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Birefringence and dichroism in X-rays

passing through magnetic material.

S. W. Lovesey, Rutherford Appleton Laboratory,
Oxfordshire OX11 0QX, UK.

S. P. Collins, Daresbury Laboratory,
Cheshire WA4 4AD, UK.

ABSTRACT

We present a framework for describing polarization-dependent attenuation and
retardation of X-rays, by materials which are anisotropic and/or magnetic. Classical
optical calculus is employed to relate observable quantities to atomic variables of the
sample. As an explicit example, we consider the case of the biaxial magnetic crystal,

ferrous niobate.



1. Background and orientation

Recent years have witnessed an explosion in the number and variety of X-ray
experiments in which the polarization of the beam reveals important information
about the electronic configuration of atoms in the solid state. For each class of
measurement, the challenge is to relate observable quantities - intensity, Stokes
parameters etc. - to atomic variables and symmetries of the sample. Fortunately, the
subject of polarization in optics is a mature one. An armoury of well-proven
theoretical tools, equally applicable at optical and X-ray wavelengths, exists in
numerous texts [1,2,3,4]. At the most fundamental level, however, the physical origin
of optical constants tends to be quite different, with X-rays being sensitive primarily
to the configuration of individual atoms [5,6]. Interpretation of X-ray data therefore
hinges on the relationship between atomic and optical variables, and the main goal of

the present work is to develop a framework for exploring these connections.

The remainder of this paper is divided into four sections. In section 2 we relate
the resonant forward scattering amplitude to reduced dipole-dipole matrix elements
via the Kramers-Heisenberg formula, thus providing a link between the rank-two
Cartesian tensor that describes these elements, with Jones and Mueller matrices. The
transmittance and polarization of X-ray photons, attenuated by a uniform, anisotropic

material, are thus obtained for incident beams of arbitrary partial polarization.

Section 3 deals with the passage of X-ray beams through materials which are
magnetic and, generally, completely anisotropic. The dipole-dipole tensor is written
as the sum of a scalar (giving spatially averaged properties), a symmetric tensor who’s
non-vanishing elements depend on the point group symmetry of the environment of
the resonant ion, and an axial vector that defines the axis of magnetic quantization.
The rotational properties and eigenstates of the symmetric tensor are discussed for
various symmetries, and we establish a connection between the tensor (a property
only of the sample) and the 2x2 scattering matrix, from which the results of X-ray

optical measurements are derived.

Atomic models for the dipole-dipole tensor vary enormously in complexity,

depending on the level of detail required to describe observable quantities. Section 4



describes five levels of approximation, varying from a completely isotropic sample
with no polarization or energy selectivity, to detailed structure in dichroic spectra
arising from exchange splitting in the atomic core level. Results encompass some
well-documented sum-rules, where tensor elements are given by various ground-state

atomic moments.

The paper is brought to a close with the example of ferrous niobate - a crystal
which is biaxial and magnetic. Tensor components responsible for linear and circular

dichroism are derived from the wavefunction of the ferrous ion.
2.  The interpretation of transmission experiments

Our treatment of X-ray transmission through a foil is based on the Kramers —
Heisenberg dispersion formula, in which the absorption process is an electric-dipole
(E1) event [2,7]. In consequence, magnetic properties of the resonant ion manifest
themselves in the formula through dipole matrix-elements for the valence shell which

accepts the core electron, ejected by a photon from an initially complete core level.

A photon in the beam of X-rays incident on the foil has a wave vector, q, and a
polarization vector, € which is taken to be a row vector with two components. The
objective of an experiment is to investigate the properties of the equilibrium state of
the resonant ion, for which there are degenerate states {|u>}. Attenuation and
retardation of the X-ray beam engages quasi-discrete states, denoted here by the
Greek letter 1, comprised of a core level with one unfilled state and a valence shell
with one additional electron. The rate of decay of such an intermediate state is

Yol B

Let the dipole operator for the resonant ion at the position in the unit cell

defined by the vector d be R (d). The strength of the E1 event is determined by the
radial integral for the core and valence levels, R. With this notation, the Kramers-

Heisenberg formula expressed as the resonant contribution to the scattering length is,



frs =—(eq)* RZY Y (<ple"-RIn>< nle-R|p>)/(E+E, —E, +iy,/2).
d 1

@.1)

Here, it is assumed that the energy of the X-rays and the energy of the resonance are

nearby, i.e. E = (Acq) ~E, — E,. The prime on the polarization vector denotes the

transpose, and €’ € is a square matrix.

Let o and 7 be orthogonal unit-vectors in the plane normal to the wave vector,
q. Taking successively € = ¢ and =, and €' = ¢’ = ¢ and 7’ one constructs four values

of f,, thattogether form a square matrix. In the limit y, =0, the square matrix is

Hermitian and some of its properties are gathered in the appendix to the paper. This

limit is realized by working far from any resonance feature.

Our expression for f, can be obtained from the scattering length, /= f"+ i 17,

by equating the wave vectors for the primary and secondary beams (the forward-
scattering geometry) and setting aside all contributions to f other than the one
enhanced by the resonance condition. The real and imaginary parts of f satisfy a
dispersion relation, also known as a Kramers-Kronig transform. The scattered
intensity, f © f; considered as a function of the states of polarization is a 2 x 2
Hermitian matrix. It can be diagonalized, and the ratio of its two principal values,

denoted in the appendix by A, and A_, gives the degree of depolarization, while their

sum is proportional to the total intensity.
Attenuation (dichroism) and retardation (birefringence) in the foil are

determined by its refractive index, denoted here by n = n ' + i n'”’. The relation

between » and fis taken to be,
n=1+Qnp,/q*)f, @2)

in which p, is the density of resonant ions present in the foil. With use of the optical

theorem,



2
n"=Q2np,/4°) f =57 1, 2:3)
where the attenuation coefficient, y, has the dimension of a wavevector.

As a function of E, fis a palisade of Lorentzians centred at A, =(E, - E,)
with a width proportional to y,. More than one product of dipole matrix elements

will likely contribute to the weight of a Lorentzian, and for a particular resonance we

need to calculate for each ion the dimensionless quantity,

<Z>= (Zi)(<u|a’-ﬁ|n><nla-li|u>), 2.4)
n

where the notation 1 (A) indicates a sum on mrestricted to intermediate states which

contribute to the resonance centred at the energy A, and the horizontal bar denotes an

average with respect to the condition of polarization.

