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Krylov space methods minimizing the 2-norm of the residual, such as GMRES, used in solving
a linear system with an unsymmetric matrix of order n× n can present pathological cases where
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matrices for which a starting point inducing this worst case convergence exists always
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1 Introduction

Given the linear system
Ax = b (1.1)

where A ∈ IRn×n is unsymmetric, the GMRES algorithm computes an approximation of the
solution. The analysis presented here is related to the Arnoldi process [6] and in particular to
the GMRES algorithm and its variants such as Flexible GMRES, see [7, 5, 6].

GMRES builds an upper Hessenberg matrix H starting from an initial vector x(0) computing
b̃ = b−Ax(0) and following the rules AQk = Qk+1Hk

QT
k b̃ = ek

1 ||b̃||2
(1.2)

where Hk ∈ IR(k+1)×k is an upper Hessenberg matrix. The algorithm stops if the least-squares
problem

min
y
||e1||b̃||2 −Hky||2 (1.3)

is less or equal to a chosen threshold η (normally η ≈
√

ε with ε machine precision).
In particular, we are interested in identifying the matrices and the starting points for which

convergence will be achieved only after n− 1 steps for a reasonably small threshold η. Owing to
the free choice of the starting point, we can reduce ourselves, without loss of generality, to the
problem of identifying the matrices where there exists a right-hand side b such that the starting
point x(0) = 0 will imply convergence after n − 1 steps. Moreover, it is possible to assume that
det(A) > 0. The negative determinant case can be reduced to the positive multiplying by −1
the first row in A and the first entry in b.

The whole process can be split into two phases. First, the Arnoldi process is equivalent to
applying a Gram-Schmidt procedure to the matrix

B = [b;A] ∈ IRn×(n+1)

in order to compute the upper triangular matrix R ∈ IRn×n with positive entries on the diagonal
and the matrix Q such that

B = Q[R;q] = Q
[

βe1;H
]
.

where β = ||b||2 Then, x is approximated by Qky with y solution of (1.3).
The computation of y is also performed in two stages. The Givens (or the Householder)

algorithm computes elementary rotations (or reflections in the case of Householder) G(i) in order
to reduce the matrix H to the upper triangular form U. Here we choose the Householder form
in order to avoid complications connected with sign choices in the following:

G(i) =


Ii−1

ci si

si −ci

In−i−1

 i = 1, . . . , n
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ci =
(h)i,i√

(h)2i,i + (h)2i+1,i

) and si =
(h)i+1,i√

(h)2i,i + (h)2i+1,i

Then, we compute

z(k) = β

k∏
i=1

G(i)e1 =

 z(k)
1

z
(k)
k

 ,

and solve the system

Uy = z(k)
1 . (1.4)

We must immediately note that

|| βe1 −Hky || = |zk|. (1.5)

Moreover, we have that

z
(k)
i = β

i∏
j=1

sj−1ci i = 1, . . . , k s0 = 1 (1.6)

z
(k)
k = β

k∏
j=1

sj (1.7)

Therefore, if |si| < 1 for all i then the vector z entries are decreasing in absolute values when i
increases. However, the convergence can be extremely slow when all the si = O(1−ζ) with ζ � 1
and in the worst case n− 1 steps are required. Finally, we point out that in this case H ∈ IRn×n,
(1.3) is consistent, and the residual is zero. In the following, we will assume that ||b|| = 1 for the
sake of simplicity and without loss of generality, because our sole interest is to seek the direction
of b.

2 Convergence problems for GMRES

Therefore, the Arnoldi algorithm applied to the matrix A computes, starting with the vector
q1 = b and in exact arithmetic, an orthonormal matrix Q and an upper Hessenberg H with
entries hi+1,i ≥ 0 i = 1, . . . , n. In particular, q1 is the first column of Q.

