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Initial Studies in the Modelling of

a Position Resolving Calorimeter Dectector

C Greenough, J V Ashby and R F Fowler
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Abstract

In this report we describe some initial results in the modelling of a position resolving calorimeter de-
tector. The ideas behind the device are based on those of the microcalorimeter. These detectors use

the heat generation of an X-ray event to provide information on the event’s time and position when

assembled into an array.

In this report we consider a larger detector which uses the same thermal ideas of the microcalorimeter
but also utilises multiple thermistors to determine the event postition on the detector’s surface. This
first attempt at modelling makes the basic assumption that the heat transport can be represented
through a simple linear diffusion process and through that the times at which the temperature change
reaches the edge sensors can be used to determine the position of the event. A simple idealised device

has been used to assess the potential modelling these devices to aid their design and development.

The report develops a finite element model of the device and performs a series of numerical experi-
ments. The results of these experiments are compared with a simple analytic model. Two methods of

determining the event position are presented: one based on the analytic solution and a second using
neural network.

A copy of this report can be found at the Department’s web site (http://www.cse.clrc.ac.uk/) under
page Group/CSEMSW or anonymous ftp server www.inf.rl.ac.uk.

Mathematical Software Group

Computation Science & Engineering Department
Rutherford Appleton Laboratory

Chilton, DIDCOT

Oxfordshire OX11 0QX






Contents

1 Introduction

....................................... 1
2 The Physical Model . . . . . . . ... . .. . . .. . e 1
3 Temperature Spike Transmission Time . . ... ... ... ........... 1
4 The Computational Model . .. ... .. ... ... ... ... .. ........ 3
5 The Computational Experiments . . . ... ... ... .............. 5
6 Analytic Position Detection . . . . . . .. .. .. ... ... .. .. ... ... 10
7 General Position Detection . . . . . . ... ... ... .. ... ... ... .. 11

7.1 Initial test using analyticform . . ... .. .. .. ... ... ... . ..... 12

7.2 Fitting of computational simulations . . . . . . . ... ... ... 0., 14
8 Conclusion . . . . .. .. . .. ... e e 17






1 Introduction

There are many applications of detectors in science and engineering research. Two large areas
are in detectors for high energy physics experiments and in space telescopes of different types.
To date considerable use has been made of CCD devices in these area and there is a continuing

activity to improve these types of imaging system and to design new generations of devices.

2 The Physical Model

In this initial modelling activity of position sensive calorimeter detectors we will assume that
the heat conduction process is purely one of diffusion. However, it may well be the case
that the diffusion process does not adequately represent the heat transport due to phonon
and electron generation after an X-ray event. This will be true if the dominant transport
mechanism is ballistic. Clearly this assumption may well be inadequate but it serves as a
starting point.

This temperature transport process will be governed by the time-dependent heat transport
equation [10]:
6r H 1
— =+ —=-V . (kVT 1
o =g (kVT) (1)
where H is the heat production per unit mass of any source, C, is the specific heat, p the
density and k the thermal conductivity. If there are no heat sources and %k is not a function

of position (1) becomes:
o % ver ©)

However k may well be a function of T

In general the physical properties of conductors such as gold and silver can be nonlinear
over temperature ranges being consider - 1-5°K. The three important material properties are:
p, the density; k, the thermal condutivity and Cjp, the specific heat capacity.

In the liturature there is not a good consensus of k£ and C,, for gold particularly at low tem-
peratures. The graphs in Figure 1 and Figure 2 show a log-1log plot of thermal conductivity
and specific heat against temperatue for gold as given in [11, 12].

These figures show that although k& and Cj, are temperature dependent in the region of
interest, around 1°K, their variation is near linear. This coupled with the fact that the X-ray
strike will generally only cause a ~ 0.1°K temperature rise it is thought that taking constant
values for p, k and Cj, would be adequate in these initial studies.

Assuming that k, p and Cp are independent of position and time a basic solution of (2) is
given by, assuming the initial headt distribution is a delta function:

T(7,) = < exp(—r?/28%) (3)

where 3 = 2k/Cpp and « is dependent on the initial energy input and the size of the detector
[10]. We can use this to assess the numerical experiments in later sections.

