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Abstract

There is increasingly clear evidence that human influence has played a role in
the large-scale climatic changes that have occurred over the past few decades. Our
attention now turns to the physical implications of the emerging anthropogenic
signal. Of particular interest is the question of whether, and by how much,
models may be over- or under-estimating the amplitude of the climate system’s
response to various external influences, including anthropogenic forcing. Evidence
of a significant error in a model-simulated response amplitude would signal the
existence of amplifying or damping mechanisms that are inadequately represented
in the model. The range of uncertainty in the factor by which we can scale
model-simulated changes while remaining consistent with observed change provides
an estimate of uncertainty in model-based predictions. With any model that
displays a realistic level of internal variability, the problem of estimating this factor
is complicated by the fact that it represents a ratio between two incompletely
known quantities: both observed and simulated responses are subject to sampling
uncertainty, primarily due to infernal chaotic variability. Sampling uncertainty
in the simulated response can be reduced, but not eliminated, through ensemble
simulations. Accurate estimation of these scaling factors requires a modification
of the standard “optimal fingerprinting” algorithm for climate change detection,

drawing on the conventional “Total Least Squares” approach discussed in the
statistical literature.
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This paper describes a variant of the regression-based technique of climate change
detection and attribution that is generally known as “optimal fingerprinting” (see,
for example, Hasselmann, 1979; Bell, 1986; Hasselmann, 1993; North et al., 1995;
Husselmann, 1997; Leroy, 1998; Allen & Tett, 1999). The fingerprinting approach is
to define a pattern of response to external climate forcing using a climate model and
then to estimate the amplitude of that pattern, or signal, in the observed climate record.
If the hypothesis of zero pattern-amplitude can be rejected with confidence, then that
signal is said to be detected.

The standard approach to optimal fingerprinting assumes that the model-simulated
response-pattern is known exactly, that is, it is not subject to sampling uncertainty. By
sampling uncertainty, we mean the variability in the model-simulated response which
would be observed if the simulation (or ensemble of simulations) were repeated with an
identical model and forcing and different initial conditions. A more general definition
of sampling uncertainty would encompass how the response-pattern might vary were we
to use a different but equally possible model or forcing series. The generalisation of the
algorithm described here to encompass these wider sources of uncertainty (which are also
much more difficult to quantify) represents work in progress.

Early applications using atmosphere-ocean general circulation models {A-OGCMs)
in optimal fingerprinting ensured that the assumption of zero sampling uncertainty was
satisfied by using response-patterns derived from simulations of mid-21%* century climate
change (e.g. Hegerl et al., 1996; Hegerl et al., 1997). By that time, the signal-to-noise is so
high that sampling uncertainty in the response-pattern can be safely neglected. The main
limitation of this approach is that it confines the analysis to spatial patterns of trends
— 215 century information cannot be used to determine the temporal evolution of the
climate response to external forcing over the past few decades. This excludes information
on the differing time-histories of different components of anthropogenic climate change
and, even more importantly, excludes direct consideration of naturally-forced signals
(even if the information were available, the model response to 21 century solar forcing
is not relevant to its 20'" century response).

An alternative approach is to use a simpler model, such as an Energy Balance Model
(EBM), that is not subject to internal variability, to obtain noise-free estimates of the
signals in question (North € Stevens, 1998). The practical difficulty here is that processes
not represented in the EBM may have an influence on observed climate change, so the
EBM-defined signal may focus attention “in the wrong place”. A more fundamental
problem is that EBMs are no longer the primary vehicles for climate change prediction,
so the information that a particular EBM is over- or under-estimating the response to a
particular forcing agent is of limited value.

Direct comparison of noisy A-OGCM simulations and the observed record can proceed
through correlation-based approaches, as in Barnett & Schlesinger, 1987; Santer et al.,
1993; Santer et al., 1996; Tett et al., 1996; Folland et al., 1998. The difficulty here,
again, lies in physical interpretation. Even if the correlation between modelled and
observed changes is very high, this does not provide any information on whether the
model-simulated amplitude of the change is accurate.