The physical significance of <Z>, defined in (2.4), in the interpretation of
transmission experiments can be made quite clear. For, if the dichroic signal is
integrated with respect to energy, over an interval of energy that spans the

intermediate states which contribute to the sum defined by m(A), then <Z> is the

weight of the integrated signal, apart from unimportant factors. It is standard practice
to call <Z> a sum-rule, in keeping with the Kuhn-Thomas sum-rule for oscillator

strengths, and we have more to say on this subject in section 4.

As we shall see in section 4, use of an atomic model enables one to express
<Z> in terms of the mean values of operators associated with the valence shell of the
resonant ion, e.g. the mean value of the orbital angular momentum operator. The
number of different operators, and hence the degree of information about the valence
shell carried by <Z> depend on the extent of the sum over the intermediate states in

(2.4). An unrestricted sum removes the entire spectrum of the intermediate states, for

the closure conditions is, ) [n><mn|=1. The corresponding expression for <Z> is
n



devoid of explicit information about the magnetic state of the valence shell. Hence,
usually an unrestricted sum of the intermediate states is not adequate for the

interpretation of data.
An average of a physical quantity with respect to the condition of polarization in
the primary beam of X-rays is accomplished with a density matrix, p, whose

properties are reviewed in the appendix (in classical optics it is customary to describe

polarization by a coherence matrix proportional to );

) =1, 2.5)
where tr. is the trace operation. The density matrix can be expressed in the form,
p=1(+P-0), (2.6)

where / is the unit matrix, and 6}, 63, and o3 are Pauli matrices chosen as,

0'1=[0 lj,cﬁ[(_) _i],c3=[1 O]. 2.7)
1 0 i 0 0 -1

The parameters (j = 1, 2 and 3),
P, =tr(us,), 2.8)

are Stokes parameters for the primary beam. While P = (P;, P,, P3) appears as a
vector in (2.6) it is not a vector of any standard type; in particular, P is not an axial or

a polar vector.

Prior to moving on, we briefly review properties of the Stokes parameters. P
and P; are measures of the linear polarization. In the right-handed and orthogonal set

of co-ordinates (o, 7, q) P; describes linear polarization along directions at angles

i% to the o- axis. The parameter P3; describes polarization along the



o —and © — axis; P, =+1 corresponds to complete polarization in the o — direction,
and P, =-1 corresponds to complete polarization in the n— direction. The
parameter P, measures the degree if circular polarization. Here, it is defined to be the
mean value of the helicity operator. The parameters satisfy (Pl2 + P’ + Pf) <1, and

the equality is achieved for a completely polarized beam.

All three parameters are even with respect to the reversal of the direction of
time. However, with respect to the parity operation, that changes a right-handed co-
ordinate system to a left-handed co-ordinate system (and equivalent to an inversion of
the co-ordinate system), P; and P3 are unchanged while P, changes its sign. Hence,
P; and P; behave with respect to parity as true scalar qualities. On the other hand, P,
is not a true scalar with respect to parity and it is usual to refer to such a quantity as a
pseudo-scalar. There are several arguments that quickly show that P, is a pseudo-
scalar. For example, it is the mean helicity, and the helicity operator is the scalar
product of q (a polar vector) and the operator for angular momentum (an axial vector,
also known as a pseudo-vector). From this definition one can see that P, is indeed
even with respect to the reversal of the direction of time, since the helicity operator is
the product of two variables that each change sign under the time-reversal operation,
i.e. the wave vector q and the operator for orbital angular momentum are odd with
respect to time reversal. (The helicity and spin operators have opposite behaviour

with respect to time reversal.)

Of central importance in the interpretation of experiments is a transmission
matrix, Q (3, 4, 8§, 9]. First, the average electric energy density of the transmitted

beam is proportional to,
k=jof = (o pq) 2.9)

where Q" is the Hermitian conjugate of Q. The physical significance of (2.9) is made
apparent on noting that the primary and transmitted complex electric fields £ and &,
respectively, are related through £ = £Q, and the energy density in the transmitted
beam is proportional to (£)" & = Q" £ £€Q. (NB the electric fields are row vectors.)



Secondly, the Stokes parameters of the transmitted beam are
(=1, 2 and 3),

P =+t (Q'pQo ) =tr.(W's ), (2.10)

where the second equality defines the density matrix of the transmitted beam, y'. In
the absence of a foil, Q = I, and any phase shift introduced by Q is taken with respect
to the unperturbed beam.

A perfect polarizer is represented by a transmission matrix which is both
idempotent and singular. Physically the idempotent property of Q refers to the fact
that a beam emerging from a polarizer is unaffected by passage through a second
identical polarizer. The singular property of Q arises because the perfect polarizer
destroys all information about the original state of polarization. A device which
introduces a phase shift between the components of the complex electric field directed
along o and 7 is called a compensator. In the ideal case, there is no attenuation of the

beam and a perfect compensator is represented by an Q which is unitary.

We will express Q in terms of a matrix which arises in the Jones calculus.
Another approach to the description of optical devices uses the Mueller calculus [4].
One fundamental difference between the two calculi is found in the addition of waves;
Jones calculus assumes a coherent addition whereas Mueller calculus assumes an
incoherent addition. A relation between the calculi, appropriate to record at this
juncture, is obtained from a consideration of the Stokes parameters (2.8) and (2.10).

For this purpose, let j =1, 2 and 3 and define,
s; =5,P;,and s, = s, P/, (2.11)

where k =s;/5,. Interms of the parameters {s,}and {s;} with2=10, 1, 2 and 3 the

degree of polarization of the primary beam, P, is,

P =3 (s +55 +57) =V(P-P), (2.12)



and there is a similar expression for P’ in terms of {s;}. The 4 x 4 Mueller matrix

{M,,} has elements,
My, =3tr.{c,Q'c,Q}, (2.13)

and it possesses the property,
3
Sh=D Mysy. (2.14)
h=0

In (2.13), o9 = I and the three Pauli matrices are defined in (2.7).

From the identity det.u’ = (1 — P'*) / 4 and the definition of p' in terms of g and
Q we find,

P(1-P?)=(1-P) |det.Q|% (2.15)

Evidently, for the case of a completely polarized beam (P = 1), likewise, the beam
transmitted by the foil is completely polarized. In addition we mention two cases
where P’takes special values. First, the ideal polarizer always gives P” = 1, for in

this case Q is singular and det.Q2 = 0. Secondly, the ideal compensator and the ideal

rotator always gives P = P/ for in this case Q is unitary, ldet.Q| =1 and

k=1 since Q'Q = 1. To achieve depolarization of a completely polarized beam the
foil must exhibit some randomness. Such a foil is represented by some statistical
ensemble of transmission matrices, not a single matrix of the type we consider. In the
event that the degree of polarization in the primary beam is not complete, and P < 1,

there is no particular constraint from (2.15) on the value of P'.

