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ORBITAL PROPERTIES OF VANADIUM IONS
IN MAGNETICALLY ORDERED V,0;

S. W. Lovesey, K. S. Knight and D. S. Sivia*

1. INTRODUCTION

Vanadium sesquioxide (V,0;) displays a number of electronic, magnetic and
structural properties that are challenging to interpret and explain'™”. At room temperature

V,0; has the corundum structure with space group R3c, and it is metallic and
paramagnetic. On reducing the temperature the corundum structure distorts to a
monoclinic structure with space group [2/a. The structural transition in the temperature
range 150 — 160K is strongly first-order and ferroelastic. Accompanying the transition
are a change from metallic to insulating behaviour and the onset of antiferromagnetic
order®. The metal-insulator transition is viewed as a classic Mott transition, in which spin
and orbital degrees of freedom are independent.

Recently, results from resonant x-ray Bragg diffraction experiments®'® have added
to the wealth of knowledge about V,0;. We put forward a detailed theoretical
explanation of some key aspects of the observed x-ray diffraction pattern'' in which
intensity is enhanced by the resonance at the K-edge of a vanadium ion. The success of
our model in explaining the resonant x-ray diffraction data permits us to draw specific
conclusions about the orbital magnetization present in V,0s.

The resonance enhanced intensity is related to properties of the valence shell that
accommodates the photo-ejected core electron in the intermediate state of the elastic
scattering process. Absorption at the K-edge and an electric-dipole event (El) gives
access to valence states with atomic p-like character, and an electric quadrupole event
(E2) at the same edge gives access to d-like states (1s — 3d). We analyse in terms of a
pure E2 event diffraction data collected with the primary energy tuned to a feature in the
pre-edge (5.464 keV and A = 2.27A) of the vanadium K-shell. The associated Bragg
intensity is therefore attributed directly to properties of the 3d-shell of a vanadium ion.
As a function of the primary energy, the observed intensity is adequately described by a
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single oscillator. In this instance, we can confidently ascribe the intensity to orbital
degrees of freedom and spin degrees of freedom are not explicitly contributing.

The data of interest has been gathered for Bragg reflections that are forbidden by the
space group, and often called charge-forbidden reflections. In general, such reflections
are due to spatial anisotropy in the charge distribution or a long-range magnetic order that
is not indexed on the chemical structure. When long-range magnetic order is absent, the
diffraction at charge-forbidden reflections is usually referred to as Templeton-Templeton
scattering'z' " Intensities measured for different settings of the crystal rotated about the
Bragg wavevector can provide direct information on the nature of the anisotropy and
spatial symmetry. Should the Bragg wavevector coincide with an axis of rotation
symmetry the azimuthal-angle (W) meshes with the rotational periodicity, and the Bragg
intensity displays a periodicity in y equal to twice the degree of the axis of rotation'* '*.
Such a configuration can be achieved in diffraction from the corundum structure'" '* and
the observed azimuthal-angle scan is six-fold periodic. Broadly speaking, complexity in
azimuthal-angle scans observed for magnetically ordered V,0:*'° is due to the low
spatial symmetry of the monoclinic structure adopted by the crystal. While the symmetry
of the site occupied by a resonant vanadium ion carries an imprint of a three-fold axis of
rotation, monoclinic Bragg wavevectors generally do not coincide with the trigonal axis
of the corundum structure and it is this mismatch, between the wavevectors and the axis
of rotation, that is largely responsible for the seemingly complex pattern of the
azimuthal-angle scans.

