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ABSTRACT

The adaptive cubic overestimation algorithm described by Cartis, Gould and Toint (RAL-TR-

2007-007) is adapted to the problem of minimizing a nonlinear, possibly nonconvex, smooth

objective function over a convex domain. Convergence to first-order critical points is shown

under standard assumptions, but without any Lipschitz continuity requirement on the objective’s
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1 Introduction

Adaptive cubic regularisation has recently returned to the forefront of smooth nonlinear opti-

mization as an alternative to more standard globalization techniques for nonlinear unconstrained

optimization. Methods of this type, initiated by Griewank (1981), Nesterov and Polyak (2006)

and Weiser, Deuflhard and Erdmann (2007), have been consolidated into a practical and suc-

cessful algorithm by Cartis, Gould and Toint (2007). They are based on the observation that a

third-order model can be constructed which is an overestimate of the objective function when the

latter has Lipschitz continuous Hessians and a model parameter is chosen large enough. These

adaptive overestimation methods are not only globally convergent to first- and second-order crit-

ical points, but also enjoy good worse-case complexity bounds. Furthermore, numerical results

presented in Cartis et al. (2007) suggest that it might be one of the most efficient numerical

minimization methods to date.

Extending the approach to more general optimization problems is therefore attractive, as

one may hope that some of the qualities of the unconstrained methods can be transferred to

a broader framework. Nesterov (2006) has considered the extension of his cubic regularisa-

tion method to problems with smooth convex objective function and convex constraints. In

this paper, we consider that of the adaptive cubic overestimation method to the case where

minimization is subject to convex constraints, but the smooth objective function is no longer

assumed to be convex. The new algorithm is strongly inspired by the unconstrained adaptive

cubic overestimation method and by the trust-region projection methods for the same problem,

which are fully described in Chapter 12 of Conn, Gould and Toint (2000). In particular, it

makes significant use of the specialized criticality measure developed by Conn, Gould, Sartenaer

and Toint (1993) for this context. Remarkably, the desirable iteration complexity of the cubic

regularisation method for unconstrained nonlinear problem extends to the case where convex

constraints are present. Because the number of objective function/gradient evaluations is di-

rectly dependent on the number and type of the iterations, one therefore deduces a worst-case

bound of the number of these evaluations.

The paper is organized as follows. Section 2 describes the problem more formally as well

as the new algorithm, while Section 3 presents the associated convergence theory (to first-order

critical points). We then discuss a worst-case function-evaluation complexity result for a variant

of the new algorithm in Section 4. Some conclusions are finally presented in Section 5.

2 The new algorithm

We consider the numerical solution of the constrained nonlinear optimization problem

min
x∈F

f(x), (2.1)

where we assume that f : IRn → IR is twice continuously differentiable, possibly nonconvex, and

bounded below by the constant flow on the closed convex non-empty feasible domain F ⊆ IRn.

Our algorithm for solving this problem follows the broad lines of the projection-based trust-

region algorithm of Chapter 12 in Conn et al. (2000) with adaptations necessary to replace the
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trust-region globalization mechanism by a cubic regularisation of the type analysed in Cartis et

al. (2007). At an iterate xk within the feasible region F , a cubic model of the form

mk(xk + s) = f(xk) + gk
T sk + 1

2
sk

T Bksk + 1
3
σk‖sk‖3 (2.2)

is defined, where ·T · denotes the Eclidean inner product, where gk
def
= ∇xf(xk), where Bk is a

symmetric matrix hopefully approximating ∇xxf(xk), where σk is a non-negative regularisation

parameter, and where ‖ · ‖ stands for the Euclidean norm. The step sk from xk is then defined

in two stages. The first stage is to compute a generalized Cauchy point xGC

k such that xGC

k

approximately minimizes the model (2.2) along the Cauchy arc defined by the projection onto

F of the negative gradient path, that is

{ x ∈ X | x = PF [xk − tgk] },

where we define PF to be the (unique) orthogonal projector onto F . The approximate mini-

mization is carried out using a generalized Goldstein-like linesearch on the arc, as explained in

Section 12.1 of Conn et al. (2000). In practice, xGC

k = xk + sGC

k is determined such that

xGC

k = PF [xk − tGC

k gk] for some tGC

k > 0, (2.3)

and

mk(x
GC

k ) ≤ f(xk) + κubsgk
T sGC

k (2.4)

and either

mk(x
GC

k ) ≥ f(xk) + κlbsgk
T sGC

k (2.5)

or

‖PT (xGC
k

)[−gk]‖ ≤ κepp|gk
T sGC

k |, (2.6)

where the three constants satisfy

0 < κubs < κlbs < 1, and κepp ∈ (0, 1
2
). (2.7)

and where T (x) is the tangent cone to F at x. The conditions (2.4) and (2.5) are the familiar

Goldstein linesearch conditions adapted to our search along the Cauchy arc, while (2.6) is there to

handle the case where this arc ends before condition (2.5) is ever satisfied. Once the generalized

Cauchy point xGC

k is computed (which can be done by a suitable search on tGC

k > 0 inspired by

Algorithm 12.2.2 of Conn et al. (2000) and discussed below), any step sk such that

x+
k

def
= xk + sk ∈ F

and such that the model value at x+
k is below that obtained at xGC

k is acceptable.

Given the step sk, the trial point x+
k is known and the value of the objective function at this

point computed. If the ratio

ρk =
f(xk) − f(x+

k )

f(xk) − mk(x
+
k )

. (2.8)

of the achieved reduction in the objective function compared to the predicted model reduction is

larger than some constant η1 > 0, then the trial point is accepted as the next iterate and the reg-

ularisation parameter σk essentially unchanged or increased, while the trial point is rejected and
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σk increased if ρk < η1. Fortunately, the undesirable situation where the trial point is rejected

cannot persist since σk eventually becomes larger than some local Lipschitz constant associated

with the Hessian of the objective function (assuming it exists), which in turn guarantees that

ρk ≥ 1, as shown in Griewank (1981), Nesterov and Polyak (2006) or Cartis et al. (2007).

We now state our Adaptive Cubic Regularisation for Convex constraints (ACURC).

Algorithm 2.1: Adaptive Cubic Regularisation for Convex Constraints

(ACURC)

Step 0: Initialization. An initial point x0 ∈ F and an initial regularisation parameter

σ0 are given. Compute f(x0) and set k = 0.

Step 1: Determination of the generalized Cauchy point. If xk is first-order critical,

terminate the algorithm. Otherwise perform the following iteration.

Step 1.0: Initialization. Define the model (2.2), choose t0 > 0 and set

tmin = 0, tmax = ∞ and j = 0.

Step 1.1: Compute a point on the projected-gradient path. Set xk,j =

PF [xk − tjgk] and evaluate mk(xk,j).

Step 1.2: Check for the stopping conditions. If (2.4) is violated, then set

tmax = tj and go to Step 1.3. Otherwise, if (2.5) and (2.6) are violated, set

tmin = tj and go to Step 1.3. Otherwise, set xGC

k = xk,j and go to Step 2.

Step 1.3: Find a new value of the arc parameter. If tmax = ∞, set tj+1 = 2tj .

Otherwise, set tj+1 = 1
2
(tmin + tmax). Increment j by one and go to Step 1.2.

Step 2: Step calculation. Compute a step sk and a trial point x+
k

def
= xk + sk ∈ F such

that

mk(x
+
k ) ≤ mk(x

GC

k ). (2.9)

Step 3: Acceptance of the trial point. Compute f(x+
k ) and the ratio (2.8). If ρk ≥

η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularisation parameter update. Set

σk+1 ∈















(0, σk] if ρk ≥ η2,

[σk, γ1σk] if ρk ∈ [η1, η2),

[γ1σk, γ2σk] if ρk < η1.

Increment k by one and go to Step 1.

As in Cartis et al. (2007), the constants η1, η2, γ1, and γ2 are given and satisfy the conditions

0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2. (2.10)
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As for trust-region algorithms, we say that iteration k is successful whenever ρk ≥ η1 (and thus

xk+1 = x+
k ), and very successful whenever ρk ≥ η2, in which case, additionally, σk+1 ≤ σk. We

denote the index set of all successful iterations by S.

As mentioned above, our technique for computing the generalized Cauchy point is inspired

from the Goldstein linesearch scheme, but it is most likely that techniques based on Armijo-like

backtracking (see Sartenaer, 1993) or on successive exploration of the active faces of F along

the Cauchy arc (see Conn, Gould and Toint, 1988) are also possible, the latter being practical

when F is a polyhedron.

3 Global convergence to first-order critical points

We now consider the global convergence properties of Algorithm ACURC and show in this

section that all the limit points of the sequence of its iterates must be first-order critical points

for the problem (2.1). Our analysis will be based on the first-order criticality measure at x ∈ F
given by

χ(x)
def
=

∣

∣

∣

∣

∣

min
x+d∈F ,‖d‖≤1

∇xf(x)T d

∣

∣

∣

∣

∣

, (3.1)

(see Conn et al., 1993) and define χk
def
= χ(xk). For our analysis, we consider the following

assumptions.