Bulk optical properties of a foil appear in the calculus in a 2 x 2 Jones matrix,

denoted by J, and,



Q=exp(tJ). (2.16)

The thickness of the foil, ¢, is taken to be small. A real foil is modelled by a stratified
unit comprised of several lamella, each possessing one desired bulk property. One

finds for the Jones matrix,

2.17)

tJ=bI+a-c:( bta, —iazj.

a, +ia, b-a,

In general, a and » are complex and the Jones matrix contains eight independent
parameters [8]. However, for many experiments, the overall phase factor does not
influence the observed quantity and it can be set equal to zero leaving b purely real.
An example in which the overall phase does influence the observation is two-beam

interferometry [10]. For our part, we henceforth take b purely real, and find,

b= —%qt (n! +nl)=—qtn" = ——%—t’y, (2.18)

with =1, 2 and 3),

a,=-5qt An,,

where An; = {n(P;) — n(—P,)} is the difference in complex refractive indices picked out

by the polarization described by the Stokes parameter P;. The relation (2.2) together

with (2.18) completes the connection between bulk optical properties of the foil,
described by Jones matrices, and atomic properties of the resonant ion which appear

in the scattering length.

It is often convenient to use the expression, derived as described in the appendix

from (2.16) and (2.17),

Q=exp(b){¢I+Saoc}, (2.19)

10



where ¢ = cosh £, §=(sinh £) /  and Qz =a -a. For the transmittance ratio and the

Stokes parameters of the transmitted beam one obtains from (2.19),
k=¢e? { " +|s[’[a-a*+iP-(a x a%)]+ 2Re (@ * (P -2)5) } , (2.20)
and (=1, 2 and 3),

P =l {2Re_(¢*s a,)+|s/'[Fiax a*), ~a-a* P, +2Re.(a)(a- P))]

J

@.21)
e P, +2Im (@* s@xP) )},

The Stokes parameters P/ do not depend on b, as one might expect. On taking the

limit ¢ — 0 and retaining terms up to order 7,

k—>1-ty+qty, P An, (2.22)
J

and,

P —2d)+P{l-2(a'-P)}+2(a"x P), = P, +2a,(1- P*)
(2.23)
+2{Px@xP)},;+2@"xP),.

Here, a = a’ + ia"’, and a’ represents attenuation and a'"’ represents retardation of a
beam passing through a foil. It is to be noted that, attenuation of a beam on passage

through a foil creates polarization in the emerging beam (dichroism).

Algebra similar to that used in the derivation of (2.20) and (2.21) enables one to

compute the Mueller matrix elements (2.13).

11



3.  Passage through magnetic material

This section displays some general properties of attenuation and birefringence

due to E1 events in a magnetic material.

The quantity in the numerator of the Kramers-Heisenberg formula is made up of

the product of polarization vectors €|, €, and the product of atomic matrix elements,

TQB=Z<u|1’éu|n><n|IéB|p>, (3.1)

n(a)

where the notation 1(A) is defined following (2.4). In these expressions, a and B

label Cartesian components of a vector. With the X-ray energy in the vicinity of a

single atomic resonance at the energy A,

D ene Ty (d)

for (B = = (0 Ry 2 — s 32

The Einstein summation convention is employed, and the umbral Cartesian index is

summed over its three values.

An important aspect of our T4, defined by equation (3.1), is that there is a sum

over some of the quasi-discrete intermediate states. Using an atomic model, several
detailed calculations of (3.1) have demonstrated that it transforms as a tensor, and we

will assume T, has this property. The standard argument which is used to verify the

transformation property of Placzek’s tensor, namely,

5 R, In><n|R,
(E+E,-E,) ’

1

12



exploits the closure condition for the intermediate states [7]. Likewise, the detailed

calculations of 7,5 to which we refer exploit the restricted sum over intermediate

states in the definition (3.1).

In short, T, is henceforth taken to be a tensor of rank two in a space with three

dimensions. Like every even rank tensor, the physical properties it describes are

centrosymmetrical.
On using the Hermitian property of R,

Tpy =T - (3.3)
Hence, the real and imaginary parts of 7', defined by T, = T, + 1T, satisfy the

relations,

T!y =T} and Ty =—Tp,. (3.4)

Next, we consider the behaviour of TmB as a function of the polarity of a

magnetic field, denoted by H (not to be confused with the weak variable field of the
photon wave). The behaviour of interest is found to follow from the assumed
invariance to a change in the sign of the time variable of the equations of motion
determining physical properties. One consequence of the invariance is that, a
spontaneous magnetization reverses its polarity under the time-reversal operation. As
far as T, is concerned what matters is that it contains a product of two identical

operators. Using H to represent an applied field or a spontaneous magnetization, one
finds,

Toy(H) =Ty, (-H), (3.5)
and so,

13



Tig (H) = Tog (-H), Tl (H) = T2y (-H). (3.6)

The behaviour of T, (H) with respect to the polarity of the field might be anticipated.

For, any antisymmentrical tensor of rank two is equivalent to some axial vector, and
H is here an axial vector. We will use this property of an antisymmetrical tensor of

rank two later in the section.

For the product of polarization vectors we use the identity,

!

€u€p =7 uB(a s)+2(s €p — €€ )+2(g £y +E4E, % (s"8)5ap)- (3.7)

The identity expresses the representation of a tensor of rank two as the sum of three
independent parts. The three parts are a scalar, an antisymmetrical tensor and an
irreducible symmetrical tensor (the trace is zero). For the antisymmetrical tensor we

employ a second identity,

€qEp —Ep€, =Eqp, (8X E),, (3.8)
where €., is the completely antisymmetrical unit pseudo-tensor of rank three.
(Under rotations of the co-ordinate system, the quantities €., do not change, whereas
the components of a tensor should change sign. This special property of €., is

recognized by calling it a pseudo-tensor.) Also, we define a symmetrical tensor of
rank two,

X, =1B) ere, +epe, —2(5 ) 8,), (3.9)

N~

with obvious property X, =0.