There are two main ingredients in the calculated structure factors. First, knowledge
of the chemical and magnetic structures. Information on the crystal structure, which is
based on observations reported by Dernier and Marezio, is gathered in section 2 together
with the configuration of magnetic moments’. The second ingredient is a model of
resonance-enhanced Bragg diffraction. We employ an atomic model which should be
adequate for a one-component intensity profile like the ones observed with V,0; at the
vanadium K-shell pre-edgeg' ° After adopting a single oscillator to describe the intensity
profile the amplitude attached to the oscillator can be calculated without further
approximation.'® The atomic model for the event 1s — 3d, which is of interest to us here,
shows that the amplitude is constructed from spherical tensors that describe the orbital
properties of the 3d-shell. After putting together the two ingredients it only remains to
describe the geometry of the experiment, namely, the orientation of the crystal (a function
of the azimuthal angle) in the frame of reference used for the polarization and wavevector
of the primary and diffracted beams of x-rays. The calculation of structure factors for
unrotated (0”0) and rotated (T'G) channels of scattering is outlined in section 3 together
with examples of our interpretation of x-ray diffraction data. Thereafter, in section 4, we
characterize the orbital properties of a vanadium ion by exploiting our success with the
interpretation. Our conclusions are found in section 5.

2. CHEMICAL AND MAGNETIC STRUCTURES

At room temperature vanadium sesquioxide has a trigonal (corundum) structure with
space group 167 (R3c). Lowering the temperature of the material induces distortions

which include tilting of the trigonal (hexagonal-c) axis and reduction of the point-group
symmetry of sites occupied by vanadium ions from 3(Cj) to that of no symmetry.
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Figure 1. Positions of the eight vanadium ions in the monoclinic unit cell together with the configuration of
their magnetic moments which lic in the a, — ¢, plane of the diagram. The monoclinic Bragg wavevector

(205),,, is parallel to the trigonal axis cx, and b, is normal to the plane of the diagram and parallel to a;.

The space group of the low temperature monoclinic structure is number 15(/2/a) in
which vanadium ions occupy sites 8 ( f ). This is a body-centred cell and Bragg
wavevectors T,,(hkl) for charge reflections have the necessary condition h + k + [ an even
integer. (Miller indices £, k& and [ are integers.) The antiferromagnetic configuration of
vanadium magnetic moments, displayed in Fig. 1, consists of sheets of moments with
ferromagnetic alignment within (010),, layers, or hexagonal (110) layers, and moment
reversal between adjacent layers. The moments are orientated along some easy-axis in
these layers, and we take ¢ as the canting angle with respect to the trigonal axis.

The trigonal basis vectors are a;, = a(l, 0, 0), b, = a(-'2, ¥2 J3,0) and ¢, = ¢(0, 0, 1)
and the volume of the unit cell = a’c 3 /2. Following Dernier and Marezio® in the use of
an [ - centred cell, from these vectors we generate monoclinic basis vectors a,, =
(0,2 a/V3 ,¢/3), b, =a,and ¢, = (0, a/43 , — ¢/3), and the volume of the cell = a’c/ V3 .

The corresponding Bragg wavevector T,,(hkl) = (hkl),, is,

v, (hkl) = (k,(h+1)/ 3, (h—2D)al c)/ a. (1)

We note that ({0 ),, is parallel to ¢, and ( 2{kl ),, is normal to ¢,

Referring to Fig. 1, the position coordinates of vanadium ions labelled (1) and (5) are
(x, y, 2 and (—x, -y, —z), respectively, with x = 0.3439,')/ = 0.0012 and z = 0.2993% The
positions of the pair (2) and (6) are related by a body-centre translation to the pair (1) and
(5). The position coordinates of (3) and (7) are (Y2 —x, y, — 2) and (2 +x, -y, 2),
respectively, and the pairs (4) and (8), and (3) and (7) are related by the body-centre
translation. The body-centre translation (¥2,%2,%2),, = (1, V3 , 0)a/2 and (¥2,%2,%2),,-T..(hkl) =
Vo (h + k + 1). In writing out spatial phase factors in the structure factor one finds two
angles V = 2T (x, y, 0y “Tu(hkl) = 270 (xh + yk + zl) and € = 4yk ~ O,
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3. THE STRUCTURE FACTOR FOR BRAGG DIFFRACTION BY
MAGNETICALLY ORDERED V,0;