The decomposition
AQ = QH (2.8)

is one of many possible decompositions that can be computed changing the initial vector q1.
Let Ek ∈ IRn×k be the matrix of the first k column of the n × n indentity. The GMRES

method can be seen as a truncation of (2.8)

AQEk = QHEK = Qk+1Hk. (2.9)

From the previous analysis it is straightforward to see that the GMRES residual can stagnate
if, and only if, the first row of H has its first n− 1 entries equal to zero or very small in absolute
values. In this case all the residuals will be equal or very close to the norm of q1 until step n
when the final residual collapses to zero if A is non singular.
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Reversely, if the residual at step k does not decrease then the value of sk in the Givens matrix
G(k) will be equal to 1 or to 1−O(ζk), where ζk ≤ ζ � 1. In this second case, the matrix G(k)

is a perturbation of the permutation matrix swapping rows k and k + 1:

G(k) = (1−O(ζk))


Ik−1

0 1

1 0

In−k−1

 +O(ζ1/2
k )


0k−1

1 0

0 −1

0n−k−1

 (2.10)

The value of sk = 1 if and only if hkk = 0 and hk+1,k > 0, thus, if all residuals are equals the first
n− 1 entries of the first row of H must be zero. Thus, the reverse order product of the G(k)

G =
n∏

k=1

G(n−k), (2.11)

is the perturbation of the matrix P, where P is the circulant shifting permutation matrix such
that

Pei = ei+1 i = 1, . . . , n− 1
Pen = (−1)n−1e1,

i.e. G = P + Υ with ||Υ||2 ≤ O(ζ1/2), and det(P) = 1.
Moreover, the following relations hold:

H = GU

A = QHQT = QGUQT = QPUQT + QΥUQT

ΥU is upper Hessenberg.

 (2.12)

Finally, it is possible, without loss of generality, to assume that the sign of Unn is positive, owing
to the assumption det(A) > 0.

Remark 1. Owing to the previous discussion, the assumption det(A) > 0 can be easily removed
by re-defining P. If the det(A) < 0 then Unn < 0. However, in this case we can define
Pen = (−1)n−1e1sign(Unn) and assume Unn > 0.

From the above discussion, observing that ||A||2 = ||U||2, we can conclude that an initial q1

that gives the worst case convergence for Ã = QPUQT will produces a very slow convergence
also for A. Therefore, in the following section, we will focus only on the worst convergence case.

3 GMRES worst case convergence

From the results of Section 2, we introduce the manifold

M =
{
A : A = QPUQT |QTQ = I,Ui,j = 0 i < j, Uii > 0 i = 1, . . . , n

}
as the manifold of all the matrices for which there exists a vector q1 such that if we apply GMRES
to the system

Ax = q1
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we will have convergence only after n−1 steps with no decrease of the residual at each step. This
can be seen as a generalization of the result presented in [3] (see example C page 788).

Owing to the presence in (2.8) of both Q and its transpose we can assume that Q ∈ SO(n)
[1, 4] the special Lie group of orthogonal matrices. Moreover, U ∈ U(n) where U(n) is the
Lie Group of the upper triangular matrices with positive diagonal entries. The group U can be
decomposed as the Cartesian product of D(n) × Hei(n) where D(n) is the group of the positive
definite diagonal matrices and Hei(n) is the Heisenberg group. Following [4, 1], we can also write
each matrix A in M as

A = eSPeWeVe−S (3.13)

with S ∈ so(n) i.e ST = −S (S skew-symmetric) where so(n) is the Lie algebra of the Lie group
SO(n), W ∈ d(n) where d(n) is the Lie algebra of the diagonal matrices, and V a strictly upper
triangular matrix V ∈ hei(n) the Heisenberg Lie algebra.

3.1 A density result

Taking into account that so(n), d(n), and hei(n) are finite dimensional linear vector spaces with
dimensions

dim(so(n)) =
(n− 1)n

2
dim(d(n)) = n

dim(hei(n)) =
(n− 1)n

2

 (3.14)

then U = so(n) × d(n) × hei(n) is an open subset of IRn2
. The manifold M can be seen as the

image of the map
Φ : U −→ IRn2

Φ
(
S,W,V

)
= eSPeWeVe−S.

In particular, Φ ∈ C∞ i.e. is a smooth map. Its image does not contain the symmetric matrices.
Moreover, the symmetric part of of A is equal to

Q
(
PU + UTPT

)
QT

i.e. it is similar to a matrix having entry in position (1, 1) equal to zero. Therefore, the image of
Φ does not contains the matrices with a positive definite symmetric part.