Assembling the expressions in the quantity of interest one finds,

14



' ' ' i " ’ 1/2 ’
€6y Top =L(6/-8) Tl +d 6., Thp(& x8) +(2) X Tl (3.10)

&

For future purposes, it is useful to define two atomic quantities; and axial vector with

components,

A=1

=5 ", (3.11)
or, in components, 7,0 = A, / J2 etc., and, following the definition used for X, an

irreducible symmetrical tensor of rank two,

3 1/2 1
Ay =(§J [T;ﬁ -3 8 T;,} (3.12)

(The square root of fractions in the definitions of A, and A4, arise because these

quantities are Cartesian components of tensors of rank one and rank two, respectively,

and the atomic matrix elements in the definition of T, from which they are

o

constructed, are naturally calculated using spherical (atomic) tensors.)

The expression (3.10) is a fundamental material property. However, it cannot
describe the scattering of light directly since it is three-dimensional, while light is
two-dimensional (there is no component of the electric field in the direction of

propagation; see, also, the discussion in the appendix).

For the interpretation of an experiment one requires the scattering length
averaged with respect to the polarization in the primary beam of X-rays. A natural
choice of co-ordinates in which to effect the averaging is (6, «, q). In this system of
orthogonal unit vectors the polarization vectors take the values ¢ or =, and

€, € T, can be represented as a 2 x 2 matrix. The details are (the summation

convention does not apply to ¢ and w),

15



(3.13)

i

T ~5 (T~ Th)

Note that the coefficient of ¢-A is proportional to the helicity operator defined in

(A21). The average of (3.13) is obtained by multiplying it by the density matrix for
the polarization of the primary beam and taking the trace of the product, as in (2. 5).
For the quantity <Z>, defined in (2.4), one finds,

</ > = 8:1813 TuB = tr. HE;SB Taﬁ szl)_'(T:m +Tn'1:)
(3.14)
~+ P, M)+ P T, + 5 P (T, - T).

The dichroic signal is the part of <Z> picked out by the polarization. We see in (3.14)
that the circular dichroic signal is proportional to q- A, and the linear ( P,) dichroic

signal is proportional to (756 — T %n)-

Several comments are appropriate at this juncture. The symmetrical and

antisymmetrical components of T, respectively, are even and odd under the

operation which reverses the direction of time. All the Stokes parameters are even
with respect to time reversal, and q is odd with respect to this operation. By
construction, A is also odd with respect to time reversal and an axial vector (also

called a pseudo-vector). The properties of A mean that the contribution to <Z>in P,

is indeed unchanged under the time-reversal and the pa.rify operations.

Like every symmetrical tensor of rank two, T, can be brought to diagonal form

by a suitable choice of the Cartesian co-ordinate axes [2, 11, 12]. Hence, there are

16



three independent quantities in 7. There is one less independent quantity in 4,4,
constructed from T, according to the expression (3.12), since it is a tensor whose

trace is zero. The linear dichroic signals permit the measurement of the components

A, and (A4,, — A4,,), and no other components are accessible. Shortly, we shall see
that 4. is obtained from (4,, — 4,,). The co-ordinate axes in which T, is diagonal

have directions that are mutually perpendicular, and often they are referred to as the

principal co-ordinate axes.

Let the principal axes be obtained from the orthogonal axes (o,7, q) by a
rotation specified by Euler angles o, p and y (not to be confused with Cartesian
labels). Expression (3.12) is used to define rank-two atomic quantities whose mean

values, <Aap> , are the subject of sections 4 and 5. The principal axes are labelled a, b

and ¢. We find,

(A~ 4,)=3) (T, ~T2) = G cos20sin? B) < 4, >
(3.15)

+ (— sin 2a cosPsin 2y + % cos2a (3 +cos2P) cos 27) (<4, >—< 4, >).

The corresponding expression for A4, is equal to (A4, — 4,,)/2 evaluated at the Euler
angles o — %, B, 7.

In visualizing the constraints on T, arising from the
point-group symmetry it is helpful to observe that, in a space x, y, z,

€o€plap =X Ty +2xyT, + -+,

is an ellipsoid whose principal axes are those in which 7', is diagonal {11]. By the

Neumann principle [11, 12, 13] the ellipsoid must exhibit the symmetry of the

environment of the resonant ion. Hence, €,€, 7, is isotropic in a cubic system since

the ellipsoid compatible with cubic symmetry is a sphere. For a uniaxial crystal the
ellipsoid has two principal axes the same length, and in lower symmetry all three

17



principal axes of the ellipsoid have different lengths. Figure 1 illustrates the surface of

second degree associated with cubic, tetragonal, orthorhombic and triclinic systems.

In the event that the symmetrical tensor T, is referred to arbitrary axes (such

axes are sometimes called oblique axes) the number of independent quantities is six.
Principal axes are defined relative to oblique axes by three parameters, and in the

principal axes T, is specified by three independent quantities. Thus, in the latter

scheme there are also six independent quantities, namely, three parameters for the
specification of the principal axes relative to the oblique axes and three atomic

quantities for T.,. In so-called biaxial crystals (triclinic, monoclinic and
orthorhombic systems) all three principal values of the tensor are different. For
crystals with such a low symmetry 4, is specified by two independent qualities and
(3.15) is required in its full form. Crystals with symmetry higher than biaxial possess
the property <4, >=<4,, >and, in this instance, 4, and (4, —4,) are
proportional to < 4. > (for uniaxial crystals (tetragonal, hexagonal and trigonal

systems) the c-axis is taken to be the principal axis of symmetry of the crystal and
thus < 4,, >=<4,, >). It is perhaps useful to note that the orientation of the c-axis

is independent of the Euler angle vy ; the result is.

¢ = (cosasin 3, sin a sin P, cosp). (3.16)

In this context, note that the coefficient of < 4., >in (3.15) is independent of y, and a
function of o and B which is zero for B =0 and ®. Hence, for crystals with a point

group symmetry higher than biaxial the contribution to the attenuation coefficient
picked out by linear polarization (P; and P3) is zero if the principal axis is parallel to
the beam of X-rays. With this particular experimental geometry the linear dichroic

signals from biaxial crystals can be different from zero.

By way of an example, let us consider a monoclinic (biaxial) crystal. For this

case there are three independent entries in 4,,. One finds for 4,

18



and,

€€ Aup =%<Axx +Ayy>(t~:’-s—3s’z'az)+%<Axx —Ayy>(s's —€.€ )

x¥x y®y

+{4,)eLe, +e.8,)

This expression takes a much simpler form in the case of a uniaxial crystal since
(4,)= <Axx - Ayy> =0. The orientation factor (¢'-€—3¢.g,) is familiar as the linear

dichroic term in the scattering length for magnetic scattering and absorption where the

unique axis is the preferred magnetic axis.

