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Abstract

The few electrons in valence states of a material participate in many of its physical
properties, including both structural and transport properties. In the diffraction of
x-rays, or neutrons, valence electrons can lead to weak Bragg reflections that are
extremely sensitive signatures of their charge and magnetic degrees of freedom. In
this regard, diffraction instruments supplied with x-rays from a synchrotron source
are particularly useful because the brightness, tuneability and polarization of the
x-rays are all helpful in making valuable observations. The data obtained from
Bragg diffraction can be analyzed on the basis of an atomic model, which has
the virtue that it can be used as a common platform for the analysis of x-ray
and neutron diffraction and, in addition, the analysis of observations made with
x-ray absorption, NMR, EPR, muon and Méssbauer spectroscopies. We present the
salient features for the calculation of structure factors based on an atomic model
and applied to the analysis of Bragg diffraction by non-magnetic and magnetic
materials, with an emphasis on resonant x-ray Bragg diffraction. In addition we
discuss the complementary observation of dichroic signals.

The survey of available analytical tools is complemented by a series of worked
examples demonstrating the application of the formalism to different materials with
different crystal structures and resonant ions: dysprosium borocarbide (DyB,C,),
vanadium sesquioxide (V203), gadolinium tetraboride (GdB,), chromium sesquiox-
ide (Cr203), haematite and perovskite-type manganites.
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1 Imtroduction

X-ray and neutron diffraction are mainstays of many aspects of the science of
materials [1,2]. The contribution from x-ray diffraction to the subject has re-
cently been enhanced by diffraction instruments at synchrotron sources where
they are supplied with x-rays that are very bright, highly polarized and tune-
able in energy [3]. All these attributes are a help when it comes to measuring
weak reflections in a diffraction pattern due to the relatively few electrons in
valence states which possess angular anisotropy and, possibly, a magnetic mo-
ment. The importance of observations made by analyzing the weak reflections
can hardly be exaggerated, for the electrons in question participate in a host
of physical properties, including, covalency, superconductivity, magnetoresis-
tance, ferro- and pyroelectricity, structural phase transitions and all manner
of magnetic phenomena [4-8].

A successful framework for analyzing the weak features in a diffraction pattern
gathered on a spatially ordered material is based on an atomic, or localized,
electron model. The corresponding structure factor for diffraction, F', is a
sum of contributions from participating ions weighted by the standard spatial
phase-factors. If all contributions are the same, F' is simply the sum of the
phase factors and F' is different from zero at the space-group allowed Bragg
reflections admitted by extinction rules or crystallographic systematic absence
conditions. The additional, weak reflections we have mentioned occur when
ions in the unit cell are not equivalent on account of a lack of translational
symmetry in their environments. The symmetry elements of F' must include
the symmetry elements of the space-group of the crystal, whereas a bulk phys-
ical property is constrained by the point-group of the crystal only. Ordering of
the valence states or an ordering of magnetic moments will break the transla-
tional symmetry. For example, a simple antiferromagnetic motif of moments
leads to reflections not indexed by the chemical unit cell.

Atomic models have a long and distinguished life in the interpretation of both
neutron and Thomson scattering measurements. One of the attractive features
of these models is that the atomic quantities, such as spin and orbital mag-
netic moments and orbital quadrupole moments, can be probed by various
experimental techniques. Hence, atomic models provide a common platform
for the analysis of observations made in diffraction experiments and NMR,
EPR, muon spin-rotation and Mdssbauer spectroscopies. To this list of obser-
vations that can be analyzed on the basis of atomic models one can add x-ray
Bragg diffraction in which the intensity of a reflection is increased by tuning
the x-ray energy to an atomic resonance, although the suitability of an atomic
model needs to be tested case by case. Resonance enhancement increases the
visibility of certain features in a diffraction pattern and it provides an element
selectivity [9,10]. Intensities can be sensitive to polarization in the primary and



secondary x-ray beams and this sensitivity is another useful aspect of resonant
Bragg diffraction. The wavelength of the x-rays is determined by the energy
of the resonance event being exploited and very often the wavelength is too
long to satisfy the Bragg condition at more than two, or three, reflections. In
the best cases, resonant Bragg diffraction provides a sensitivity at the level of
a small fraction of an electron, and data gathered can be used with confidence
to infer the wavefunction of the valence state which accepts the photo-ejected
core electron.

We review observations made by analyzing diffraction measurements in terms
of an atomic model, with some emphasis on x-ray resonant Bragg diffraction.
Most of the necessary atomic calculations are already available in published
literature, and our goal is to gather them in a coherent format in one place.
We add to these calculations one required to describe parity-breaking contri-
butions to scattering. In absorption experiments these contributions can give
rise to natural circular and magnetochiral dichroism.

The analysis of observations made with absorption spectroscopies has received
a lot of attention, and significant developments have been made with atomic
models and multiple-scattering models [11]. Magnetic circular dichroism is a
powerful technique by which to investigate magnetocrystalline anisotropy in
a variety of materials, including, chemically ordered alloys and artificially lay-
ered structures. Absorption spectroscopies and resonant x-ray Bragg diffrac-
tion are just two sides of one coin, for both are related to the scattering am-
plitude. However, in principle there is more useful information to be got from
diffraction than there is from dichroism because dichroism is a bulk, or global,
property. Put another way, dichroism is described by the structure factor F'
evaluated at zero Bragg angle (forward scattering) and for this condition the
symmetry elements of F' must include the symmetry elements of the point
group of the crystal (Neumann’s principle), i.e. one of the 32 crystal classes.
The full F', required for diffraction at a non-trivial Bragg reflection, depends
on the relative position of the symmetry elements and translations associated
with glide planes and screw axes in the unit cell because the spatial phase-
factors are not all equal. Diffraction, therefore, is constrained by elements of
symmetry in one of the 230 different space groups. Similar reasoning applies
when the discussion of dichroic signals and diffraction is extended to magnetic
crystals.

Besides resonant x-ray Bragg diffraction and dichroic signals, we consider the
Thomson scattering and magnetic scattering of x-rays with high energies, away
from atomic resonances. The magnetic scattering of x-rays and the magnetic
scattering of neutrons have many features in common, and it is for this reason
that we also include a brief survey of magnetic neutron scattering.

The Compton scattering of x-rays is spatially incoherent and inelastic, and



it provides information on the spin magnetization. This information nicely
complements measurements of the spin and orbital magnetization by x-ray
Bragg diffraction. However, Compton scattering, necessarily, is sensitive to
bulk properties of the target sample, and in this respect it is the same as x-
ray absorption spectroscopies that we have discussed earlier on. In particular,
studies of magnetic properties are limited to ferro- or ferrimagnets, where the
net magnetic moments are non-zero.

Our notation for x-ray scattering follows that used in references [12,13]. We
refer the reader to these articles for some background material, such as the
description of states of partial polarization and the Stokes parameters.

2 Thomson scattering by spatially ordered materials
2.1 Unit-cell structure factor

It is customary to develop the x-ray scattering length in powers of E/m.c?
where FE is the primary energy and the rest mass energy of an electron mgc? =
0.511 MeV. The first term in the development is proportional to the spatial
Fourier transform of the electron charge density and it is responsible for the
Thomson scattering of x-rays. (The development referred to is provided in
references [14,15] and it is summarized in equation (8.17) in reference [13].)

Let k denote the difference between the primary q and secondary q' wavevec-
tors with k = q — q'. The corresponding polarization vectors are € and €’ and
they satisfy q-€ = ' - €/ = 0. Writing r. = a?ag = 0.282 x 107!2 cm for the
classical radius of the electron, the Thomson contribution to the x-ray scat-
tering length per unit cell is —7.(e’ - €) Fy(k) where F,(k) is the appropriate
unit-cell structure factor. Here, we attach a subscript ¢ to denote the charge
density.

In an atomic model, F,(k) is a sum over every ion in the unit cell that con-
tributes to scattering. A site in the unit cell is labelled by its position d. We
then have,

Fu(k) = > e (e ) (1)

where angular brackets denote the mean value, or time-average value, of the
enclosed quantity and the j-sum is over the positions R; of the electrons as-
sociated with the site d. The quantity (3;e™®s) is often called an atomic
form factor and it is equal to the number of electrons when k = 0. If there



Table 1
Parity-even multipoles

Rank K Name= 2K
K=1 Dipole
K=2 Quadrupole
K=3 Octupole

K=14 Hexadecapole
K=5 Triakontadipole

K=6 Hexacontatetrapole

is translational symmetry between the sites in the cell, F,(k) is simply pro-
portional to the sum of the spatial phase factors 4 and the sum is different
from zero for k = 7T(hkl) where the Miller indices hkl label a space-group
allowed reflection. Additional, weak reflections may arise because some ions in
the unit cell are not equivalent on account of a lack of translational symmetry
in their environments.

To describe the contribution to F.(k) made by such ions we introduce an
atomic tensor (T5). for each ion [16-18]. Here the positive integer K is the
rank of the spherical tensor and the projection @ can take (2K + 1) integer
values that satisfy —K < ) < K. An atomic tensor is also called a multipole
moment and they are named by the Greek word for the number 2X. For com-
pleteness, and because not all authors use our naming rule, Table 1 contains
the names of multipoles X =1 to K = 6.

An actual definition of (T). follows by separating the angular dependence of
k and R; in €%®s which is accomplished with the identity,

&R = 4m 1 i (kR (Y (R} YA (Ry) (2)
KQ

Here, k = k/k and f{j = R;/R; are unit vectors, jx(kR;) is a spherical
Bessel function and Y (k) = (—1)Q{Y1{Q(l})}* is a spherical harmonic. Our
definition of a spherical harmonic is a standard one. An alternative definition
i*YJ (k) has the appealing property that its complex conjugate and the func-
tion differing in the sign of @) have a relation that is the same as that between
a spinor and its time-reversed state (see appendix C). Using (2), we write the
mean value of e*®s which is required in the structure factor as,

(3o M) = (4m)V Q%i" () (L)Y ()T (3)



with,

(Tg){>c = (47T)1/2 Z(YQK(RJ» ’ (4)

J

and the reduced matrix element for T is found in equation (16). In equa-
tion (3), {(jk(k)) is the integral of a spherical Bessel function of order K
weighted by the radial density of the valence wavefunction and (jx(0)) = 0
for K > 0. The atomic tensor (T§). evaluated for K = Q = 0 is equal to the
number of valence electrons. Weak Bragg reflections arise from tensors with
rank K > 0. We have written the right-hand side of (3) as a scalar product of
two tensors of equal rank; if A and B are vector quantities (tensors of rank 1)
their scalar product A-B = A, B;+ A, B, + A, B, written in terms of spherical
components, A,y = —(A; +i4,)/V2, Ao = A, and A_; = (A, —i4,)/v2 and
similar expressions for Bg, is A - B = 3 o(—1)?A_¢Bo.

After inserting (3) in (1), the Thomson structure factor may be written as,

Fo(k) = (4m)/ 3" i (i) (~1)FY S () 05 (5)
KQ
where,
UE =" e*NT )ea - (6)

We assume that (jx) is the same for each ion that contributes to the weak
Bragg reflection in question, for which ¥9 = 0. Note that F,(k) is a scalar
product of a tensor Yé{ (R) associated with the x-rays and a tensor \Ilg associ-
ated with the electrons. This feature of the structure factor will appear again
and again in scattering processes, including resonant x-ray diffraction. The
x-ray factor iKYé((R) in (5) satisfies iKY_KQ(lA() = (—1)K+Q[1KYC5{(R)]* and a
similar relation holds for x-ray factors in resonant x-ray diffraction, as we shall
see later in Tables 3, 4, and 5.

2.2  Application to DyByCy

As an example of the type of scattering under discussion in this section let
us consider diffraction by a crystal of Dysprosium borocarbide (DyB,Cs).
On lowering the temperature through T = 24.7 K the material undergoes a
continuous structural phase-transition in which there is a buckling of B and
C rings of ions normal to the crystal c-axis. The transition reduces the crystal
symmetry to P4,/mnm, down from the crystal symmetry P4/mbm [19]. The



change in symmetry is accompanied by doubling the unit cell along the c-axis,
and a reduction in symmetry of the sites occupied by Dy ions to 2/m (Cap)

from 4/m (Cyp). Various aspects of the crystal structure are illustrated in
Fig. 1.

When it comes to calculating ¥, we apply to (T )c,a the symmetry operators
that relate the four Dy sites in the unit cell of P4;/mnm. The ions are at
sites 4(c) with symmetry 2/m and the diad parallel to the c-axis. The ions
are at sites with positions d = (0,0,0), (3a,3b,0), (0,0,c) and (3a, 3b,¢)
and we label them 1, 2, 3 and 4, respectively, as in Fig. 1. Note we have
translated the unit cell origin by the vector b/2 from the standard origin
in International Tables for Crystallography [6]. Ions 1 and 3 are related by
a rotation of w/2 about the c-axis and, thus, (Tf)¢s = €9"%(T). 1. This
relation is one of several that are discussed in appendix B. Sites 2 and 4 are
also related by a rotation of 7/2 about the c-axis, and sites 1 and 2 by reflection
in a plane normal to the direction [%a, %b, 0]. To implement this symmetry we
invoke the identity between reflection in a plane and the product of inversion
(x — —z,y — —vy,z — —z) and rotation by 7 about an axis normal to
the reflection plane. The atomic tensor (Téf bc is changed by inversion of the
coordinate system to (—1)* (T ). and such a tensor is called a true (or polar)
tensor. For Thomson scattering by equivalent electrons in a single atomic-shell
K is always an even integer and associated atomic tensors are parity-even, c.f.
section 2.3. In consequence, under reflection in a plane normal to [a, 3b,0]
the tensor (Tg )c is effectively rotated by 7 about [3a, %b, 0] and one finds that
(T&)e2 = (—1)%e9/2(TX,). ;. Using the foregoing expressions for tensors at
sites 2, 3 and 4 in terms of (TS )1 in ¥ the latter reduces to [20,21],

Vg = (Tg )ea{l +vge™ ™} + (—1) 1g(Thg)ea{e™® +voe™h} . (7)

where vg = €l@7/2,

We consider two classes of space-group forbidden reflections hkl which we
label (a) and (b). The corresponding spatial phase factors are:

(a) h+k=o0dd, I =(2n+1)/2,
eik~d2 — eik-dg = -1 , eik-d4 — +1
(b) h+ k =even, | = (2n+ 1)/2,

olde — 1] gkds _glkds —

We find,

() = (1 — v){ (T )en — (1) v(T,)er} (8)



Z=0 Z=05

Fig. 1. Low temperature structure of DyByCsy [19,20]. In the left-hand panel the
c-axis is normal to the plane of the diagram which contains the Dy ions represented
by large shaded circles. The right-hand panel illustrates the configuration of Dy
magnetic moments.

and,

TE(b) = (1 — v){(TE)er + (1) v(TH)en} 9)

and the common prefactor guarantees ¥ (a) = UX(b) = 0, a result, that is a
signature of space-group forbidden reflections.

There are more selection rules on K and @) that are derived from \I/g . First, for
Thomson scattering K is an even integer, as we mentioned, and the maximum
K = 2l when [ is the angular momentum of the valence shell occupied by
the equivalent electrons. In our example, the valence shell is expected to be
formed by the Dy 4f state and [ = 3. Thus, the possible ¥ are ¥3, ¢, and 5,
which, respectively, are linear combinations of quadrupoles, hexadecapoles and
hexacontatetrapoles of the Dy 4f valence state. The contributions they make
to F,.(k) are weighted by (j2), (js) and (je) which vanish as k = |k| goes to
zero, and the magnitude of (j,) is much larger than the magnitudes of both
(7a) and (jg). Secondly, the diad parallel to the c-axis requires that (T ) is
unchanged by a rotation by 7 about the c-axis, i.e. (T¢f )e;1 = € 9" (T )c1. The
non-trivial condition is that @ be an even integer Q = +2, +4, ... However, a
necessary condition for scattering is vg = €9™/2 = —1, and hence the allowed
@ = £2,+6... Notice that, in the room temperature structure P4/mbm,
there is no Thomson scattering because Dysprosium ions occupy sites with a
tetrad parallel to the c-axis and this rotation symmetry restricts ¢ to values
0,+4, 48, ... for which ¥& = 0.

Below the structural phase transition, at T = 24.7 K, the structure factor for



Thomson scattering is derived from,

‘1’5(&) = 2{<T§>c,1 + <T§Q>C,1} = ‘I}I—{Q(a) = 4Re(T§)c,1 ) (10)

and,

\I,g(b) = 2{(Tg>c,l - (T§Q>c,1} = _\IJ}—(Q(b) =4 Im<Tc{){>c,1 . (11)

To express \Illg in terms of the real or imaginary parts of (Tg )1, we have used a
result for (T%,) that is valid in the general case, namely, (T'%,) = (—1)%(T)*,
together with the fact that () is an even integer.

The Thomson structure factors are,

(a) Fe(k)=(4m)'? 3 i* QZ Y25 (k) + Y5 ()] (k) U5 (2)
K=24,6 =2,6

N L e R (12)

2,4, )
= —4V/30(jo ) kako Im(T2) g1 + ... . (13)

Dots in these expressions denote terms with tensors of rank 4 and rank 6. A
spherical tensor of rank 2 has a unique representation in terms of a symmetric
traceless Cartesian tensor of rank 2 which we denote by Q5. In other words,
(T3)1,c can be expressed in terms of a Cartesian quadrupole tensor Qqg. For
our immediate purpose we need only [18],

(T he= \/%(Qaa —~ Qup + 2iQu) (14)

and components of the Cartesian quadrupole tensor are purely real. Com-
bining (12) and (14), the leading term in Fi(k) for reflections of type (a) is
proportional to (h? — k?)(Qa. — Q) where we have replaced k, and k; by the
appropriate Miller indices. Reflections of type (b) are described by a structure
factor whose leading term is proportional to hkQg. Our findings are in com-
plete agreement with experimental data reported by Adachi et al.(2002) [22]
which we display in Figure 2.
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Fig. 2. Thomson scattering by DyB2C,. Raw data of the [-scan measurements are
displayed for various types of reflections. The crystal was held at a temperature of
18 K except for data gathered in scans about (014). Intensities reported in panel (b)
were taken at 18 K (solid circles) and 30 K (open circles) and they are attributed
to multiple scattering. ;From Adachi et al. [22].