The simplest results to interpret are those based on a direct comparison of “like
with like”: A-OGCM simulations of 20'* century climate change compared directly with
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the corresponding period in the observed record, exploiting both pattern and amplitude
information in the model-data comparison (Allen & Tett, 1999; Teit et al., 1999; Stott
et al., 2000a). To date, such studies have used ensembles to reduce sampling uncertainty
in model-simulated responses and not attempted to account for this uncertainty explicitly
in their analyses. The problem, of course, is that even with the four-member ensembles
used in the above studies, sampling uncertainty is still far from negligible, particularly
in weak signal-to-noise situations such as the analysis of the response to solar forcing.
With more advanced models (Réckner et al., 1999), even four-member ensembles may
be unfeasible.

In this paper, we describe a revised approach to optimal fingerprinting that provides
unbiased estimates of pattern-amplitudes and amplitude uncertainties when model-
simulated response-patterns are subject to a finite level of noise. The algorithm is
applicable even in the case where the model is subject to the same level of noise as the
observations, as is the case (assuming model-simulated variability is realistic) in a single-
member ensemble simulation. Uncertainties will typically be quite large in this situation,
for obvious reasons: if the signal is poorly known in the first place, the uncertainty in its
amplitude in a noisy observed record is even larger.

Accounting for this noise is particularly important if pattern-amplitudes are to be
subject to a physical interpretation, such as addressing the question of whether the A-
OGCM is over- or under-estimating the response to a particular forcing agent. Standard
estimates are subject to a known bias towards zero and may therefore give a misleading
impression of a weaker response in the real world than that simulated by the models,
even if the models are perfectly accurate. The extent of this bias in typical climate
change detection problems, and the extent to which we can eliminate it, is assessed in an
accompanying paper: Stott et al., 2000b.

Estimated upper bounds are particularly severely affected. This should be intuitively
clear if we recognise that, in estimating a pattern amplitude, we are estimating the ratio
between the amplitude of the observed and the model-simulated response. The presence
of noise in the denominator means that the underlying noise-free model-simulated
response (that which we would obtain from a hypothetical infinite ensemble) could be
smaller than the response simulated in this particular experiment. If the uncertainty is
large enough that this unknown noise-free response could approach zero, then the ratio
between the noise-free model-simulated response and the observed response could be very
high.

This point is illustrated in figure 1, which shows hypothetical estimation results based
on a single observable quantity (global mean temperature trend, for example) that is
subject to unit variance due to Gaussian internal climate variability. We assume that
the model-simulated variability in this quantity is realistic and a four-member ensemble
is available to simulate the response to external forcing, so the variance of the simulation
is one quarter that of the observations. Suppose we find an observed trend of two units
and an ensemble-mean model-simulated trend of one unit. The distribution of noise-
free, underlying trends in the real world consistent with this observation is shown as the
solid line in the upper panel, while the distribution of noise-free model trends (those we
would obtain given a hypothetical infinite ensemble) consistent with this ensemble mean
is shown as the dashed line. The question is, given only an observed trend of two units
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and an ensemble mean model trend of one unit, by how much can we conclude that the
model is over- or under-estimating the underlying noise-free response, and with what
range of uncertainty?

True underlying trends consistent with observations and simulations
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Figure 1: Upper panel: Distributions of underlying, noise-free trends in the real world (solid line)
and a hypothetical climate model (dashed line) given an observed trend of two units, a four-member-
ensemble mean trend of one unit and known unit variance in both modelled and observed trends. Lower
panel, dashed line: Estimated distribution of ratios of real-world vs. model-simulated trends implied by
conventional optimal fingerprinting (obtained simply by taking the model-simulated trend as given and
accounting only for variance in the observations). Lower panel, dotted line: ditto, including the 1+ 1/¢
correction for finite ensemble size as used in Allen & Tett, 1999; Telt et al., 1999. Lower panel, solid
line: true distribution of ratios obtained from random samples from the two distributions shown in the
upper panel.