3 Temperature Spike Transmission Time

Once the X-ray event has occurred a temperature pulse will spread out through the device.
The sensors at the detector edges will measure a rise in temperature as the pulse reaches
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them. In the simple case, where the material is assumed linear and the event happens on a
large (compared with the detector area) plate, the pulse diffuse out from the impact point
with circlular symmetry. The position of the event will be directly related to the speed of this
diffusion process and hence its arrival time.

The differences in arrival time of the pulse at the sensors will provide sufficient information
to determine the event position (7,) and time (¢,). For the purposes of this paper we shall
take the arrival (¢;) to be that at which the maximum temperature rise is seen by a sensor.

The time taken for the temperature wave to reach the sensor will clearly be dependent on
the material properties of the detector and its shape. Two approaches to detemine 7, and ¢,
will be discussed in later sections.

If the arrival time is defined as the arrival time of the peak (i.e. temperature maximum)
then we can derive a simple relationship between the arrival time and the distance to the
event using the analytic form (3). At the temperatue peak

Ou
ot

So using (3) we have

Bu_ o

2
ou _ _ _ 2 )=
ot~ 263 (2ﬂt " )eXp( 2,Bt) 0
thus

0 = 28t—r?
r o= /20t (4)
where 7 is the distance to the event and t time taken for the temperature peak generated

by the event to reach the sensor. This expression will be used later in deriving an analytic
expression for the position of an event.



4 The Computational Model

The diffusion equation will be solved computationally using the finite element method. The
detector plate is subdivided into a number of finite elements. The number and distribution
of these can be varied to match the accuracy requirements of the solution. Associated with
each element are a set of discrete points (called nodes) at which the temperature will be

approximated. In the simplest case there will be four nodes associated with each quadrilateral
element.

|
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Figure 3: Geometry of test device

Over each of these finite elements the temperature distribution is approximated by a bi-
linear polynomial using the nodes associated with the element. A typical finite element mesh

is shown in Figure 4. The temperature representation over each element is given by:
T.=Y NT; (5)

where N; are the interpolation functions (shape functions) and T; are the nodal value of the
temperatue. The governing equation (1) is solved by using the Galerkin approach. So (1)

becomes:

1 H T

N; | =V kVT.+ — ~ == |dQ=0 6
/ng J(pcp ‘G 8t) (6)

where N; are the shape functions. Integration by parts and substitution of (5) into (6) leads

to:

1 1 oT;
—-VN; - kEVN; dQ T; —N;Hd) — N;N; dQ) — =0V 4,j=1, 7
/Qc Pc’pV ! + /QE Cp /Qc I ot 0 bJ n (7)

If we assume that k is independent of position and that the heat sources, H, can be represented
in the same manner as T

H, = Z N, H; (8)
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Figure 4: Test device and its finite elemen mesh

we can simplify this single equation for node j and combine all nodes in
single system of ordinary differential equations for the element.

where

written as

K, [0T2% + (1 - 0)T7] + M. [e

oT
K. T, + Mea_te =S.H,
T, = [Tz',Tj,Tth]
He = [Hi,HjaHk7Hl]
k
K = — / VN; - VN; d
I pCP Qc

e

{4

J

N; - N; d92

[

1
— N; - N; dQ
Cp/s;c ]'

These elemental equations can be assembled into a system of equations for the whole problem
domain. The solution of the time dependent system (9) is performed using an implicit 8
method. By this technique two time levels, n and n + 1, are linked through a weight 6. (9) is

BTE n+1
ot

+(1-6)—/—

oT."
ot

=S, [0HZH! + (1 - 6)H7

1.00
092
0.75

an element into a

(9)

(10)

(11)



where n + 1 and n indicate that the expression is evaluated at times t,11 = (n + 1)At and
t, = nAt. At being the step size in time. Finally the time derivatives are approximated by
finite differences; a forward difference at n and a backward difference at n + 1. This leads to
1

At

1

o+ L

Me] Ty [(1 — 0K, — M] T =S, [(HIY + (1 0HE]  (19)
where the value of & can be varied to provide different schemes. Two common values are

0= %, the Crank-Nicolson scheme, and 8 = 1, the fully implicit scheme.