2.8 Sample calculation of (T ).

Let us consider a calculation of (T5). that is appropriate for DyB,Cs. In the
ground state, the Dy 4f shell is described by a wavefunction |¥) which is a
linear combination of states | /M) where J = 15/2. Because there are an odd
number of electrons in the 4f shell the states are two-fold degenerate (Kramers
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degeneracy), in the absence of magnetic interactions [23]. The ground-state
doublet can be formed by |¥) and its time-reversed version |¥) = 9|¥). Infor-
mation about the time-reversal operator ¥ is in appendix C. Thomson scat-
tering by equivalent electrons in a single atomic-shell is a parity-even process.

Associated atomic tensors with an even rank are time-even and they possess
the properties (¥|TK|¥) = 0 and (¥|T5|¥) = (¥|TE|¥) . Turning to the
actual form of [¥), the diad symmetry element requires [¥) to be some linear
combination of the states |JJ), |JJ —2), |JJ — 4), etc.

The saturation value of (T¢f) = (¥|(T{).|¥) is a linear combination of matrix
elements of the form (JM|(T))c|JM’). Because (T ). is a spherical tensor
a matrix element obeys the Wigner—Eckart theorem which we write in the
form [16,17],

M)A M) = (0 (5w ) ITE@IT) )

and the reduced matrix-element for equivalent electrons in an atomic shell
with angular momentum [ is easily found to be

ITE ) = VE=QIY < oW o (16
Here,
1/2
R L e I (I )

where the 3j-symbol can be different from zero when 2[4 K is an even integer,
which means even K in this case. The unit tensor W{K)X depends on the
quantum numbers SLJ, S’L'J’" and it is tabulated for a large number of 3d
and 4f ions. Some details about W (%)X are in appendix D, including references
to tabulated values.

A more general case is when the valence electrons are not equivalent but
occupy states of the form (a|lm) + b|l'm’)) where [ # I'. In this case, the mean
value of TS has off-diagonal matrix elements like a*b(Im|T{f|['m’) that are
different from zero for even ! + K + (' which can include odd values of K. The
off-diagonal terms in question may occur when an ion is not at a centre of
inversion symmetry, and the crystal potential it experiences mixes states from

different atomic-shells.
The interaction operator (2) for Thomson scattering is unchanged by the re-

versal of time. Explicitly, time reversal applied to (2) changes the signs of q,

11



and k = q— ¢/, and it takes i to —i. The exchange q «— ¢ changes the sign
of k and Y (k) in (5) is changed to (—1)XYZ (k). A contribution to (5) with
even K is unchanged (symmetric) by q «— ¢’, and a contribution with odd
K changes its sign (antisymmetric). Clearly, a symmetric contribution to (5) is
accompanied by an atomic tensor that is both time-even and parity-even, while
an antisymmetric contribution is accompanied by an atomic tensor which is
time-even and parity-odd. Atomic tensors encountered in Thomson scattering
change to (—1)*(T). from (T£). under inversion of the coordinate system
of the electrons, which is also referred to as the parity transformation, and
a tensor with this transformation property is called a true (or polar) tensor.
(If the parity transformation introduces a phase factor (—1)%*! the tensor in
question is called a pseudotensor, or an axial tensor. By way of an example
of a pseudotensor we cite the mean helicity of an x-ray beam P, which is a
scalar quantity that changes sign under inversion of the coordinate system.)

3 Magnetic x-ray scattering

The first correction, in an expansion in F/m.c?, to the Thomson contribution
of the x-ray scattering length includes magnetic terms [14,15]. These magnetic
terms appear also in the amplitude for the magnetic scattering of neutrons [24],
which is the subject of the next section. However, there is one important
difference between the amplitudes for magnetic neutron and magnetic x-ray
scattering. In the neutron case, the spin (S) and orbital (L) magnetic moments
of the unpaired electrons in the crystal are linked together and the amplitude
is proportional to the total magnetic moment L+28S, to a good approximation.
By contrast, the magnetic x-ray amplitude is such that the spin and orbital
moments can be separately measured [25-27]. We note that the spin moment is
also obtainable from magnetic x-ray Compton scattering [28-30] which is both
incoherent and inelastic and, thus, fundamentally different from the Bragg
diffraction under discussion.

3.1 Magnetic scattering length

Let us introduce a structure factor for spin moments and a structure factor
for orbital moments, in analogy with the Thomson structure factor Fi.(k).
To a first approximation, that is often perfectly adequate for the analysis of
observations, our new structure factors are,

Fs(k) =) fs(k;d)(S)ae™? , (18)
a

12



and,

Fr(k) ~ Ed: fr(k; d){L)ge™? . (19)

N =

Here, fs(k;d) and fi(k;d) are atomic form factors for the spin and orbital
moment distributions, respectively, and fs(0;d) = fr(0;d) = 1. The gen-
eral expressions for the magnetic structure factors can include octupole, and
higher-order, multipole moments and the expressions are given at the end of
this section.

The magnetic x-ray scattering length has a non-trivial dependence on the po-
larization in the primary and secondary beams. It is normal practice to label
by ¢ polarization perpendicular to the plane of scattering, which is defined by
q and ¢'. Polarization in the plane is labelled by 7. Our choice of Cartesian
axes (zyz) for the geometry of the experiment is illustrated in Fig. 3, where
o and the z-axis are parallel and k = 7(hkl) is directed along —z [13,26].
The x-ray scattering length is expressed as —r.G where G is a 2 X 2 matrix
with components Gyio, Grrn, Gor, and Gr,. The Thomson structure factor
appears in channels where the polarization in the primary beam is not ro-
tated on deflection by the crystal, namely, G,, and G,,. These two channels
also contain magnetic components Fi(k) and F7(k) normal to the plane of
scattering. The rotated channels, with amplitudes G+, and G, are purely
magnetic and the components of Fg(k) and F(k) lie in the plane.

It is convenient to express the components of G in terms of four other quan-
tities specified below;

gz_%(ucosze)pc(k) — i6sin(20){ FZ(k) + (1 — cos 20)FZ(k)} , (20)

- —%(1 — cos 20) Fy(K) + i6(1 — cos 26) sin(20) F2 (k) , (21)
ag =0 cosf(1 — cos 20){2F} (k) + FE(k)} , (22)
o =—16sin (1 — cos20) F§ (k) . (23)

In these expressions, § = E/m.c? = hg/m.c and @ is the Bragg angle illus-
trated in Fig. 3. The virtue in using (20) - (23), instead of G, lies in the ease
of handling polarization. If P = (P, P, P3) is the Stokes vector, the x-ray
cross-section is simply,

j—% =rX{a* a4+ |fP+ 8P -a)+ (P -a)F+iP- (o x @)} . (24)

13
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79" q = T(hkl)
________________ // 9 q‘y
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i i’ q,
T

Fig. 3. The diagram illustrates the Cartesian coordinate system (zyz) adopted for
Bragg diffraction and the relation to states of polarization, ¢ and =, in the primary
and secondary beams of x-rays.

Table 2
Vectors in Figure 3

Quantities depicted in Fig. 3 and evaluated for elastic
scattering |q| = |d/|.

q={(—sinf,cos6,0) , § = (sinf,cosb,0)

d x q=(0,0,sin 26)

a—§ = (—2sinh,0,0) , g+ =(0,2cos6,0)

o=0’"=(0,0,1)
7 = (cos,sinf,0) , 7' = (cosb, —sin@,Q)
ﬂ{l—l =—T_.] = _71_56_10 , Gy1 = ql—l — _&_%ele

By way of illustration of (24) let us consider pure charge scattering, i.e. set
Fs(k) = Fr(k) = 0 in (20) - (23). The expression (24) reduces to,

d 1
o _1,

30 = 5Tel Fe(l)IP(1 + cos®(26) + Pysin®(26)) - (25)

The cross-section for x-rays polarized perpendicular to the plane P3 = +1
(o polarization) is larger than the cross-section for x-rays polarized in the
plane P3 = —1 (7 polarization) [31].

When the polarization is nearly perfect, as it is with x-rays from a synchrotron
source, the components of G provide the corresponding cross-sections. For
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example, with pure o-polarization the unrotated cross-section is 72|G,,|%.
The four components of G are,

Goo=f + a3 = —Fu(k) — 6 sin(20) FZ(k) |,
Gw’w :ﬁ — (a3, Go’w =0y — ia27 G‘II"O’ =y + ia2 . (26)

The component G, is written out in full to emphasise that it depends on the
spin and not on the orbital magnetization [32,33].

The spin moment is the dominant magnetic contribution in the limit of very
hard x-rays, and the appropriate cross-section has a very simple form. For
Bragg diffraction from planes of reflection separated by a distance d and x-
rays with a wavelength <« d the cross-section is [34],

o = TAIEL() + 0o/ d) 5 o)

Here )\ = (2maag) = (27re/a) ~ 0.0243A is the Compton wavelength.
3.2 Unit-cell structure factors

Let us now address the calculation of Fs(k) and F (k). Results (18) and (19)
are not adequate if the wavevector is large enough for (j2(k)) to be larger than
(Jo(k)), where (ji (k)) is the Bessel function transform of order K of the radial
component of the valence wavefunction introduced in the previous section. In
fact, (18) and (19) become exact in the limit & — 0 at which the atomic
form factors are unity.

The definition of Fg(k) is similar to the definition of the Thomson (charge)
structure factor (1), except that Fg(k) is related to the spatial Fourier trans-
form of the spin density and it is a vector quantity. We have,

Fs(k) —_ Zd:eik-d<z eik-Rij>d 7 (28)

where R; and s; are position and spin operators of the j** electron associated
with the site d in the unit cell. Matrix elements to be calculated are mixed
orbit and spin, i.e. they contain the unit tensor WK’ whereas both the
Thomson (16) and orbital magnetic interactions contain WX,

A matrix element of the spatial Fourier transform of the spin density in (28)
is,
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(JM[ "M (s))p|J' M) =
;

=5 5 ) Y ()5 K + )Y DK, K
KQK'Q!

% (KQK,QIHP)(—-I.)J‘A[ (

J K J ) (29)

-M Q/ M

The content of this expression is a classical spherical-tensor Y5 (k) of rank K
coupled to another spherical tensor of rank K', which is based on WKX
to give a vector quantity of rank 1 and projection p. Our definition of the
Clebsch—Gordan coefficient that effects the coupling is,

(30)

(KQK’Q’IJ'm)=(2j+1)1/2(—1)‘K+K’—m(K K j ) |

Q Q@ -m

and in (29) one has j = 1 and m = p. The positive integer K is even and its
maximum value is 2] where [ is the angular momentum of the valence shell.
The positive integer K’ can only take the three values K' = K or K/ = K +1.
If states used to construct the mean value of the spin density all come from
one manifold and J = J', L =L', S = §' then K’ = K+1 and D(K’, K') = 0.
The definition of D(K, K') is [12,35],

DK, K') = (47) e (R) G sl ) GIY < yw 0% (31)

where (1/2||s]|1/2) = \/E%—/E The appearance in (31) of reduced matrix el-
ements of spin and a spherical harmonic confirm the mixed spin and space
character of the matrix element. Numerical values for D(K, K’) can be ob-
tained from (31), using tabulated values for WX or by using extensive
tabulations for a related quantity C(K, K') where

3(2J + 1)

D(K, K/) _ iK(_l)K’+J’—J { (2K, - 1)

1/2
} C(K,K') . (32)

Note that the unit tensor, D(K, K’) and C(K, K') depend on the full range of
quantum numbers that are required to specify a valence shell. The approximate
expression (18) is recovered by keeping in (29) only the term K = 0, for which,

D(0,1) = (jo(k))gs(JIIJIIJ) , (33)
where gs = (g — 1) is the spin part of the Landé factor g. At this level of
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approximation in (29) the latter becomes,

(TMID ™R (55)p| ' M) = 65,0 Go(k)) 95T M| Jp | TM') (34)

The contribution in (29) with K’ = 3 is an octupole moment built from spin
and an orbital contribution. For a single J-manifold K’ has a maximum value
(21 + 1). However, values of J and J' in WMOK' may restrict K’ to a smaller
value, because K’, J' and J satisfy the triangular condition |J — J'| < K’ <
J + J' in the Wigner—Eckart theorem.

The orbital structure factor F(k) is constructed from an operator built from

e™® i and the linear momentum p;. One finds,
: 1 i
FL(k) = Y (5 ) S0 e ™k x py))a - (3)
d J

In working out the matrix element of the operator in (35) one can usefully
take advantage that F'; (k) appears in G in a scalar product with vectors that
are perpendicular to k, namely, q + q’ and q x q'. We find [12,35],

1 ik-R; IRV
(7M1 (573 ) 2 x )yl 'M') =
7
e (2K + 1 ‘o
=30 > (4m) A () (ﬁ) Zp (K= 1)
Q KQ

J K J') 7 (36)

< (K -1QKQA-D"" () o ap

and K’ = 1,3,...,(20 — 1). The quantity ZI (K’ — 1) is proportional to
WOKIK' 5 finding that is expected because the operator on the léft-hand
side in (36) does not include the spin operator. One finds,

ZE (K" = 1) = =" 65 o { (Grora (k) + (o (R))}
x [g(K/ + 1)]1/2(2[ + 1)2A(KI, K,, Z)W(OKI)K'
= (-] (20 + DV2AK - 1,K') . (37)
The second equality relates Z& (K’ — 1) to a quantity A(K’ — 1, K’) which is

used in calculations of the magnetic neutron scattering amplitude, and here we

will not pause to give the actual expression for A(K’, K’, 1) that is contained
in A(K'— 1, K").
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For K' =1,

23(0) = 34Uo() + (k) }an(T1II) | (38)

where g;, = (2 — g) is the orbital part of g. This result enables us to recover
the approximate expression (19). Note that (33) and (38) show that the spin
and orbital atomic form factors are not the same with fs(k) = (jo(k)) and
fr(k) = (o(k)) + (52(k)), in the limit in question.

The value of ZF' (K’ —1) for K’ = 3 is directly related to the orbital octupole
operator,

A= %Z{zo(mg 34D+ D), (39)

where [y (= 1,) is the diagonal component of the orbital operator. The reduced
matrix element of A is found to be,

1/2
GINI) = @iy {30 - DE - e+ @)} WS, (1)

and the matrix element is, of course,

IMIAJIM) = 07 (S ) A (@)

Our two main results, (29) and (36) show that the structure factors for the
magnetic scattering of x-rays by spin and orbital moments are,

(Fs(k)), = > > (4m)* Y (k) (S)(KQK'Q'|1p) , (42)
KQK'Q
and,
(Fo(k)), = % > (am)VPYE k) UE (L) (K - 1QK'Q'|1p) (43)
K'Q
where,
VE(S) = e N TE ) sa (44)
TE(L) =™ Th ) a (45)
d
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and the reduced matrix elements are,

(T (5)17) =5 (2K + DD(K, K | (46)
I o) = () 2 - (47

In the spin matrix element K and K’ satisfy the triangular condition im-
posed by a Clebsch—Gordan coefficient. The reduced matrix element for both
the spin and the orbital moments depend on the magnitude of the scattering
wavevector, through the Bessel function transform (jx(k)). When £ is rela-
tively small, all but (jo(k)) can be neglected and the structure factors Fg(k)
and Fy (k) are adequately represented by (18) and (19).

When it comes to calculating \Ilg,', tensors at different sites in the cell are gen-
erated by application of the symmetry operators in the space group. In the
previous section, which deals with Thomson scattering, we gave an example
calculation that involved both proper rotations and a mirror plane of symme-
try. To these operations we need to add the influence caused by reversing the
polarity of the local magnetic field. For example, a fully compensating anti-
ferromagnet has equal numbers of ions with opposite local fields. The general
rule for parity-even tensors is,

(Tg)a = (1) T )-u (48)

where H denotes an applied field or the direction of the spontaneous moment
at the site in question.

3.3 Application to V5 0s

We conclude this section by calculating the structure factor for vanadium ions
in antiferromagnetic V,03. This material is of great interest as an example of
a Mott-Hubbard insulator. At room temperature the material possesses the
corundum structure in the space group R3c. On reducing the temperature of
the material to 150 — 160 K, it changes from a metal to an insulator and from
a paramagnet to a fully compensating antiferromagnet depicted in Fig. 4. The
long-range magnetic order coexists with a monoclinic crystal structure with
space group 12/a [36] in which vanadium ions occupy sites 8(f) that possess
no symmetry and, in particular, they are not centres of inversion symmetry.

The monoclinic space-group 12/a is a body-centred cell and Bragg wavevec-
tors Tm(hkl) for charge-allowed reflections satisfy the necessary condition
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Fig. 4. Positions of the eight vanadium ions in the monoclinic cell adopted by V203
below the Néel temperature, together with the configuration of their moments in
the plane spanned by a,, and ¢,,. The monoclinic Bragg wavevector 7, = (202),,
is parallel to the trigonal axis ¢y, and by, is normal to the plane of the diagram and
parallel to a,, [37].

h+k+1 = 2n (Miller indices h,k,! are all integers). The motif of vana-
dium magnetic moments consists of sheets of moments with ferromagnetic
alignment within (010),, layers, or hexagonal (110) layers, and moment rever-

sal between adjacent layers. The moments align along some easy-axis in these
layers [38].

The trigonal basis vectors are a, = a(1,0,0), b, = a(—1/2, (1/2)/3,0) and
cr = ¢(0,0,1) and the volume of the unit cell= a?cv/3/2. Following Dernier
and Marezio [36,37] in the use of an I-centred cell, from these vectors we
generate monoclinic basis vectors a,, = (0,(1/v/3)2a, (1/3)c), b, = as, and
cm = (0,(1/v/3)a, —(1/3)c), and the volume of the cell= a?c/+/3. The corre-
sponding Bragg wavevector T,,(hkl) = (hkl),, is

T (RKL) = % (k —\;—g(h +0), = (h 21)) : (49)

We note that ({01),, is parallel to ¢, and (2lkl),, is normal to cj.