The answer provided by standard optimal fingerprinting, neglecting uncertainty in
the model simulation altogether, is shown as the dashed line in the lower panel: this
is obtained simply by dividing the distribution of trends consistent with that observed
by the mean trend obtained in this particular ensemble. A simple correction on the
variance of this estimate is to scale it by 1+ 1/£, where £ is the ensemble size: this is
the approach taken by Allen & Teit, 1999; Tett et al., 1999; Siott et al., 2000a, and is
shown as the dotted line in the lower panel. It is only valid provided the signal-to-noise
in the model-simulated response is high, which is not the case here. The correct answer
for the distribution of ratios of observed/model-simulated responses consistent with these
results is shown as the solid line in the lower panel, obtained simply by computing the
distribution from samples drawn at random from the two distributions shown in the
upper left panel (giving a Cauchy distribution). This is the distribution we aim to obtain
(in the more general case of multiple observable quantities) using the algorithm provided
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in this paper. Notice how the most important discrepancies arise in estimated upper
bounds on this ratio: both standard and “corrected” variants of optimal fingerprinting
suggest a very low probability of the ratio exceeding 4.5 units, whereas a significant
fraction of the true distribution lies above this threshold.

Before proceeding to details, we would like to stress that, although this algorithm
allows the biases due to sampling uncertainty in model-simulated responses to be
quantified and largely eliminated, it is not a substitute for reducing this uncertainty
directly through the use of larger ensembles. The size of ensemble required to pin down
the response to an external forcing agent accurately depends, of course, on the signal-to-
noise ratio. For strong signals, such as the response to greenhouse gases in the large-scale
surface temperature record over the past few decades (Tett et al., 1999; Stoit et al., 2000a),
a 3- to 4-member ensemble may be enough, but for weaker signals such as the response to
solar forcing, larger ensembles are likely to be required. In the drive for higher-resolution
models, it should not be forgotten that single-member ensembles are of relatively little
value in the analysis of observed climate change, so a compromise will always be required
between model resolution and ensemble size.

1  Optimal fingerprinting as linear regression

1.1 Estimation procedure

We begin by summarising the standard linear regression algorithm as applied to the
detection of climate change in order to introduce notation and make the link to the
standard approach. The standard detection model assuming noise-free model-simulated
response-patterns is as follows:

y=Xg+wv (1)

where y is the rank-n vector of observations, the m columns of X are the model-simulated
response-patterns, the elements of 3 are the unknown pattern-amplitudes to be estimated
and v is the climate noise term. The climate noise covariance,

Cy = E(vvT), (2)

is generally unknown and must be estimated from a control run of a climate model.
Because the noise is generally far from white, or Cy # ¢°I, ordinary least squares
regression gives highly inefficient estimators for 8 and strongly biased estimates of the
errors in 3. The solution is to introduce a “pre-whitening” operator, P, defined such
that

EPvvTPT) =1,, (3)

where I is the rank-x unit matrix. Note that s, the rank of P, may be much smaller than
n, the rank of y — in general, a full-rank pre-whitening operator (which would render the
noise variance equal on all spatio-temporal scales) will not be available because small-
scale noise variance is either unknown or poorly simulated by the model.

Because Pwv is independent, identically distributed (i.i.d.) “white noise”, the best
(lowest-variance) linear unbiased estimator of 3, 5, is given by minimisation of the merit
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function _ _ _
() = (PXB — Py)"(PXB - Py) = "P'Pd (4)
with respect to 5 At the minimuin,
B = (XTPTPX) 'X"PTPy = FTy, (5)
where the rows of ¥ are the “distinguishing fingerprints” (Allen & Tett, 1999) and

lenin ~ Xi—m' (6)

The variance of the estimator 3 is given by the inverse of the Hessian or curvature matrix,

V(B) = £(B-8)B-B7) (7)
18]

{2 a(ﬁ')z} )

= (XTPTPX), (9)

as may be verified by expanding 8 on the RHS of (7) in terms of X and v. )
Thus, if we ignore uncertainty in the estimated noise variance, discussed below, 3 is
normally distributed with mean B and variance

V(B) = (XTPTPX)". (10)

Equivalently,
(B - B (XTPTPX) (B~ B) = Ar*(B)=r(8)— rim (11)
~ X (12)

To map a desired confidence region, therefore, we determine the critical value of the
appropriate distribution (e.g. x2,(0.05)) and plot the surface of values of 8, for which
Ar?(8',.), or the LHS of (12), is equal to that critical value. We can then expect (at this
confidence level) the vector of true coefficient values, 8, to lie within this region.