AS1: The feasible set F is closed, convex and non-empty.

AS2: The function f is twice continuously differentiable on an open set F̂ containing F .

AS3: The function f is bounded below by flow on F .

AS4: There exists constant κH > 1 and κB > 1 such that

‖∇xxf(x)‖ ≤ κH for all x ∈ F , and ‖Bk‖ ≤ κB for all k ≥ 0. (3.2)

Our first result investigate the properties of the projected gradient path and variants of the

criticality measure (3.1).

Lemma 3.1. Suppose that AS1 and AS2 hold. For x ∈ F and t > 0, let

x(t)
def
= P [x − t∇xf(x)] and θ(x, t)

def
= ‖x(t) − x‖, (3.3)

while, for x ∈ F and θ > 0,

χ(x, θ)
def
=

∣

∣

∣

∣

∣

min
x+d∈F ,‖d‖≤θ

∇xf(x)T d

∣

∣

∣

∣

∣

, (3.4)

and

π(x, θ)
def
=

χ(x, θ)

θ
, (3.5)
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and

πGC

k
def
= π(xk, ‖sGC

k ‖) and π+
k

def
= π(xk, ‖sk‖), (3.6)

where sGC

k
def
= xGC

k − xk. Then θ(x, t), χ(x, θ) and π(x, θ) are continuous with respect to their

two arguments, θ(x, t) is non-decreasing as a function of t, χ(x, θ) is non-decreasing with θ and

π(x, θ) is non-increasing with θ. In particular, if ‖sGC

k ‖ ≥ 1, then

χ(xk, ‖sGC

k ‖) ≥ χk ≥ πGC

k (3.7)

while if ‖sGC

k ‖ ≤ 1, then

πGC

k ≥ χk ≥ χ(xk, ‖sGC

k ‖). (3.8)

Similarly, if ‖sk‖ ≥ 1, then

χ(xk, ‖sk‖) ≥ χk ≥ π+
k (3.9)

while if ‖sk‖ ≤ 1, then

π+
k ≥ χk ≥ χ(xk, ‖sk‖). (3.10)

Moreover

χk ≤ χ(xk, ‖sGC

k ‖) + 2‖PT (xGC
k

)[−gk]‖, (3.11)

−gk
T sGC

k = χ(xk, ‖sGC

k ‖) ≥ 0 (3.12)

and

θ(x, t) ≥ t ‖PT (x(t))[−∇xf(x)]‖ (3.13)

for all t > 0.

Proof. These results only depend on the geometry of the projected gradient path and

(except for (3.13)) immediately follow from Theorems 12.1.3 (page 446), 12.1.4 (page 447)

and 12.1.5 (page 448) in Conn et al. (2000) and the identity χk = χ(xk, 1). In particular,

(3.11) results from (3.7) if ‖sGC

k ‖ ≥ 1, and from (3.12) and Th. 12.1.5 (iii) with θ = 1

and d = sGC

k if ‖sGC

k ‖ < 1. We therefore only need to prove (3.13). We first note that, if

u(x, t) = x(t) − x, then θ(x, t) = ‖u(x, t)‖ and, denoting the right directional derivative by

d/dt+, we see that

dθ

dt+
(x, t) =

du(x,t)
dt+

T
u(x, t)

‖u(x, t)‖ =
PT (x(t))[−∇xf(x)]T u(x, t)

θ(t)
(3.14)

where we used Proposition 5.3.5 (page 141) of Hiriart-Urruty and Lemaréchal (1993) to

deduce the second equality. Moreover

u(x, t) = −t∇xf(x) − [x − t∇xf(x) − x(t)]
def
= −t∇xf(x) − z(x, t) (3.15)

and because of the definition of x(t), z(x, t) must belong to N(x(t)), the normal cone to F
at x(t). Thus, since this cone is the polar of T (x(t)), we deduce that

PT (x(t))[−∇xf(x)]T z(x, t) ≤ 0. (3.16)



6 Coralia Cartis, Nicholas I. M. Gould & Philippe L. Toint

We now obtain, successively using (3.14), (3.15) and (3.16), that

θ(t)
dθ

dt+
(t) = PT (x(t))[−∇xf(x)]T u(x, t)

= PT (x(t))[−∇xf(x)]T−t∇xf(x) − z(x, t)

= t−∇xf(x)T PT (x(t))[−∇xf(x)] − PT (x(t))[−∇xf(x)]T z(x, t)

≥ t ‖PT (x(t))[−∇xf(x)]‖2.

(3.17)

But (3.14) and the Cauchy-Schwartz inequality also imply that

dθ

dt+
(x, t) ≤ ‖PT (x(t))[−∇xf(x)]‖.

Combining this last bound with (3.17) finally yields (3.13) as desired. 2

We complete our analysis of the criticality measures by considering the Lipschitz continuity of

the measure χ(x). We start by proving an extension of Lemma 1 in Mangasarian and Rosen

(1964).

Lemma 3.2. Suppose that AS1 holds and define

φ(x)
def
= min

x+d∈F ,‖d‖≤1
gTd

for x ∈ F and some vector g ∈ IRn. Then φ(x) is a proper convex function on

F1
def
= {x ∈ IRn | ‖x − x0‖ ≤ 1 for some x0 ∈ F} ⊇ F . (3.18)

Proof. The result is trivial if g = 0. Assume therefore that g 6= 0. We first note that

the definition of F1 ensures that the feasible set of φ(x) is nonempty and therefore that the

parametric minimization problem defining φ(x) is well-defined for any x ∈ F1. Moreover, the

minimum is always attained because of the constraint ‖d‖ ≤ 1, and so −∞ < −‖g‖ ≤ φ(x)

for all x ∈ F1. Hence φ(x) is proper in F1. To show that φ(x) is convex, let x1, x2 ∈ F1, and

let d1, d2 ∈ IRn be such that

φ(x1) = 〈g, d1〉 and φ(x2) = 〈g, d2〉.

Also let λ ∈ [0, 1], x0
def
= λx1 + (1 − λ)x2 and d0

def
= λd1 + (1 − λ)d2. Let us show that d0 is

feasible for the φ(x0) problem. Since d1 and d2 are feasible for the φ(x1) and φ(x2) problems,

respectively, and since λ ∈ [0, 1], we have that ‖d0‖ ≤ 1. To show x0 + d0 ∈ F ; we have

x0 + d0 = λ(x1 + d1) + (1 − λ)(x2 + d2) ∈ λF + (1 − λ)F ⊆ F ,

where we used that F is convex to obtain the set inclusion. Thus d0 is feasible for φ(x0) and

hence

φ(x0) ≤ 〈g, d0〉 = λ〈g, d1〉 + (1 − λ)〈g, d2〉 = λφ(x1) + (1 − λ)φ(x2).

which proves that φ(x) is convex in F1. 2
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We are now is position to prove that the criticality measure χ(x) is Lipschitz continuous on

bounded subsets of F .

Theorem 3.3. Suppose that AS1 and AS2 hold. Suppose also F0 is a bounded subset of F
and that ∇xf(x) is Lipschitz continuous on F0 with constant κLg. Then there exists a constant

κLχ ≥ 0 such that

|χ(x) − χ(y)| ≤ κLχ‖x − y‖
for all x, y ∈ F0.

Proof. We have from (3.1) that

χ(x) − χ(y) = miny+d∈F ,‖d‖≤1〈∇f(y), d〉 − minx+d∈F ,‖d‖≤1〈∇f(x), d〉, (3.19)

= miny+d∈F ,‖d‖≤1〈∇f(y), d〉 − miny+d∈F ,‖d‖≤1〈∇f(x), d〉
+ miny+d∈F ,‖d‖≤1〈∇f(x), d〉 − minx+d∈F ,‖d‖≤1〈∇f(x), d〉. (3.20)

Note that the first two terms in (3.20) have the same feasible set but different objectives,

while the last two have different feasible sets but the same objective. Consider the difference

of the first two terms. Letting

〈∇f(y), dy〉 = min
y+d∈F ,‖d‖≤1

〈∇f(y), d〉 and 〈∇f(x), dx〉 = min
y+d∈F ,‖d‖≤1

〈∇f(x), d〉,

the first difference in (3.20) becomes

〈∇f(y), dy〉 − 〈∇f(x), dx〉 = 〈∇f(y), dy − dx〉 + 〈∇f(y) −∇f(x), dx〉
≤ 〈∇f(y)−∇f(x), dx〉
≤ ‖∇f(y) −∇f(x)‖ · ‖dx‖
≤ κLg‖x − y‖,

(3.21)

where to obtain the first inequality above, we used that, by definition of dy and dx, dx is

now feasible for the constraints of the problem of which dy is the solution; the last inequality

follows from the assumed Lipschitz continuity of ∇f and from the bound ‖dx‖ ≤ 1.