Referring to figure 4, the position coordinates of vanadium ions labelled (1) and
(5) are (z,v,2) and (—z, —y, —=z), respectively, with z = 0.3439, y = 0.0012
and z = 0.2993 [36]. The positions of the pair (2) and (6) are related by a body-
centred translation to the pair (1) and (5). The position coordinates of (3) and
(7) are (1/2 — z,y,—=2) and (1/2 + z, —y, z), respectively, and the pairs (4),
(8) and (3), (7) are related by the body-centre translation. The body-centre
translation (1/2,1/2,1/2), = a/2(1,v/3,0) and (1/2,1/2,1/2)m - Tim(hkl) =
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s(h+k+1). It is convenient to define an angle v = 27(z,y, 2)m - Tm(hkl) =
2m(xzh + zl) where the second equality is correct for y = 0.

Four pairs of vanadium ions at sites 8(f) in 12/a possess the same chemical
environment, and the pairs are, (1) and (2), (3) and (4), (5) and (6), and (7)
and (8). Sites (1) and (5), and (3) and (7) are related by inversion, which is
an operator that does not change a parity-even atomic tensor. Referring to
Fig. 4, moments on even and odd numbered sites are in opposite directions,
so the odd numbered sites in \IIS,' , say, acquire a factor (—1)¥" by application
of (48). Lastly, sites occupied by ions (1) and (7) are related by an a-glide
which corresponds at site (7) to changing the sign of the coordinate normal to
the a,, — ¢, plane, i.e. our Cartesian x = a goes to —x (this corresponds to
y — —vy in the standard monoclinic basis). As remarked earlier, in section 2,
with a parity-even tensor the mirror operation is equivalent to rotation by 7
about a normal to the plane, and the normal is a,. The relation (Tg,l>7 =
(TX))1 is a result of the rotation and (48).

For the model of V5,03 that we have described, in the previous paragraphs,
¥X' can be different from zero for even values of K’ + (h+k+1), so here there
is a selection rule in the structure factor that links the rank of atomic tensors
and the sum of Miller indices [39]. Neutron magnetic diffraction is observed at
reflections with A+ k41 an odd integer, i.e. space-group-forbidden reflections,

and the scattering amplitude is composed of tensors of rank K’ = 1,3 and 5.
One finds,

UE = deos(){(TE) + (-1)MTI0} (50)

and this result applies for the spin and orbital structure factors (44) and (45),
and magnetic neutron diffraction discussed in the next section. The saturation
moment of a vanadium ion is 1.2 5, and most of the moment aligned against
the pure spin moment of 2up is thought to be orbital moment created by
the spin-orbit interaction. This sizeable orbital moment should be visible in
magnetic x-ray and magnetic neutron diffraction.

Note that for odd h we have \Ilg,' = —\Illfé, and there is no contribution to
scattering from diagonal elements of the atomic tensors (T%')s and (Téﬂ L.
Reflections with odd h have another selection rule that stems from the motif of
vanadium ions. Observe that with odd A \Ilg,' ~ {{TE"Y—(TX,)} and evaluated
for K' = Q' = 1 one has ¥}, (L) proportional to (L) which is normal to the
a,, —C, plane, and it is equal to zero if the orbital moment lies in this plane. A
similar result applies to ¥! ,(S). Hence, in magnetic diffraction by V503, with
odd h and even k + [, one will observe octupoles and higher-order magnetic
multipoles.
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4 Magnetic neutron scattering

Even though the diffraction of x-rays is the main topic it is fitting to include a
brief account of neutron scattering. We will find that, a structure factor \115,',
like (6), (44) or (45), generates the unit cell structure factor for the magnetic
Bragg diffraction of neutrons.

4.1 Scattering length for neutrons

Neutrons are scattered by the magnetization in a material which is created
by the spin and orbital moments of unpaired electrons [12,24]. The orbital
interaction is identical to the one encountered in the magnetic scattering of
x-rays, and the actual operator is displayed in (35). The spin interaction for
neutron scattering is also very similar to the spin interaction in x-ray scatter-
ing. The one difference between the two cases is that in neutron scattering the
spin of an electron is linked with the deflection of the beam in a double vector
product k x (s; x k)/k? . We denote by Q. the sum of the spin and orbital
interactions,

Qu= e () {lox (5 x ) — ik x py)} - G

A neutron with spin s, has a scattering length yres, - Q, where v = —1.9130
is the gyromagnetic ratio.

The amplitude for Bragg diffraction is related to the mean value of Q_ for
which we find,

(Qup) =Y 3 (am)'PY (k) U (n)(KQK'Q |1p) - (52)
KQ KIQI
Here,
Ve (n) => e NTE (K)na (53)
d

and for relatively small wavevectors (T'), is proportional to the magnetic
moment, with (T!), — (L + 2S)/3 as k tends to zero. The result for (T?),
which corresponds to (33) and (38) is often called its dipole limit, because the
result is obtained by neglecting all tensors other than the two with K’ =1,
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and it is,

(T 2 2{2(8) Go(k)) + (L) (Galk) + (K]} (54)

The upper limit on K’ is set by the angular momentum of the valence shell;
for a 3d transition ion ! = 2 and the maximum value of K’ = (2l +1) =5
and for a lanthanide ion the corresponding value is K’ = 7. If K’ is an odd
integer, then K = K’ 1 and,

, K\
TS D= () TEE =D (55)

If K’ is even, the only non-zero tensor occurs when K = K’ and it is entirely
due to the spin operator in Q.

Physical properties of the sample can impose restrictions on K’ | and there are
two possible sources. First, a property of states used to describe the valence
shell can impose restrictions on K’. If a 4f shell is described by states with
the same values of J, L and S (a J-manifold), then K’ is odd and it can not
exceed 2J. Secondly, the actual configuration of moments in the unit cell can
make \Ilg,' = 0 for certain K’. Such a case is VO3 considered at the end of the
previous section, where a fully compensating motif of vanadium ions causes
\Ilg,' to vanish unless K’ is an odd integer.

The reduced matrix element of (Té{,'(K ))n is [12,35],

(ITH (EONJT") = (=1 (27 + 1)V A(K, K') + B(K, K)} . (56)

Here the orbital contribution A(K, K') is exactly the quantity defined by (37),
K’ is an odd integer, A(K', K’} is zero, and,

K’
K'+1

1/2
AK' +1,K') = ( ) AK' - 1,K") . (57)

The spin contribution to the reduced matrix element B(K, K’) has more awk-
ward properties because it is built from both spin and spatial degrees of free-
dom. If K’ is even, the only non-zero value of B(K, K') occurs when K = K’|
in which case,

! 7 ' 1
(DX =27 + DV2B(K', K') = i¥ [g(ZK’Jr D)V2D(K' K"y , (58)
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where D(K, K') is defined by (31), and expression (32) relates it to a quantity
for which there are extensive tables. If K’ is odd, then K = K’ + 1 and
B(K' +1, K') satisty a relation like (57). For K = K' — 1,

(__1)K’+J’—J(2J 4 1)1/2B(KI . 1’ KI) _

K1 1 i / ’ !
=i {m} {(K' +1)D(K" — 1,K")

~[K'(K'+ D))*D(K’' +1,K")} . (59)

The quantities A(K, K’) and B(K, K') contain Bessel function transforms
of the radial density in the valence shell. A(K’ — 1, K’) is proportional to
{(r_1) + (Jxr41)} while D(K, K') is proportional to (jx).

4.2  Principal azes

It is often the case in crystal physics that calculations are simpler, or more
convenient, in a set of Cartesian axes that are not the crystal axes, nor the
axes used to define the diffraction geometry. Let us label another set of axes
by Cartesian coordinates (£n¢). We use Euler angles «, 8, v to define (n¢)
with respect to our reference frame, and in the latter [16,18],

<TC12{> = Z(TrK)(EﬂC)D?{{Q(—fY’ -, _a) ’ (60)

T

where DfQ(—’y, —0,—a) = {Dg,,(a, B,7)}* is an element of the rotation ma-
trix, or Wigner D-function, and (T.%)(enc) is the value of the tensor (T)) with
respect to the axes ({n¢). The orthogonality property of Wigner D-functions
yields, (TX)enc) = YolTh )Dgr(a, B, 7). Various other properties of coordi-
nate rotations are gathered in appendix A.

For the moment, let us assume that (7)), vanishes unless r = 0. Axes
(én¢) with this property for (7.X) might be called the principal axes for (%),
in which it is diagonal and, the (-axis is the axis of quantization. If in (Q )
we represent the spherical harmonic Yé{ (f{) in the principal axes, then it is
straightforward to show that,

. 3k’ \Y?
¢-(Qu) = Z(m) (Te (K" = 1)) (enc)

P
x  {Pxr1(ke) — Prra(ke)} (61)
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where K’ is odd, and k; = k- ¢ is the projection of k on to the axis of
quantization. In arriving at the result (61), which must also apply to ¥ ', the
term with K = K’ is found to cancel, and the two terms K = K’ £+ 1 combine
with the aid of (55) to give the very simple expression reported in (61). The
Legendre polynomial P,(z) satisfies Po(z) = 1 and P,(1) = 1 for all n. We
conclude that when k is parallel to the principal axis ¢, and k¢ = 1, the
magnetic amplitude (Q, ) is normal to . This might be viewed as an extension
of a well-known result for (Q,) in the limit of small k, where (Q,) tends to
the value {p — k(k - @)/k?}/2 in which p = (L + 2S) is the total magnetic
moment.

5 Resonant x-ray scattering: parity-even events

Fig. 5 shows data collected in x-ray Bragg diffraction by V,03 with the sample
held at a temperature below its Néel temperature, at which it becomes a fully
compensating antiferromagnet [40,41]. The crystal structure is a body-centred
cell and all the data in Fig. 5 are collected at space-group forbidden reflections,
for which the sum of the Miller indices is an odd integer. The panels on the left-
hand side of Fig. 5 show the intensity as a function of x-ray energy collected
near the vanadium K-edge, and in the unrotated (¢’c) and rotated (n'o)
channels of scattering. There is a strong resonance enhancement of the Bragg
intensities, and the same phenomenon has been observed with many different
resonant ions and many crystal structures. In the case of V5,03, the diffraction
is due to magnetic multipoles that disorder above the Néel temperature and
the Bragg intensities disappear. The strong feature in panel (a) of Fig. 5 that
sits around 5.475 KeV is due to an El event from the vanadium K-edge, at
which an electron in the 1s core is photo-ejected in a process that changes
orbital angular momentum by one unit. In panel (a) there is a second, weaker
feature at an energy= 5.465 eV that is due to an E2 event at the vanadium
K-edge. With this process the photo-ejected electron visits a 3d valence state
which is the state occupied by the unpaired electrons that form the vanadium
magnetic moment. Looking at panel (c) in Fig. 5, the E1 event is absent. This
observation is one consequence of a selection rule that, for odd h and even
k + 1, forbids resonance events caused by vector-like interactions, i.e. tensors
with rank K = 1.

Panels (b) and (d) in Fig. 5 show Bragg intensities as a function of rotation
of the V5,03 domain about the Bragg wavevector. If the scattering was from
electronic states with no angular anisotropy the intensity in such scans would
be constant. As it is, Bragg intensities depend strongly on the angle of rotation
and, also, states of polarization in the diffracted beam.

The data in Fig. 5, collected on V503, nicely illustrates the wealth of informa-
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Fig. 5. Energy profiles (panels a and c¢) and azimuthal-angle scans (panels b and
d) for resonant Bragg diffraction by a domain within antiferromagnetic V2O3. The
observations are at space-group forbidden reflections and in channels with unrotated
and rotated polarization. jFrom Paolasini et al.[40,41].

tion in x-ray resonance-enhanced Bragg diffraction. In this section we outline a
framework for the interpretation of the observations. Applied to V4,03 it shows
that, the observations reported in Fig. 5 are in complete accord with the estab-
lished chemical and magnetic structures illustrated in Fig. 4 and parity-odd
contributions to scattering, which are allowed because the resonant vanadium
ions occupy sites that are not centres of inversion symmetry, are not visible in
available diffraction data. In particular, data collected in reflections with odd
h and even k + [ are a direct observation of the vanadium octupole moment
created by orbital magnetization in the vanadium 3d valence shell [37,39].

Resonance-enhanced Bragg diffraction has most to offer when the intermediate
state, visited by the photo-ejected core electron, is the valence state of the
resonant ion occupied by unpaired electrons, namely, 3d, 4f and 5f states
of 3d-transition, lanthanide and actinide ions [40-46]. In these experiments,
the observations are directly related to states that participate in magnetic,
magneto-electronic and charge-ordering effects. Observations on other states
of a resonant ion, e.g. an El event at the K-edge of a 3d transition metal
ion, can provide insight to the valence state of interest but it is less credible
because there are more assumptions in the interpretation [47-50].
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5.1 Resonant scattering length

The x-ray scattering length expanded to the first order in E/m.c? has two con-
tributions with denominators that depend explicity on the x-ray energy [14,15].
These terms arise in the scattering length from inclusion at the second level of
application of the radiation-matter interaction that is linear in the vector po-
tential. To be more specific, the two energy-dependent terms are second-order
in the current operator J(q) = >(p; +is; X q)e'*®7 where p;, R; and s; are,
respectively, the electron linear momentum, position and spin operators. We
have already encountered these two terms in the limit of large E where they
are the source of the contribution to scattering by orbital angular momen-
tum L = (R x p) [26]. Taken together with the Thomson contribution to the
scattering length and the limit of small E, the terms in question produce the
Rayleigh limit of the cross-section, while the one term that admits an energy
resonance gives in this condition the Kramers-Heisenberg dispersion formula.
Here we are interested in the energy resonance and its influence on Bragg
diffraction, which is a strictly elastic scattering process.

Let us label the virtual intermediate states by the quantum number 7. Unlike
the initial and final states of the crystal, intermediate states are not from the
equilibrium configuration of the crystal and they decay on a timescale ~ A/T"
where I is the total width of the resonance. The resonant contribution to the
scattering length for Bragg diffraction is,

Te ({e”- I(=q)|n)(nle - I(a)})
fz_(ﬁ)n(zm E—A+il/2 ’

(62)

where the sum of intermediate states is limited to those that contribute at the
resonance energy A. Of course, A and I" have a dependence on the intermediate
states but this dependence is weak in some cases and the energy profile is
observed to be that expected for a single oscillator like (62). Notice that one
required the mean value of the operators in the numerator of f to describe
Bragg diffraction.

To proceed with an atomic-model calculation of the scattering length, in the
current operators J(q) and J(q') sums over the electrons are partitioned into
sums over unit cells, and sums over the ions in the cells that participate in
resonance scattering. The corresponding wavefunctions for the electrons are
defined only to within an arbitrary phase factor that is different for each ion.
Moreover, the mean value denoted in (62) by angular brackets (...) must in-
corporate an average over these phases, and all other degenerate variables
associated with the equilibrium state of the crystal. The average of an indi-
vidual phase factor is zero and thus cross-terms in the product of J(—q') and
J(q) are zero after the averaging. In consequence, the numerator in (62) is a
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single sum over ions in unit cells, the electrons associated with the ions, and
. IR o
the spatial phase factors from the current operators are e 49 eldd — gid'k,

With the reduction of the numerator to a single sum over resonant ions we can
focus on the matrix elements of J(q) and J(q'). For example, after expanding
J(q) to the first order in q [51],

(nle - J(@)lu) = (imed) S {mle - Ry(1+ Sa- Ry)lu)

+ (%) (nl(gx e)-(L+29)|y) , (63)

where A = E,—FE,, is the energy of the resonance. The first contribution on the
right-hand side is the sum of E1 and E2 processes, and the second contribution
is magnetic and it includes a matrix element of the magnetic moment L + 28S.
The relative magnitudes of the magnetic and E1 contributions is of the order
pp/eap, where pp and ap are the Bohr magneton and the Bohr radius, and
the ratio ug/eap = «/2 which leads us to expect that the E1 process is
the dominant one. On the other hand, the magnitudes of E2 and magnetic
processes can be similar although evidence in the x-ray region is that the E2
process is the most significant. Similarly, in the x-ray region E1-E2 interference
is more significant than the El-magnetic interference process. Our calculation
of resonant x-ray Bragg diffraction will therefore be based on the E1 and E2
processes in (63), and this section deals with parity-even events that are pure
E1 or pure E2.

An additional assumption is to neglect in the numerator of (62) its dependence
on the projection M of the angular momentum of the core state, J [52,53]. The
assumption is valid in the absence of an interaction between the core state and
the photo-ejected electron, and the absence of a significant exchange coupling
of the core and valence states. An energy profile that is very different from
a single Lorentzian shape, which is expected for a single oscillator, would
suggest that the assumed degeneracy with respect to M is not good [54-56].
The assumption that we make is equivalent to the fast-collision approximation
used by Hannon et al.(1988) and Luo et al.(1993) [57]; see also Carra and
Thole [58].
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5.2 Calculotions based on an atomic model

We start with a calculation that is appropriate for the E1-E1 event, and we
write the resonant x-ray scattering length as,

_ [2me\? Z(E1)
f__(A> E— Ay +ily/2° (64)
with,
Z(E1) = &> (3 {" Ryln)(nle - Ry}) - (65)
d n(8) j(d)

The prefactor in (64) is obtained by equating A with the x-ray energy E =
hcq = 2mhe/A. Since Z(E1) is a scalar quantity, the right-hand side of (65)
can be written as a scalar product of a spherical tensor,

Xg =Y eeqg (1914 1KQ) (66)

qq’

and an atomic tensor (T4 )gi. The structure factor is [59],

F(EL) =Y (-1)°XI,u8 | (67)
K@

where, as in previous cases,

U5 = NS )b (68)
d

and the sum on d is over all resonant ions in the unit cell. Because Xg is
constructed from two vector quantities the triangular condition gives K = 0,
1 and 2, and Table 3 contains specific values of Xg that are required in
calculations of dichroic signals and Bragg scattering amplitudes.

We will not include in _(Té( )e1 some reduced matrix elements and, also, the
E1 radial integral ({[R[l) that will depend on the orbitals of the valence and
core states labelled here by their angular momentum ! and [, respectively. Our

choice gives,

> (A" Rjn){nle - Ry }) = UICOIDEICDID I RI?

n(A) j(d)

X %(—1)QX§Q(T5>E1,<1 ) (69)
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Table 3
Properties of Xg

The tensor Xg is defined in (66).
XK, = (~1)F (XK
X! = ﬁ(c—:' xe), Xi,=¢ en

(Xl)av = _qu/\/i q= (!I and averag.es over
5 (Ps+iPy) polarization described by a
(X3g)ay = 54

Stokes vector (Py, Ps, P3).