As a function of the energy of the primary x-rays, the observed intensity of
diffraction from V,03; which is enhanced by electric-quadrupole (E2) resonance has a
distinct Shapes‘ ? which is adequately described by a single oscillator. In this treatment,
the integrated intensity is calculated without approximation'®, and for a pure E2
absorption event 1s — 3d the intensity is proportional to the orbital moments of the 3d
valence shell. The orbital moments are represented by atomic tensors (T®) of rank K =
0, 1,2, 3 and 4. In the structure factor, which is a scalar quantity, atomic tensors appear
in a scalar product with a tensor, denoted by H®, that describes the conditions of the
primary and diffracted beams of x-rays. It is convenient to consider the quantity,

PO =N <TI0 d) > explit-d), 2)
d

where — K < Q <K, d defines the position of a resonant vanadium ion in the unit cell and
T is the Bragg wavevector for the reflection in question. With this notation the structure
factor is '’

)

F(ry=Y QK+DVHE $® =3 0k + )2 (-1 g DY 3)
K K.Q

K , .
The components H(Q " for unrotated (0’0) and rotated ('o) radiation are tabulated v,

In Equ. (3) the tensor H* and W are evaluated in the coordinate system that defines the
experimental geometry. Referring to Fig. 2, o-polarization is perpendicular to the plane
of scattering and parallel to the z-axis, and §—q =-2sinOxand q+q =2cos0y
where 0O is the Bragg angle.

— N

o . \\\\
/L/ q Y
E gl
670 ’
LT/ B \ q.,
X

Figure 2. The orthogonal states of polarization in the primary beam of x-rays with o-polarization normal to the
plane of scattering defined by the primary (q) and diffracted (q") wavevectors. X-rays are deflected through an
angle 26 and T, = q - q’. Orthogonal axes (x, y, z) are related to the geometry of the experiment; the x-axis is
parallel to — 1., and the z-axis is normal to the plane of scattering and parallel to c-polarization. An azimuthal-

angle scan is rotation of the crystal by y about T, and the origin W = 0 is defined by a specified planc normal to
the plane of scattering.
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We find it convenient initially to consider ‘PéK) with respect to a second set of
orthogonal axes (x,y,z) that include a; = (a,0,0) = b,, and ¢, = (0,0,c). Thereafter we
apply to ‘Pé’() rotations that describe the orientation of the crystal in the coordinates of

the experimental geometry that apply to H®.

Following the discussion in section 2, the chemical environments of ions in the pairs
() & (2), (5) & (6), (7) & (8) and (3) & (4) are identical. Moreover, the axes of
quantization of ions in a pair are oppositely aligned and, in consequence, their atomic
tensors differ by a phase factor (— 1)*. Odd-rank tensors are purely magnetic and (T =
(L) /430 and (T®) = (A)/ 3470 where (L) and (A) are, respectively, the orbital magnetic
moment and the orbital octupole moment of the 3d-valence shell of a resonant vanadium
ion. Vanadium ions at sites (1) & (5) are related by inversion. The atomic tensor is

unchanged by inversion and thus < TQ(K) H>=< TQ(K) (5) >. A similar relation holds for
3) & (7).

Ions at sites (1) & (7) are related by an a-glide that includes reflection in the a,, - ¢,
plane, which is normal to a, = b,,. Reflection in the a,, - ¢,, plane amounts to the change

x— —x,and with it <75 > ()% <7 > For k=1 (L, L, L) > (L —Ly, ~L),
so that reflection in the a,, - ¢,, plane is accompanied by a change in the orientation of the
orbital magnetization. The configuration of moments determined by Moon® is preserved
if the polarity of the local field is now reversed, leading to (L,, =L, -L;) = (=L, Ly, L)),
for according to Moon (L,) = O and the moments are confined to the a,, - ¢, plane.
Reversing the polarity of the local field, which is sometimes described as time-reversal,

introduces in the atomic tensor a phase factor (~1)¥. The appropriate relation between
tensors at sites (1) and (7) is seen to be the union of reflection in the a,, - ¢, plane and

time-reversal, and our discussion leads to the result ( TQ(K) (7)) = (T_(g) (1)); for simplicity

of notation, we hereafter write < TQ(K) >=< TéK) D >.