Consider now the second difference in (3.20) (where we have the same objective but different

feasible sets), and define

F01
def
= {x ∈ IRn | ‖x − x0‖ ≤ 1 for some x0 ∈ F0}.

Note that our assumptions imply that F01 is a bounded subset of F1, where F1 is defined by

(3.18). The proper convexity of φ(x) on F1 ∩ F̂ (ensured by Lemma 3.2 with g = ∇xf(x))

and Theorem 10.4 in Rockafellar (1970) then yield that φ(x) is Lipschitz continuous (with

constant κLφ, say) on any subset of the relative interior of F01 ∩ F̂ , in particular on F0. As

a consequence, we obtain from (3.20) and (3.21) that

χ(x) − χ(y) ≤ (κLg + κLφ)‖x − y‖.

Since the role of x and y can be interchanged in the above argument, the conclusion of the

theorem follows by setting κLχ = κLg + κLφ. 2
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This theorem provides a generalization of a result already known for the special case where F is

defined by simple bounds and the norm used in the definition of χ(x) is the infinity norm (see

Lemma 4.1 in Gratton, Mouffe, Toint and Weber-Mendonça, 2008a).

We say that x∗ is a first-order critical point for (2.1) if χ(x∗, 1) = 0 (see Theorem 12.1.6 in

Conn et al., 2000), and now prove a first crude upper bound on the length of any descent step.

Lemma 3.4. Suppose that AS1 and AS2 hold, and that

mk(xk + s) ≤ f(xk). (3.22)

Then

‖s‖ ≤ 3

2σk

[

κB +
√

σk‖gk‖
]

. (3.23)

Proof. The definition (2.2) and (3.22) give that

gk
T s + 1

2
sT Bks + 1

3
σk‖s‖3 ≤ 0

and hence, using the Cauchy-Schwarz inequality and (3.2), that

0 ≤ 1
3
σk‖s‖3 ≤ ‖gk‖ ‖s‖ + 1

2
κB‖s‖2.

This in turn implies that

‖s‖ ≤
1
2
κB +

√

1
4
κ2

B
+ 4

6
σk‖gk‖

2
3
σk

=
κB +

√

4
6
σk‖gk‖

2
3
σk

≤ 3

2σk

[

κB +
√

σk‖gk‖
]

.

2

Using this bound, we next verify that Step 1 of Algorithm ACURC is well-defined and delivers

a suitable generalized Cauchy point.

Lemma 3.5. Suppose that AS1 and AS2 hold. Then, for each k with χk > 0, the loop between

steps 1.1, 1.2 and 1.3 of Algorithm ACURC is finite and produces a generalized Cauchy point

xGC

k satisfying (2.4)-(2.6).

Proof. Observe first that the generalized Cauchy point resulting from Step 1 must satisfy

the conditions (2.4)-(2.6) if the loop on j internal to this step terminates finitely. Thus we

only need to show (by contradiction) that this finite termination always occurs. We therefore

assume that the loop is infinite and j tends to infinity.

Suppose first that tmax = ∞ for all j ≥ 0. Because of Lemma 3.4, we know that θ(xk, tj) =

‖xk,j − xk‖ is bounded above as a function of j, but yet tj+1 = 2tj and thus tj tends to

infinity. We may then apply (3.13) to deduce that

‖PT (xk,j)[−gk]‖ ≤ θ(xk, tj)

tj
,
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and thus that

lim
j→∞

‖PT (xk,j)[−gk]‖ = 0. (3.24)

But Theorem 12.1.4 of Conn et al. (2000) gives that, for all j ≥ 0,

−gk
T xk,j − xk = |gk

T xk,j − xk| = χ(xk, ‖xk,j − xk‖),

and therefore, using Lemma 3.1, that |gk
T xk,j − xk| is non-decreasing with j and that

|gk
T xk,0 − xk| = χ(xk, ‖xk,0 − xk‖) ≥ min[1, ‖xk,0 − xk‖] χk > 0,

where the last inequality follows from the fact that xk is not first-order critical. As a conse-

quence,

|gk
T xk,j − xk| ≥ min[1, ‖xk,0 − xk‖] χk > 0

for all j ≥ 0. Combining this observation with (3.24), we conclude that (2.6) must hold for

all j sufficiently large, and the loop inside Step 1 must then be finite, which contradicts our

assumption. Thus our initial supposition on tmax is impossible and tmax must be reset to a

finite value. The continuity of the model mk and of the projection operator PF then imply,

together with (2.7), the existence of an interval I of IR+ of nonzero length such that, for all

t ∈ I,

mk(PF [xk − tgk]) ≤ f(xk) + κubsgk
T PF [xk − tgk] − xk

and

mk(PF [xk − tgk]) ≥ f(xk) + κlbsgk
T PF [xk − tgk] − xk.

But this interval is independent of j and is always contained in [tmin, tmax] by construction,

while the length of this latter interval converges to zero when j tends to infinity. Hence there

must exist a finite j such that both (2.4) and (2.5) hold, leading to the desired contradiction.

2

We now derive two finer upper bounds on the length of the generalized Cauchy step, depending

on two different criticality measures. These results are inspired by Lemma 2.1 of Cartis et al.

(2007).

Lemma 3.6. Suppose that AS1 and AS2 hold. Then we have that

‖sGC

k ‖ ≤ 3

σk

max
[

‖Bk‖, (σkχk)
1
2 ,
(

σ2
kχk

)
1
3

]

. (3.25)

and

‖sGC

k ‖ ≤ 3

σk
max

[

‖Bk‖, (σkπ
GC

k )
1
2

]

. (3.26)

Proof. For brevity, we omit the index k. From (2.2), (3.12) and the Cauchy-Schwarz

inequality,

m(xGC) − f(x) = gTsGC + 1
2
sGCT BsGC + 1

3
σ‖sGC‖3

≥ −χ(x, ‖sGC‖) − 1
2
‖sGC‖2‖B‖ + 1

3
σ‖sGC‖3

= [ 1
9
σ‖sGC‖3 − χ(x, ‖sGC‖)] + [ 2

9
σ‖sGC‖3 − 1

2
‖sGC‖2‖B‖] .

(3.27)
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Thus since m(xGC) ≤ f(x), at least one of the bracketed expressions must be negative, i.e.

either

‖sGC‖ ≤ 9

4

‖B‖
σ

(3.28)

or

‖sGC‖3 ≤ 9

σ
χ(x, ‖sGC‖); (3.29)

the latter is equivalent to

‖sGC‖ ≤ 3

(

πGC

σ

)
1
2

(3.30)

because of (3.5) when θ = ‖sGC‖. In the case that ‖sGC‖ ≥ 1, (3.7) then gives that

‖sGC‖ ≤ 3
(

χ

σ

)
1
2

. (3.31)

Conversely, if ‖sGC‖ < 1, we obtain from (3.8) and (3.29) that

‖sGC‖ ≤ 3
(

χ

σ

)
1
3

. (3.32)

Gathering (3.28), (3.31) and (3.32), we immediately obtain (3.25). Combining (3.28) and

(3.30) gives (3.26). 2

Similar results may then be derived for the length of the full step, as we now show.

Lemma 3.7. Suppose that AS1 and AS2 hold, and that

‖sk‖ ≤ 3

σk
max

[

‖Bk‖, (σkχk)
1
2 ,
(

σ2
kχk

)
1
3

]

(3.33)

and

‖sk‖ ≤ 3

σk
max

[

‖Bk‖,
√

σkπGC

k

]

. (3.34)

Proof. We start by proving (3.33) and

‖sk‖ ≤ 3

σk
max

[

‖Bk‖,
√

σkπ
+
k

]

(3.35)

in a manner identical to that used for (3.25) and (3.26) with sk replacing sGC

k : we now use

the inequality gk
T sk ≥ −χ(xk, ‖sk‖) (itself resulting from (3.1)) in (3.27) instead of (3.12),

and also (3.9),(3.10) instead of (3.7),(3.8) to derive the analogues of (3.31) and (3.32). Now,

if ‖sk‖ ≤ ‖sGC

k ‖, then (3.26) gives that (3.34) holds. Otherwise, i.e. if ‖sk‖ > ‖sGC

k ‖, then the

non-increasing nature of π(xk, θ) gives that π+
k ≤ πGC

k . Substituting this inequality in (3.35)

also gives (3.34). 2

Using the above results, we may then derive the equivalent of the well-known Cauchy decrease

condition in our constrained case. Again the exact expression of this condition depends on the

criticality measure considered.
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Lemma 3.8. If ‖sGC

k ‖ ≥ 1, then, for κGC

def
= min[ 1

2
, 2

3
κubs(1 − κlbs)] ∈ (0, 1),

mk(xk) − mk(x
GC

k ) ≥ κGCχk. (3.36)