5 The Computational Experiments

The software developed for these experiments was based on the NAG/SERC Finite Element
Library [7] and the basic structure of the program followed the example program Segment 4.1
(Transient Heat Conduction) [8, 9].

For these initial experiments a very simple detector structure has been used - that of a
square plate (see Figure 3 and Figure 4). The plate has been subdivided into quadrilateral
finite elements. The values of p,k and C, were taken to be: 19500kg/m?,2.07kW/m°K and
2.9x10~*kJ/kg°K. The temperature sensors are marked by the cirles in each corner of the
device.

The initial background temperature of the device was 1°K and the event strength set so
that an initial temperature rise of around 0.1°K was observed near the event position. The
basic boundary conditions used were 9T /9n = 0 over the majority of the boundary save near
the sensors where T' was fixed to 1°K. The mesh density and time step size were chosen to
produce mesh and time step independent results. In all 121 nodes and 100 elements were used
with a time step of 1.0x10~7 s (10 us).

The results of the simulation are best displayed through temperature response graphs at the
sensors. Figure 5 show the four response graphs of the model detector for an event occuring at
the centre of the plate. These graphs show the temperature rise at the four sensors and in this
case are identical as the event was a point equi-distant from the sensors. The identical graphs
confirm the symmetry of the problem and to some extent the accuracy of the computational
solution. Table 1 gives the basic information on the temperature peak arrival times (%peqk)
and the size of the peak (Tpeqx) for this case. The second set of graphs in Figure 6 show

Sensor || Tpeak(°K) | tpeak(s)
1 1.008 1.0x107
2 1.008 1.0x1076
3 1.008 1.0x10~6
4 1.008 1.0x10~6

Table 1: Temperature peak characteristics for (0,0) event

the sensor response graphs for an event at an arbitary point on the detector surface. As can
be clearly seen the response graphs are quite different and their peaks reach the sensors at
differring times. Table 2 summarises these results for one arbitrary event position.
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Figure 5: Sensor Response Curve for event at (0,0)

The calculation of the position and event time from the four arrival times will be considered
in later sections.

These computational results can be compared against the analytic solution (3) which
represents the diffusion of a temperature pulse in a semi-infinite plate. The value of « is
related to the total heat in the system at any one time. Although one could compare the
instaneous temperture change at particular time a more appropriate comparison will be in
the temperature response curve at each sensor and the values of Tpeor and tpeqr as given in
Tables 1 and 2. Using the same values of p,k, Cp and r, Tables 3 and 4 give these values for
the same two events: (0,0) and (0.2,0.4).

As can be seen these are very similar values as one might expect from such a simple device
geometry.

The final set of computational results produced are a complete time and temperature

Sensor | Tpeak(°K) | tpeak(s) T
1 1.0050 | 1.8x10~*
2 1.0091 | 0.8x106
3 1.0178 | 0.5x10
4 1.0062 | 1.3x1074

Table 2: Temperature peak characteristics for (0.2,0.4) event



Temperature response at Sensor 1

1.015
T

L)
1.01

1.005

o 20 40 80 80 100
Time Steps

Temperabire responsa at Sensar 3

.01 1.015
T

T ()

1.005
T

Time Steps

Temparature rasponse at Sansor 2

T

1.018
T

]
-

- L

] 20 40 g 80 100
Time Steps
Temperature response ot Sensor 4
- L

]

af
cB
-

L L . L
o 20 © ) 80 100
Time Staps

Figure 6: Sensor Response Curve for event at an arbitary point (0.2,0.4)

response field for the device. Figure 7 and Figure 8 show the temperature and time response
surfaces at Sensor 1 for any event occuring in the device. It has been generated through a
sequence of 361 events space evenly on a regular 19x19 grid. The results from these runs
show good symmetry not only at one sensor but also between all sensors reflecting the basic
symmetry of the device. The castellation in the time response surface reflects the 1.0x10~7

time step being used in the computations.



