vanderwaal. The Toial Least Squares Problem: Computational Aspects and
Analysis. SIAM, 1994,