If ‖sGC

k ‖ ≤ 1, then

mk(xk) − mk(x
GC

k ) ≥ κGCπ
GC

k min

[

πGC

k

1 + ‖Bk‖
,

√

πGC

k

σk

]

(3.37)

if (2.5) holds, while

mk(xk) − mk(x
GC

k ) ≥ κGCχk min

[

χk

1 + ‖Bk‖
,

√

πGC

k

σk
, 1

]

(3.38)

if (2.5) fails. In all cases,

mk(xk) − mk(x
GC

k ) ≥ κGCχk min

[

χk

1 + ‖Bk‖
,

√

χk

σk

, 1

]

. (3.39)

Proof. Again, we omit the index k for brevity. First note that, because of (2.4) and

(3.12),

f(x) − m(xGC) ≥ κubs|gTsGC| = κubsχ(x, ‖sGC‖) = κubsπ(x, ‖sGC‖)‖sGC‖. (3.40)

Assume first that ‖sGC‖ ≥ 1. Then, using (3.7), we see that

f(x) − m(xGC) ≥ κubsχ, (3.41)

which gives (3.36) since κubs > κGC. Assume now, for the remainder of the proof, that

‖sGC‖ ≤ 1, which implies, by (3.8), that

f(x) − m(xGC) ≥ κubsχ‖sGC‖, (3.42)

and first consider the case where (2.5) holds. Then, from (2.2) and (2.5), the Cauchy-Schwarz

inequality, (3.12) and (3.5), we obtain that

‖B‖ + 2
3
σ‖sGC‖ ≥ 2(1 − κlbs)

‖sGC‖2
|gTsGC| =

2(1 − κlbs)

‖sGC‖2
χ(x, ‖sGC‖) =

2(1 − κlbs)

‖sGC‖ πGC

and hence that

‖sGC‖ ≥ 2(1 − κlbs)π
GC

‖B‖ + 2
3
σ‖sGC‖ .

Recalling (3.26), we thus deduce that

‖sGC‖ ≥ 2(1 − κlbs)π
GC

‖B‖ + 2 max
[

‖B‖,
√

σπGC

] .

Combining this inequality with (3.40), we obtain that

f(x) − m(xGC) ≥ 2
3
κubs(1 − κlbs)π

GC min





πGC

1 + ‖B‖ ,

√

πGC

σ



 ,
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which implies (3.37).

If (2.5) does not hold (and ‖sGC

k ‖ ≤ 1), then (2.6) must hold. Thus, (3.11) and (2.7) imply

that

χ ≤ (1 + 2κepp)χ(x, ‖sGC‖) ≤ 2χ(x, ‖sGC‖).

Substituting this inequality in (3.40) then gives that

f(x) − m(xGC) ≥ 1
2
κubsχ. (3.43)

This in turn gives (3.36). The inequality (3.38) results from (3.37) and (3.8), in the case

when (2.5) holds, and (3.43) when (2.5) does not hold. Finally, (3.39) follows from combining

(3.37) and (3.36) and using (3.8) in the former. 2

We next show that when the iterate xk is sufficiently non-critical, then iteration k must be very

successful and the regularisation parameter does not increase.

Lemma 3.9. Suppose AS1–AS3 hold, that χk > 0 and that

min
[

σk, (σkχk)
1
2 ,
(

σ2
kχk

)
1
3

]

≥ 9(κH + κB)

2(1 − η2)κGC

def
= κsuc > 1. (3.44)

Then iteration k is very successful and

σk+1 ≤ σk. (3.45)

Proof. First note that the last inequality in (3.44) follows from the facts that κH ≥ 1,

κB ≥ 1 and κGC ∈ (0, 1). Again, we omit the index k for brevity. The mean-value theorem

gives that

f(x+) − m(x+) = 1
2
sT [H(ξ) − B]s − 1

3
σ‖s‖3

for some ξ ∈ [x, x+]. Hence, using (3.2),

f(x+) − m(x+) ≤ 1
2
(κH + κB)‖s‖2. (3.46)

We also note that (3.44) and AS4 imply that (σχ)
1
2 ≥ ‖B‖ and hence, from (3.33), that

‖s‖ ≤ 3

σ
max

[

(σχ)
1
2 ,
(

σ2χ
)

1
3

]

= 3 max

[

(

χ

σ

)
1
2

,
(

χ

σ

)
1
3

]

.

Substituting this last bound in (3.46) then gives that

f(x+) − m(x+) ≤ 9(κH + κB)

2
max

[

χ

σ
,
(

χ

σ

)
2
3

]

. (3.47)

Assume now that ‖sGC‖ ≤ 1 and that (2.6) holds but not (2.5), or that ‖sGC‖ > 1. Then

(2.9) and (3.36) also imply that

f(x) − m(x+) ≥ f(x) − m(xGC) ≥ κGCχ.
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Thus, using this bound and (3.47),

1 − ρ =
f(x+) − m(x+)

f(x) − m(x+)

≤ 9(κH + κB)

2κGCχ
max

[

χ

σ
,
(

χ

σ

)
2
3

]

=
9(κH + κB)

2κGC

max

[

1

σ
,

1

(σ2χ)
1
3

]

≤ 1 − η2

(3.48)

where the last inequality results from (3.44). Assume alternatively that ‖sGC‖ ≤ 1 and (2.5)

holds. We then deduce from (3.8), (3.44) and (3.2) that

√
σπGC ≥ √

σχ ≥ ‖B‖.

Then (3.34) yields that

‖s‖ ≤ 3

√

πGC

σ
,

which can be substituted in (3.46) to give that

f(x+) − m(x+) ≤ 9

2
(κH + κB)

πGC

σ
. (3.49)

On the other hand, (2.9), (3.37) and (3.44) also imply that

f(x) − m(x+) ≥ f(x) − m(xGC) ≥ κGCπGC

√

πGC

σ
.

Thus, using this last bound, (2.8), (3.49), (3.8) and (3.44), we obtain that

1 − ρ =
f(x+) − m(x+)

f(x) − m(x+)
≤ 9(κH + κB)

2κGC

√
σπGC

≤ 9(κH + κB)

2κGC

√
σχ

≤ 1 − η2. (3.50)

We then conclude from (3.48) and (3.50) that ρ ≥ η2 whenever (3.44) holds, which means

that the iteration is very successful and (3.45) follows. 2

Our next result shows that the regularisation parameter must remain bounded unless a critical

point is approached. Note that this result does not depend on the objective’s Hessian being

Lipschitz continuous.

Lemma 3.10. Suppose that AS1–AS3 hold, and that there is a constant ǫ ∈ (0, 1] such that

χk ≥ ǫ (3.51)

for all k ≥ 0. Then, for all k ≥ 0,

σk ≤ max

[

σ0,
γ2κ

2
suc

ǫ

]

def
= κσ. (3.52)
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Proof. Assume that

σk ≥ κ2
suc

ǫ
. (3.53)

Then σk ≥ κsuc because κsuc > 1 and ǫ < 1. Moreover, one verifies easily, using (3.51), that

(σkχk)
1
2 ≥ (σkǫ)

1
2 =

(

κ2
suc

)
1
2 = κsuc

and that
(

σ2
kχk

)
1
3 ≥

(

κ4
suc

ǫ

)
1
3

≥
(

κ3
suc

)
1
3 = κsuc.

Hence we deduce that, for each k, (3.53) implies that (3.44) holds. Hence, (3.53) ensures

(3.45) because of Lemma 3.9. Thus, when σ0 ≤ γ2κ
2
suc

/ǫ, one also obtains that σk ≤ γ2κ
2
suc

/ǫ

for all k, where we have introduced the factor γ2 for the case where σk is less that κ2
suc

/ǫ and

iteration k is not very successful. Thus (3.52) holds. If, on the other hand, σ0 > γ2κ
2
suc

/ǫ,

the above reasoning shows that σk cannot increase, and (3.52) also holds. 2

We are now ready to prove our first-order convergence result. We first state it for the case where

there are only finitely many successful iterations.

Lemma 3.11. Suppose that AS1–AS3 hold and that there are only finitely many successful

iterations. Then xk = x∗ for all sufficiently large k and x∗ is first-order critical.

Proof. See Lemma 2.5 in Cartis et al. (2007), with χk replacing ‖gk‖. 2

We conclude this section by showing the desired convergence when the number of successful

iterations is infinite. As for trust-region methods, this is accomplished by first showing first-

order criticality along a subsequence of iterations.

Theorem 3.12. Suppose that AS1–AS4 hold. Then we have that

lim inf
k→∞

χk = 0. (3.54)

Hence, at least one limit point of the sequence {xk} (if any) is first-order critical.