From Sard Theorem1 [8, 2] it follows that the map Φ is a diffeomorphism almost everywhere
in IRn2

, i.e. the critical points of Φ are a small set. In particular, when in Sard Theorem m = p
for a regular point y (x 3 Ψ−1(y) are non critical) the set Ψ−1(y) reduces to a single point.
Therefore, the map Φ

(
S,W,V

)
is a diffeomorphism almost everywhere, and then it is invertible

and injective almost everywhere. Owing to the bijective correspondence between the Lie group
and the Lie algebras above, the function Φ

(
S,W,V

)
is also a function between SO(n) × U(n)

into IRn2
, i.e. Φ

(
S,W,V

)
= Φ̃

(
Q,U

)
where Q ∈ SO(n) and U ∈ U(n). In the following section,

the set of the critical values of this map is characterized.

1Sard Theorem

Theorem 3.1. Let Ψ : U −→ IRm be a smooth map, defined on an open set U ⊂ IRp, and let

C =
˘
x ∈ U | rank(dΨx) < m

¯
.

Then the image Ψ(C) ⊂ IRm has Lebesgue measure zero.
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3.2 The Jacobian of Φ̃
(
Q,U

)
Taking into account that every matrix Q ∈ SO(n) is a diffeomorphic function of a S ∈ so(n), the
following Lemma is straightforward

Lemma 3.1. Let Q ∈ SO(n) and Eij = eieT
j − ejeT

i the natural basis of the skew-symmetric
matrices vector space, i.e. so 3 S =

∑
ij σijEij , σij ∈ IR. Then

QT ∂Q
∂σij

∈ so, and
∂Q
∂σij

QT ∈ so.

Proof.

0 =
∂
(
QTQ

)
∂σij

=
∂QT

∂σij
Q + QT ∂Q

∂σij
=

( ∂Q
∂σij

)TQ + QT ∂Q
∂σij

,

0 =
∂
(
QQT

)
∂σij

=
∂Q
∂σij

QT + Q
∂QT

∂σij
=

∂Q
∂σij

QT + Q
( ∂Q
∂σij

)T
.

From the linearity in U of Φ̃ it follows that the

rank(d(Φ̃)) ≥ n(n + 1)
2

.

In particular, the Jacobin of Φ̃ can be expanded taking into consideration that Q = Q(S) where
S is a skew-symmetric matrix with n(n− 1)/2 parameters σij , i.e.

S =
∑
i6=j

βijEij ,

and that
U =

∑
k≤p

ukpekeT
p .

Then the Jacobian expression can be derived from

∂Φ̃
∂σij

=
∂Q
∂σij

PUQT −QPUQT ∂Q
∂σij

QT = Q
[
QT ∂Q

∂σij
,PU

]
QT

∂Φ̃
∂ukp

= QP
(
ekeT

p

)
QT ;

(3.15)

where
[
X,Y

]
= XY −YX is the Lie bracket. Thus, the Jacobin matrix of Φ̃ ∈ IRn2×n2

can be
written as

J(Φ̃) =
( ∂Φ̃
∂ukp

;
∂Φ̃
∂σij

)∣∣
i6=j;k≤p

i, j, k, p ∈ {1, . . . , n}

where the columns of J(Φ̃) are expressed as n× n matrices.
J(Φ̃) will not be full rank if there exists a set of real values xij) and ykp not all identically

zero such that ∑
j 6=j

xijQ
[
QT ∂Q

∂σij
,PU

]
QT +

∑
k≤p

ykpQP
(
ekeT

p

)
QT = 0. (3.16)
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From (3.16) and Lemma 3.1, and from the linear vector space properties of so(n) it follows that
rank(J(Φ̃)) < n2 if, and only if, there exists a skew-symmetric matrix S̃ ∈ so(n), an upper
triangular matrix Ũ with positive diagonal entries, and an upper triangular matrix Ṽ such that

Q
([

S̃,PŨ
]
+ PṼ

)
QT = 0. (3.17)

Equation (3.17), has non trivial solutions. If, V = 0, then (3.17) implies that S and PU commute.
From the properties of the skew-symmetric matrices it follows that U = λI, λ ∈ IR \ {0}. An
S = PTSP will then satisfy (3.17). Furthermore, it is easy to see that in the previous case, the
image of Φ

(
Q, I

)
and of all Φ

(
QPk, I

)
will collapse to the same value.