In the monoclinic structure, sites occupied by the vanadium ions possess no spatial
symmetry and one can choose any set of axes for the associated atomic tensors. When
proceeding from the corundum structure to the monoclinic one the average vanadium-
oxygen distance remains essentially constant. This aspect of the structural transition, and
others mentioned in section 2, indicate that in the monoclinic structure the potential field
experienced by a vanadium ion is principally referred to the trigonal axis, ¢;, and the field
is almost subject to the requirement of a three-fold axis of rotation. An atomic tensor
invariant with respect to a three-fold rotation is zero unless the projection index Q has the
values O or £ 3. Additions to the potential field, which reduce the symmetry from Cs to
one of no spatial symmetry, lift the restriction on the allowed values of Q.

3.1 Templeton-Templeton scattering

For the model of V,0; we have described, in the previous section, \};((210 can be

different from zero for even values of K+(h+k+[), so there is a selection rule on
scattering that links the sum of Miller indices and the rank of atomic tensors. In this sub-
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section we interpret data indexed by even (h+k+!) and tensors in the corresponding

structure factor have an even rank. The appropriate expression for ‘I’éK) is,

Y5O =dcosM{< TS > +(-D" <75 >}. @)

Note that for /1 odd the contributing tensors have rank K = 2 and K = 4 and there is no
contribution in W with K = 0 or Q = 0. Diffraction indexed by even (h+k+1) and odd

h is Templeton-Templeton scattering.

An example of such scattering has been observed at (101),. Because this Bragg
wavevector is parallel to our chosen principal axis ¢, an azimuthal-angle scan, which is
rotation of the crystal around the Bragg wavevector, incorporates what amounts to
another selection rule that limits harmonics of the azimuthal angle y to values set by the
projection index Q of atomic tensors. In consequence, the structure factor that describes

an azimuthal-angle scan at (101),, is a linear combination of <T(QK) >cos(Qw).

A confrontation between predictions of the theory and the data requires the input of
several parameters. Some can be derived from geometrical considerations, such as Euler
angles for orientating the crystal in the geometry of the experiment and the Bragg angle,
and are believed to be estimated fairly well; others are experimental in nature,
particularly the zero-setting for the azimuthal angle, but are thought to be calibrated
reasonably well; some stem from material properties, and little is known about their
values a priori. These varying degrees of uncertainty are easily taken into account within
the Bayesian framework of data analysis'® and, with suitable commonly-used simplifying
assumptions, lead to a somewhat generalized form of least-squares: in addition to a
quadratic cost function for a mismatch with the measurements, there is also a penalty for
deviating from those parameter-values within the theory which are thought to be known
fairly well. The best fit to data (e.g. Fig. 3) utilizes a robust simplex algorithm'® for
carrying out the (local) optimization.

Our interpretation of the azimuthal-angle scan at (101),, is illustrated in Fig. 3. The
data are collected in the rotated (n’c) channel of scattering. The material properties that

enter our interpretation are <Tg’ > with Q = 1 and 2 and <TS) > with Q = 1, 2, 3 and 4.
We find that the coeffficients of cos(y) and cos (3y), by far, are the largest, and in
creating Fig.3 <T{44)> is set equal to zero. One finds the coefficients of cos (3y) and

cos(2y) differ by more than an order of magnitude, and the coefficients of cos(3y) and
cos(y) are in the ratio ~ 0.2.