Proof. The conclusion holds when there are finitely many successful iterations because of

Lemma 3.11. Suppose therefore that there are infinitely many successful iterations. Suppose

furthermore that (3.51) holds for all k. The mechanism of the algorithm then implies that,

if iteration k is successful,

f(xk) − f(xk+1) ≥ η1[f(xk) − mk(x
+
k )] ≥ η1κGCχk min

[

χk

1 + ‖Bk‖
,

√

χk

σk
, 1

]

,

where we have used (2.9) and (3.39) to obtain the last inequality. The bounds (3.2), (3.51)

and (3.52) then yield that

f(xk) − f(xk+1) ≥ η1κGCǫ min

[

ǫ

1 + κB

,

√

ǫ

κσ
, 1

]

def
= κǫ > 0. (3.55)
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Summing over all successful iterations, we deduce that

f(x0) − f(xk+1) =
k
∑

j=0,j∈S

[f(xj) − f(xj+1)] ≥ ikκǫ,

where ik is the number of successful iterations up to iteration k. Since ik tends to infinity by

assumption, we obtain that the sequence {f(xk)} tends to minus infinity, which is impossible

because f is bounded below on F and xk ∈ F for all k. Hence (3.51) cannot hold and (3.54)

follows. 2

We finally prove that the conclusion of the last theorem is not restricted to a subsequence, but

holds for the complete sequence of iterates.

Theorem 3.13. Suppose that AS1–AS4 hold. Then we have that

lim
k→∞

χk = 0, (3.56)

and all limit points of the sequence {xk} (if any) are first-order critical.

Proof. If S is finite, the conclusion directly follows from Lemma 3.11. Suppose therefore

that there are infinitely many successful iterations and that there exists a subsequence {ti} ⊆
S such that

χti ≥ 2ǫ (3.57)

for some ǫ > 0. From (3.54), we deduce the existence of another subsequence {ℓi} ⊆ S such

that, for all i, ℓi is the index of the first successful iteration after iteration ti such that

χk ≥ ǫ for ti ≤ k < ℓi and χℓi
≤ ǫ. (3.58)

We then define

K = {k ∈ S | ti ≤ k < ℓi}. (3.59)

Thus, for each k ∈ K ⊆ S, we obtain from (3.39) and (3.58) that

f(xk) − f(xk+1) ≥ η1[f(xk) − mk(x
+
k )] ≥ η1κGCǫ min

[

ǫ

1 + ‖Bk‖
,

√

χk

σk
, 1

]

. (3.60)

Because {f(xk)} is monotonically decreasing and bounded below, it must be convergent and

we thus deduce from (3.60) that

lim
k→∞,k∈K

χk

σk

= 0, (3.61)

which in turn implies, in view of (3.58), that

lim
k→∞,k∈K

σk = +∞. (3.62)

As a consequence of this limit, (3.25), (3.2) and (3.58), we see that, for k ∈ K,

‖sGC

k ‖ ≤ 3 max

[

κB

σk
,
(

χk

σk

)
1
2

,
(

χk

σk

)
2
3

]

,
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and thus ‖sGC

k ‖ converges to zero along K. We therefore obtain that

‖sGC

k ‖ < 1 for all k ∈ K sufficiently large, (3.63)

which implies that (3.38) is applicable for these k, yielding, in view of (3.2) and (3.58), that,

for k ∈ K sufficiently large,

f(xk) − f(xk+1) ≥ η1[f(xk) − mk(x
+
k )] ≥ η1κGCǫ min





ǫ

1 + κB

,

√

πGC

k

σk
, 1



 ,

where we have used (3.8), (3.61) and (3.63) to deduce the last inequality. But the convergence

of the sequence {f(xk)} implies that the left-hand side of this inequality converges to zero,

and hence that the minimum in the last right-hand side must be attained by its middle term

for k ∈ K sufficiently large. We therefore deduce that, for these k,

f(xk) − f(xk+1) ≥ η1κGCǫ

√

πGC

k

σk

. (3.64)

We also obtain from (3.8) that πGC

k ≥ χk ≥ ǫ. As a consequence, (3.34), (3.2) and (3.62)

ensure that

‖sk‖ ≤ 3

√

πGC

k

σk

≤ 3

η1κGCǫ
[f(xk) − f(xk+1)]

for k ∈ K sufficiently large. This last bound can then be used to see that

‖xℓi
− xti‖ ≤ 3

η1κGCǫ

ℓi−1
∑

k=ti,k∈K

[f(xk) − f(xk+1)] ≤
3

η1κGCǫ
[f(xti) − f(xℓi

)].

Since {f(xk)} is convergent, the right-hand side of this inequality tends to zero as i tends to

infinity. Hence ‖xℓi
− xti‖ converges to zero with i, and, by continuity, so does ‖χℓi

− χti‖.
But this is impossible in view of (3.57) and (3.58). Hence no subsequence can exist such that

(3.57) holds and the proof is complete. 2

4 Worst-Case Function-Evaluation Complexity

This section is devoted to worst-case function-evaluation complexity bounds, that is bounds on

the number of objective function or gradient evaluations needed to achieve first-order convergence

to prescribed accuracy. Despite the obvious observation that such an analysis does not cover the

total computational cost of solving a problem, this type of complexity result is of special interest

for nonlinear optimization because there are many examples where the cost these evaluations

completely dwarfs that of the other computations inside of the algorithm itself.

4.1 Function-Evaluation Complexity for Algorithm ACURC

We first consider the function- (and gradient-) evaluation complexity of a variant (ACURǫ) of

the ACURC algorithm itself, only differing by the introduction of an approximate termination
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rule. More specifically, we replace the criticality check in Step 1 of ACURC by the test χk ≤ ǫ

(where ǫ is user-supplied threshold) and terminate if this inequality holds. The results presented

for this algorithm are inspired by complexity results for trust-region algorithms (see Gratton,

Sartenaer and Toint, 2008b, Gratton et al., 2008a) and for the adaptive cubic overestimation

algorithm (see Cartis et al., 2007).

Theorem 4.1. Suppose that AS1-AS3 hold, that, for all k ∈ S and some γ3 ∈ (0, 1),

σk+1 ≥ γ3σk whenever ρk ≥ η2, (4.1)

and that the approximate criticality threshold ǫ is small enough to ensure

ǫ ≤ min

[

1,
γ2κ

2
suc

σ0

]

. (4.2)

Then there exists a constant κdf ∈ (0, 1) such that, for every k ≥ 0, k ∈ S,

f(xk) − f(xk+1) ≥ κdfǫ
2 (4.3)

before Algorithm ACURCǫ terminates, that is generates an iterate xk such that χk ≤ ǫ. As a

consequence, this algorithm needs at most
⌈

κSǫ−2
⌉

successful iterations and evaluations of ∇xf , and at most
⌈

κ∗ǫ
−2
⌉

iterations and objective function evaluations to terminate, where

κS
def
=

⌈

f(x0) − flow

η1κdf

⌉

and κ∗
def
=

[

1 − log(γ3)

γ1

]

κS +
1

log(γ1)
max

[

1,
γ2κ

2
suc

σ0

]

.

Proof. We first note that, as long as Algorithm ACURCǫ has not terminated, χk > ǫ. We

may then use the same reasoning as in the proof of Theorem 3.12 and use (3.52) and (3.55)

to deduce that

f(xk) − f(xk+1) ≥ η1κGCǫ min

[

ǫ

1 + κB

,

√

ǫ

max [σ0, γ2κ2
suc

/ǫ]
, 1

]

≥ η1κGC min

[

1

1 + κH

,
1

κsuc

√
γ2

]

ǫ2

where we have used (4.2) to derive the last inequality. This gives (4.3) with

κdf

def
= η1κGC min

[

1

1 + κH

,
1

κsuc

√
γ2

]

.

The proof is then completed by using Theorem 6.4 in Cartis et al. (2007). 2

Because Algorithm ACURC does not exploit more than first-order information (via the Cauchy

point definition), this bound is, as expected, similar in nature to that obtained by Nesterov

(2004), page 29, for the steepest descent method.
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4.2 An O(ǫ−
3

2 ) Function-Evaluation Complexity Bound

We now discuss a close variant (ACURC-S) of the ACURC algorithm for which an interesting

worst-case function- (and derivatives-) evaluation complexity result can be shown. Algorithm

ACURC-S uses the user-supplied first-order accuracy threshold ǫ > 0. It differs from Algorithm

ACURC in that stronger conditions are imposed on the step.

We first prove the following useful technical lemma.

Lemma 4.2. Suppose that

∇xmk(x
+
k )

T
sk ≤ 0. (4.4)

and that

∇xmk(xk)
T sk ≤ 0 or sk

T Bksk ≥ 0. (4.5)

Then

f(xk) − mk(x
+
k ) ≥ 1

6
σk‖sk‖3. (4.6)

Proof. (Dropping the index k again.) Condition (4.4) is equivalent to

gTs + sT Bs + σ‖s‖3 ≤ 0. (4.7)

If sT Bs ≥ 0, we substitute gTs from this inequality in (2.2) and deduce that

m(x+) − f(x) = gT s + 1
2
sT Bs + 1

3
σ‖s‖3 ≤ − 1

2
sT Bs − 2

3
σ‖s‖3,

which then implies (4.6). If, on the other hand, sT Bs < 0, then we substitute the inequality

on sT Bs resulting from (4.7) into (2.2) and obtain that

m(x+) − f(x) = gTs + 1
2
sT Bs + 1

3
σ‖s‖3 ≤ 1

2
gT s − 1

6
σ‖s‖3,

from which (4.6) again follows because of (4.5). 2

Thus, as long as the step is along a descent or non-negative curvature direction, the model

decrease is bounded below by a fraction of the norm of the step cubed. This result may be

extended as follows.