Many applications require an estimate of uncertainty in individual signal amplitudes,
or in specific combinations of signals, rather than the joint uncertainty in all components
of 3. Tor example, to quantify uncertainty in the trend in global mean temperature
over a particular period, we introduce a vector ¢, where c¢; is the corresponding trend in
the model simulation which provides the * column of X. The vector 3 represents the
combination of model-simulated signals which best reproduces the observations, so the
best-guess trend over this period is simply ¢ = ¢TB. The variance in ¢ is provided by
V(¢) = cTV(B)c. To determine a confidence interval, we find the values of ¢ for which

2
@9V _ 20.05). (13)

cTV(B)c
If ¢ depends on one signal only (e.g. only one of the signals displays a trend), then the
denominator of the LHS of (13) is simply equal to the corresponding diagonal element of

V(B), being the familiar standard error of the estimate.
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It will prove helpful to note that an equivalent method of computing confidence
intervals in individual signals or signal-combinations is to map the surface of values 3,
for which A72(3;) = x?(0.05). We then compute ¢, = c¥ 8, for all points on this surface,
and the limits on the confidence interval are given by the maximum and minimum values
of the ¢,. This is exactly equivalent to equation (13) when an estimate V() is available
(Press et al., 1992), but proves useful when it is not.

1.2 Sampling uncertainty in the estimated noise variance

Ignoring uncertainty in the estimated noise properties simplifies the analysis but can
lead to “artificial skill” (systematic bias towards underestimation of uncertainties) in
a climate change detection context (Bell, 1986). The simplest way to deal with this
problem is to base the uncertainty analysis on a set of v noise realisations, Tg, which are
statistically independent of any noise realisations used to estimate P. The v columns of
Y, correspond to y-like vectors of pure noise (“pseudo-observations”) drawn, for example,
from v statistically independent segments of a control integration of a climate model.
If adjacent columns of T are not statistically independent, the degrees of freedom of
covariance estimated based on this noise realisation, 5, will be less than the number of
columns, ».

The standard fingerprinting algorithm is linear, so the variance of 3 does not depend
on the actual amplitude of the signal in the observations, y. An estimate of V(8) can
therefore be obtained by applying the same operator, FZ, which was used to extract 3
from y to the columns of ¥, and estimating the variance of the result:

U L v

V(8) (14)

2
Taking into account the sampling uncertainty in T, gives
(:é - ﬁ)TV(B)_l(E - ﬂ) ~ M u,, (15)

which can be used in place of equation (12) to provide confidence intervals on 3.

We also have
s _ o (POOTPT),
= o =T
This is equivalent to the F'-test for residual consistency proposed in Allen & Tetf, 1999,
assuming that Cj; in their equation (20) refers to the pseudo-inverse in the detection

space defined by P - i.e. ignoring the off-diagonal elements of PT2T§PT. Since Cy, as
defined in Allen & Tett, 1999, is non-invertible, there is potential ambiguity as to which
pseudo-inverse should be used. The algorithm detailed here gives reasonably unbiased
results and is the one used in Allen & Tett, 1999, Tett et al., 1999 and Stott et al., 2000a.
Not all pseudo-inverses are similarly well-behaved (Tett, 1999, pers. comm.).

Uncertainty intervals in individual signals or signal-combinations are given by
replacing equation (13) with

7

~ (1= ) Fecrmus- (16)

min

(¢ — ¢)?

e Fy ,,{0.05). (17)



Estimating signal amplitudes... Part I: Theory 7

It will prove helpful to note that an equivalent method of computing confidence
intervals in individual signals or signal-combinations is to map the surface of values 3,
for which A72(8;) = x%(0.05). We then compute ¢; = ¢T3, for all points on this surface,
and the limits on the confidence interval are given by the maximum and minimum values
of the ¢;. This is exactly equivalent to equation (13) when an estimate V() is available
{Press et al., 1992), but proves useful when it is not.