3.2 Magnetic scattering

Here we are concerned with space-group forbidden reflections indexed by odd
(h+k+I). The corresponding atomic tensors are odd with respect to their rank and they
vanish with loss of long-range magnetic order. The structure factor is constructed from

‘I’éK) defined in Equ. (4). (The diffraction pattern observed when neutrons are scattered
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Figure 3. Data gathered in the rotated polarization channel at the (101 ), reflection from V,0O; with 2.8% Cr
doping, held at a temperature of 100K. The continuous curve is generated from, Equ. (4) with a Bragg angle
= 14.1° (, = 2.27A). The origin of the azimuthal-angle scan is specified by a plane in reciprocal — space

normal to the plane of scattering. The plane in question is defined by (10} ), and (211),, and on our scale for y
the origin is at — 60°.

by magnetically ordered V,0j is indexed by odd (h+k+1) and even h.) Figure 4 contains
examples of our interpretations of resonant x-ray Bragg diffraction.
We have successfully compared calculated intensities with data gathered in

(111),, and (302),, .

As a function of the primary energy of the x-rays the signal observed at 5.464 keV is

fully consistent with a single-oscillator model. From this premiss, the x-ray experiments

in question reveal exclusively the orbital magnetization of V,03, and quantities not
directly obtainable with other experimental techniques.

Calculated structure factors conform to established chemical and magnetic structural
properties. At space-group forbidden reflections, the structure factors contain the
following additional features.

(a) Reflections are purely magnetic, being associated with atomic moments of the
vanadium 3d-valence shell that are odd with respect to the reversal of time. In
general, such moments vanish with the loss of long-range magnetic order. Our
prediction for V,05 is borne out in experiments which show that intensities decrease
with increasing temperature, and vanish at the Néel temperature.

(b) A selection rule on the order of the electric absorption event and Miller indices & & [.
With A + k + [ odd (a space-group forbidden reflection) reflections with £ odd do not
contain a contribution from an E1 (electric dipole) event, and the finding is in accord
with observations. In the reported calculation, the selection rule stems from the
actual configuration of magnetic moments and the fact that they are contained in the
a, - ¢, plane. The same fact is utilized in arriving at the general form of the
structure factor, based on the established chemical structure augmented by the
operation of time reversal.

(c) With h odd diffraction is by anisotropic components of the orbital octupole moment
of a vanadium ion. Such diffraction might be regarded as the magnetic equivalent of
Templeton and Templeton scattering from a charge distribution.

azimuthal-angle scans at space-group forbidden reflections (221)

m?
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Figure 4. Data on Cr-doped V,0; held at temperature = 0.55 Ty = 100K, and ©, = (111),, with 8 = 20.8°.

From data in the unrotated channel we find r = 0.33 £ 0.04 and ¢ = — 0.35 + 0.15, and from data in the rotated
channel we find r=0.36 2 0.02 andt=-1.0030.13.

(d) Intensities with /1 even can be used to determine the canting angle, ¢, of the

(e)

®

magnetic easy-axis. Our analysis of data gathered at the pre-edge (5.464 keV) and
(221),, gives ¢ ~ 70° and the value is consistent with the analysis of intensities
observed in magnetic neutron diffraction®. This outcome at the pre-edge, and related
success in explaining other features, confirm that it is due mainly to an E2 resonance
event.

As a function of the azimuthal-angle the calculated intensity in the channel with
unrotated polarization (6’c) is two-fold periodic. This prediction and additional
detail in calculated (0’0) azimuthal-angle scans is found in intensities collected at
(111),, and (302),,.

In general, the dependence on azimuthal-angle of intensities in the rotated channel
('c) show no systematic features. With & odd the (n'c) azimuthal-angle scans have

a quite complicated pattern which essentially reflects the low symmetry (monoclinic)
of the crystal below the Néel temperature.