Lemma 4.3. Suppose that there exist steps sk,◦ and sk,• and points xk,◦ = xk + sk,◦ and xk,• =

xk + sk,• such that, for some κ ∈ (0, 1],

mk(xk,◦) ≤ mk(xk) − κσk‖sk,◦‖3, (4.8)

mk(xk,•) ≤ mk(xk,◦), (4.9)

∇xmk(xk,•)
T xk,• − xk,◦ ≤ 0, (4.10)

and

∇xmk(xk,◦)
T xk,• − xk,◦ ≤ 0. (4.11)

Then

mk(xk) − mk(xk,•) ≥ κlmκσk‖sk,•‖3. (4.12)

for some constant κlm ∈ (0, 1) independent of k and κ.
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Proof. (Dropping the index k again.) Suppose first that, for some α ∈ (0, 1),

‖s◦‖ ≥ α‖s•‖. (4.13)

Then (4.8) and (4.9) give that

m(x) − m(x•) = m(x) − m(x◦) + m(x◦) − m(x•) ≥ κσ‖s◦‖3 ≥ κσkα
3‖s•‖3. (4.14)

Assume now that (4.13) fails, that is

‖s◦‖ < α‖s•‖. (4.15)

We have that

f(x) + gT s◦ + 1
2
s◦

T Bs◦ = m(x◦) − 1
3
σ‖s◦‖3. (4.16)

Using this identity, we now see that

m(x•) = f(x) + gT s◦ + 1
2
s◦

T Bs◦ + g + Bs◦
T s• − s◦ + 1

2
s• − s◦

T B(s• − s◦) + 1
3
σ‖s•‖3

= m(x◦) + g + Bs◦
T s• − s◦ + 1

2
s• − s◦

T B(s• − s◦) + 1
3
σ‖s•‖3 − 1

3
σ‖s◦‖3

(4.17)

Moreover, (4.10) yields that

0 ≥ g + Bs•
T s• − s◦+σ‖s•‖s•T s• − s◦ = g + Bs◦

T s• − s◦+s• − s◦
T B(s• − s◦)+σ‖s•‖s•T s• − s◦,

and thus (4.17) becomes

m(x•) ≤ m(x◦) + 1
2
g + Bs◦

T s• − s◦ − 1
2
σ‖s•‖s•T s• − s◦ + 1

3
σ‖s•‖3 − 1

3
σ‖s◦‖3. (4.18)

But we may also use (4.11) and deduce that

0 ≥ g + Bs◦
T s• − s◦ + σ‖s◦‖s◦T s• − s◦,

which, together with (4.18), gives that

m(x◦) − m(x•) ≥ 1
2
σ‖s◦‖s◦T s• − s◦ + 1

2
σ‖s•‖s•T s• − s◦ − 1

3
σ‖s•‖3 + 1

3
σ‖s◦‖3

≥ σ( − 1
2
‖s◦‖2‖s•‖ − 1

6
‖s◦‖3 + 1

6
‖s•‖3 − 1

2
‖s•‖2‖s◦‖),

(4.19)

where we have used the Cauchy-Schwartz inequality. Taking now (4.8) and (4.15) into

account and using the fact that κ ≤ 1, we obtain that

m(x) − m(x•) ≥ m(x◦) − m(x•) > κσ( − 1
2
α2 − 1

6
α3 + 1

6
− 1

2
α)‖s•‖3. (4.20)

We now select the value of α for which the lower bounds (4.14) and (4.20) are equal, namely

α∗ ≈ 0.2418, the only real positive root of 7α3 +3α2+3α = 1. The desired result now follows

from (4.14) and (4.20) with κlm

def
= α3

∗ ≈ 0.0141. 2
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As it turns out, obtaining a lower bound of the type (4.6) or (4.12) is crucial for deriving the

desired complexity result, as will become clear below. We thus need to ensure that our step

computation ensures this property, which entails imposing further restrictions on the step. One

first additional requirement is the following.

AS5: For all k, the step sk solves the subproblem

min
s∈IRn,xk+s∈F

mk(xk + s) (4.21)

accurately enough to ensure that

χm

k (x+
k , 1) ≤ min(κstop, ‖sk‖) χk (4.22)

where κstop ∈ [0, 1) is a constant and where, for θ ≥ 0,

χm

k (x, θ)
def
=

∣

∣

∣

∣

∣

min
x+d∈F ,‖d‖≤θ

∇xmk(x)T d

∣

∣

∣

∣

∣

. (4.23)

The inequality (4.22) is an adequate stopping condition for the subproblem solution since

χm

k (x∗
k, 1) must be identically zero if x∗

k is a local minimizer of (4.21). It is the constrained

analogue of the “s-stopping rule” of Cartis et al. (2007).

AS5 is however not sufficient for obtaining the desired result. As in Cartis et al. (2007)

where (4.4) is imposed, one also needs to verify that a cheap model improvement cannot be

obtained from x+
k for this point to be an acceptable trial point. However, at variance with the

unconstrained case, there is no longer any guarantee that the step provides a descent direction

(i.e. the first part of (4.5) holds). We therefore distinguish two possibilities. Assume first that

(4.5) holds for the computed x+
k . Then it is sufficient to require that (4.4) also holds. This

condition expresses the reasonable requirement that the stepsize along sk does not exceed that

corresponding to the minimum of the model mk(xk + τsk) for τ > 0. It is for instance satisfied

if

argmin

τ≥0, xk+τsk∈F

mk(xk + τsk) = 1.

Note that (4.4) also holds at a local minimizer. The situation is more complicated when (4.5)

fails, that is when the step is ascent (at xk) rather than descent and of negative curvature.

Our requirement on the trial point is then essentially that it can be computed by a uniformly

bounded sequence of (possibly incomplete) line minimizations starting from xk. More formally,

we assume that there exist an integer ℓ̄ > 0 and, for each k such that (4.5) fails, feasible points

{xk,i}ℓk

i=0 with 0 < ℓk ≤ ℓ̄, xk,0 = xk and xk,ℓk
= x+

k , such that, for i = 1, . . . , ℓk,

mk(xk,i) ≤ mk(xk,i−1), ∇xmk(xk,i−1)
T xk,i − xk,i−1 ≤ 0 and ∇xmk(xk,i)

T xk,i − xk,i−1 ≤ 0.

(4.24)

Observe that these inequalities hold in particular if x+
k is the first minimizer of the model along

the piecewise linear path

Pk
def
=

ℓk
⋃

i=1

[xk,i−1, xk,i].
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Observe also that (4.24) subsumes the condition discussed in the case where (4.5) holds, because

one may then choose ℓk = 1 and (4.24) then implies both (4.5) and (4.4). We therefore summarize

these requirements in the form of

AS6: For all k, the step sk is such that (4.24) holds for some {xk,i}ℓk

i=0 ⊂ F with 0 < ℓk ≤ ℓ̄,

xk,0 = xk and xk,ℓk
= x+

k .

Observe that we have not used global constrained optimization anywhere in the requirements

imposed on the step sk.

In practice, verifying AS6 need not be too burdensome. Firstly, the computation of x+
k may

be by a sequence of line minimizations, and AS6 then trivially holds provided the number of

such minimizations remains uniformly bounded. If the trial step has been determined by another

technique, one might proceed as follows. If we set xb to be the global minimum of the model in

the hyperplane orthogonal to the gradient, that is

xk,b
def
= argmin

gk
T s=0

mk(xk + s), (4.25)

then we may also define xk,a as the intersection of the segment [xk, xk,b] with the boundary of

F if xk,b 6∈ F and as xk,b if xk,b ∈ F . Similarly we define xk,c as the intersection of the segment

[xk,b, x
+
k ] with the boundary of F if xk,b 6∈ F and as xk,b if xk,b ∈ F . We may now verify (4.24)

with the set {xk, xk,a, xk,c, x
+
k }. Observe also that, if (4.24) fails, then there is a feasible local

minimizer of the model along the path

Pk
def
= [xk, xk,a] ∪ [xk,a, xk,c] ∪ [xk,c, x

+
k ] (4.26)

(the middle segment being possibly reduced to the point xk,b when it is feasible): further model

minimization may then be started from this point in order to achieve AS5, ignoring the rest of

the path and the trial point x+
k . Note that xk,b is the solution of an essentially unconstrained

model minimization (in the hyperplane orthogonal to gk) and can be computed at reasonable

cost, which makes checking this version of (4.24) acceptable from the computational point of

view, especially since xk,b needs to be computed only once even if several x+
k must be tested.