1.2 Sampling uncertainty in the estimated noise variance

Ignoring uncertainty in the estimated noise properties simplifies the analysis but can
lead to “artificial skill” (systematic bias towards underestimation of uncertainties) in
a climate change detection context {Bell, 1986). The simplest way to deal with this
problem is to base the uncertainty analysis on a set of v noise realisations, Y,, which are
statistically independent of any noise realisations used to estimate P. The v columns of
Y, correspond to y-like vectors of pure noise (“pseudo-observations”) drawn, for example,
from v statistically independent segments of a control integration of a climate model.
If adjacent columns of Y, are not statistically independent, the degrees of freedom of
covariance estimated based on this noise realisation, ¢4, will be less than the number of
columns, v. _

The standard fingerprinting algorithm is linear, so the variance of 8 does not depend
on the actual amplitude of the signal in the observations, y. An estimate of V(3) can
therefore be obtained by applying the same operator, F7, which was used to extract 3
from y to the columns of T3 and estimating the variance of the result:

T T
\7(,@) - F T2T2F-

Taking into account the sampling uncertainty in T, gives

(B - )B)TV(B)—I(& - ﬁ) ~ mFm,uz: (15)

which can be used in place of equation (12) to provide confidence intervals on fﬁ
We also have

(14)

Yy

i £ (PooTPT);,
Tlfznin = Z ( ~" - T) - ~ (K' - m)ch—m,Uz' (16)

This is equivalent to the F-test for residual consistency proposed in Allen & Tett, 1999,
assuming that Cj, in their equation (20) refers to the pseudo-inverse in the detection

space defined by P — i.e. ignoring the off-diagonal elements of PY, TgPT. Since Cpy, as
defined in Allen & Tett, 1999, is non-invertible, there is potential ambiguity as to which
pseudo-inverse should be used. The algorithm detailed here gives reasonably unbiased
results and is the one used in Allen & Tett, 1999, Teit et al., 1999 and Stott et al., 2000a.
Not all pseudo-inverses are similarly well-behaved (7ett, 1999, pers. comm.).
Uncertainty intervals in individual signals or signal-combinations are given by
replacing equation (13) with
iy
@=9F _p 005 (a7)
TV@e
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Note that, because t,,(0.025) = {/F} ,,(0.05), this corresponds to the same critical value
of the two-tailed ¢-distribution (or the one-tailed distribution at confidence level P/2).

2 Accounting for noise in model-simulated response

We now consider the impact of introducing noise in X as well as in y. The only source of
noise we consider here is the sampling uncertainty due to the use of a small ensemble of
simulations to obtain the response-pattern. A second source of noise in the response-
patterns arises from uncertainty in model-formulation itself, generally referred to as
“model error”. To the exfent that model error can be represented by a covariance
matrix, it could also be incorporated into the following framework, but there are practical
difficulties: the most obvious method of estimating the model error covariance matrix
(averaging second-order moments over a large ensemble of independent climate models)
is likely to be unfeasible for the foreseeable future.

One way of avoiding the use of large ensembles while still relying on the standard
optimal fingerprinting algorithm for model-data comparison would be to use a noise-free
model, such as an Energy Balance Model, to simulate the response-patterns (e.g. Stevens
& North, 1996; Wigley et al., 1997; North & Stevens, 1998). Unless, however, the spatio-
temporal pattern of response simulated by the EBM can be assumed to be accurate (which
seems implausible, since so many important processes are omitted from these models),
the advantage is illusory. In a straightforward detection problem (assessing whether the
amplitude of a particular pattern is significantly different from zero), inaccuracies in
the model-simulated pattern are of secondary importance because although they may
reduce the power of the algorithm, they are unlikely to lead to a false-positive result.
If, on the other hand, pattern-amplitudes are to be interpreted physically (e.g. Allen
et al., 2000), inaccuracies in model-simluated responses become very important. A low
estimated amplitude of an incorrectly-specified greenhouse response pattern does not
mean that the true greenhouse response in the real world is small: it simply means that
the algorithm was looking in the wrong direction.

Having recognised that optimal fingerprinting is simply a variant of linear regression
(e.g. Leroy, 1998; Allen & Tett, 1999), the solution to the problem of noise in both
“independent” (predictor) and “dependent” (predictand) variables (being the response-
patterns and observations respectively) is readily available (Adcock, 1878; Deming, 1943;
van Huffel & Vanderwaal, 1994). Several approaches have been proposed, the differences
between which are likely to be much less important than the impact of neglecting
response-pattern noise altogether.