For the scattering geometry depicted in Fig. 3 the non-zero
elements are:

(0'0)
1/2

=2 X=()

(m'm)
X§ = —% cos(20) , X3 = \/#?sin(%))
X2 = —% cos(20) , X2,=1

(n'o)
Xi=—3e77, X3 =—ge"

_ (')
X—}-l — %elo , X—?—l — %610
and,
Z(E1) = (lIcIDEICOIIDRID*F(EL) . (70)

Here the reduced matrix element of the normalized spherical harmonic is [16,17],

ey

D@+ DR+ () g) , (71)

and it is different from zero when [+17+ [ is an even integer, and t satisfies the
triangular condition [l — | <t <1+ 1. The mean value (T{ )1 is constructed
from matrix elements,

Jl

IMITel M) = (10" (o ) UITSEDIT) L (72

in which the reduced matrix element is related to the unit tensor WX [17].
A general expression is [59],
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(JITHED)T) =F(2T +1) 3 (=1)°(2a + 1)(2b + 1)W DX
-t !
o] g}{t z}, (7
K b

and the reduced matrix element in (72) is obtained from (73) by setting t = 1.
The sign in the front of (73) relates to the total angular momentum of the
core state J = [ + 1/2 and the factor is (—1)Y/2+*/ In the double sum a
takes two values, a = 0 and 1. Since the 9j-symbol contains two identical
rows it vanishes if K + a + b is an odd integer [16,17]. The reduced matrix
element defined by (73) clearly depends on J, and through WK it depends
on all the quantum numbers for the valence states |JM) = |[vSLJM) and
|JM'") = |V/S'L'J'M’) except the projections M and M’ that are factored
out in the Wigner—Eckart theorem (72). A derivation of (73) is discussed in
appendix E.

SN =
N |
Q o~ =~

A pure E2 event might be visible in the energy profile at an energy A, that
is usually less than A;. At this juncture, the reader can usefully visit Fig. 5.
With the assumption that we make, the contribution to the scattering length
has the form shown in (64) with a resonance energy and total width A, and
'y, respectively. The numerator Z(E2) is found to be,

2(E2) = S{alllC@) DR} F(E2) | (74)

in which the structure factor is a scalar product of Hg that describes the
polarization and directions of the primary and secondary x-ray beams, and
5 modelled on (68) but with an atomic tensor (T )gz. We find,

F(E2) =Y (-1)**°HE,¥f | (75)
KQ
\Ilg = Z eik'd<Tg>E27d y (76)
d

and the mean value (TS )g; is obtained with matrix elements that satisfy the
Wigner-Eckart theorem and a reduced matrix element (73) evaluated with
t = 2. The definition of Hj is [60-62],

Z ha)h' (¢')(292¢'| KQ) , (77)
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Table 4
Properties of Hg

The tensor Hg is defined in (77) and (78).

Hi{Q = (_1)K+Q(Hg)*

' = (wﬁ) {(e"-e)d xq) +(q-q)( xe)
+(e'-a)(d x e) + (e d)(e’ x q)}

— 1_ (_i _ 1
Forq=q, H' = 37T (e’ xe) = 2\/—)X

For the scattering geometry depicted in Fig. 3 the non-zero
elements are:

(o U)
HY = 2\1/— cos(20) , Hj = 7o/75 Sin(20)
1/2
HZ = 2\/— cos(20) , H2,=1(3) /
1/2
H} = ﬁsm(%)) , Hi=-(%) / cos(20)
H4, — —_1_
+2 "7
(n'o)
—~3i 1/2 —3i
M= B (e
1/2 3 = =1 i
HY = (3) e = et
Hil — ﬁ —310 , Hi.?; — 4\1/_8—10
(o'm)
H§ (o'm) = (1)K (H§ (v'0))*
(n'm)
HY = 2\/— cos(40) , H} = \/—— sin(48)
HE = \/—— cos(40) , H§ = 5070 Sin(49)
H§ = cos(46’) HY{,=—1%

Note: the rule to obtain Hg (o'm) from Hg (n'o) is also
obeyed by X5 (o'7) and X5 (n'0).

where h(g) and h/(q) are, respectively, € and q, and €’ and §' coupled to give

tensors of rank 2, namely,

h Q) = Zﬁpﬁp'(lplp'mf]) ,

pp’

and the corresponding expression for h'(q). Various properties of H are gath-

ered in Table 4.

by (66) and II§

Here we can note an alternative expression for Hy X in terms of XQ defined
also defined by (66) but with g and d’ replacing € and €’.
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The expression is,

Hg =5(=1)" 3T, > X {2+ 1)K + 1)}

lm K'Q'
| K K
x (ImK'QIKQ){1 1 2% . (79)
1 1 2

in which the 9j-symbol can only be different from zero when [ + K’ + K is
an even integer [16,17]. One use of (79) is to identify contributions to the E2
channel that are sensitive to time-odd (magnetic) properties of electrons in
the crystal. Contributions with this property are antisymmetric with respect
to the crossing transformation [51] which includes the exchanges €’ «— ¢
and q «— q'. Terms in (79) with [ = 0,2 or K’ = 0,2 are unchanged by
crossing while terms with [ = 1 or K’ = 1 change their sign. We conclude
that parts of Hg that have odd integer values of [ + K’ are time-odd and
thus sensitive to magnetism. Since [ + K’ + K must be an even integer one
finally concludes that contributions in question have odd K, i.e. time-odd
contributions to the scattering in the pure E2 channel can appear with H, éz and
H g only. In general, parity-even events, such as pure E1 and pure E2, possess
a one to one correspondence between the rank of a tensor and its magnetic
character, which is that odd (even) rank tensors are time-odd (even). This
correspondence is embodied in the relation (48) for parity-even tensors, and it
says that odd rank tensors change sign when the polarity of the local magnetic
field is reversed, whereas even rank tensors do not change sign when the field
is reversed. (The one to one correspondence we discuss here does not hold in
parity-odd events, examples of which are found in section 7.) In conclusion,
for the pure E1 and pure E2 channels tensors of odd rank are absent in the
unit-cell structure factor when there is no magnetic order in the material, i.e.
no applied magnetic field nor a spontaneous long-range magnetic order.

5.8 Reduced matriz-elements

Prior to considering examples of the framework for parity-even resonant Bragg
diffraction, just described, we pause to make some comments about the re-
duced matrix element defined by (73). First, let us note that it reproduces the
familiar sum-rules which are used to analyse dichroic signals [63-66]. Actual
expressions for the sum rules are derived from (73) by taking J = [ — 1/2
or J=14+1/2,and t = 1 and t = 2 for E1 and E2, respectively. Sum rules
for linear and circular dichroism in an E1 event are found in (97) and (99).
For specific values of a, b and K the unit tensor W)X can be correlated
with particular operators built from R, S and L. Here, we mention a few
cases for illustration using a tilde to denote the identification; (S) ~ W00,
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(L) ~ WO 3R(R-S) —8) ~ WO (312 — (L + 1)) ~ W2 and
W33 is identified in (40) with an orbital octupole. Additional information
about WX is found in appendix D.

The next point we make about (73) is its value when summed over the two
absorption edges labelled by J = I —1/2 and J = [ + 1/2. One finds that
the sum enforces a = 0 so there is no information to be obtained about spin
angular momentum in the valence state of the resonant ion. The actual result
is,

SSUITEOIT) = 22K + ppeweor {12 1 (80)

This may be viewed as a concise statement of the sum rules for dichroic signals
that were derived by Thole et al. [63].

An example of_(80) which is of importance for resonant Bragg diffraction is
obtained with { = 0 which describes the K edge of the resonant ion. One finds
for { =0, J=1/2 and t = [ the result [62],

1/2
(I o)) = (1< I o 8)

With applications of this result to 3d transition metal ions in mind, let us
record the expression for a matrix element of 7, 5 between uncoupled states,

|SMsLM.) = S (SMsLMy|JM)|JM) . (82)
JAT

The Wigner—Eckart theorem applies separately to the spin, S, and orbital, L,
states. However, with K-edge events only orbital angular momentum in the
valence state is observed and a matrix element of Tg is diagonal with respect
to spin quantum numbers. For [ =0 and ¢t = [,

(SMSLMLl(Tg)EdS'MIsLIM'L) = Ont,01108,50 .

((2;1+) }1{) {252+ 1 }1/2 WO ( _]]\4 g AZL ) ' (83)

Here, W(X) is a unit tensor that is defined by the orbital properties of the
valence shell with angular momentum /. The result (83) applied for K = 1,2
and 3 leads to expressions for (T¢ )g in terms of (L), (Q) and (A) where
the quadrupole is defined in terms of the operator {312 — I(l + 1)}/2 and the
octupole operator is defined by (39). Straightforward calculations show that,
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V3

(T;>Et=m<LQ> ; (84)
o 2v/5(Qy)

To)ee = o e Dy aiiii@ — D@ T 377 (85)

(T)es = “2VT(Ag) (86)

20+ DN - Dl - )+ 2)(2 +3)172

Recall that with absorption at the K-edge of the resonant ion, which is un-
der discussion at the moment, { = [ and for a 3d ion the process is an E2
event. Data for V,03 displayed in Fig. 5 provides one example of (resonant)
Bragg diffraction enhanced in an E2 event, and an analysis of the observations
evidently yields direct information on the orbital angular momentum in the
vanadium 3d valence shell [37].

6 Azimuthal-angle scans

We see in Fig. 5 that the Bragg intensity can vary as the crystal is rotated
about the Bragg wavevector 7(hkl) in an azimuthal-angle scan. The variation
is directly related to the angular anisotropy in the valence shell that accommo-
dates the photo-ejected electron, provided the x-ray beam illuminates a single
domain within the crystal. Observations, like the ones reported in Fig. 5, thus
provide valuable insight to the ordering of the charge and orbital degrees of
freedom in the valence shell [9,10,37,58,67,68]. In this section we illustrate how
the intensity as a function of the azimuthal angle can be calculated, using an
atomic model.

In every case, the first task is to calculate \I!g which is the sum over all resonant
ions in an unit cell of the atomic tensors multiplied by spatial phase factors
e'kd Results for \Ilg that are appropriate for Dy ions in DyB,C, and vanadium
ions in V303 can be found in sections 2 and 3, respectively. We consider three
more examples of the calculation to obtain lllg and the selection rules on K
and @, and in each example go on to calculate the dependence of the structure
factor on the azimuthal angle.

6.1 Tetragonal structure

The tetragonal space-group P4/mbm with ions at sites 4(g) is an appropriate
description of lanthanide ions in tetraborides [45,69]. Figure 6 illustrates the
positions of the four ions in a unit cell which we label 1 to 4; d; = (z, %-l—:r, 0),
ds = (—=z, % —1z,0),d3 = (% —1z,2,0) and dy = (% + z, —z,0) where in GdB,
z = 0.31746(2). Let ¢ = 27z. For a Bragg wavevector 7 = (h00) one finds,
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Fig. 6. Projection in the ab-plane of the tetragonal unit cell of the material GdBy
showing the positions of the Gd atoms and their moments in the magnetic space
group P4/m'b'm’ [45,69].

\Ilg:ZeiT'd<T(§>d =
d
=ei<ph<Té{>1 + e—icph<Tg>2 + (_1)h{e—iwh<Tg>3 + eiwh<Tg)4} . (87)

In this expression, (Té{ ) is an atomic tensor that is appropriate for an El or
an E2 event. (Alternatively, it could be a tensor that describes Thomson scat-
tering (section 2), magnetic x-ray scattering (section 3), or magnetic neutron
scattering (section 4) by ions at sites 4(g).)

The environments centred on sites 2, 3 and 4 are related to the environment
at site 1 by rotations about the c-axis. Such a rotation applied to (Tg ) mul-
tiplies it by the phase factor €“® where § is the angle of rotation. From
the symmetry operations of the space group one finds, (T¢ )2 = 9" (T )y,
(TX)s = 9"%(TE)1, and (TF)s = e79/2(TK); Using this information
in (87) one gets,

WE = (TER e + (—1)2 9} {1+ (1) 272} (88)

Space-group forbidden reflections h = 2n + 1 have the property VX = 0. A
necessary condition to have \I!g different from zero and odd h is Q = 2(2m+1).
The point group for sites 4(g) places an additional constraint on (Tg ), as we
will see.

The four ions lie in a plane that is a mirror plane of symmetry normal to
the c-axis. For parity-even tensors, such a mirror plane is equivalent to a diad
parallel to the c-axis and this symmetry operation is satisfied by even Q.
Hence, the mirror plane does not impose an additional condition on . The
remaining symmetry operations in the point group are diads parallel to a+b.
To understand what conditions these put on (T) we rotate the tensor by 7/4
about the c-axis and then apply rotations by 7 about the new x- and y-axes.
These operations should leave (T) unchanged. Rotation by 7 about the z-
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axis (y-axis) changes @ to —Q and multiplies the tensor by (—1)%((—1)%+9).
The phase factors are unity because () is even, as we have already established,
and K is even for pure charge scattering on account of the identity (48). Hence,
diads parallel to a &+ b are satisfied provided that,

SITUTE) = 7O TEY) (89)

and this can be written in the form,

(TTQ) = e9"/X(T5) = (T§)" (90)

where the second equahty arises from the general relation (T )* = (—1)%(T%,).
Since for odd h ¥ is different from zero for Q = 2(2m + 1) we conclude that
diads along a + b are satisfied by (T5)* = —(T§), i.e. (T}) is purely imagi-
nary.

Let us assume that the ion at site 1 possesses a magnetic moment that lies in
the a-b plane, and the moment direction is (1, 1,0). The symmetry operations
that relate environments at sites 2, 3 and 4 to the environment at site 1
generate a non-collinear motif of moments in which g, = —p; and py =
—pt3. The motif depicted in Fig. 6 is described by the magnetic space-group
P4/m'b'm’ and it allows the magnetoelectric effect.

Let us address the calculation of the structure factor F' for resonant Bragg
diffraction. Our labelling of axes and polarization is set out in Fig. 3. We
require 7(hkl) parallel with —z. In the present example, a tetragonal crystal,
the basis vectors for 7 are parallel to the crystal axes (abc), and the chosen
T is parallel to the a-axis. Thus, 7(h00) is parallel with —z after rotating the
crystal by m about the c-axis, and this rotation takes ¥§ to (—1)?W¥g.

An azimuthal-angle scan is the rotation of the crystal about 7. We define the
rotation by ¥ about the z-axis in terms of the rotation matrix, introduced

in (60) and also discussed in appendix A. The rotation described changes
(—1)2¥E to,

e'@m/2 Z e_iQ’”ﬂdg,Q(_iL'){(‘DQI‘I’g’} ; (91)
QI

where dg,Q(—w) is a real function. These functions satisfy many symmetries,
and two are dfo(—1) = d§o (b) = (=1)°9d5.o(¥). Also, d§(0) = dg
so the operation (91) satisfies the obvious requlrement that for ¥ = 0 the
crystal is at its original orientation, with the c-axis parallel to o-polarization
and normal to the plane of scattering.
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Structure factors for E1 and E2 events are defined by (67) and (75). Let us
consider an E1 event, and we refer to Table 3 for elements of X g . For pure
charge scattering and parity-even atomic tensors, the rank K must be an even
integer and for an E1 event the possibilities are K = 0 and K = 2. The
projection @ satisfies —K < Q < K, and Q = 0 for K = 0. With odd A
U = 0 and we find for an E1 event that charge scattering arises from K = 2
for which the allowed projections are ¢ = 2. Using this information in (91)
it becomes,

—4 COS(SOh)eiQWﬂ(TiﬁEl{dg,Q(—w) - dz—z,Q(‘@/’)} ) (92)

where we have also used (T2,)g; = —(T?,)g1. To obtain F' we multiply (92)
by (—1)9X?, and sum over Q. In the (¢'0) channel there is one X3 different
from zero and it has Q = 0. Because d5 () = (—1)9*9d¥,_,(¥) the
expression (92) is zero for = 0, and thus we have the result F,/,(E1) = 0.

In the (7'0) channel the non-zero X2 have Q = %1. The structure factor is,

Fro(E1) = ~4 cos(wh)(T2y)e1 ) _(—1)9X20e'9"2{d] o(—v) — d, o(~¥)}
Q

= 4icos § cos(ph) sin (T75)E1 (93)

and the structure factor is purely real because (T2,)g; is purely imaginary.
Using (14) to relate the atomic tensor to a Cartesian tensor, one can replace
the atomic tensor in Fy/,(E1) by the zy component of a Cartesian tensor of
rank 2.

Furthermore, we can use (73) to calculate (T3)g1, and to express it in terms
of more familiar operators that contain the unit tensors W22 W12 gnd
W32 1In fact, let us define the diagonal components of three operators of
rank 2 which correspond to these unit tensors, namely [70],

Q=3 S {B 10+ 1), (54)
P= % Z{:ssolo —s-1}; , (95)
R=—3 ST+ 1) + Dsolo + ({1 +1) —2)s -1 Slo(s - Do}, - (96)

J

Here, [, is the spherical component [, of the angular momentum operator that
has ¢ = 0, and similarly for the spin sg. The result (73) shows us that,

(T?)p1 o (2 +1)(Q) & %[(l -1 -1)(P) +3(R)] , (97)
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where the signs are related to the total angular momentum of the core level J=
l :i:%, and the coefficient of proportionality depends on the angular momentum
of the valence shell, .

We move next to the contribution to diffraction by the magnetic moments
depicted in Fig. 6 and described by the magnetic space group (Shubnikov
group) P4/m’b'm’. In an E1 event magnetic diffraction involves tensors of
rank K = 1. Looking at Table 3, the channels (7'w) and (n'c) allow this
diffraction and it is forbidden in (¢’c). Because the magnetic moments lie in
the a-b plane the projection Q = %1, since (T3) is the component parallel to
the c-axis. The contribution to Fy.,(E1) made by the magnetic moments is
proportional, to (T}, —T}, )1 = V2(T})1 = V2(T})1. The complete expression,
including (93), is

Frig(E1) = —2V/2 cos 0 sin(ph) cos (T2 )
+ dicos@cos(ph)sin (T2, ks - (98)

This expression is purely real, and the charge and magnetic contributions are
not 90° out of phase as is often the case. The absence of the phase shift is
related to the possibility of a magnetoelectric effect from the material [71].
Bragg intensities are proportional to |F,,(E1)|? and the dependence on ¥ is
non-trivial in the magnetically ordered phase. This finding has been confirmed
for GdB,4 [45]. In addition, in (98) there is a non-trivial dependence on the
Miller index A [45], although the charge and magnetic contribution share a
cos § dependence on the Bragg angle 6.