Bragg reflections (251)111 J m

4. A CHARACTERIZATION OF THE ORBITAL PROPERTIES OF A V ION

We construct a model wavefunction to characterize the orbital properties of a

vanadium ion deduced from our interpretation of data collected on magnetically ordered
V,0; by resonant x-ray diffraction. The model is based on the ’F term of V** (3d2), and
orbital components | M> with -3 <M < 3. Should the V ion occupy a site that contains
an axis of three-fold rotation symmetry (C;) components in the wavefunction must differ

by M = t 3, and <T(QK) > can be different from zero for Q = 0 and & 3. In the absence of

spatial symmetry no selection rules operate on M and all Q are allowed. On using a
wavefunction,

|G>=a|2>+b|-1>+c|0>+d]|1>, (5)



ORBITAL PROPERTIES OF VANADIUM IONS IN MAGNETICALLY ORDERED V,0; 9

non-zero values of b and ¢ represent the influence of reducing the V ion site symmetry
from C; to that of no spatial symmetry. Our interpretation of the data can be
characterized by | G > on taking a, b and d purely real and ¢ = ¢'+ic”, and the normalized
wavefunction contains four independent coefficients.

In addition to normalization of |G >, coefficients in the wavefunction are
constrained by requiring the orbital magnetic moment to lie in the plane a,, — ¢, and

enclose an angle ¢ with ¢;. The orbital magnetic moment < Ly >, satisfies,

< Lo>ycos ¢ =d* - b*—2d°, (6)
together with,

ab s + c'(b+d)Je = 0. N

The material quantities that enter our interpretation of data collected at magnetic
reflections include ratios of components of the octupole moment, namely,

F=y3s <A, > 1<A,;> =bl2d, (8)
t=Jo<A,, > I<A,;> =-c"3/d %)
and, < Ag>, =3 (@*+ b*—d*) cos § (3 -5 cos*§)/2. (10)

Other quantities of interest are components of the quadrupole moment, e.g.,
< Qo> =3{3(b*+ dh + 4| c|2}10. (11)

There remains the question as to how well the experimental data constrains the three
unknown coefficients in |G >. If the answer is fairly tightly, then we can make useful
predictions about material quantities, like <Qg>, which do not appear in structure factors
for space-group forbidden reflections.

The coefficients are related to quantities inferred from x-ray and neutron diffraction

data. These quantities are (D , 1y ,< Lo>,, and the ratio < Ag>,,/3 < Ly>,. We have two,

or more, estimates of @, r, f, < Ly >, and the ratio < Ag >, /3 < Ly>,, and wish to know

what restrictions these impose on the allowed values of a, b and d, say. Before
proceeding to that, however, let us first consider the intermediate step of combining the
different estimates of the same quantity into a single entity. For example, what does r =
0.81 %+ 0.11, 1.24% 0.24, 0.33% 0.04 and 0.36 £ 0.02 tell us about the possible value of
r?  Well, assuming independence between the four relevant data sets, the usual
elementary analysis's, leading to a weighted mean combination, yields the summary r =
0.37% 0.02. While this result is understandable given the large spread in the size of the
error bars on the four estimates of r, it does not sit well with our common sense intuition.
A more reasonable representation of our state-of-knowledge about the value of r is
obtained by making the more pessimistic assumption that the four quoted error-bars only
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(@) (®)

Figure 5. The solid lines show the p.d.f.’s representing our resultant knowledge of r and ¢ given by several
different pieces of information; being based on somewhat pessimistic assumptions, they are less constraining,
and more realistic, than the equivalent conventional analysis indicated by the dotted lines. It should be noted
that the p.d.f.’s are not normalized, but have been scaled to have a maximum of unity.

define a lower bound on the related uncertainties. Following this line of thought in a
more formal® leads to the resultant probability density function (p.d.f.) for r shown by
the solid curve in Fig. 5(a); for comparison, the implicit Gaussian p.d.f. pertaining to the
conventional analysis mentioned earlier is shown with a dotted line. Although a value of
r around 0.37 is still most probable, we are now not prepared to rule out the possibility
that it may be of order unity quite so strongly.