The definition of xk,b is not even necessary and other points xk,b are acceptable, as long as a

suitable “descent path” Pk from xk to x+
k can be determined. Figure 4.2 on the following page

shows the path Pk given by (4.26) on a case where (4.5) fails. This figure also shows that there

are cases where the only feasible model minimizer may be in a direction such that (4.5) fails.

Using AS6, we may now state the crucial lower bound on the model reduction.

Lemma 4.4. Suppose that AS6 holds at iteration k. Then there exists a constant κred > 0

independent of k such that

mk(xk) − mk(x
+
k ) ≥ κredσk‖sk‖3. (4.27)

Proof. If (4.5) holds, then the conclusion immediately follows from Lemma 4.2. Otherwise,

we first note that

mk(xk) − mk(xk,1) ≥ 1
6
σk‖xk,1 − xk‖3
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Figure 4.1: A constrained path Pk with xk,a, xk,b and xk,c starting from the iterate xk = (0, 0)T

on the cubic model m(x, y) = −x− 42
100

y − 3
10

x2 − 1
10

y3 + 1
3
[x2 + y2]

3
2 , the feasible set F being the

polyhedron with vertices (1,−5)T , (− 32
100

, 1)T , (− 355
100

, 1)T and (− 510
100

,−5)T .

because of Lemma 4.2 and the fact that xk,1 can be obtained by reducing the model along

the segment [xk, xk,1] implies the inequality gk
T xk,1 − xk ≤ 0. Moreover, AS6 implies that

mk(xk,2) ≤ mk(xk,1), ∇xmk(xk,2)
T xk,2 − xk,1 ≤ 0, and ∇xmk(xk,1)

T xk,2 − xk,1 ≤ 0.

We may then apply Lemma 4.3 a first time with x◦ = xk,1 and x• = xk,2 to deduce that

mk(xk) − mk(xk,2) ≥ 1
6
κlmσk‖xk,2 − xk‖3.

If ℓk > 2, we then apply the same technique ℓk − 1 times: for i = 2, . . . , ℓk, we deduce from

AS6 that

mk(xk,i) ≤ mk(xk,i−1), ∇xmk(xk,i)
T xk,i − xk,i−1 ≤ 0, and ∇xmk(xk,i−1)

T xk,i − xk,i−1 ≤ 0,

while we obtain by induction that

mk(xk,i−1) ≤ mk(xk) − 1
6
κi−2

lm
σk‖xk,i−1 − xk‖3.

This then allows us to apply Lemma 4.3 with xk,◦ = xk,i−1 and xk,• = xk,i, yielding that

mk(xk) − mk(xk,i) ≥ 1
6
κi−1

lm
σk‖xk,i − xk‖3.

After ℓk − 1 applications of Lemma 4.3, we obtain that

mk(xk) − mk(xk,ℓk
) ≥ 1

6
κℓk−1

lm
σk‖xk,i − xk‖3.

This is the desired bound with κred = 1
6
κℓ̄−1

lm
. 2
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We may then obtain an function-evaluation complexity result for Algorithm ACURC-S by com-

pleting our assumptions as follows.

AS7: The Hessian H(xk) is well approximated by Bk, in the sense that there exists a constant

κBH > 0 such that, for all k,

‖[Bk − H(xk)]sk‖ ≤ κBH‖sk‖2.

AS8: The Hessian of the objective function is “weakly” uniformly Lipschitz-continuous on the

segments [xk, xk + sk], in the sense that there exists a constant κLH ≥ 0 such that, for all

k and all y ∈ [xk, xk + sk],

‖[H(y) − H(xk)]sk‖ ≤ κLH‖sk‖2.

AS9: The iterates of Algorithm ACURC-S remain in some bounded subset F0 ⊆ F .

AS7 and AS8 are acceptable assumptions essentially corresponding to the cases analysed in

Nesterov and Polyak (2006) and Cartis et al. (2007) for the unconstrained problem, the only

differences being that the first authors assume Bk = H(xk) instead of the weaker AS7 and that

AS8 is not expressed along the step sk in the second reference. AS9 is only mildly restrictive,

and is for instance satisfied if the feasible set F itself is bounded, or if the constrained level-set

of the objective function {x ∈ F|f(x) ≤ f(x0)} is bounded. Note that AS9 implies AS3.

An important consequence of AS6-AS9 is that they to allow us to deduce the following crucial

relation between local optimality and stepsize.

Lemma 4.5. Suppose that AS1, AS2 and AS4-AS9 hold, that iteration k of Algorithm ACURC-

S is successful and that

σk ≤ σmax, (4.28)

for some constant σmax > 0 independent of k. Then, for some constant κs ∈ (0, 1) independent

of k,

‖sk‖ ≥ κs

√

χ(x+
k , 1). (4.29)

Proof. We first consider the case where x+
k = x+

k,1, again drop the index k for the proof,

define χ+ def
= χ(x+

k , 1) and g+ def
= g(x+

k ), and start by noting that

‖g+ −∇xm(x+
k )‖ =

∥

∥

∥

∥

g +
∫ 1

0
H(x + ts)s dt − g − [B − H(x)]s − H(x)s − σ‖s‖s

∥

∥

∥

∥

=
∥

∥

∥

∥

∫ 1

0
[H(x + ts) − H(x)]s dt

∥

∥

∥

∥

+ (κBH + σ)‖s‖2

≤
∫ 1

0
‖[H(x + ts) − H(x)]s‖ dt + (κBH + σ)‖s‖2

≤ (κLH + κBH + σ)‖s‖2,

≤ (κLH + κBH + σmax)‖s‖2,
(4.30)
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where we have used (2.2), AS7, AS8, the triangular inequality and (4.28). Assume first that

‖s‖ ≥
√

χ+

2(κLH + κBH + σmax)
. (4.31)

In this case, (4.29) follows with κs =
√

1
2(κLH+κBH+σmax)

, as desired. Assume therefore that

(4.31) fails and observe that

χ+ def
= |g+T

d+| ≤ |g+ −∇xm(x+)
T
d+| + |∇xm(x+)

T
d+| (4.32)

where the first equality define the vector d+ with

‖d+‖ ≤ 1. (4.33)

But, using the Cauchy-Schwartz inequality, (4.33), (4.30) the failure of (4.31) and (4.32)

successively, we obtain that

∇xm(x+)
T
d+ − g+T

d+ ≤ |g+T
d+ −∇xm(x+)

T
d+|

≤ ‖g+ −∇xm(x+)‖
≤ (κLH + κBH + σmax)‖s‖2

≤ 1
2
χ+

= − 1
2
g+T

d+,

which in turn ensures that

∇xm(x+)
T
d+ ≤ 1

2
g+T

d+ < 0.

Moreover, x+ + d+ ∈ F by definition of χ+, and hence, using (4.33) and (4.23),

|∇xm(x+)
T
d+| ≤ χm(x+, 1). (4.34)

We may then substitute this bound in (4.32) and use the Cauchy-Schwartz inequality and

(4.33) again to obtain that

χ+ ≤ ‖g+ −∇xm(x+)‖ + χm(x+, 1) ≤ ‖g+ −∇xm(x+)‖ + min(κstop, ‖s‖) χ, (4.35)

where the last inequality results from (4.22). We now observe that the successful nature of

iteration k and AS9 imply that both x and x+ belong to F0. Moreover, the inequality

‖g+ − g‖ =
∥

∥

∥

∥

g +
∫ 1

0
H(x + ts)s dt − g

∥

∥

∥

∥

≤
∫ 1

0
‖H(x + ts)‖ ‖s‖ dt ≤ κH‖s‖

(where we used the mean-value theorem, AS4 and the triangle inequality successively) and

AS3, itself implied by AS9, yield that ∇xf(x) is Lipschitz continuous on F0 with constant

κLg = κH. Theorem 3.3 then ensures that χ(x) is Lipschitz continuous on F0 (with constant

κLχ), and therefore that

χ ≤ κLχ‖x − x+‖ + χ+ = κLχ‖s‖ + χ+, (4.36)
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so that, using (4.35) and (4.30),

χ+ ≤ ‖g+ −∇xm(x+)‖ + κLχ‖s‖2 + κstopχ
+ ≤ (κLH + κBH + σmax)‖s‖2 + κLχ‖s‖2 + κstopχ

+.

We thus deduce that

(1 − κstop)χ
+ ≤ (κLH + κLχ + κBH + σmax)‖s‖2,

and therefore that

‖s‖ ≥
√

√

√

√

(1 − κstop)χ+

κLH + κLχ + κBH + σmax

which gives (4.29) with

κs =

√

1 − κstop

κLH + κLχ + κBH + σmax
. (4.37)

2

We may now consolidate our result under our current assumptions.