The physical content of (T}})g: is derived from (73), just as we reported for
(Tg)E1- For (T})E1 the analogue of (97) is,

4
(T2 o< (27 + 1)(L) & 2 (1 = D(S) + (24 +3)(T)] - (99)
Here, (L) and (S) are the orbital and spin moments in the valence shell, and

(T) is related to the unit tensor W21 and it is defined by,

T=-3{3RR-s—s0)}; , (100)

where R = RR.

It should be noted that (97) and (99) express sum rules for linear and circular
dichroism in an E1 event [63,64]. The polarization factors associated with the
absorption events are (X2,),, and (§ - X!)ay, and those factors are found in
Table 3. Further information about dichroic signals is found in section 8.
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Fig. 7. A sketch of the rhombohedral cell for Cr2O3 and o-Fez O3 [5]. Specific features
are described in section 6.2

6.2 Corundum structure

The thombohedral corundum structure, described by the space group R3c, is
appropriate for some 3d ion sesquioxides [41,43,71]. In hexagonal axes four ions
occupy sites 12(c) that have point-group symmetry Cs and lie on the c-axis,
which is the trigonal (111). O in Fig. 7 [5] marks the centre of a rhombohedral
cell and the distance AC=AB/4. Elements of symmetry in the cell include a
diad at O parallel to a, and normal to a mirror plane that contains the triad
axis (c-axis), while the position C marks a centre of inversion symmetry. A 3d
ion is octahedrally coordinated by oxygen ions that are contained in planes
normal to the c-axis, and in Fig. 7 the planes are denoted by vertical lines.
In Cr03 and a-Fe;03 (haematite) the 3d ions are displaced from the oxygen
planes, and their sites are not centres of inversion symmetry. Octahedra are
joined in pairs and the triangular face which is common in a pair contains the
position O and a diad axis.

Cry03 [71,72] undergoes a transition from a paramagnetic to an antiferro-
magnetic structure at 310 K. The Cr®* moments align parallel to the c-axis.
Ions with opposite moments are related by centres of inversion symmetry and
by diad axes. In such a structure the charge and magnetic scattering are su-
perimposed. Also, the two contributions are in phase in the structure factor,
which is a situation encountered in the previous example of GdB,4 based on
the magnetic space group P4/m'b'm’. The magnetic class of CryOj5 is the same
as the crystal class and it does not contain the element of time reversal. The
motif of Cr moments breaks the time reversal symmetry and the inversion
symmetry that are present in the paramagnetic phase, however, the product
of the two symmetries is not changed by the onset of magnetic order. For the
magnetoelectric effect to exist, the inversion can occur only paired with time
reversal.

The motifs of magnetic moments in haematite and CrsO3 are different [5,71].
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In particular, signatures in the motifs are + + —— (haematite) and + — +—
(Cry03) and they are illustrated in Fig. 7. In consequence, the crystals have
very different properties. Haematite is not magnetoelectric and it displays
weak ferromagnetism in a temperature interval from Tn = 950 K down to
the Morin temperature T3, = 260 K, below which the Fe moments are par-
allel to the c-axis. Between Ty and T3, Fe moments are perpendicular to
the triad axis and the magnetic symmetry is reduced to 2/m. Hence, un-
like Cr20O3, the magnetic class of haematite is not the same as the crystal
class and it contains time reversal as a separate symmetry. Weak ferromag-
netism (pyromagnetism) caused by an antisymmetric exchange interaction of
Dzyaloshinsky-Moriya [73], is prohibited in Cro03, and haematite taken be-
low Ths. For, any departure of the magnetic moments from the c-axis lowers
the symmetry of the crystal, since the c-axis is then no longer a triad axis.
The ferromagnetic moment in haematite is parallel to a diad axis and normal
to a mirror plane of symmetry, yielding a magnetic symmetry 2/m already
mentioned. The ferromagnetic component along ay, say, is the same for every
Fe ion and it is not changed by a rotation about a,, which is an operation
applied in the calculation of \I/g that we next describe.

The four 3d ions in a cell are numbered 1 to 4. Their positions are defined in
Fig. 7, and we will use O as the origin. Let ¢ = —7u, where u = 22—% = 0.1952
for Cr03. The distance OB=AB/2, and for T(hkl),

To =2 " Tg)a=
d
=T + e TG ) + (1) (T )s + e (TGN} - (101)

The environments in the pair 1 and 2, and the pair 3 and 4, are related by a
rotation of 7 about as. Hence, (T )2 = (—1)*(TX,); with a similar relation
between atomic tensors for the pair at sites 3 and 4. Environments at sites 1
and 4 are related by the inversion operator, while environments at sites 1 and
3 are related by the product of a diad along aj and inversion and this product
is equivalent to a mirror plane of symmetry normal to a,. Rotation about a,
reverses the polarity of moments normal to it, so moments in the pair 1 and
2, and in the pair 3 and 4, have the correct relative orientation. The centre of
inversion symmetry at C does not change a parity-even tensor, and it implies
that (T5 )2 = (T¥)s. This is correct for the signature of moments in haematite
and it leads to,

\IIIQ((a — Fep03) = ei‘pl(Tg)l + e_i“pl(—l)K<T§Q>1
F(=1)H{e (=) (TH ) + e TG n)
={e¥ + (=)' H{(TH)1 + (1) T} . (102)

The signature of moments appropriate for CroO3 requires an additional oper-
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ation that reverses the polarity between the sites 2 and 3, so that (Té( o =
(=1)*(T&)s. One arrives at,

UE (Cra05) =¥H(TH ), + e H(—1)"(T*,),
H(—=1)F (1) (T +e““°’<T">1}
= {e¥ + (=) e H(TH ) + (1Y TH N} - (103)

For even K, which describes scattering by electron charge distributions, the
structure factors for a-Fe;O3 and CroO3 are the same. Resonant Bragg diffrac-
tion from haematite by Finkelstein et al. [43] was a seminal contribution to
the development of the technique, and an appreciation of what the technique
has to offer in crystal physics.

We continue the discussion of diffraction by CryOz which is based on (103).
With odd I ¥¥ = 0 as expected for space group forbidden reflections. The
triad axis imposes the condition @) = 0, +3, so we reach the conclusion that
with odd ! Bragg diffraction is described by tensors with rank K > 2 and this
excludes all E1 events. As we demonstrate in section 5.3, magnetic scattering
enhanced by resonance of an E2 event at the K edge is purely orbital and this
is expected to be quite small for Cr,O3, in contrast to vanadium ions in Vo035
(I/2a) which possess a relatively large orbital magnetic moment. However,
neutron diffraction data on CryO3 has recently been interpreted to give a Cr
moment of 2.5u g [71]. The 17% reduction of the pure spin moment could mean
a significant Cr orbital moment ~ —0.5up, although there are other equally
feasible interpretations of the moment reduction.

The ferric ion (3d°) has no orbital angular momentum. Thus, diffraction by
haematite with enhancement from an E2 event at the Fe K edge has no mag-
netic contribution, to a good approximation. In particular, this type of diffrac-
tion from haematite is not expected to change on account of the reorientation
of Fe moments on passing through the Morin transition [43].

We conclude the discussion of the corundum structure with a calculation of the
E2 structure factor based on the result (103) which is appropriate for CrO3.
The calculation is made for odd I, and a reflection of the type (00) for which
the Bragg wavevector is parallel with the triad axis, or the trigonal axis (111).
To this end, we apply to \I/g a rotation that brings the triad axis parallel to
—z in Fig. 3, and rotates by 1 about this axis. In the previous example the two
contributions, a rotation of the crystal to align 7 with —z and rotation by ¥
about 7, are explicitly shown in (91). Here, we combine the two contributions,
by use of the addition theorem for Wigner D-functions (A.5), and the result
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is to transform \Ilg to,

10! i
(-1)‘9%;(3%5@ (5) 5 - (104)

For ¢ = 0, a, is normal to the plane of scattering and pointing along —z,
while the c-axis (triad) is pointing along —z. Note that periodicity in W§
is transmitted to the azimuthal angle 1. In the present case, the triad axis
imposes on \I!g the condition ¢ = £3 and the structure factor will be 3-fold
periodic in ¥.

The E2 structure factor (75) is,

K \pK 1.3 T —siygx (T

F(E2) = KZQ(_1)KH_Q\IJ+3{e3¢dg3 (5) —e a5 (5)} : (105)
where we have used U5 = —\Ilf{Q. Values of Hg are taken from Table 4, and
we find,

F,,(E2) = iv/2sin(26) cos(¢l) cos(3y){(T3) (106)
and,

Frus(B2)= ﬁ{(cos 0 + 3 cos 30) cos(yl) sin(3v) (T3)’

+ (3 cos® + cos 30) sin(pl) cos(3v) (T3)'} . (107)

These expressions for CrO3 also apply to the charge (even K) scattering by
haematite for which the magnetic (odd K) scattering at the Fe K edge is zero,
to a good approximation, because the ferric ion is in an S-state. Diffraction in
the unrotated channel of polarization described by (106) is purely magnetic
and due to an octupole moment (T3)" = Re(T3) of the orbital magnetization
in the Cr 3d valence shell. Scattering in the (7'0) channel is a combination
of charge and magnetic scattering which are not shifted in phase by 90°, as
is often the case. Because the two contributions have different dependences
on ¥ and [ the magnetic contribution could be distinguished by comparing
data collected above and below the Néel temperature. The result (107) is
the basis of an analysis of observations on haematite made by Finkelstein et
al. [39,43,58].
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Fig. 8. LaMnOs (space group Pbnm), with the origin Mn on (000) and viewed down
the c-axis.

6.3 Orthorhombic structure

Next we examine diffraction by ions in an orthorhombic crystal described by
the space group Pbnm. Perovskite-type manganites possess this structure and
LaMnOsj is illustrated Fig. 8. These manganites are of great interest because
they display a rich variety of magnetic and magneto-electronic properties,
including negative colossal magnetoresistance [8]. The orthorhombic Pbnm
crystal structure can be viewed as a cubic perovskite with two types of dis-
tortion. One distortion is a tilting of the MnOg octahedra which makes the
Mn-O-Mn angle less than 180°. Added to this is a distortion, driven by a
Jahn-Teller interaction [23,73], that shortens four Mn-O bonds and lengthens
the remaining two bonds. An orthorhombic structure has orthonormal basis

vectors, a # b # ¢, and three mutually perpendicular diad axes but no axes of
higher order [4,6].

Resonant ions are at the four sites d; = (000), d» = (003), d3 = (330) and
dy = (313). The sites have no symmetry apart from being centres of inversion
symmetry, which forbids parity-odd contributions in scattering. Point-group
symmetry here places no restrictions on an atomic tensor (Tg ), and in this
respect the present example of a crystal structure differs from the previous
two examples in which axes of rotation symmetry in the point-group place
limits on . The magnetic structure in the orthorhombic crystal is taken to
be A-type canted antiferromagnetism with moments confined to the b-c plane.
Each ion has a ferromagnetic component along the c-axis. The component of
the moment along the b-axis alternates in direction on moving along the c-axis,
so moments at even and odd numbered sites in the unit cell differ by rotation
by 7 about the c-axis.

Let us construct \I/g for the magnetic crystal specified in the previous para-
graph. The environment at d; is related to the environment at our origin d,
by a rotation by m about the c-axis, and (T ), = (—1)%(T{ )1. The magnetic
moments at d; and ds are in the required relative orientation. Environments
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at d; and d4 are related to d; by rotations of m about the a- and b-axes,
respectively. In addition to their chemical environments, which are related by
the symmetry operations described, the sites d3 and dy are required to have
magnetic moments that are identical to the moments at d; and d,. This is
achieved by reversing the polarity at sites d3 and d4 by the use of (48), to give
(TE)s = (T¥,)1 and (TE)s = (—1)%(T*,),. Note that (T5)s and (T )4 are
related by a rotation of m about the c-axis, as expected. Assembling all this
information in \Ilg we find,

VE=> "N T )a=
d

= {1+ (D" HTH) + (~1)HTIGD (108)

It is seen that for all K, U/ vanishes for space-group forbidden reflections
with Miller indices I = 2n+ 1 or h + k = 2n + 1. A necessary condition for
diffraction is even ! + @), which can be viewed as a selection rule on @) that is
imposed by the space group.

We will consider an azimuthal angle scan at the reflection (0kl) with odd &
and odd I. In general, the Bragg wavevector 7(0kl) does not lie along a cell
edge or an axis of symmetry. For this choice of Miller indices, W§ = 4(T)}
where (T/5)] is the real part of the atomic tensor associated with the resonant
ion at site d;. Also, |Q] is an odd integer and U§ = —WX . Notice that (T7,)}
is related to magnetization that lies along the a-axis and this component is
zero with the A-type antiferromagnetic in question. In the case of an E1 event,
the components of (T!) are found in (99), and the corresponding expression
for an E2 event is a similar linear combination of (L), (S) and (T).

In calculating a structure factor, the first task is to obtain the Euler angles
for the rotation that takes 7(0kl) to —z in Fig. 3. The rotation in question is
defined by (60) and we choose Euler angles «, 3,y such that 7(0kl) lies along
—z, and the crystal a-axis lies along the y-axis that is parallel to q+q’. Writing
T = |7|(t1,2,t3) one finds, & = 0, v = 7/2 and [ is specified by cos § = ¢,
and sin § = —t3. Next, apply a rotation % about the new direction for 7. The
rotation matrix for this is defined in (91). The new \Ilg , for an azimuthal angle
scan about 7(0kl), is derived by application of the two coordinate rotations
just described and it is,

eiQW/Z % e_iQI“/ng/Q(—iﬁ) Z eiqﬂ/2d;§2/(_ﬁ)q}f =
/ q

_ eiQﬂ/Q Z eiqﬂ'/Z\I];( g e—iQ'-rr/?de,(w)dg,q(IB) .
q !

The sum over ' can be expressed as one Wigner D-function by application
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of the addition theorem for the functions [18] and found in (A.5). This step
brings our expression for the new \Ilg to,

e5-20) 3™ a(5w0) gk (5 )Wk (109)
q

where Euler angles ag, B9, Yo satisfy,

cotag=cot Bsiny ,
cos By =ty cos
cotyg=—t3zcoty ,

with cot § = —ta/t3. At the origin of the azimuthal angle scan ay = /2,
Bo = [ and -y = 0. Lastly, the structure factor F'(E1) for Bragg diffraction
enhanced by an E1 event is,

F(E1) = Y (~1)9x%,e(5-20) S~ (3 -0)g& (60X . (110)
KQ q

Since an E1 event involves tensors up to rank K = 2 and |g| is an odd integer,
terms in (110) have K = 1 and 2, and ¢ = £1. In addition, W1, are zero

because the magnetic moment on a resonant ion lies in the b-c plane. We
find,

Fye(E1) = 4(T%,)%, sin(26p) sinyp (111)
and

Fro(EL) = (T2, Yg1{cos(ap + ) cos o cos ¥o
—  sin({ag + 8) cos(26p) sinyo} - (112)

Expressed as a Cartesian tensor of rank 2, (T’Z,),; is proportional to the zz,
or ac, component of (97). Because t2 and t3 are not zero, since both k£ and !
are odd, and ty/t3 for an orthorhombic crystal is not a rational number, the
-dependence of the structure factors (111) and (112) is non-trivial.

A simple dependence of the structure factor on % is obtained for 7(hkl) that
lie along a cell edge, that are axes of symmetry. With odd A and 7 = (h00) one
obtains Fy/;(E1) = 0 and Fr,(E1) = —4(T?2,)%, sin ¥ cos 0 [47-50]. The imag-
inary part of (Tiz)m is proportional to the zy, or ab, component of the equiv-
alent Cartesian tensor. (The origin ¢ = 0 finds the c-axis normal to the plane
of scattering). Magnetic scattering contributes at odd ! and = = (00l), for
which F,o(El) = 0 and Fpp(E1) = 4cos0{—i(T} )5 cos ¥ + (T2,)%, sinv}.
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Here, (T'},)%; is proportional to magnetization along the b-axis, and (T7%,)%,
is proportional to the bc component of a Cartesian tensor formed with (97).

We conclude the section by mentioning, once again, that resonance-enhanced
Bragg diffraction is a direct observation of electrons in the valence shell of
the resonant ion in specific cases. El1 events, just discussed, can provide di-
rect, observations on the 3d valence shell when absorption takes place at 2p
states of the cation [46]. The corresponding x-ray wavelength is large and the
condition for Bragg diffraction can be fulfilled only with materials (crystals
and fabricated structures) that have a very large cell dimension. In the case of
single crystals, enhancement with an E1 event has a larger scope when applied
to lanthanide or actinide cations because relevant absorption edges, the My
and My edges, are at energies in excess of 1 keV = 12.4 A. At M-edges in the
actinides resonant enhancements can reach many orders of magnitude, leading
to magnetic satellite intensities of order 0.1% of the charge Bragg peaks [42].

7 Resonant x-ray scattering: parity-odd events

If the resonant ion occupies a site in the crystal that is not a centre of in-
version symmetry parity-odd events are allowed, which include a contribution
to scattering through the mixed E1-E2 channel [74]. The electric crystal-field
potential experienced by a cation is a possible mechanism. The potential can
be represented by even-rank spherical harmonics when the cation site is a
centre of symmetry. Odd-rank components to the potential are present in the
absence of inversion symmetry, and these components may mix the valence
state of the cation with states from a different atomic shell and a different
angular momentum [23,73]. For example, the d-state of a cation and the p-
state of an anion might have a significant overlap and hybridization. A state
of an electron is then |¢) = a|ljm) + b|l'j'm'), where [ £, j =1+ 1/2, and
j=U+1/2.