Table 3: Analytic temperature peak characteristics for (0.0,0.0) event

Table 4: Analytic temperature peak characteristics for (0.2,0.4) event
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Temperature (K)
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Sensor (| Tpeak(°K) | tpeak(s)
1 1.008 1.1x10°%
2 1.008 1.1x1076
3 1.008 1.1x10~8
4 1.008 1.1x10°%

Sensor || Tpear(°K) | tpeak(s)
1 1.0046 | 2.0x1079
2 1.0090 | 1.0x10%
3 1.0178 | 0.5x10
4 1.0061 | 1.5x1076

Figure 7: Temperature response surface
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Time Response for Sensor 1

Figure 8: Time response surface
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6 Analytic Position Detection

The outputs of the model detector are a set of four times at which the temperature peaks arrive
at a particular sensor. This is the raw input to the position calculation. If the basic analytic
solution (3) is assumed then this position can be found very simply using the expressions
below. Give a set of three arrival times ¢, t2 and t3 the position of the event #(t,) satifys the
following relations using (4):

lFl - 'Folz = ﬁ(tl - to)
|7 — Folz = B(t2 — to) (13)
|F3 - Fo|2 = ﬂ(t3 - to)

t, is eliminated between the three equtions. This leads to:
|7 — Fol* — |71 — Fo|* = Blt2 ~ t1)

(14)
,FZ - Fo'2 - ,F3 - Folz = ﬁ(tZ - t3)

two equations, in the two unknowns z, and y, (using 7% = {zk,yx}). Expansion of these leads
to:

Bts —t1) = 25+ 93 — 23 — 12 + 2zo(z1 — 22) + Yo(y1 — ¥2)]
(15)

Blta —t3) = 2% + y3 — 25 — y3 + 2[zo(23 — 2) + Yo(y3 — ¥2)]

This can all be express more conviently in a matrix form as:

L Blte—t)—af—B+ai+el \ _(o1—22 vi—um2 [ (16)
2\ Bltz —t3) — 23 — 93 + 25 + 43 T3— T2 Y3~ Y2 Yo
The positions of the sensors are given by the vectors 71, 72 and 73. For the simple configuration
in Figure 3 one set of vectors could be:

-1 -1 1
r = Fo = d 72 =
1 l(_l),rg l( l)an 73 l<1> (17

where 2! is the edge distance between sensors.
1 B(ta—t1) 0 -2 T,
ul =] 18
2 ( B(t2 — t3) 2 0 Yo (18)

v = 7801 ~ 1) (19)

Clearly

yo = Btz — 1) (20)

The time at which the event took place is recovered from one of (13) given z, and y,.

10



¥ General Position Detection

In general the device may not operate in as simple a manner as an infinite plane. The shape
of the detector will effect the transmission time of the temperature pulse as might variability
in the material properties. Although one might think that all is required is the fitting of
a surface to the output to characterise the detector’s response this surface might not be a
simple bivariate polynomial. Given four sensors we may have four outputs (¢1,t2,t3 and t4)
to determine the three inputs (z,,y, and t,).

A more general approach of determining the event time and position is through the use
of a neural network which is trained to simulate the detector’s response. The Multilayer
Perceptron {or MLP) network is probably the most often considered member of the neural
network family. It is able to model both simple and very complex functional relationships
which has been proven through a large number of applications [4]. Figure 9 shows the general
characterisation of an MLP network. The basic ideas and software used is from the Neural
Network Based System Identification TOOLBOX of Norgaard [1]. The class of MLP-network

wa3

23

22

2

Figure 9: A fully connected two-layer MLP-network

being used is the two-layer model in which there is only one hidden layer. Also the activation
functions (f, F') have been chosen to be the hyperbolic tangent and the linear activation.

We will give a brief description (this material draws heavily on [1]) of the use and training
of neural network but more detailed explanation can be found in [5]. The Two-layer MLP can
be characterised by the following expression:

Q,(W,W) = F (zq: Wz'jh]'(’w) + Wio)

j=1
(21)

q m
= K (Z Wi; 1 (Z wjI2 +'wj0) + Wio)

i=0 =1

The weights (specificied by the vector § or by the weight matrices w and W) are the adjustable
parameters of the network and they are determined from a set of ezamples through the process
called training. The examples, or the training data as they are usually called, are a set of

11



input, u(t) and corresponding desired outputs, y(t). The objective of training is to determine
a set of weights that will produce predictions (t) which are close to the true output y(t).