Press et al., 1992, present the “iterated weighted least squares” (IWLS) solution of
Jeffreys, 1980, reviewed in Lybanon, 1984. Ripley & Thompson, 1987, discuss biases
in the IWLS solution in the situation where the noise variance increases monotonically
with signal amplitude. This might easily be the case in a climate change detection
problem, despite the use of a pre-whitening operator which, in principle, assigns equal
noise variance to all input variables. The pre-whitening operator is based on a control
simulation of a climate model, and because of non-linearities in the real climate system
which may not be adequately represented in the model (e.g. Palmer, 1999), model-
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simulated variance may be underestimated in precisely the patterns in which the
signal amplitude is large. We therefore follow Ripley & Thompson, 1987’s approach,
based on maximum likelihood fitting of a functional relationship (MLFR), which is
closely related to Adcock, 1878,s original solution. Their discussion relates to the
case of a single independent variable (response-pattern) and noise which is uncorrelated
between observations. We have been unable to locate a discussion of the multivariate
problem (taking either the IWLS or MLFR approach) when the noise has a complex
autocorrelation structure, such as is the case in climate change detection. While the
treatment of this problem is a completely straightforward generalisation of these previous
discussions, we feel it would be helpful to present it here, to make it available to the
climate research community.

2.1 The Total Least Squares algorithm

Having confined ourselves to sampling uncertainty due to finite ensemble size, and
assuming model-simulated variability is consistent with that in the real world, we can
assume that the noise has the same autocorrelation structure in y and in every column of
X. Under these circumstances, the same pre-whitening operator, P, may be applied to
all variables. Note that this assumption will only be valid if the dominant source of noise
is internal climate variability which is correctly simulated by the model used to generate
the columns of X. We should not @ priori expect noise due to model error or observation
error to share the autocorrelation structure of climate variability, so if either of these is a
significant contributor then a more complex treatment is called for which we will pursue
elsewhere. If the expected noise variance in X is different from that in y — for example, if
ensemble means have been used to reduce noise in model-simulated response-patterns —
individual columns of X can simply be scaled up to make the expected noise variance in
each the same as that in y, and the same scaling factor(s) applied to the final parameter
estimates. For simplicity, we will ignore these scaling factors in the following, so this
discussion applies directly to the case of single-member ensembles.
Given that there is the same noise in each column of X as expected in y, we have

E(PvviPT) =1, (18)
and
E(Pv,vIPT) =1, (19)

If m' =m + 1, we define the m’ x & matrix
Z = [PX, Py] (20)

as the observed (pre-whitened but still noise-contaminated) values of X and y.
Our basic linear model asserts that there exists a Z""® whose columns are linearly
related, that is

7y = (Z — T)v =0, (21)

where v is a rank-m' vector of coefficients, and Y is an m' X x matrix representing the
true (pre-whitened) noise contamination in the m’ variables. All the elements of Y are
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normally distributed with unit variance, so the maximum likelihood estimator of v, ¥, is
given by maximising

1 -7
L = constant — Etr(TTT), (22)

where ¥ = Z — Z and Z¥ = 0. The rows of Y are uncorrelated with ¥, so maximising
L is equivalent to minimising the merit function

=TT 13, (23)

We require a constraint to avoid the trivial solution v = 0. Since all columns of Z

are subject to noise of equal amplitude, this constraint should not discriminate between

them, so we use the standard normalisation, ¥7¥ = 1. Imposing the constraint ¥,y = —1

(i.e. only constraining the coeflicient on y) gives the standard regression model (1).
Incorporating this constraint into our merit function gives

r3(¥) = ¥TZTZT + N1 - ¥79) (24)

where A% is a Lagrange multiplier. In geometric terms, minimising r? is equivalent to
finding the m-dimensional plane in an m'-dimensional space which minimises the sum
squared perpendicular distance from the plane to the k points defined by the rows of Z
— the Adcock, 1878, solution.