Turning back to (63), the E1-E2 amplitude is found to be,

Z(E1E2) = 3 ({(¢' - R)lm) (nl(e - R)(a - R)
n(4A)

- (" R)(d-R)nnl(e-R)}) . (113)

Angular brackets denote the mean value of enclosed operators calculated with
states like |1). Since the operator in (113) for electrons changes sign when
their coordinates are inverted, i.e. R — —R, the mean value can be different
from zero for off-diagonal and parity-odd matrix elements, and all parity-even
contributions vanish. The core state labelled 7 has quantum numbers J, M and
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the sum in (113) is interpreted as a sum over projections M [52,53]. In taking
this step we exactly follow the calculation of the reduced matrix element for
parity-even processes, and in the present case it leads to,

Z(E1-E2)=(CW)IIDCIC@I)gRIDUR)

x %(—1)Q{N§<T’f@) +(Ng)(TE)} (114)

L

The quantities N and N depend on the polarization vectors of the primary
and secondary x-ray beams. They are defined using h(p) which is built from
e and q and defined in (78), and A'(p) (which is similarly built from &’ and
q'), namely,

NG = % % h(p)e'y (2p1p' | KQ) (115)

and

N = = Y K@)y (17 |KQ) (116)

By their construction, Ng and Ng are related to each other by the exchange
of the pairs of variables €,§ and €’,q. Some properties of N5 and N are

provided in Table 5. Because N5, N& and Y% are all products of tensors of
rank 1 and rank 2 the triangular condition gives K = 1,2 and 3.

Calculations of the mixing parameter ab* can not be made with great confi-
dence it seems. Ab initio calculations are good for pure E1 events, and con-
fidence in results diminishes on moving to E1-E2 and pure E2 events. One
anticipates that |ab*| is relatively small. After accounting for the radial in-
tegrals, the E1-E2 contribution to scattering and absorption is found to be
several orders of magnitude down on the pure E1 contribution [75,76]. We do
not consider the parity-odd process that arises from thermally induced rela-
tive displacements of the resonant ion [77,78]. Observations made on ZnO of
a complex energy-profile that changes with temperature are attributed to this
scattering process [79].

The reduced matrix element of Tg is nicely written in terms of a reduced
matrix element (tJj||V¥||#'Jj') where V¥ works only on the part t in the
coupled scheme tJj. By this we mean that (tJj||V¥||t'J5") is proportional to
(t|[V¥||#) and the coefficient of proportionality contains the dependence on

J,j and j'. The actual formula in question is standard and it can be found in
Edmonds’ book (7.1.7) [16], for example. With these definitions one finds,
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Table 5 )
Properties of Ng and Ng

Ng and Ng are defined by (115) and (116), or (120).
N¥, = (~D)RTQNE )", NK, = (—1y<+Q(NE)*
N'= —50{4(e"-€) + (' x &) x &)

N! = —%{q’(e’ e)+ g x (¢ x &)}

(Nl)av = (Nl)av = _%561 )
with q = ¢ and an average over polarization.

For the scattering geometry depicted in Figure 3 the
nonzero elements are:

(r'o)
]Yl = %\/38111’]/(229) . N =1 (1%/21/2 cos(20)
N, =3 ()" 8 = 4 ()" i)
W= F R = ()
N3y =—5(F) e

(n'm)
N 1/2 g5 - 1/2 s
Ny == ()76 W3, = =3 () e
Ry =k ()26 | = ()

Values of Ng and ]\75 are the same except for the sign of 4.

This relation holds for the unrotated polarizations (¢c)
and (#'7) only.

6

Iy = (§)m (27+1) {? Jz }]}

.j_l tl j} Ta K4 7.1
X {l 12 ¢ f WIIVEETT)

49

(117)

where t = 1 and ¢’ = 2. The spin of the electron s = 1/2 appears in the
coefficient on the right hand side of (117). By using the algebraic methods
employed in [70] for parity-even processes, it is quite easy to develop the
reduced matrix element of T as a linear combination of atomic quantities that
depend on both the spin and orbital variables associated with the resonant
ion. Just as in parity-even processes, one finds that spin variables are absent
in the reduced matrix element at the K-edge where [ = 0. Since this situation



is of particular practical interest, in the subsequent discussion, we look only
at the orbital properties, by developing a discussion of V¥. Marri and Carra
(2004) [80] develop both the spin and the orbital properties.

A perspicacious rendering of expression (114) is derived by partitioning it
into contributions that are symmetric and antisymmetric with respect to the
crossing transformation [51]. Readers not completely familiar with this line
of reasoning could find it useful to consider properties of the axial vector
(¢' x €) = —iv/2X! which has featured in previous sections. After averaging
over states of polarization one finds [13],

2(¢' xe)av=(q- )P +i(@+ )P+ (@x &) (P -1) . (118)

Recall that, the three Stokes parameters are purely real and time-even. More-
over, P; and P; are (true) scalars while the mean helicity P» is a pseudoscalar
that changes sign with the inversion transformation (inversion-odd). The right-
hand side of (118) has two contributions that are not explicitly axial. It is not
clear how the entire right-hand side changes sign on exchanging &' with &,
at first sight. This property is revealed by the crossing transformation that
includes an exchange of the variables €, €', q, ', P, P», P, with €', €, ¢, q,
Py, —P,, P;, and (118) is antisymmetric with respect to the transformation.
The transformation that is conjugate to the crossing transformation includes
the operations of time reversal and spatial inversion. A contribution to the
scattering amplitude that is symmetric (antisymmetric) with respect to the
crossing transformation must be accompanied in the amplitude by an atomic
tensor that is symmetric (antisymmetric) with respect to the product of time
reversal and inversion operations. Pure E1 and pure E2 channels are inversion-
even, and parity-even is an alternative label that we have adopted. In the E1
and E2 channels all atomic tensors are inversion-even, of course. Thus, a con-
tribution symmetric with respect to crossing is accompanied by a time-even
atomic tensor, and an antisymmetric contribution is accompanied by a time-
odd atomic tensor. Specifically, in the E1 channel X! is accompanied by a
time-odd atomic tensor. In section 5 we demonstrate, by using the crossing
transformation, that in the pure E2 channel also time-odd (magnetic) con-

tributions to scattering are tensors with an odd rank, namely, K = 1 and
K =3.

Turning to the mixed, inversion-odd E1-E2 channel, all the atomic tensors
therein are inversion-odd. A contribution to the E1-E2 amplitude which is
symmetric with respect to the crossing transformation must be accompanied
by an atomic tensor which is also time-odd and thus symmetric with respect
to the product of inversion and time-reversal operations. We denote by Gg
atomic tensors that are both inversion-odd and time-odd. They are referred
to as magnetoelectric tensors to mark an analogy with the magnetoelectric
effect which is allowed when the elements of symmetry in a magnetic crystal
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contain inversion and time-reversal as a product, i.e. inversion is not a separate
symmetry. Evidently, (Gg ) vanishes in crystals which are not magnetically
ordered. Atomic tensors that are both inversion-odd and time-even are denoted
by UQ , and in the E1-E2 channel (U XY is accompanied by an antisymmetric
x-ray factor. For example, X' - (q + q) can be accompanied by (UQ> while
X! - (q — ') can be accompanied by (G§).

In the light of the foregoing discussion, we re-express the x-ray factors Ng
and NJ in the E1-E2 amplitude as linear combinations Ng + N5 and Né( —
NE . which, respectively, are symmetric and antisymmetric with respect to
the crossing transformation. The E1-E2 amplitude (113) is purely real for
¢ = € and q' = q, and it is purely imaginary for €’ = —e and q' = —q.
These two cases correspond to NQ = NQ and NQ = — N and they enable
us to precisely determine the relations between Tg and the atomic tensors
G§ and UJ. One finds (T5) = —i*(G§) in the symmetric contribution, and
(Y§) =1*"YUE) in the antisymmetric contribution. The phase difference of
90° in the two contributions reflects the fact that (G§) and (U5) have opposite
time signatures, with (G§) time-odd and (UJ) time-even. After assembling
our findings we arrive at an expression for the unit-cell structure factor for
the parity-odd, E1-E2 channel of scattering,

F(B1E2) =5 (1) 2ANG (Toa +(Ng)' (T g)ate™”
—ZIK - {—i\I/g’g(NwiLNf‘Q)
+ ‘I’Q’ (NI = N5)} (119)

where W5 (\Ilgu) is a linear combination of (G§)a ((U)a) multiplied by
spatial phase factors elxd,

At this stage it is helpful to look at expressions for the x-ray factors written
in terms of X§. From the definitions (115) and (116) one obtains,

N £ NE=iY XK (K +1)Y?*3 (¢, £ (-1)¥q)
KIQI v

{1 k m)EQWIKQ) . (120)

This expression confirms that X' appears with (§ — §') in the symmetric
combination Ng + Ng . To be more precise, the two vector quantities X!
and (q — ) in N X + NJ together appear as a tensor product which we
denote by (X! ® (q d))¥. In the other case, (X! ® (q + q'))* occurs in
the antisymmetric combination. Actual values of Ng + Ng for unrotated
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and rotated channels of scattering can be obtained from entries in Table 5.
In the case of unrotated polarization one finds very simple expressions, with
Ng —i—Ng proportional to cos @ or cos(3¢) and Ng — Ng proportional to isin 8
or isin(36). The corresponding expressions for rotated polarization are slightly
more complicated functions of the Bragg angle.

Marri and Carra (2004) [80] give an expression for the E1-E2 amplitude. Unlike
(119), their expression does not respect the crossing transformation.

We construct operator equivalents for Gg and Ué{ in terms of the angular
momentum operator, L, the polar unit vector n, and

Q = i(L’n — nL?) =i[L? n] , (121)

which is frequently called the operator for the orbital anapole.

Let us record some basic properties of these operators. First, L is diagonal
with respect to angular momentum states and (Im|Ly|lI'm’) = &y (Im|L,|lm'},
while (Im|ng|l'm’) is different from zero for I’ = [ + 1. The basic commutation
relations are,

(Lo, Lg] =i€apyLy
(Lo, ngl =i€agymy (122)
(Lo, 5] = i€apy§2y

where €,g, is the antisymmetric unit tensor of rank three (also called the unit
axial tensor), and «, 3,y label Cartesian components of a vector quantity.
Commutation relations for spherical components of L, n and €2 are readily
constructed, e.g. [Lo, n1] = £n4q, [Lo, Qx1] = +04y. Recall that [L?, L,] = 0.
One finds that L - nm = L - £ = 0, while n - 2 = -2 - n = 2i. The operators
Ly, ny and ), are all Hermitian. With regard to time-reversal, n, is even
and L, and Q, are odd, i.e. iqg = Nq, Lq = —Ly and Q, = —§,. Spherical
components of L and €2 are time-odd so that L} = —L, and Qf = —(Q,, while
ng is time-even and n} = f,.

The anapole operator §2 is inversion-odd and it is also time-odd. Hence, Gég
can be represented by an operator equivalent which is proportional to .
The tensor products (L ® n)? and (L ® (L ® Q2)?)} are used, respectively,
to represent G2Q and G%. Table 6 contains the precise operator equivalents
we use for Gg and Ug , and they are the same essentially as those chosen by
Carra et al.(2003) [81], Marri and Carra (2004) [80], and Carra (2004) [82].
Various properties of the magnetoelectric and polar operators are also included
in Table 6. In particular, (G§)* = —G§ and (U)" = U, and thus,

(GE)u=—(GG)-n , (123)
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Table 6
Representations of Gg and Ug

K Gg Ug

1 1(3)?0q —(3)"*n

2 ()" wen} -1 wen
3 1) Ceren)?? (3 LeLen?)?

Numerical factors are calculated from

EHVEIE) = =K @IGH|IE) = 2 @URE) = (2K + 1)1/
with ¢ = 1,¢ = 2

which is a requirement derived from the result (114).

Transformation properties of L, 2 and n
’!.‘ime—reversal:
Ijq - (_1)1+qL—q ) Qq_—‘— (_1)1+q9—q , g =(-1)In_4

Hermitian conjugation:

Lf= (1)L, QF=(-1)%Q_,, nF=(-1)n_,

(GE)* = (-1)9G, , (UK)T = (-1)°U%

(U5 = <Ug>~H ; (124)

where H is a local magnetic field. The corresponding result for parity-even
atomic tensors is found in (48). Concerning the influence on operator equiva-
lents of the inversion, or parity, operator let us note first that all components
of a given tensor operator have the same parity for the parity operator com-
mutes with rotations. (For a c-number tensor the parity is equal to the rank
of the tensor, e.g. a spherical harmonic Y§ is transformed to (—1)¥YJ by
the parity operator.) Secondly, the parity of a tensor operator built from ten-
sor products, as is the case for G§ and U with K > 1, is the product of
the parities of the constituent tensor operators. In Table 6, odd-rank (K =1
or 3) tensors are true (or polar) tensors and even-rank (K = 2) tensors are
pseudotensors (or axial tensors).

Prior to applying the foregoing expressions in a discussion of resonant scatter-
ing by CroO3, we add a few comments about the anapole operator 2. An opera-
tor with the same transformation properties was discussed by Zel'dovich [83] in
1957 and some time later the name anapole was attached to it. An anapole mo-
ment characterizes a system that does not transform into itself under space in-
version [84]. A system like this generates a distribution of magnetic fields which
is quite different from parity-even multipoles, such as dipole or quadrupole
moments. The magnetic field distribution of an anapole looks like the mag-
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netic field created by a current flowing in a toroidal winding, and the field is
completely confined inside the winding.

Chromium sesquioxide is described in section 6, and Cr ions in the unit cell
are depicted in Fig. 7. The centre of inversion symmetry at C between the
pairs labelled 1 and 2, and 3 and 4 means that (UJ)s and (UZ ), differ in sign
from (U& )1 and (UJ)2. We find,

\I/g’u= {ei&pl . (_1)le—i<pl} {(Ué{> _ (—1)I+K<U£{Q>} . (125)

In the construction of \Ifg’g the sign difference that we mention, due to the
inversion at C, is cancelled by a change in sign of (G§) caused by the change
in the polarity of the local magnetic field, i.e. the product of inversion and
time-reversal is one. The corresponding structure factor is,

B —{e + (1fe ) {(G) + (-1} (126

The structure factor for parity-even processes is found in (103), and it is used

to calculate the unit-cell structure factors for pure E2 diffraction at (00) with
odd [.

By following the same steps in the calculation of the structure factor reported
in section 6 and applying them to (125) and (126) we obtain structure factors
for E1-E2. Adding the contributions in the pure E2 channel, (106) and (107),
we arrive at,

Foy=1V2 cos(3w){ sin(26) cos(pl)(T3)’

_ % cos(8) sin(1) (G} (127)

and,

Foo= ;W{[cosé) + 3 cos(36)] cos(¢l) sin(3¢){T5)’

+  [3cos® + cos(36)] sin(wl) cos(3¢)(T4)'}

1/2
+ 2 (%) sin(26) sin(ipl) sin(3y){(G3)"

. 2 2 2
+ i—=cos” @ cos(pl)(Uy) . 128
Here, (UZ?) is purely real, because UZ is Hermitian, Re(...) = (...)’ and

Im(...) = (...)”. In the absence of magnetic order (T3) and (Gj) are zero.
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The corresponding structure factor also applies to paramagnetic VO3 and
haematite for which there is experimental evidence of a contribution in the
(7'0) channel that does not depend on the azimuthal angle v, and here we
find that such a term is due to a polar multipole of rank 2 [76]. One can, after
some algebra, show that (U2) = 1/4(5/2)2(LoS) and Loy = QLg is a Her-
mitian operator. In both channels, parity-even and parity-odd contributions
are in phase. Time-odd contributions have a common behaviour with respect
to the azimuthal angle, ¥. Since this dependence on v is not shared by the
two time-even contributions to Fy, the intensity as a function of ¢ should
change on passing through the Néel temperature.

8 X-ray dichroism

Near-edge dichroism is a very useful probe of electronic states in crystals and
fabricated materials. Linear and circular polarizations are employed in ex-
periments performed with x-ray beams from a synchrotron source, leading to
linear and circular dichroic signals, respectively [11,85]. A linear dichroic sig-
nal is the difference in absorption spectra with linear polarization, P, parallel
or perpendicular to an axis of symmetry in the crystal, and it picks out an-
gular anisotropy in the distribution of electron charge. Circular dichroism, a
difference in absorption signals recorded with left- and right-handed helicity,
P,, picks out pseudotensor properties of a crystal [66]. Dichroism experiments
measure a signal not seen in diffraction experiments but the two techniques
have in common the x-ray scattering length as a framework for the analysis
of observations. In the development employed here for the analysis of signals
seen in Bragg diffraction, a dichroism experiment is a measure of the unit-cell
structure factor evaluated for zero deflection, namely, k = q — ¢’ = 0. This
quantity is extracted from an absorption signal by integration with respect to
the x-ray energy. In favourable cases, the integrated dichroic signal is propor-
tional to the structure factor, evaluated with k = 0, which expresses a sum
rule for integrated intensity [63,64].

8.1 Parity-even dichroic signals

Structure factors for E1 and E2 events are defined by (67) and (75), respec-
tively. Let us choose to have the x-ray beam parallel to the z-axis in Cartesian
coordinates. Polarization vectors lie in the z-y plane. For an E1 event we need
to consider,

(F(EL)),, = > _(-1)% (X'Q) ¥5 , (129)
KQ

35



where the average is an average with respect to polarization in the x-ray
beam, and ¥ is evaluated with k = 0. It is easy to show that X{ and X¢ are
proportional to (¢’ - €) and (&’ - €),, = 1. These terms cancel in a difference
signal and the latter is found to be proportional to,

(AF(El))aV = (Xl)av - + Z (XEQ)aV ‘I/é

Q==%2
1, 1
— P+ P Y W (130
Q==2

where we have used results in Table 3 and ¢ = §¢,. Regarding the first term in
the second equality, ¥} is a linear combination of tensors (T3 )g; that are time-
odd, and they are zero in the absence of magnetic order. The product o ¥} is
even with respect to the reversal of time, the product §o P is even with respect
to the parity operation, and time-reversal and parity reversal leave unchanged
P, and W}, respectively. Like P,, the Stokes parameter P; is unchanged by the
reversal of time but P; is a true scalar while P, is a pseudoscalar that changes
sign with parity-reversal. ¥} can be different from zero for a ferro- or ferri-
magnet, and it is identically zero for a fully compensating antiferromagnet.