The method by which the weights are determined is through the minimisation of some
mean square error criterion. This can be represented by

N
Vir(,2%) = -2 Y~ wt) - 9(4,0))7 wlt) — 9(¢,0)) (22)
t=1

where 8 is a vector of weights and N the number of data points in the training set.
The weights are then found as

6 = minVy (6, ZY) (23)
by some kind of iterative minimisation scheme
9i+1 — 01 + /J"sz (24)

where 6* specifies the current iterate, f* is the search direction and u® the step size.

A large number of training algorithms exist, each of which is characterised by the way in
which the search direction and step size are selected. For these computations the method due
to Levenberg and Marquardt is used the details of which are given in [6].

The NNSYSID Toolbox was developed for the MATLAB System [3] however the version
of MATLAB available to the authors was only the rather restrictive Student version. However
the SCILAB System [2] developed at INRIA provides very similar functionality to MATLAB
and a basic converter between MATLAB m-files and SCILAB macros (sci-files), mfile2sci.
Using this tool and some subsequent small modifications the NNSYSID Toolbox has been
converted into SCILAB functions.

7.1 Initial test using analytic form

Some inital tests were carried out on a four-input, three-output two-layer feed-forward network
using four hidden units. The first tests were run using a limited training set generated using
the analytic solution (3). A very simple problem was investigated. Assuming a 2x2 device
with the same physical characteristics as the test device, the analytic solution was used to
generate a grid of 36 data points (four sensor time and two positions) which was divided into
the training data and the test data.

Firstly the basic data had been scaled to milimeters and micro-sceonds. Using the basic
Levenberg-Marquardt training algorithm provide in the NNSYSID Toolbox a MLP network
with four inputs and two outputs, with four hidden units was trained. This took about 200
iterations of the algorithms to reduce the error to around 1x1078. Figure 10 and Figure 11
show the fitting between the predicted and actual values of the two outputs (z,y) for the

test data together with plots of the prediction error. In this test only the position has been
calculated.

12
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7.2 Fitting of computational simulations

The second step in using the neural network concept for position determination is to use the
results from the computational model. In general the temperature/time response of the device
to an event will not conform to the simple analytic solution. Variations in device shape and
material properties will affect its performance.

The computational model was used to generate a grid of data points over the device shown
in Figure 4. 361 data points consisting of the event position, (zi,y;) and the response times
and temperature peaks for each sensor, (t‘l , Tz-j ),i=1,4;j =1, N were generated. The data
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Figure 12: Fitting of output I (z coordinate) to computational data

was separated into the training (181 points) and test (180 points) sets. As with the initial
test data the computational data was suitably scaled and using the same basic MLP network
500 iterations were used to train the network. The final error was around 1x1073.

Figures 12 to Figure 15 show the final fit of the network to the test data.
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8 Conclusion

In this report we have described some initial attempts at modelling a position-resolving cryo-
genic detector. It is clear from the computational results that such a device is viable only if the
electronics monitoring the peak arrival times can discriminate at the level of a micro-second.
The results also show that given an event that produces a temperature rise of around 0.1°K
the properties of gold will allow the detection of such an event. The computational results also
show a the relaxation time of the device to be in the order of 10us which should be sufficient
for X-ray applications.

Although this work is based on the assumption that the heat transfer process can be
adequately represented by a linear diffusion, comparison will be needed against experimental
data to validate this approach.

We have shown that the computational results compare well with the simple analytic
solution on an infinite plate and that the position of an event can be recovered via either an
analytical expression (using the analytic solution) or an appropriately trained neural network.

Although this has been a good start it is thought that future work should include a more
detailed physical model of the detector. The model needs to have a better representation of
the heat flow into the constant temperature bath on which the detector sits and also some
representation of the heat losses from the device surfaces.

The differences between the analytic and computational models, although quite small, are
still significant for the off-centre events. This would indicate a more accurate simluation might
be required. Using a fine mesh and a smaller time-step would provide this but there would be
a significant increase in the time taken to perform the computations.
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