In the foregoing discussion use is made of angular brackets to denote the mean

value of the enclosed quantity. For example, < 4,, > is the mean value, which is
equivalent to a time average, of a component of the rank-two symmetrical tensor 4,

defined in (3.12), evaluated in the principal axes. An explicit expression is,

<4, >=2 p,<ul4,|p> (3.17)
u

where p, is proportional to the Boltzmann factor for the equilibrium state labelled by
p,and T p, =1. Itis to be noted that, the mean values of operators encountered in

the interpretation of attenuation relate to the valence shell which accommodates the
photo-ejected core electron. Details about the core level are largely removed by the
sum on v in the definition of T4, equation (3.1), and remain in <Z > only to the
extent that the sum is restricted to states which contribute to a resonance labelled by
quantum numbers for a core level. In general, the mean value of an atomic quantity

depends on temperature, through the Boltzmann factor in (3.17), and all states of the

ligand crystal-field appropriate to the resonant ion.
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It is useful to record an identity for a mean value that stems from the invariance

of equations of motion for material properties to a change in the direction of time. Let

O be any quantum mechanical operator, O" its Hermitian conjugate and O the
operator obtained from O by the operation of time reversal. With this notation, the

identity of interest is,

<0>y=<{0} > 4 (3.18)

All observable quantities are represented by Hermitian operators. One such case is
the magnetization, M, for which the operator is odd with respect to time reversal; the

identity (3.18) yields M (H) = -M(-H), a result noted at the beginning of the section.

For materials in which the magnetic moments assume a spatial order the full
symmetry is a union of the point group and the symmetry element resulting from the
reversal of all currents. The resultant space-time symmetry depends on the directions
assumed by the moments, i.e. the spatial configuration of the magnetic moments. In
the case of ferromagnetic or ferrimagnetic configurations consideration must be given
to the influence on the configuration from any applied field. A sufficiently strong
applied field can reorientate the ferromagnetic component of the magnetization.
Thereby, the space-time symmetry is changed to one dictated by the direction of the
applied field relative to the crystallographic axes; in fact, properties of the saturated
material are governed by the structural crystal class and the direction of the applied
field. Symmetry considerations are less helpful for multidomain crystals, which
possess a far lower symmetry than the structural crystal class of the material. The
latter might be adequate for the interpretation of experiments on a demagnetized

material.

The behaviour of the atomic quantities A and 4,, with respect to H follows
from their definitions in terms of the imaginary and real parts of T ,(H). From the
property (3.6) and the definition (3.11) and (3.12), A is an odd function of H and 4,

is an even function of H. In consequence, expansions of these quantities in powers of

H begin with A linear in the field and 4,, equal to a constant plus a correction
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quadratic in the field. Expressions for the atomic quantities correct at the first order in

the field are, most likely, adequate, and we only need to consider A.

Let,
A, =K Hg, (3.19)

where K, is a tensor of rank two, in general not symmetrical in the Cartesian
indices. From the transformation properties of A, and H, it follows that, K 4 is a

polar tensor which is invariant (even) with respect to the operation of time reversal.

K, is similar in respect to these transformations to the magnetic permeability tensor
which, however, is symmetrical. There is no class of the point group for which K,

is identically zero, in contrast, say, to an axial tensor of rank two.

By way of example, let us briefly consider a monoclinic system (a biaxial

crystal) in which z labels the two-fold axis. In this case, K 4at most contains five

independent quantities and it has the form,

K, K, O
K, K, 0
6 0 K

The result applies to a magnetic phase of haematite, which exhibits a corundum-type
crystal structure and the Fe** spins form an antiferromagnetic configuration. In the
temperature range defined by the Néel temperature = 950K and the Morin temperature
= 260K the symmetry is C,,, and K, has the form indicated. Associated with this

phase is an anisotropic exchange interaction, usually called the Dzyaloshinsky-Moriya
interaction, and a small spontaneous ferromagnetism, parasitic to the
antiferromagnetism, and perpendicular to the spin axis of the antiferromagnetism.

Below the Morin temperature the symmetry is D,,, and for this symmetry K, is

zero apart from three elements on the diagonal and two of these are equal, K, =K .
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Weak ferromagnetism does not coexist with the symmetry D,,. In its low-

temperature phase, haematite is a fully compensated antiferromagnet and the circular

dichroic signal is zero.

Many ferromagnetic materials possess a cubic crystal structure, and the point
group symmetry is O,. In this instance, non-diagonal components of K, are zero
and the diagonal components are equal. Hence, A = K H where K is the

magnitude of the diagonal components of K.
4. Atomic models for <Z>

Several methods have been used to calculate the matrix elements of the dipole
operators in the resonant scattering length. The methods include multiple scattering,
and various computer codes for individual ions that differ in their treatment of

electron correlations and the influence of the ion’s environment.

Using individual ions as a starting point has proved successful in the

interpretation of the magnetic properties of many materials, and it is adopted in this

section. It has been known for a long time that algebraic results for 7, can be

derived [14, 15]. The actual handling levied on the sum over the intermediate states

in T,, gives rise to different expressions for it, as we shall see. In all cases, the

handling of the intermediate states makes T, a tensor, as we assumed in previous

sections.

(D) A sum over all the intermediate states associated with a valence shell, and they
are labelled here by m, followed by a spatial average reduces 7, to a quantity
proportional to the number of holes in the shell which accommodates the photo-
ejected core electron. Here, and subsequent sub-sections, we make explicit the
dependence of <Z> on the spectrum of intermediate states it contains by writing

itas <Z_ >. Denoting the number of holes in the valence shell by 7, ,
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(§]I<Zn >lv =%n,,. 4.1)

(II) Summing over all the intermediate states alone, and no spatial average, leads to

an expression that depends on #, and the quadrupole moment of the valence

shell. The latter is a spherical tensor of rank two, and we denote the mean value

of the tensor by <Q>.

To give an explicit expression for the symmetrical tensor 4., in <Z, >
we need formulae that relate 4., to spherical components of a second-rank

spherical tensor < A” > where v =0, +1, and +2:

A =b Q<49+ aD)> A -a, =G <UD+ a2)> @2

4, =<AP >.

It is interesting to note that tensors of higher rank, encountered in absorption by
an electric quadrupole (E2) event, do not have unique relations in Cartesian and

spherical co-ordinates.