The atomic tensors in \I/2Q and W, are found in (97) and (99), respectively. An
average over the two spin-orbit split core states, with total angular momentum
J=1-1/2and J = [+1/2, leaves (T?)g; proportional to the quadrupole mo-
ment (Q) and (T*)g; proportional to the orbital angular momentum (L) [63].
These expectation values, (Q) and (L), are ground state properties of the va-
lence shell that accommodates the photo-ejected core-electron, and the same
is true of the other atomic quantities in (97) and (99). Absorption at the K-
edge with [ = 0 also leaves (T!)g; and (T?)g; proportional to (L) and (Q),
respectively, because the 1s core state is not split by the spin-orbit interaction.

Dichroic signals in an E2 event are derived from (75) and appropriate average

values of H g . The corresponding atomic tensors (T )g, are derived from (73).

Here we consider two important cases. First the linear dichroic signals for a

lanthanide or actinide resonant ion, where the valence shell angular momentum
= 3. The signal in question is,

(AF(E2)),, = ;l—jﬁpg, qu {_‘/;qu + \Izg} : (131)
and
(T%)g o (27 +1)(Q) % £ [10(P) + 3(R)] (132)

96



The operators in (132) are defined in (94)-(96).

The second case we consider is the circular dichroic signal at the K-edge of a
3d transition metal ion. The signal is due to orbital magnetism in the 3d shell
and we find (I = 2),

1
av_2\/TO

In this expression, ¥ is constructed from operators proportional to the orbital
angular momentum (L)4q and ¥} is constructed from operators proportional
to the orbital octupole (A)q defined in (39). If we actually use (L)4 and (A)q,
so that Ul = S4(Lo)a and U3 = Y q(A¢)a, then in (133) {¥} — 293} —
(U} - (2/3)13}/5v/10.

(AF(E2)) GoPy {5 — 203} . (133)

8.2 Parity-odd dichroic signals

Third-generation synchrotron radiation rings and insertion devices provide x-
ray beams that are adequate for the observation of very weak signals due to
parity-odd events. One example is natural circular dichroism which creates
in a non-magnetic material a differential absorption of right- and left-handed
circular polarization [81,86-89]. The fractional effect, which is of the order of
1073, is allowed by a mechanism that is related to optical transitions responsi-
ble for the colour intensity of some glasses and minerals. Nonreciprocal linear
dichroism may also contribute in a parity-odd event [81,90-92]. A striking fea-
ture of this linear dichroic signal is its dependence on magnetoelectric tensors
that are time-odd and reverse their sign when the polarity of an applied field
is reversed.

Our discussion of these intriguing effects is based on material presented in
section 7. With the x-ray beam defining the z-axis of Cartesian coordinates,
Ng and Ng are different from zero for Q = 0, &2. One finds Ng =—-NZ =
do(e' x €)o/2V/5, and the structure factor (F(E1-E2)),, given by (119) is pro-
portional to P,¥2™ after using go(e' X €)ay = iPy. Here, U5™ is evaluated with
k = 0 and it is a linear combination of pseudotensors (UZ). The dichroic sig-
nal Pg\Ilg‘u is natural circular dichroism. It is zero for the established model
of Cry0s3, since from (125), calculated with a Miller index | = 0, U2 = 0 al-
though (U2} contributes in space-group forbidden Bragg reflections that have
odd ! as we see from (128).

Terms in the structure factor (119) with @ = 0 and K = 1 and 3 describe a
dichroism of unpolarized x-rays that is called magnetochiral dichroism [81,93].
Magnetoelectric tensors (G§) and (G3) are probed in this signal. One finds,
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N} = N} = —iV3g(e' - €)/10, N3 = N3 = (2/3)"/2N} and (¢ - €)ay = 1,
of course. The contribution to (F(E1-E2)),  from these terms, K = 1,3 and
Q = 0, is proportional to Go(¥y? — (2/3)/2¥39), and it can only be present
when there is magnetic order. We see from (126) that, magnetochiral dichroism
does not develop in CryO3 as it is taken through the Néel temperature.

Terms in the structure factor (119) with @ = £2 can involve tensors with
rank K = 2 and K = 3, and they are responsible for nonreciprocal linear
dichroism. It is found that NJ = NJ which leaves F(E1-E2) to depend on
magnetoelectric tensors only. In addition, N3 = —v/2NZ and NZ « —iGoX2,
with (X2,)ay = (X25)av = Ps/4. The contribution to (F(E1-E2)),, made by
these terms is proportional to goPs{i(¥>§ — ¥*%) — /2(¥>§ + ¥>9)}. Once
more, for the established model of CryOj3 this dichroic signal is zero since
%9 = 0?4 and U3§ = —¥>§ are consequences of (126) evaluated with [ = 0.
Notice that the signal in nonreciprocal linear dichroism is a linear combination
of true tensors, (G%), and pseudotensors (G%), and the two contributions to
the signal are out of phase by 90° even though all magnetoelectric tensors
have the same time-signature.

A reason for using CroOj3 to illustrate the calculation of parity-odd events
is that the material is a paradigm magnetoelectric, which has been studied
with various experimental techniques supported by detailed theoretical anal-
ysis [5,71,72]. One set of experiments, using x-ray absorption, suggests that
the established model of CryOj is not fully correct. The experiments in ques-
tion provide evidence to favour magnetochiral dichroism which is forbidden
in the established model of Cr,O3, as we have just confirmed [93,94]. An-
other sesquioxide, V,0s3, is of interest for a similar reason. Nonreciprocal linear
dichroism at the K-edge of the vanadium ion in the antiferromagnetic phase
of V203 has been reported [90]. However, the established model of this phase
of V503, in section 3, predicts a null nonreciprocal linear dichroism [92]. An
explanation of the observed x-ray dichroic signal requires a reduction of the
magnetic symmetry such that inversion is not a separate symmetry [81]; like
the magnetoelectric effect, nonreciprocal linear dichroism is allowed when in-
version symmetry occurs jointly with time-reversal symmetry in the magnetic
space-group.

Appendices
A Coordinate rotations

Two Cartesian coordinate systems (z,y, z) and (&, 7, () are related through
Euler angles «, 3,y and associated spherical tensors satisfy (60) which can be
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written,

AG (zyz) = ZD ,—a) A7 (énC) =
= e‘Q“ > A5 (B) A7 (€n¢) - (A1)
q
Our choices of Euler angles and dg,(8) agree with Edmonds (1960) [16] and

Varshalovitch, Moskalev and Kheronskii (1988) [18]. Applied to a vector (K =
1) equation (A.1) leads to,

x =§&(cos a cos f cosy — sin asin y)
—n(cos a cos B sin 7y + sin a cos )

+(cosasinf ,
y =&(sin a cos B cosy + cos asin ) (A.2)
—n(sin o cos B siny — cos a cos )
+(sinasinf ,

z=—¢sinfBcosy+ nsinFsiny+ (cosf .

Special cases of (A.1) used in the main text are, rotation about the £-axis by
an angle ¥,

AK (ayz) = /2 Y e 924 () AK (nC) (A3)

q

and, secondly, (£,7,¢() — (—(, —n, —§) followed by rotation by 7 about the
T-axis,

A (zyz) = (—1)% Y- edg (m/2) Af (€nC) - (A4)

One method of deriving (A.4) is to apply the addition theorem for rotations
that takes the form [18],

Zd (61)d qm, (B2)e T30 . gTima- ‘m”’dmm,(ﬁ). (A.5)
Here,

cot a = cos (; cot ¢ + sin f; cot B2/ sin g
cos 8= cos 3; cos B — sin (1 sin B3 cos @
coty = cos (B cot ¢ + cot By sin G/ sinp . (A.6)
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B Tensor rotations

Three special cases of (A.1) that frequently arise in the construction of struc-
ture factors are, rotation by ¢ around the (-axis which takes (T) to €9 (T),

and rotation by 7 about the &-axis or the n-axis which, respectively, take (Tg )
to (—1)¥(TX,) and (—1)*+9(TK,).

In making calculations for a cubic system (z, y, z) it is sometimes convenient to
work with axes (£, 7, () in which ¢ coincides with the body-diagonal (1, 1,1).
For this case, let £ coincide with (1,1,0) and 7 coincide with (1,1,2). The
rotation that takes 7 to (1,1,0) and ¢ to z = (0,0, 1) while leaving unchanged
¢ = (1,1,0)/v/2 is described by,

Ag(azyz) =e@/4y" e_iq"/‘ldgq(ﬁ)A;;{ (&nQ) . (B.1)
q

with sin 8 = —(2/3)"/2 and cos 8 = (1/3)/2. Adding a rotation by 7/4 about
the z-axis to the transformation (B.1), which requires one change e'9"/* —
e'@™/2 only, lets the £ and n axes coincide with z = (1,0,0) and y = (0, 1,0),
respectively, and ¢ = (0,0, 1). A triad axis parallel to (1,1, 1) limits the sum
on the right-hand side to ¢ = 0, £3,£6, ...

C Symmetries

Proper rotations of a spherical tensor are described by formulae in the preced-
ing appendices. Rotations by 7 about z,y and 2z axes are frequently occurring
elements of symmetry in space-groups. In a tetragonal space-group there can
be diad axes parallel to (1,£1,0). [6] One finds that rotation by 7 about
(1,£1,0) takes €9"4(TE) to (—1)e9"/4(TK,), and (—1)K+Qe-i9m/4(TK,).
Diad axes are satisfied when the 7 rotation leaves e/9™/4(TX) unchanged. For
example, a diad axis along (1, 1,0) is satisfied by a spherical tensor with the
property (T )* = (—1)K+Qel@™/2(TK) = (—1)%(TX,) where the second equal-
ity arises from the Hermitian property of the spherical tensor.

Reflection in a mirror plane is equivalent to inversion, (z,y, 2) — (—z, —y, —2),
followed by a rotation by m about a normal to the plane. Inversion leaves
parity-even tensors unchanged and reflection in a plane is the same as rotation
by 7 about a normal, for such tensors. Parity-even tensors arise in Thomson
scattering, magnetic x-ray and neutron scattering, and pure E1 and pure E2
x-ray resonant diffraction. These tensors are of two types, namely, true spher-
ical tensors with even K and an even time-reversal signature and, secondly,
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pseudotensors (or axial tensors) with odd K and an odd time-reversal signa-
ture. A description of the amplitude in the mixed E1-E2 resonant channel for
diffraction is accomplished with parity-odd tensors which change their sign
following the inversion operation. These tensors we label Gg and UX, and
G§ is time-odd and U¥ is time-even. Gg, G%, U}, and Ug are true tensors,
while G3 and U}, are pseudotensors. In sections 7 and 8, G§ is called a mag-
netoelectric tensor because it is unchanged by the product of the operations
of time-reversal and inversion, and Ug is called a polar tensor because its sign
is changed by the product of these two operations.

Let us use ¥ to denote a time-reversal operator that is antilinear and antiuni-
tary [95], by which we mean that, first,

() =c*(9v) (C.1)

where c¢ is a classical number and v is a wavefunction and, secondly, a matrix
element (¢|B|y) = (¥, By) of an arbitrary operator B satisfies

(94, 9Bp) = (¥, Bp)* . (C.2)

The action of ¥ on a spinor |JM) is taken to be

Ic|JM)) =c9|IM) = c*(—1)""M|J —M) . (C.3)

Here, two features merit comment. First, the action of ¥ on the spinor is
equivalent to a rotation by 7 about the y-axis (in an application of this ro-
tation to a spherical tensor of rank K and projection ) the phase factor
(—1)%+Q = (—~1)%X -9 because K and Q are integers, while for a spinor J and
M can be half-integer and the phase factor created by the rotation is (—1)7~*
with our chosen convention). Secondly, time-reversal applied to |JM) reverses
the polarity of the projection M on the axis of quantization. Indeed, if H
represents a magnetic field acting on a system and 1 (H) is a wave function of
the system then ¥*(H) = dy(H) = v(—H).

We return to (C.2) and consider a system with a magnetic field. First of all,

(¥, Bp) = (04, 9Bp)* = (90, [§BI]9p)*

= (9, (9B I0) | (C4)

where + denotes Hermitian conjugation. The result (C.4) provides a relation
between matrix elements in systems with fields of opposite polarity and we
write it in the form,

61



(%, Bo)u = (¢, [9BY']"¥)_n - (C.5)

Evidently, when considering the mean value of B the operator transforms with
reversal of the magnetic field to [9BY~1]*. We shall call an operator B time-
odd if 9BY~' = —B* and, similarly, an operator time-even if ¥B9~! = +B*.
If B is Hermitian, BT = B but spherical tensors with @) # 0 are non-Hermitian
and they satisfy (TE)* = (—1)9T%,. Thus, (¥, T5¢) = (T) satisfies,

(T ) u=(-1)UTE)-n (C6)

where we have introduced a notation B = 9¥BY~. Qur parity-even tensors
are such that TS = (—1)**9TX,. Thus, parity-even tensors with even K
are time-even and tensors with odd K are time-odd. For these tensors, (C.6)
reduces to (48). Parity-odd tensors, on the other hand, satisfy (123) and (124).
Particular examples of parity-even and parity-odd spherical tensors are the
angular momentum J and unit (polar) vector n. Spherical components of these
variables satisfy, J, = (—1)!*9J_q, JF = (-1)?J_4 and 7y = (—1)%n_q = n].
From these results and our convention for distinguishing time-odd and time-
even operators, we find J; is time-odd and n, is time-even and the findings
coincide with properties of their Cartesian (and Hermitian) components.

D Unit tensors for equivalent particles

Our tensors W and WX for equivalent electrons and equivalent holes
are based on definitions used by Judd (1963) [17]. Values of these tensors
for occupied states, denoted by |u), and empty states |®emp), which can be
occupied by a photo-ejected core state electron, are related in a simple way.
Let |®) be the state of electrons in a closed, full shell. The closure statement
for the shell in question is,

(Pesnp| WO [ Deryp) = (RIWEDK|@) — (u|W K ps)

For a +b > 0, (B|WX|®) = 0 while for a + b = 0 the matrix element
is proportional to the number of states in the shell 2(2] + 1). Hence, matrix
elements with empty states (P emp|W @OK| ) = —(u|W K| 1) when a-+b >
0, and they are proportional to the number of empty states n, = 2(2/4+1) —n,
when a+b = 0. The quantum numbers for the n;, empty states and n. electron
states are the same. Denoting the seniority quantum number by v, the two
states |I"™»vSL) and |{"vSL) are said to be conjugate state functions.

Initially, we separately consider even and odd K. For even K, a minus sign
is inserted in (u|W(@®X|4) which is then the matrix element required in the
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resonant scattering length. Our tabulated W (X for even K, thus, are equal

in magnitude and opposite in sign to values tabulated for electrons. For odd
K, no minus is introduced in {(u|W @)% |4) and this aligns our definition with
a standard definition of hole states [59,61,62].

Our hole states |h) are derived from |®enp) by application of the time-reversal
operator 9, introduced in appendix C. Let |®emp) = 9|h), and apply (C.4) to
the matrix element (h, Sh), where S is a spin operator; we obtain,

(h, Sh) = (8, [0S9']*0h) = —(8h, SOh) = —(Demmp, SPemp) = (1, Sk) -

Hence, with a + b > 0 the general case is,

(WD 1) = — (D | WO | D) = (R[W KR

where the plus sign is for time-odd operators, that have odd K, and the neg-
ative sign applies for time-even operators, that have even K. Recall that, the
resonant scattering-length, which is used to interpret dichroic signals and res-
onant Bragg diffraction, is calculated with the states |Pemp). Thomson scatter-
ing, magnetic x-ray diffraction, and magnetic neutron scattering are calculated
with the states |u). With respect to the latter, holes are positive charges for
time-even operators but negative charges when coupled to a magnetic field.
With respect to the empty states |®emp), the role of positive and negative
charges for hole states is the opposite of that with respect to |u).

The reduced matrix element of an operator that is the tensor product of an
operator 2% acting on the spin and y° acting on the orbital state of an electron
is (s]|2%||s)(||y°]|1)W @K ~and all electrons are in the shell with angular mo-
mentum /. If J is not a good quantum number, and uncoupled states vSL are
appropriate, a matrix element can be written in terms of a unit tensor W ().
The relation between the coupling scheme vSLJM and vSMsLM) applied
to a tensor T is,

(_1)J—1\1 (—‘1]14 g ]{42) W(ab)K —

a+0o+ (2K+1) & a a K b
= (=1) bQ{(2a+1)(2b+1)} WW;(—m Q —n)

, S a S L b L’
_ 1\S—Mg _ \L-M
A A S B AR

Here, we see that the Wigner—Eckart theorem applies separately to the spin
and orbital parts of vSMgLM). Equation (83) is a particular case of (D.1).
The actual relation between the two unit tensors is,
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, 12(S S a
WK _ (2J +1)(2K +1)(2J" + 1) . op L (D.2)
(2a + 1)(2b+ 1) 77 oK

The 9j-symbol with S = S, L = L' and J = J' exists only for even a+ b+ K.
Some values of 3j- and 6j-symbols are found in reference [96]. An alternative
source of nj-symbols, which includes 9j-symbols, is a computer program [97].

Let us record two particular applications of (D.1). A matrix element of S, is
derived by setting b = 0, K = 1 and Q = q. Now (I||3°||) = (21 + 1)¥/2, and
(D.1) reduces to,

(SMsLMy|S,|S'M5L'M,) = [3(2L + 1)]7/2(s||s||s) (21 4 1)*/2

s 1 4
(10) 81 (—1)5"Ms
x  W¥on, ;01,0 (—1) <_MS q Mé)

Taking s = 1/2 one has (s||s||s) = (3/2)/? and we arrive at the following
expression for W10

22L + 1)) 2
weo = ) ISIsstu

The corresponding expression for W01

V2, and we get,

325 + 1)) M* (L||L||L)
(o1) _ J2\er T 2 A=y , ;o
v { 7 } Qi st

is obtained by setting a = 0, (s]|2°||s) =

In these two expressions the reduced matrix elements of an angular momentum
operator (I||I]|1) = [I(I + 1)(2] + 1)]¥? and a similar expression is used for
s=1/2and S.