Differentiation of (24) with respect to ¥ gives an eigen-equation defining the stationary
points of 72 at which

o(r?) Try= 22
and the curvature matrix 1 82(r)
T
- =Z7Z — N1 26
2 8(%)? 4 (26)
The solution which minimises 72 is A2 = A2, , the smallest eigenvalue of Z7Z, and ¥

being the corresponding eigenvector (the vector normal to the best-fit m-dimensional
plane). In a practical implementation, we simply take the singular value decomposition
(SVD) Z = UAVT so, after sorting, ¥ = v,

The m'** element of the solution vector corresponds to the best-fit scaling parameter
on the observations, y. Since we are looking for a model to reproduce the observations
themselves, not some scaled version thereof, we translate these coefficients into more
familiar pattern-amplitudes by taking the ratios 8; = ¥;/V,». At the minimum,

T12nin = ')‘1211111 ~ Xi—m’ (27)

provided « >>» m and neglecting, for now, uncertainty in the noise estimate. The
properties of r2, when x ~ m require a discussion in terms of Wishart matrices, which
we will not attempt here. This provides a check on residual consistency directly analogous

to that which we use in standard regression (Allen & Teit, 1999).
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Uncertainty analysis of the B is somewhat more complicated. If the diagonal
matrix AZ contains the ranked eigenvalues of Z7Z, and the columns of V contain the
corresponding eigenvectors, v;, we can rewrite (26) as

16%(r?) 2 2 T
EW = V(A" - X, V™. (28)
Note the relationship between equation (28) and the perturbation analysis of North et al.,
1982: like them, we are analysing the stability of an eigen-decomposition. It is tempting
to treat the pseudo-inverse of (28) as a standard covariance matrix on ¥, and this is indeed
a reasonable approximation in the limit of high signal-to-noise. Because of the non-
linearity introduced by the normalisation constraint on v, however, the merit function r?
is not quadratic, so more realistic confidence intervals are obtained by explicitly mapping
surfaces v where Ar?(v) = r2(v) — 72, has some constant value. As in the standard
model,

Ari(v) = vIV(A? - 2L, DVTy (29)

~ X:z-n.: (30)

so having selected a confidence level, we compute the corresponding critical values of the
x2, distribution and map the vectors v for which Ar%(v) is equal to this critical value.

In a practical implementation, this mapping is achieved by first defining a set of points
on an m-sphere of radius 1/ArZ,,, the critical value of the x2, or (next sub-section) Fy,,,
distribution:

m
Za? = Argrit' (31)
i=1
For each of these points, we compute
. (32)

N

If the b; provide the weights on eigenvectors 1 —m in 'V used to generate v, then equation
(29) is automatically satisfied. The weight on v, is provided by the normalisation
constraint,

S =1 (33)

If Ar2,, is too large, then b,,; will be zero or imaginary, and the confidence region will be
unbounded in this direction. This means that the v are unconstrained (at this confidence
level) to rotations through 360° in some plane.

In order to express these uncertainties in terms of familiar pattern-amplitudes, we
need to take ratios §; = v;/v,y, giving confidence regions which may differ markedly from
ellipsoidal. To compute confidence intervals on individual signals or signal-combinations,
we compute surfaces 3; for which Ar?(v) is equal to the appropriate critical value of
the x? distribution, and simply take the maximum and minimum values of ¢; = ¢T3, as
before. Note that certain signal-combinations can be well constrained by the observations
even if the full m-dimensional confidence interval is open-ended.
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2.2 Uncertainty in noise variance under Total Least Squares

If we take into account noise in all variables, the estimation algorithm becomes non-
linear, so we cannot simply compute a series of 3-like estimates from the columns of X,
and use the resulting distribution to provide a confidence interval. Instead, we note that
each A? represents the signal-to-noise ratio in the corresponding pair of singular vectors
of Z:
) ulZZ7y,
Ai = 1.7 ~" AT T H (34)
Sup P, Pru

where the denominator is identical to unity if the x columns of Y, have been used to
derive the prewhitening operator, P. Relying on these A for the uncertainty analysis may
be misleading if 'fli‘f is rank-deficient, as will generally be the case. Poorly sampled
state-space directions will automatically be given high weight by the pre-whitening
operator, since by construction PTITTPT = pl. This artificially inflates the differences
between eigenvalues and reduces estimated uncertainties.
The solution, as in the linear case, is simply to replace T; with T, in equation (34),
giving
< ul'ZZ7y;