At the second level of sophistication in handling the sum over

intermediate states one arrives at the atomic quantities in £ < Z_ >. One finds,
T, =n,and A=0. (4.3)

The construction of 4, uses the identity,
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4.4)

—p

_3wv@ A _3 v v (2) 4(2)
EB: XAy =3XPAD =3%" (—1)°XxP4

and (4.2) gives the rules for spherical and Cartesian components of a second-

rank tensor. Our result is,

@ o _of2y__ 1
<AD >= 2(3T(21_1)(2,+3)<Qu > 4.5)

where / is the angular momentum of the valence shell orbitals (the angular

momentum of the core level orbital is taken to be / — 1). An alternative way of

expressing (4.5) is to say that the Cartesian tensor,

Ty - 30,7, =(3)" 4

has spherical components,

127 )\ _ 4
) (%)=~ 3(21—1)(21+3)<Q”>’

which are used in the formulae (4.2). The definition of <Q > is such that for

v=0,
<Q,>=<Q,>=3< B -1(1+1)}, >, (4.6)

and the sum runs over all the unoccupied states in the valence shell. The

remaining four components of <@, >, with v=+1 and *2, contain the
reduced matrix element in < Q, >, i.e. the Wigner-Eckart theorem applies to

every contribution to <@, >. In the principal axes there are at most three
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(IID)

different quantities, namely < 4,, >, < 4,, > and <4, >, and we have seen

that these do not depend on < Q,, >.

At the next level of sophistication in handling the sum over the intermediate

states 1 is restricted to states that contribute to a resonance labelled by the total
angular momentum of the core level, J; J = ] i-%— and / =/—1. If we denote the

mean value of the energy at which the resonance is observed by A, the notation,

> means a sum on 7y restricted to the states that contribute to the structure
n(a)

around A =A(J). The value of, ¥ < Z, >, is the weight of the integrated
n(A)

absorption signal, and the following expressions include results from the first

investigation of the associated sum-rule [5].

One finds,

{
I, = T, = ny 4.7
oo aﬂz’y’z ao. (21 +1) h ( )

L
A=— L Ls withT? = L) (4.8)
21+ V2 2(21+1)
and,
! |
<AD >=— (2} <Q >, 4.9
v (3)> (412 _1) QU ( )

where the quadrupole tensor is defined in part II of this section. At the third
level of sophistication, the forward scattering-length reveals information on the

orbital contribution, <L >, to the magnetic moment carried by the valence

shell. The coefficient of P, in (3.14) is, — m q-<L>. In other words,

the circular dichroic signal is sensitive to the projection onto the direction of the

X-ray beam of the orbital moment.
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(V)

In the case of 3d transition ions it is customary to find,

<L>=(g,—2) <S>, where g, is the gyromagnetic factor and S is the total

spin operator for the valence shell. Lanthanide ions are distinguished by a very
strong spin-orbit interaction in the valence shell, and J=L+S is a good
quantum number (to a very good approximation). The Landé factor, g, satisfies
gJ=([L+2S),and L=(2-g)J.

With the present level of sophistication, the spherical components of,

2

Ty —18,,T), are, ————
3(41° -1)

3 o

(Q,)

Next, we look at the coefficient of P, in (3.14). Let the symmetry of the crystal

be higher than biaxial (results for a biaxial crystal are given in the next section);
from (3.15), (4.2) and (4.9),

1 __3 20 _1{3} (2) .2
Tg(AGG—Ann)—m<Acc>cosZasm 5—7(7) < 4,7 >cos2asin”
———1—<Q > cos2a.sin® B
20417 -1 ~°° ’

where < O >is defined in (4.6). As mentioned previously, the linear dichroic

signal is zero if the principal axis is parallel to the beam of X-rays. The

direction of the principal axis of symmetry is specified in (3.16).

The spin-orbit coupling on the core level makes Ja good quantum number and
the states J =/+1 have different energies. In consequence, with sufficient

resolution in energy, it is possible to investigate the absorption at the two spin-

orbit split partners. The weights for the partners are, (Zi) < Z, > and one finds
n

[6];
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1 1 - I-1
T,,=—= 2J+)n, £4) — [ <Zsl>p, 4.10
oo 2(412 _1){( )nh [ l J S } ( )

where < Xs.1 > is the mean value of the spin-orbit operator,

1 1

A=m@lz——l){(ﬁ+l) <L> i%(l—l)[l <S>+ +3)<T>]}, (4.11)

and,

1 1
J6 QI-12(21+1)

<AP >=-

{(QJ+1)<Q, >J_r§[(1—1)(21—1) <P,>+3<R, >}

4.12)

Recall that, in the principal axes the two independent quantities in the

symmetrical tensor 4,, depend only on < 4¥ > and < 4%} >. When summed

over the two values of Jthe foregoing expressions for T ,A and <A® >

reduce to the expression in II1, as expected.

The rank-one operator T (not to be confused with the tensor T',;) and the

rank-two operators P and R are completely specified by the expressions,

<T,>=<T,>=-<> {3R,(R-s)-s,}, >, (4.13)
j
<P, >=%<Z{3szzz —s-1}; >, (4.14)
]
<R, >= —%<Z{(2Z(Z+l)+l)szlz +(I(+2)-2)s-1-5L,(s-DL,}, >. (4.15)
J

Values of <T >,<P >and <R > for a 3d-transition ion are given in the next

section.
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(V) The spin projection of the core state, M, can take (2J+1) values. The

degeneracy of the states labelled by M is removed by the exchange field acting
on the core level. To take this fine structure into account one needs the

weights, ¥ <Z_>. For each weight there is in f,. one Lorentzian function
T](M) n res

of energy, i.e. the energy dependence of a spin-orbit split partner is modelled by

(27 +1) Lorentzian functions. We shall not give the corresponding expressions
for T,,, A and <A£2)> simply because they are lengthy. Examples of the

expressions appropriate for a 3d ion and a lanthanide ion are found in [6,16].
S.  Example: a biaxial crystal

The transition-metal niobates crystallize in the columbite structure, which is an
orthorhombic system and thus biaxial. Below 4.9K, ferrous niobate exhibits
antiferromagnetic order with a canted spin configuration. For a fully compensated
spin configuration the circular dichroic signal is zero. A non-zero signal can be
created by application of the magnetic field, and in the case of ferrous niobate at 2.0K
the field-induced magnetization is significant for modest fields. The critical value of
the magnetic field and the magnetization depends on the orientation of the applied
field relative to the crystal axes. The anisotropy in the magnetization is mirrored in
the gyromagnetic factors; in the principal axes, the gyromagnetic tensor of the ferrous

ion has values g, =2.0, g, =2.37 and g, =3.09.