The diagonal part of W(®¥ appears in the matrix element (T )g, with K =
Q = 0. ;From (73) we get,

1

(20 + 1)(21 + 1)(2t + 1)¥/2

2T+ 1) + 11+ 1) — t(t + 1))
Il +1)

(T =

X {(2j+1)nhj: (S-L)}, (D.3)

where (S-L) is the mean value of the spin-orbit interaction. The signs in (D.3)
relate to J = [ +1/2, which is the total angular momentum of the core state.
For the state specified by Hund’s rules,
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(8-L) =+, lJ(7+1) = S(S +1) = L(L+1)] | (D.4)
where the upper sign applies to np, < (20 4+ 1) and the lower sign applies to
np, > (214+1). More generally, the reduced matrix element (SLJ||S - L||S'L'J")
of the spin-orbit interaction is proportional to the unit tensor WV The
coefficient of proportionality is the product of the reduced matrix elements
of s = 1/2 and I, and a factor —v/3 that arises in the relation between a

scalar product, here S - L, and the tensor product of S and L evaluated for
K =@ = 0. One finds,

_3
V2

The result (D.3) is a sum rule for the absorption signal. This particular sum
rule gives a relation between the integrated signal and the spin-orbit interac-
tion, which is a fundamental quantity in determining various physical proper-
ties, including, itinerant magnetism and heavy-fermion behaviour [98]. Other
sum rules for dichroic signals are discussed in section 8.

(SLJ||S - L||S'L'J) = ()| Hwane. (D.5)

E The selective sum over intermediate states

The amplitudes of the channels for resonant x-ray scattering and absorption
discussed in this review consist of products of many electron matrix elements.
This is due to the fact that we consider a two stage process in which a core shell
electron is initially excited to the valence shell and, in a second step, allowed to
re-emit, the absorbed x-ray photon. The initial and final states, |p) and |p'),
are described by the quantum numbers SLJM and S’'L'J M’ respectively,
and refer to equivalent electrons in a shell of orbital angular momentum [. For
simplicity of notation we do not indicate extra quantum numbers necessary
for a complete characterization of the Russel-Saunders coupled states.

The intermediate state is a bit more complicated because it contains two active
shells, where the core shell has one hole, and the valence shell harbours the
additional photo-ejected electron, which has to be coupled to the SL of the
electrons of the initial valence shell. If |n) is described, say, by the quantum
numbers S7L7JTM" one assumes implicitly a coupling of s ® S* = S”7 and
l® L* = L7, where S*,L* are the new spin and orbital quantum numbers
for the valence shell. This is, however, not the only possibility. An alternative
procedure would consist in a coupling of s ® ! = J and $* @ L* = J*. In
this case, the spin and orbital angular momenta of the core shell are coupled
to a total angular momentum J and the total angular momentum quantum
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number for the valence shell is J*, both coupled, J @ J* = J", to give the
total angular momentum J7 of the intermediate state.

In the preceding sections we have not specified the selective sum over inter-
mediate states denoted by 3=, A) in equations (62), (65), and (113). It is our
intention to perform a selective sum over the quantum numbers describing
the intermediate states, thereby leaving intact the dependence of the product
of matrix elements on selected quantum numbers, like for instance J. Our
inspiration for this step is found in work by Judd [52] and Ofelt [53].

The actual calculations are rather involved, and we attempt to sketch the
general properties by looking at the E1-E1 channel. To perform the calculation
properly, one would have to resort to the graphical methods for nj-symbols
as developed by Yutsis et al. [99] and applied in detail by Varshalovitch et
al. [18]. Due to the Wigner—Eckart theorem the product of matrix elements
for the E1 transition will contain a product of two 37-symbols,

_ J 1 Jn a_pm I 1 J
(v o ) CV () (E1)

and a product of reduced matrix elements [100],

(SLIM||S RY|S"L?J"M™)(STL"J"M"|| 3" RY|S'L' J'M") . (E.2)

The reduced matrix elements in (E.2) do not explicitly display the fact that
the core hole s, is coupled to the valence electrons S*, L* in order to arrive
at S™, L". It is now possible to regroup and rearrange the nj-symbols in the
product of (E.1) and (E.2), and to perform the summations over S7, L" and
also over J7. The introduction of a sum over an additional quantum label K
leads to the emergence of the following essential terms obtained by graphical
analysis,

J K J K 11
-1 J"“( ,) —1 K—Q( } ) , E.3
O (e o) C (o s (E3)
and a product of three 67-symbols,
J K J L K L [ K 1
{L’ S L}{l Lx z}{1 ] 1} ’ (E4)

The first 3j-symbol in (E.3) is the Wigner—-Eckart signature of a matrix ele-
ment for a tensor of rank K, and the first 6j-symbol in (E.4) is the signature
of a reduced matrix element for a tensor of rank K that acts only on the or-
bital part of the wave function. The second 6j-symbol in (E.4) is an important
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ingredient in the definition of (SL||V¥)||S'L’), as defined by Judd [17], which
represents the corresponding unit tensor. This unit tensor is, of course, closely
related to (SL||W©8)||S'L’) in appendix D, and the relation is,

25 +1

1/2
(5L||W<0K>||5'L'):( ) (SLIVES|S'L) . (E.5)

The method described so far has the disadvantage that the important quantum
label J, the total angular momentum of the spin-orbit coupled core hole, is not
manifest in our expressions. To bring the angular momentum to the foreground
requires a recoupling of the angular momenta of the core hole and the valence
electrons. This introduces two 9j-symbols and sums over S7, L7 and S™, L"
into the product of reduced matrix elements,

(SLIM|> R JT*I"M™)(JJ*J"M"||> RIS'L' T M') (E.6)

while the Wigner—Eckart 3j-symbols are the same as in (E.1). The correspond-
ing nj-symbol can now be summed over J"7 and J*. Further simplification may
be achieved by the introduction of additional quantum labels, a, b, and K,
and summations over these. The 3j-symbols obtained in this way are the same
as given in (E.3), and the essential remaining elements are,

S5 el e 4 osv(L b I
L L b {s S* s}{l Lx l}
J J K
LD,
X 1zz{ 2 } (E.7)
K b S S

Here, the first 9j-symbol represents the signature of a coupled tensor operator
of rank K acting on both spin a and orbital b components. The following two
67-symbols are essential building blocks for the construction of the unit tensor
W) if summed over S*, L*. The second line in (E.7) displays the explicit
dependence on the one electron quantum numbers s, 1, J, and . It is now easy
to see, that a sum over J forces a = 0 and b = K in our expressions and, thus,
returns us to the results displayed in (E.4).

Yet another level of complication arises if we desire not only to keep the de-
pendence on J, but also on M, and exclude it from the selective summation
over all other quantum numbers as in [55] and an application to observations
on NpO; [56]. In this case, the starting point is again from expressions (E.1)
and (E.6) but the graphical analysis implements two more labels r, z in ad-
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dition to a,b, and K and the corresponding summations. Application of the
rules for the graphical method produces a group of four 3j-symbols,

0 (2 g ) (g g0
(o w) (o b a) 5

and the following nj-symbols,

X

S5 als o sv(L b I
Lroo s s ST
JJ z) '
1 1 1) (s I J
X {Kgx} 1 1 13<s 1 J (E.9)
@ Y2 1K a b a y T

Note here that, the signature of the coupled tensor operator is now for a
tensor of rank z and the corresponding Wigner—Eckart 3j-symbol in (E.8) is
in accordance with this. The dependence on M is explicit. A sum over this
quantum number forces r = 0 and at the same time, z = K and y = K, and,
once more, returns the previous result given in (E.7). The 6j-symbols in the
first line of (E.9) allow the construction of W@ which, together with the
appropriate 9j-symbol leads to W(®)* in this case.

The most general result, as described in (E.9), contains a hierarchy of results,
(E.7), derived by summing over M, and (E.4), by summing over J successively.
In all cases the many electron features of the combined, final matrix element
are encapsulated in the unit tensors WOKK W(e)K o y/(ab)z

We regret that, a detailed discussion of the form of these unit tensors would
take us beyond the limits of this review, and should, therefore, be sought in
the literature.

Acknowledgements

We have benefited from discussions and correspondence with J.A. Blanco,
A. Bombardi, P.J. Brown, P. Carra, S.P. Collins, C. Detlefs, J. Igarashi, K.
Katsumata, S. Langridge, L. Paolasini, L.P. Pitaevskii, P.G. Radaelli, D.S.
Sivia, U. Staub, Y. Tanaka, and G. van der Laan.

68



References

[1] R.W. James, The Optical Principles of the Diffraction of X-rays (Bell, East
Brunswick NJ, 1967).

[2] P.J. Brown, Int. J. Mod. Phys. B7 (1993) 3029.
[3] P.J. Duke, Synchrotron Radiation (Oxford University Press, Oxford, 2000).
[4] J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985).

[5] R.R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1964) and
A P. Cracknell, Magnetism in Crystalline Materials (Pergamon Press, Oxford,
1975).

[6] G. Burns and A.M. Glazer, Space Groups for Solid State Scientists (Academic
Press Inc., Boston, 1990).

[7] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics
(Cambridge University Press, Cambridge, 1995).

[8] R.C. O’'Handley, Modern Magnetic Materials (John Wiley & Sons, New York,
2000).

[9] V.E. Dmitrienko, Acta Crystallogr. Sect. A39 (1983) 29; 40 (1984) 89.

[10] D.H. Templeton and L.K. Templeton, Acta. Crystallogr. A4l (1985) 133; 41
(1985) 365; 42 (1986) 478.

[11] Ch. Brouder, J. Phys.: Condens. Matter 2 (1990) 701, and references therein.

[12] E. Balcar and S.W. Lovesey, Theory of Magnetic Neutron and Photon
Scattering (Clarendon Press, Oxford, 1989).

[13] S.W. Lovesey and S.P. Collins, X-ray Scattering and Absorption by Magnetic
Materials (Clarendon Press, Oxford, 1996).

[14] H. Grotch et al., Phys. Rev. A27 (1983) 243.
[15] G. Bhatt et al., Phys. Rev. A28 (1983) 2195.

[16] A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton, 1960).

[17] B.R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New
York, 1963).

[18] D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum Theory of
Angular Momentum (World Scientific, Singapore, 1988).

[19] Y. Tanaka et al., J. Phys.: Condens. Matter 11 (1999) L505.
[20] S.W. Lovesey and K.S. Knight, Phys. Rev. B64 (2001) 094401.

69



[21] Y. Tanaka et al., Phys. Rev. B69 (2004) 24417.
[22] H. Adachi et al., Phys. Rev. Lett. 89 (2002) 206401.

[23] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition
Tons (Clarendon Press, Oxford, 1970).

[24] V.F. Sears, Phys. Reports 141 (1986) 281.

[25] F. de Bergevin and M. Brunel, Phys. Lett. 39A (1972) 141.

[26] F. de Bergevin and M. Brunel, Acta. Crystallogr. A37 (1981) 314.

[27] M. Brunel and F. de Bergevin, Acta. Crystallogr. A37 (1981) 324.

[28] P.P. Kane, Phys. Reports 218 (1992) 67.

[29] F. Bell, J. Felsteiner and L.P. Pitaevskii, Phys. Rev. A53 (1996) R1213.

[30] M.J. Cooper et al., X-ray Compton Scattering (Oxford University Press,
Oxford, 2004).

[31] D. Gibbs et al., Phys. Rev. B43 (1991) 5663.

[32] S.P. Collins, D. Laundy and G.Y. Guo, J. Phys.: Condens. Matter 5 (1993)
L637.

[33] R. Caciuffo et al., Phys. Rev. B65 (2002) 174425.

[34] M. Lippert et al., Europhys. Lett. 27 (1994) 537.

[35] E. Balcar and S.W. Lovesey, J. Phys.: Condens. Matter 14 (2002) 10281.
[36] P.D. Dernier and M. Marezio, Phys. Rev. B2 (1970) 3771.

[37] S.W. Lovesey, K.S. Knight and D.S. Sivia, Phys. Rev. B65 (2002) 224402.
[38] R.M. Moon, Phys. Rev. Lett. 25 (1970) 527.

[39] S.W. Lovesey and K.S. Knight, J. Phys.: Condens. Matter 12 (2000) L367.
[40] L. Paolasini et al., Phys. Rev. Lett. 82 (1999) 4719.

[41] L. Paolasini et al., J. Electron Spectrosc. Relat. Phenom. 120/1-3 (2001) 1.
[42] D.B. McWhan et al., Phys. Rev. B42 (1990) 6007.

[43] K.D. Finkelstein, Q. Shen and S. Shastri, Phys. Rev. Lett. 69 (1992) 1612.
[44] J. Kokubun et al., J. Phys. Soc. Jpn. 67 (1998) 3114.

[45] S. Ji et al., Phys. Rev. Lett. 91 (2003) 257205.

[46] S.B. Wilkins et al., Phys. Rev. Lett. 91 (2003) 167205.

[47] Y. Murakami et al., Phys. Rev. Lett. 81 (1998) 582.

70



[48] 1.S. Elfimov, V.I. Anisimov and G.A. Sawatzky, Phys. Rev. Lett. 82 (1999)
4264.

[49] M. Benfatto, Y. Joly and C.R. Natoli, Phys. Rev. Lett. 83 (1999) 636.

[50] M. Takahashi, J. Igarashi and P. Fulde, J. Phys. Soc. Jpn. 68 (1999) 2530; ibid.
69 (1999) 1614.

[51] L.D. Landau and E.M. Lifshitz, Vol. 4, Quantum Electrodynamics, 2m? edition
(Pergamon Press, Oxford, 1982).

[52] B.R. Judd, Phys. Rev. 127 (1962) 750.

[53] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511.

[54] J.A. Paixao et al., Phys. Rev. Lett. 89 (2002) 187202.

[55] S.W. Lovesey, J. Phys.: Condens. Matter 9 (1997) 7501.

[56] S.W. Lovesey et al., J. Phys.: Condens. Matter 15 (2003) 4511.

[57] J.P. Hannon et al., Phys. Rev. Lett. 61 (1988) 1245; ibid. 62 (1989) 2644 (E):
J. Luo, G.T. Trammell and J.P. Hannon, Phys. Rev. Lett. 71 (1993) 287.

[58] P. Carra and B.T. Thole, Rev. Mod. Phys. 66 (1994) 1509.

[59] S.W. Lovesey and E. Balcar, J. Phys.: Condens. Matter 9 (1997) 4237.

[60] S.W. Lovesey, J. Phys.: Condens. Matter 8 (1996) 11009.

[61] S.W. Lovesey, O. Fritz and E. Balcar, J. Phys.: Condens. Matter 10 (1998) 501.
[62] S.W. Lovesey, J. Phys.: Condens. Matter 10 (1998) 2505.

[63] B.T. Thole et al., Phys. Rev. Lett. 68 (1992) 1943.

[64] P. Carra et al., Phys. Rev. Lett. 70 (1993) 694.

[65] J.C. Lang et al., Phys. Rev. Lett. 74 (1995) 4935.

[66] J. Stohr, J. Mag. Mag. Materials 200 (1999) 470.

[67] E.N. Ovchinnikova and V.E. Dmitrienko, Acta Crystallogr., Sect. A: Found.
Crystallogr. 56 (2000) 2.

[68] S.W. Lovesey, K.S. Knight and E. Balcar, Phys. Rev. B64 (2001) 054405.
[69] S.W. Lovesey et al., Phys. Rev. B70 (2004) 172414.

[70] S.W. Lovesey and E. Balcar, J. Phys.: Condens. Matter 9 (1997) 8679.
[71] P.J. Brown et al., J. Phys.: Condens. Matter 14 (2002) 1957.

[72] M. Muto et al., Phys. Rev. B57 (1998) 9586.

[73] K. Yoshida, Theory of Magnetism (Springer, Berlin, 1996).

71



[74] D.H. Templeton and L.K. Templeton, Phys. Rev. B49 (1994) 14850: Acta
Crystallogr., Sect. A: Found. Crystallogr. 53 (1997) 352; ibid. 54 (1998) 158.

[75] I.S. Elfimov et al., Phys. Rev. Lett. 88 (2002) 015504; ibid. 88 (2002) 239904
[76] S. Di Matteo et al., Phys. Rev. Lett. 91 (2003) 257402.

[77] V.E. Dmitrienko, E.N. Ovchinnikova and K. Ishida, JETP Lett. 69 (1999) 938.
[78] J. Kokubun et al., Phys. Rev. B64 (2001) 073203.

[79] S.P. Collins et al., Phys. Rev. B68 (2003) 064110,

[80] I. Marri and P. Carra, Phys. Rev. B69 (2004) 113101.

[81] P. Carra, A. Jerez and I. Marri, Phys. Rev. B67 (2003) 045111.

[82] P. Carra, J. Phys. A: Math. Gen. 37 (2004) L183.

[83] Ya.B. Zel'dovich, Sov. Phys. JETP 6 (1958) 1184.

[84] I.B. Khriplovich, Uspekhi 40 (1997) 1161.

[85] D.H. Templeton and L.K. Templeton, Acta Crystallogr., Sect. A: Cryst. Phys.
Diffr. Theor. Gen. Crystallogr. 36 (1980) 237.

[86] J. Goulon et al., J. Chem. Phys. 108 (1998) 6394.

[87] L. Alagna et al., Phys. Rev. Lett. 80 (1998) 4799.

[88] C.R. Natoli et al., Euro. Phys. J. B4 (1998) 1.

[89] P. Carra and R. Benoist, Phys. Rev. B62 (2000) R7703.

[90] J. Goulon et al., Phys. Rev. Lett. 85 (2000) 4385.

[91] S. Di Matteo and C.R. Natoli, J. Synchrotron Rad. 9 (2002) 9.

[92] S. Di Matteo, Y. Joly and C.R. Natoli, Phys. Rev. B67 (2003) 195105.
[93] J. Goulon et al., Phys. Rev. Lett. 88 (2002) 237401.

[94] S. Di Matteo and C.R. Natoli, Phys. Rev. B66 (2002) 212413.

[95] S.W. Lovesey, Condensed Matter Physics: Dynamic Correlations (The
Benjamin/Cummings Publishing Company Inc., Menlo Park, 1986).

[96] M. Rotenberg et al., The 35 and 65 Symbols (Crosby Lockwood & Son Ltd,
London, 1959).

[97] Program winjsym, available on demand from balcar@ati.ac.at.
[98] G. van der Laan et al., Phys. Rev. Lett. 93 (2004) 097401.

[99] A.P. Yutsis, I.B. Levinson and V.V. Vanagas, The Mathematical Apparatus of
the Theory of Angular Momentum (Israel Program for Scientific Translation,
Jerusalem, 1962).

[100] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of
California Press, Berkeley, 1981).

72