A similar analysis of three values of ¢ inferred from x-ray diffraction data
(-0.35+£0.15,~ 1.00 £ 0.13 and - 0.19 %+ 0.13) leads to the resultant p.d.f. for ¢ shown in
Fig. 5(b). The pairs of “measurements” for ¢ (66.1°% 2.1° and 75.7°% 1.8%, < Ly>,, (-
0.5 and — 0.8) and < Ay>,/3 < Ly>,, (0.001 0.05 and — 0.06 * 0.01) were also combined
in our ‘“conservative” manner but, in these cases, the resulting p.d.f.’s were approximated
by Gaussians defined by ¢ =71°%£5° < Ly>, = —0.65%0.20 and < Ag>,, /3 < Ly >, =
- 0.060=% 0.025.

Our state of knowledge about the vandium wavefunction is then encapsulated in
three-dimensional p.d.f. for the parameters a, b and d conditional on our “noisy
constraints” on r, £, O, < Ly>, and < Ag>,/ 3 < Ly >,, and all the implicit assumption
and approximation, jointly labelled as I: prob(a, b, a’| [). This can be computed
numerically on a three-dimensional grid spanning the space —1< a <1, =1< b <] and
~1<d <1, as follows:

(i) for each point, calculate r, ¢, ¢, and so on, corresponding to the associated values of

a, b and d;

(i) read off the probabilities for those values of r, t, O, etc., from Fig 5 and related
graphs not shown;

(iii) assign the product of these probabilities to the grid-point being considered.

The result will be a 3-dimension grid for the likelihood of a, b and d which, with the

assumption that we know nothing about the values of these parameters a priori, is

proportional to the p.d.f., prob(a, b, d | 1), that we seek.

Carrying out the analysis above, we found that there are four regions of high

probability in our 3-dimension hypothesis-space. They are all symmetry-related in that
the constraints of the data leave an ambiguity with regard to the signs of a, b and 4.
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Figure 6. The marginal p.d.f.’s for @, b, and d, representing the constraints imposed on these expansion
coefficients by our limited knowledge of r, ¢, d,) < Lo>mand < Ag>n,/ 3 < Lo>n

Since the absolute phase of the wavefunction is arbitrary, we choose to impose the
condition d < 0. Due to a correlation between b and d, principally through the
relationship r = b/2d, this restriction is sufficient to imply that b < 0, but the sign of a
remains undetermined. The marginal probabilities for a, b and d are shown in Fig.6.

Given prob(a, b, d | 1) we can make inferences about any quantity x, say, which is
related to a, b and d, so that x = f(a, b, d), by using the rules of probability theory:

prob(x | 1) =Y prob(x,a,b,d|D)
ab,d

= >’ prob(xlu, b,d,1) prob(u, b, d|l)
ab,d

= 3 8(x~f(a,b,d)) prob(a,b,d|l), (13)
ab.d

where § is a Dirac delta-function. An example of such a calculation is illustrated in
Fig.7, which shows the marginal probabilities for the real and imaginary part of the
wavefunction expansion coefficient ¢ = ¢'+ic”. While marginal p.d.f.’s are very useful
for conveying our state-of-knowledge about one parameter irrespective of the others, they

Morglnol probabllities

Coefficient o

Figure 7. The marginal p.d.f.’s for the real and imaginary parts of the expansion coefficient c, inferred from our
probabilistic analysis of the model wavefunction.
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Table I. The table contains some values of orbital moments of the vanadium ion at site
(1) in Fig.(1), with respect to orthogonal axes that include as components a;, = (,0,0) and
¢, = (0,0,¢). Moments are proportional to an atomic tensor, namely, <Q> = 33572 <T

@, <A> =370 <T P> and <Y> = 1870 <T “>. Note that <7} >* = (-1)%< 75’ >.

Values of the moments are derived from estimates of the coefficients in the model
wavefunction given in Equ. (5).