The results given below are based on a model of ferrous niobate in which the
degrees of freedom of the orbital angular momentum of the ferrous ion are explicitly
taken into account [17]. The model is consistent with a wealth of experimental data,
including the magnetization, susceptibility and neutron diffraction pattern of a single

crystal.
To obtain the results of this section, the wave function of the ferrous ion is

calculated by perturbation theory, correct to the first-order in the spin-orbit coupling.

The mean values of the atomic quantities, introduced in part IV of section 4, are
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correct to the same order of approximation. Results here are for a single ferrous ion;
the field-induced magnetization and the relative orientation of the two ions in the unit

cell are given in reference [17].

We begin with the atomic quantities in A, equation (4.11). In the principal

axes, (a, b, ¢), one finds

<L >=(g,-2)<S, >, B.D
and,

<T,>={4{1-3(g, -} <S8, >. (5.2)

Because (g, —2)=0 there is no contribution to the anisotropy tensor, <T >, from

the component of the moment in the a-direction. The remaining Cartesian
components of A are zero. Using the values quoted for the gyromagnetic factors

<T,>=0.047 <L, >. (Results for <T > for other 3d-transition ions are found in

[6,18,19].)

The quadrupole moment, which appears in the symmetrical tensor A, is
independent of the temperature. The spherical components <, > different from

zero are <Q, >=3/2 and <Q,, >=—(3/2)"", and these particular values are
indicative of the main component of the ground-state orbital, which is the | yz >

orbital in the I, triplet.

The remaining rank-two tensors depend on temperature through <S? >. Thus,
in the paramagnetic phase the symmetrical tensor A4, is different from zero, unlike

A . One finds,

<P, >+<R, >= ——i—{(gc -2)< 82> +%(gb -[< 8 >-S(S +1)]}, (5.3)

29



and,
<P, >+<Ry>=2R3F (g, -DISE +1) - <82 5], (5.4)

where S = 2 is the spin of the ferrous ion.

Combining the results for <Q >, and (<P >+ <R >)in (4.12) and using (4.2),

we arrive at expressions for the quantities in the dichroic signal picked out by linear

polarization, namely,
ﬁ <A, >= ﬁ{- Q2J +D)*2(g, -2) <82 > +1(g, - D{<S2 >~ S(S +1)}]},

and, (5.6)

<A, - dy > = LT +1)+1(g, -2)[< S2 > =SS +1)}

These expressions inserted in (3.15) give the coefficient of P, in <Z >, found in
(3.14). The dependence on temperature of the linear dichroic signal is not simple; in

particular, the signal is not proportional to <S >. In the limit of an infinite
temperature < S >—> S(S +1)/3, and the approach to this value depends on the
strong uniaxial magnetic anisotropy in ferrous niobate. A value of <4, - 4,, >

different from zero reflects the low symmetry of the crystal. Another point to note is
that, the linear dichroic signal is not zero for a compensated antiferromagnetic
configuration of the moments, whereas the circular dichroic is zero for such a
configuration. The geometrical factor in the circular dichroic signal is simple, being
the projection of A on the direction of propagation of the X-ray beam. When the
projection is zero the linear dichroic signal is non-zero. Note that there is no simple

geometry which renders the contribution from < 4,, — 4, > zero, and this signature

of a biaxial crystal is omnipresent in the linear dichroic signal.
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6. Conclusions

Classical optical techniques, including Jones and Mueller calculi, are equally
applicable to X-rays and visible light. One can employ such well-established
techniques to provide a complete description of the passage of X-rays through a
material which is anisotropic and magnetic, including all polarization-dependent
effects. The scattering amplitude matrix, from which Jones and Mueller matrices can
be derived, is related to components of the dipole-dipole tensor. We describe a range
of atomic models for these same tensor components, thus providing a complete link
between atomic variables and observable quantities in X-ray attenuation and
retardation. The chosen example of ferrous niobate illustrates how, armed with the
appropriate electronic wavefunction, one can model X-ray attenuation, including

linear and circular dichroism.

Because the present treatment is restricted to rank-two tensors, appropriate for

pure dipolar events, effects such as natural circular dichroism [20] are not accessible.

Acknowledgements We have benefited from discussions with Dr. K. S. Knight and
Dr. U. Staub.

Figure Caption:
Figure 1

The ellipsoid formed by €,€p7 4p, for an ion in various crystalline environments. With
cubic symmetry, the ellipsoid becomes a sphere (there is no linear dichroism). An ion
in a tetrahedral environment has two principal axes the same length. Dichroism is
observed upon rotation about any axis other than the unique axis. Orthorhombic
symmetry leads to all three principal axes being different, with each being parallel to
symmetry directions of the ion. Any rotation leads to dichroism and 7%4p has three
independent elements. The final illustration shows an ion in a triclinic environment.
Again, the three principal axes are of different length, but they no longer lie along
symmetry directions. The tensor T%p has six independent elements, equivalent to

three principal axis lengths and three angles.
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Appendix

Consider a square matrix of order two,

b+a a, —ia
G=[ 3 1 2J, (Al)

a, +ia, b-a,

where, for the moment, a;, a,, a; and b are purely real. We note that G is Hermitian

and,
G=bl+a-o, (A2)

where [ is the unit matrix, and o}, 6, and o3 are standard Pauli matrices defined in

(2.6). In (A2) we employ the shorthand notation a-c=3%a;6,,j=1, 2 and 3. The

determinant of G is,

det. G=b*-(?, (A3)
with CZ = a - a, and the trace is,

tr. G =2b. (A4)

(A3) and (A4) are invariants of G and they are unchanged when G is the subject of a

unitary transformation, like a rotation of the axes that span its two-dimensional space.

The two eigenvalues of G are denoted by A+ and A_ and have the values,

A, =b=%C, (AS5)
which satisfy,
det. G=A,\_, (A6)
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and,

tr.G=A_+A_. (A7)
Using the fact that G satisfies the eigenvalue equation one finds,

G* =2bG - (b* -C*)I. (A8)

The corresponding eigenvectors of G are,

[nl ('—")J (A9)

n, (%)

with m(+) = (a1- iw)Cr, m(*) = (€ —a3) C+

m(=) = (@ —ia)C., m(-) = (€ +a3) C- (A10)
in which,
¢, ={2tleFa)} . (Al1)

The two eigenvectors are orthogonal, and each one is normalized to the value 1.