In particular, (3.17) will be satisfied, if the strict lower triangular part of PTSPU−US has
all zero entries, owing to the possibility of choosing V equal to the upper triangular part.

3.3 An algebraic geometry point of view

We describe here a simple characterization that defines a necessary and sufficient condition such
that A ∈ M.

Theorem 3.2. Let A ∈ IRn2
non singular. Let

f(x) =


xTAx

xTA2x
...

xTAn−1x

 ; V =
{
x 6= 0; f(x) = 0

}
.

Then
A ∈ M ⇐⇒ V 6= ∅.

Proof. Without loss of generality, we assume that ||b|| = 1 and q1 = b.

=⇒

We have that
QTb = e1.

Then
Ab = QPUe1 = QPe1ξ2 = Qe2ξ2,

and, thus,
bTAb = eT

1 e2 = 0.

Moreover, we have

bTAib = eT
1

( i∏
k=1

PU
)
e1 = eT

1

( i∑
j=2

ejξj

)
= 0.

⇐=

We will proceed by induction on k. The Gram-Schmidt process in exact arithmetic applied within
GMRES can be used to prove that under the Hypothesis of the theorem there exists a q1 = b
such that A ∈ M. The first step is to compute q2 from q1:

q2 =
(
Aq1 − q1qT

1 Aq1

)
�||Aq1 − q1qT

1 Aq1||.
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Thus, from the hypothesis, it follows that

q2 = Aq1�||Aq1||,

and
qT

1 Aq2 = qT
1 A2q1 = 0.

Moreover, if n > 3 then we have

qT
1 Aiq2 = qT

1 Ai+1q1 = 0 ∀i ≤ n− 2.

Let us assume that
qT

1 Aiqj = 0 ∀i ≤ n− j ∀j ∈ [2, . . . , k]. (3.18)

Then, we have that

qk+1 =

(
I−

∑k
j=1 qjqT

j

)
Aqk

α

with α = ||
(
I−

∑k
j=1 qjqT

j

)
Aqk||. Thus, it follows from (3.18 that

qT
1 Aiqk+1 = qT

1 Ai+1qk −
k∑

j=1

qT
1 AiqjqT

j Aqk = 0 ∀i ≤ n− (k + 1).

The proof is constructive and if V = ∅ but if, given fk(x)

fk(x) =


xTAx

xTA2x
...

xTAk−1x

 ,

Vk =
{
x 6= 0; fk(x) = 0

}
6= ∅, then there exists b 6= 0 such that the residual during the GMRES

algorithm will not decrease for k − 1 steps.

Corollary 3.1. Let K be the degree of the minimal polynomial of A and A non singular. Then

Vk = ∅ ∀k ≥ K

Proof. Let ℘(x) ∈ P(K) the minimal polynomial of degree K such that

℘(A) = 0.

Thus, we have
xT ℘(A)x = 0.

If fj(x) = 0 for j > 0 all xTAjx = 0 and then

xTxdet(A) = 0.

Corollary 3.1 can be used to prove that if we have preconditioned (1.1) such that the pre-
conditioned matrix has multiple eigenvalues then GMRES will converge in the worst case after a
number of steps equal to the number of distinct eigenvalues.

Finally, for the classes of symmetric or skew-symmetric matrices, and of matrices with sym-
metric part positive or negative definite there does not exist a b 6= 0 corresponding to the worst
case convergence of GMRES.
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4 Conclusions

We have characterized the class of matrices for which a starting point for GMRES for which
convergence will be achieved after n − 1 steps does exist. Despite its purely theoretical nature,
the result shows the necessity of linking any result on the GMRES rate of convergence to the
starting point and to the right-hand side of (1.1).

Finally, the discussion in Section ?? shows that the worst case pathological behaviour can
also occurs in a neighbouring of the worst starting point, i.e. when the first row of H has small
entries.
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