<Qo> = 3{3(b*+d* + 4| c|*}/10=0.78 £ 0.08
<Q.>' =3{c'(d - b)N2 — abN15}/10 = - 0.25 1 0.06
<Q,2>" =3ac"N5=0.13%0.11

<Ag>=3(d* —b* - a>) =-0.20%0.14

<Ay>' = -3¢ (b+d)=0.56 T 0.14

<A>" = -3ac" =-0.2910.24

<Ayy> =3V2ad = 1.09 £0.35

N> =6{-Ta"+b*+6|c|*+d’} =1.12 £ 475
<Y > = 6N2{—4dab + c'(d - b)]N(15/2)} =—7.46 £ 1.91
<Y, »>"=6V3 ac"=1.02%0.83
<Yy>=6V14ud=577 £ 1.82

do, of course, only give a partial picture of the situation. For example, they do not tell us
the signs of a and ¢' are anticorrelated, so that ¢’ > 0 if a < 0 and vice versa. To avoid this
particular source of ambiguity, the remaining results in this paper assume that a < 0; the
alternative choice, of a > 0, lead to equivalent symmetry-related conclusions.

Rather than displaying prob(x | I), we often try to summarize its salient features by
quoting a “best” estimate xo and a measure of its uncertainty ¢ (i.e. x = xp+ ©); the most
common practice is to use the mean, x ¢= < x> = [x prob (x | Ddx, and the variance, ¢* =
< (x —xp)*>. We have done this for some components of the quadrupole <Q>, octupole
<A> and hexadecapole <Y> moments of the 3d valence shell of the V ion at site (1) in
Fig.1. Our findings are summarized in Table I.

Looking at entries in Table I, it is evident that we have a good knowledge of all
moments with the projections 0 = +1 and +3, yet some moments with even O are known
very poorly, e.g. < Yo>. The estimates in Table I serve as tests to be met by an ab initio
calculation of orbital properties of a vanadium ion in V,03;.  Our inferred model
wavefunction |G > is illustrated graphically in Fig.8. We display isosurfaces of
<|<r|G>|?>, or the expected wavefunction when averaged over prob(a, b, d [D). In
addition, we provide two colour contour sections through the 3-dimension orbital density
and its uncertainty equivalent.
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Figure 8. (a) An isosurtace of the expected electron-density inferred from our probabilistic analysis of the
model wavefunction. (b) An equivalent colour-contour slice through the 3-dimensional density, and (c) the
corresponding 1- ¢ uncertainties displayed on the same scale. The red, green and blue arrows indicate the
spatial x, y, and z axes of the crystal, respectively.

With regard to the nature of the ordering of orbital moments in the unit cell relevant
information is contained in the relation between tensors for sites (1) and (7). (As before,
we will use othogonal axes (x, y z) with x(z) parallel to ax(cs).) Applied to the quadrupole
moment one finds that, for the two sites in question < @, > and < Q. — Q,, > have one
sign, whereas < Q.>' o< — < Q;> and < Q,, >" o< < Q,, > are opposite in sign at the two

sites. All diagonal atomic tensors <TO(K) > are of one sign.

S. CONCLUSIONS

We have added a successtul interpretation of Templeton-Templeton x-ray scattering
to our earlier success with magnetic scattering by magnetically ordered V,0; Expressed
in terms of trigonal axes, that include a, and ¢, a vanadium ion in magnetically ordered
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V,0; bears an imprint of the three-fold rotation symmetry associated with the high-
symmetry (corundum) structure adopted above the Néel temperature. In addition, the
resonant x-ray Bragg diffraction data we have interpreted is consistent with an orbital
magnetic moment confined to the plane a,, — ¢, which is normal to a,=b,,, and inclined

with respect to ¢, by an angle ¢ ~70°. However, resonant x-ray diffraction experiments

are not suitable for the determination of the magnitude of the orbital moment. (The
moment can be measured by diffraction of x-rays with an energy well above the
resonance region or neutron diffraction.)

The successful outcome of our interpretation has been exploited to characterize
orbital properties of a vanadium ion. To this end, we have used a model wavefunction
created from the V ion ground state determined by Hund’s rules. Coefficients in the
model are determined by fitting to material properties that enter our interpretation of
experimental date. One use of our inferred model wavefunction is to estimate orbital
moments. The moments characterize the 3d valence shell and the ordering of orbitals in
the magnetic unit cell.
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