The matrix,
_(m) m(—)}
U‘(nz(ﬂ y(-) (A12)

is unitary, U+ = U, and satisfies, U* U=1. Of course,

U*Ggu (M Oj
-5 ) (A13)
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and,

G"—U(I/M 0 JU"—[ b-a, —a1+ia2] 4 g2y AL4
- 0 1/n. “\-a,-ia, b+a, (6= (Al4)

It is interesting to note that the eigenvectors, and hence U, do not depend on b, the

coefficient of the unit matrix in (A2).

The matrix formed with the symmetrical elements, %2 (Gop + Gpe) is purely real,

namely,

G_,=[ i b_aJ. (A15)

Let,
g =(af +a3)"?, C{ = 20'(¢' Fa,)} ", cosp =a,C] = (¢’ +a,)C.,

and, (A16)
sing =a,C’ =" -a;)C].

Taking @, = 0 in foregoing results one finds,

AL cos”+A’ sin? ¢ Tsin(2o)(A, —A') J

@ :[ Lsin@p)(M, —A') M, sin? ¢ +A cos’ )’ (A17)

with A, =b£¢’, and,
AL 0 cos¢ sind cos¢p ~—sind
( 0 7»'_] - [— sin cos¢JG3(sin¢ cos ¢ ] ' (A18)
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The vectors (cos¢, sing) and (—sing, cos¢) define a set of principal axes in which G; is

diagonal.

The matrix formed with the antisymmetrical elements, 2 (Gop — Gpa), has two
elements and it is purely imaginary. If the elements €, = — g;; = 1 define the unit

antisymmetrical tensor,

3(Gop —Gpo) =—ia,8p.. (A19)

For the case in hand, the quantity a, is a pseudo-scalar because the rank of the
antisymmetrical tensor on the left-hand side of (A19) is equal to the dimension of the
space in which it is defined. Specifically, the electric field that accompanies a photon
is described with two basis-vectors (usually called the polarization vectors) and the

scattering length, and the density matrix for the states of polarization, are tensors of
rank two.

By definition,

G=G,+G, (A20)
and,

) L (A21)

The second equality in (A21) defines X, which is found to be the operator for the
helicity of a photon. Note that the matrix representation of 2. is identical to the Pauli

matrix o;.

Define angles y and n} such that,
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m (+) = exp(in)cosy, n,(+) =siny,

/ _ / _ (¢, —ia,) _ .
n(+)/ ny (=) =-n (=) ny(+) = (alz +a22)1/2 = exp(in).

(A22)

Observe that exp (in) is the value of the determinant of U defined by (A12). One
finds,

[ A, cos’ y+A_sin®y  +e™sinRy)(A, — k_)] ’ (A23)

e sin2y)(h, —A_) A, sin’ y+A_cos’y

where, as before, A+ = b £ £, and now the orthogonality condition is,
n() - n'(-)=0.
In the main text we are led to consider the matrix,
Q =exp (G) =exp (b ]) exp (a -0). (A24)

Using o’ = I and (a -6)> =41, or (A8), one finds for Q,
Q= exp(b){ Icosh({)+a-o -}:sinh(g)}. (A25)

This important result is valid for complex a and 5. Note that Q has exactly the same
mathematical structure as G, cf. (A2). So, all previous results in the appendix apply

to Q on making the replacements,

b > exp(b)cosh({) and a—>aexp (b)-é—sinh ©). (A26)
In particular,
tr.Q = 2exp(b)cosh(f), (A27)
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and,

det.Q = exp(2b), (A28)
and if b is purely real it follows from (A28) that Q is a non-singular matrix.
The density matrix for states of polarization in a beam of photons, p, has the

structure of the matrix G, defined in (Al) and (A2), and a and b purely real. In this

instance,
n=5I+P-0), (A29)

where P = (P, P,, P3) is the so-called Stokes vector. One sees that tr.u = 1, and
det.u=(1- P%)/4 > 0 where P =\ (P-P). For a completely polarized beam P = 1 and

for an unpolarized beam P = 0.

Let u be a unit vector with purely real componentsu; = P,/P . Then,
pn=11-P)+1P(J+u-0), (A30)

in which the matrix (/ + u - ¢)/2 is idempotent, a useful property in manipulations
involving p. A physical interpretation of (A30) is that p is an incoherent mixture of a
completely polarized state (often called a pure state, and achieved when a photon is

described by a wave function), and a completely unpolarized state.

The average of a quantity Y, say, with respect to the polarization described by P

is,
Y= trpY=trYp. (A31)

Taking Y to be a Pauli matrix,
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al
I
~

=P (A32)

The combination of the three Stokes parameters P;, P, and P; into a “vector” P
is, of course, purely formal and is done only for convenience of notation. As we have
seen, P, is a pseudo-scalar, and P; and P are true scalars. A second property of the
Stokes parameters which demonstrate that P is not a true vector stems from crossing
symmetry. From the latter symmetry one finds the modulus of the scattering length is

invariant under the transformation expressed by,

Es-E', qe—-q', R P, PLo-P, PoP. (A33)

Here, the energy of a photon with wavevector q is E = #cl|q|, and primed quantities
relate to the condition of the secondary beam. It is readily shown that, under the

reversal of the direction of time all three Stokes parameters are even.

It is interesting to note that, for neutrons and photons the formal mathematical
structures of the density matrices are the same. However, the physical significance of
P differs for the two types of particle. In the case of a beam of neutrons P is twice the
mean value of the spin variable for neutrons in the beam. P, therefore, is odd with
respect to the reversal of the direction of time, and a pseudo-vector (also called an
axial vector). Thus, under the parity transformation, which inverts spatial coordinates
and so changes a right-handed system of coordinates to a left-handed system of
coordinates and vice versa, the polarization of neutrons is unchanged. Under the
parity transformation, the Stokes parameters P; and P; are unchanged, whereas P,, the
mean helicity, changes its sign, i.e. P; and P; are true scalars and P, is a pseudo-
scalar. The change in sign of P, is evident from its relation to helicity, the operator
for which is the scalar product of a polar vector (the photon wavevector) and an axial
vector (the photon spin). With regard to spatial symmetries for the two types of
particles it is relevant that the symmetry group for the density matrix of photons is
SO(2), while for neutrons the symmetry group is SU(2), of course. For one thing, the
dimension of SO(2) equals the rank of the density matrix and, from this alone, we

have noted that the Stokes parameter P, is a pseudo-scalar.
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