)‘2_
i 1. T T
y—zuiPTngP u;

(35)

Because Y5 is independent of P, if P is artificially inflating variance in a particular
state-space direction, the same bias will be apply to both numerator and denominator in
equation (35), whereas in equation (34) it only applied to the numerator. The estimates,
¥ and B are unaffected, but 72 is replaced by 72 in the uncertainty analysis. Exactly as
in the linear case, the check for residual consistency, equation (27), becomes

frznin = j\fnin ~ (K’ - m)F(ri—m),Uw (36)

and equation (30) becomes
AP (v) = vIV(A® - 32, T)VTv (37)
~ mP ., (38)

2.3 The problem of open-ended confidence intervals

In interpreting coefficients derived from standard regression, we are accustomed to see
these coefficients decline to zero as the amplitude of the signal in the observations goes to
zero. With noise in both observations and model-simulated patterns, there is no reason
for the vector 8 to prefer one orientiation over any other as the signal amplitude in both
model and observations goes to zero. Its orientation thus becomes arbitrary, and the
ratios B; = ¥V;/V,» can take any value. The physical interpretation of a near-infinite
“pattern-amplitude” requires some thought. What it means is that, because we are
allowing for the presence of noise in the model-simulated patterns, it may be the case
that the true response-pattern (the pattern which we would obtain if we were to run an
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infinite ensemble) may be close to zero everywhere. Supposing that this pattern has a
finite amplitude in the observations, this mean we would have to multiply this near-zero
pattern by an arbitrarily large number to get a reasonable fit.

At higher signal-to-noise levels, the main impacts of adopting these revised estimators
in place of the standard approach will generally be to increase the best-guess pattern
amplitudes and also to increase, possibly substantially, the estimated upper bounds on
parameter uncertainty ranges. Lower bounds (which are crucial for claims of detection)
may either increase or decrease depending on the confidence level specified. The question
will doubtless arise as to whether the additional precision of these revised estimators
justifies the additional challenges of interpretation. In view of the fact that we know
that any response-patterns obtained from small ensembles are subject to sampling
uncertainty, there should be no question that we should satisfy ourselves what the
impact of this uncertainty is within an unbiased estimation framework. Whenever these
revised estimators give qualitatively different results from the traditional approach, we
have two options: either we use the revised approach in policy advice, accepting the
additional complexity that this entails; or we increase the size of the ensembles we use to
estimate the response-patterns until differences between the two approaches are no longer

substantial. While the latter option is clearly preferable in principle, circumstances may
dictate otherwise.

2.4 Reconstructing noise-reduced observations and signals

Under OLS, reconstructing the noise-reduced observations and signals scaled by best-
fit scaling parameters is straightforward: we simply compute y = XAB. Under TLS,
the problem is only slightly more complicated. Assuming, as before, equal noise in
observations and signals, we project both onto the plane orthogonal to v, thus:

Z=127—7Zvi". (39)

This provides a “best-fit” reconstruction of both observations and signals: note that the
presence of noise in X now means that the true (noise-free) model-predicted response-
patterns must be estimated along with the noise-free observations.

Noise-reduced observations and model-simulated signals associated with the v on
a particular confidence surface are computed identically to Z. This gives a set of
possible observation-signal combinations that are consistent with the statistical model
at a given confidence level. If we desire an uncertainty range on a single quantity, such
as the trend attributable to a particular signal, then we require the v corresponding to
univariate confidence intervals (i.e. those on the surface where A7%(v) = Fy,,). For
the joint distribution of two trends, we require bivariate intervals and so on. Note
that reconstructions of noise-reduced observations and model-simulated signals will, in
general, be much better behaved than the corresponding regression coefficients: if a
particular v corresponds to the model-simulated signal having zero amplitude while the
observed signal has a finite amplitude, the corresponding F; will be infinite, but the
reconstructed noise-reduced observed and model-simulated signals will all be finite.
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