Theorem 4.6. Suppose that AS1, AS2 and AS4-AS9 hold, and that, for all k,

σk ≥ σmin (4.38)

for some constant σmin ∈ 0, 1). Then there exists a constant κdf2 ∈ (0, 1) such that, for every

k ≥ 0, k ∈ S,

f(xk) − mk(x
+
k ) ≥ κdf2χ

3
2

k+1. (4.39)

As consequence, the ACURC-S algorithm needs at most

⌈

κSǫ−
3
2

⌉

successful iterations and evaluations of ∇xf and (possibly) ∇xxf , and at most

⌈

κ∗ǫ
− 3

2

⌉

iterations and objective function evaluations to terminate, that is to generate an iterate xk such

that χk ≤ ǫ ≤ 1, where

κS
def
=

⌈

f(x0) − flow

η1κdf

⌉

and κ∗
def
= κS + (1 + κS)

log
(

max
[

σ0,
3γ2κLH

2

]

/σmin

)

log(γ1)
.

Proof. We first recall that the mechanism of the algorithm ensures that (4.5) holds for

each step sk, and thus, by Lemma 4.2, that (4.6) holds for all k. We then deduce from

Lemma 5.2 in Cartis et al. (2007), itself strongly relying on AS7 and AS8, that

σk ≤ max
[

σ0,
3γ2κLH

2

]

def
= σmax.
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This allows us to apply Lemma 4.5 with this upper bound on σk. We then obtain from (4.27)

and (4.29) that

f(xk) − mk(x
+
k ) ≥ 1

6
σminκredκ

3
s
χ

3
2

k+1,

which is (4.39) with κdf

def
= σminκredκ

3
s
, where κs is given by (4.37). The second conclusion of

the theorem then follows from Theorems 6.1 and 6.2 in Cartis et al. (2007). 2

This result shows a worst-case complexity result in terms of evaluations of the problem’s func-

tions which is of the same order as that for the unconstrained case (see Nesterov and Polyak,

2006, or Cartis et al., 2007).

We conclude our analysis by observing that global convergence to first-order critical points

may be ensured for Algorithm ACURC-S (even without AS5-AS8), if one simply ensure that

the steps sk ensures a model decrease which is larger than that obtained at the Cauchy point

(as computed by Step 1 of Algorithm ACURC), which means that (2.9) must hold, a very

acceptable condition. The convergence analysis presented for Algorithm ACURC thus applies

without modification.

4.3 Solving the subproblem

For the better complexity bound of Theorem 4.6 to hold, we need, on each iteration k, to

approximately and iteratively minimize the model mk(s) in F along a uniformly bounded number

of line segments so as to ensure AS6, until condition (4.22) is satisfied. Active-set techniques

may be applied to mk(x), starting at xk, a minimal and simple such approach being the basic

ACURCǫ framework (applied to mk). Though in practice, a (much) more efficient active-set

technique should be employed, its theoretical guarantees of finite termination for such methods

seems nontrivial to derive in the context of AS5 and AS6, due to the combinatorial aspect of

both the (nonconvex) objective and the constraints. Thus for now, let us briefly discuss in more

detail applying ACURCǫ to mk starting at xk, for each k ≥ 0. Let us assume in what follows

that k ≥ 0 is fixed. In particular, note that we terminate each application of ACURCǫ to mk

when AS5 is satisfied. As the latter depends on χk, it is appropriate that we deduce a lower

bound on mk(x), x ∈ F that also depends on χk.

Lemma 4.7. Let AS1 – AS2, AS4 and (4.38) hold. Then

mk(xk + s) − f(xk) ≥ −κlm max[κ2
B
, κBχk, (χk)

3/2], xk + s ∈ F , k ≥ 0, (4.40)

where κlm = 18κB/σ
2
min.

Proof. Letting xk + s ∈ F , we have from (3.4) that

gk
T s ≥ −χ(xk, ‖s‖) ≥ −χk max[‖s‖, 1],
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where in the second inequality, we used (3.9) and (3.10). It follows from (2.2) and AS4 that

mk(xk + s) − f(xk) = gk
T s + 1

2
sT Bks + 1

3
σk‖s‖3

≥ −χk max [‖s‖, 1] − κB‖s‖2

≥ −max [‖s‖, 1](χk + κB‖s‖)

≥ −2 max [‖s‖, 1] · max [χk, κB‖s‖]

≥ −2κB max [‖s‖, 1] · max[χk, ‖s‖],

(4.41)

where in the last inequality, we employed κB > 1. Note that it is, in fact, sufficient to

consider points for which mk(xk + s) ≤ f(xk), as for the others, mk is bounded below by

f(xk). This and an argument similar to that of Lemma 3.6 yield

‖s‖ ≤ 3

σk
max

[

κB, (σkχk)
1/2, (σkχk)

1/3
]

,

and furthermore, from (4.38), σmin ∈ (0, 1) and κB > 1, we obtain that

‖s‖ ≤ 3

σmin
max

[

κB, χ
1/2
k , χ

1/3
k

]

, max [‖s‖, 1] ≤ 3

σmin
max

[

κB, χk, χ
1/2
k , χ

1/3
k

]

.

Substituting the above bounds into the last inequality in (4.41) yields (4.40). 2

When applying ACURCǫ to mk, we need to iterate until (4.22) holds, namely the tolerance

for the first-order optimality measure is set to

ǫk := min{κstop, ‖sk‖}χk. (4.42)

In order to estimate the complexity of employing ACURCǫ to mk with the above tolerance,

we apply Theorem 4.1 with f := mk and ǫ := ǫk. Furthermore, the gap f(x0) − flow is now

f(xk)−mk,low, for which (4.40) gives an upper bound. Note that from (4.42), (4.40) and Theorem

4.1, if the stepsize sk or χk are large, then the complexity bound is of order χ−2
k or better.

To better quantify this bound on the iteration count, recall that from (4.29), for successful

k, we have

ǫ ≥ min{κstop, κs

√
χk+1}χk ≥ κ0 min{1,√ωk}ωk

def
= ǫk,

where ωk := min{χk+1, χk} and κ0 > 0. Thus if χm
k (xk+1) ≤ ǫk, then AS5 holds. Now we can

use ǫk in place of ǫ in Theorem 4.1, and deduce order ǫ−2
k inner-iteration worst-case complexity

bound.

Note that applying ACURCǫ implies constructing local cubic models for mk. However, mk

has a Lipschitz continuous Hessian with Lipschitz constant (1 +
√

2)σk, as we now show.

Lemma 4.8. Consider the cubic model mk(xk + s), s ∈ IRn, in (2.2) for any fixed k ≥ 0. Then

the Hessian ∇xxmk(xk + s) is globally Lipschitz continuous with Lipschitz constant (1 +
√

2)σk,

namely

‖∇xxmk(xk + s) −∇xxmk(xk + y)‖ ≤ (1 +
√

2)σk‖s − y‖, ∀s, y ∈ IRn. (4.43)
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Proof. ¿From (2.2), we have that

∇xxmk(xk + s) = Bk + σk‖s‖I + σk
ssT

‖s‖ .

Let s, y ∈ IRn. Then

‖∇xxmk(xk + s) −∇xxmk(xk + y)‖ =
∥

∥

∥σk(‖s‖ − ‖y‖)I + σk

(

ssT

‖s‖
− yyT

‖y‖

)
∥

∥

∥

≤ σk|‖s‖ − ‖y‖|+ σk

∥

∥

∥

∥

‖s‖
(

s
‖s‖

) (

s
‖s‖

)T − ‖y‖
(

y
‖y‖

) (

y
‖y‖

)T
∥

∥

∥

∥

≤ σk‖s − y‖ + σk

∥

∥

∥‖s‖uuT − ‖y‖wwT
∥

∥

∥ ,

where u
def
= s/‖s‖ and w

def
= y/‖y‖. Thus (4.43) follows provided we show that

∥

∥

∥‖s‖uuT − ‖y‖wwT
∥

∥

∥ ≤
√

2‖s − y‖. (4.44)

Letting A
def
= ‖s‖uuT − ‖y‖wwT , we have that

AT A = ‖s‖2uuT − ‖s‖ · ‖y‖uTw[uwT + wuT ] + ‖y‖2wwT

= ssT − sT y
‖s‖·‖y‖

[syT + ysT ] + yyT

= ssT − [syT + ysT ] + yyT +
(

1 − sT y
‖s‖·‖y‖

)

[syT + ysT ]

= (s − y)(s − y)T +
(

1 − sT y
‖s‖·‖y‖

)

[syT + ysT ].

Thus, using Cauchy-Schwarz inequality to ensure 1 − sT y/(‖s‖ · ‖y‖) ≥ 0, we have that

‖AT A‖ ≤ ‖s − y‖2 + 2‖s‖ · ‖y‖
(

1 − sT y
‖s‖·‖y‖

)

= ‖s − y‖2 + 2
(

‖s‖ · ‖y‖ − sT y
)

.

But 2
[

‖s‖ · ‖y‖ − sT y
]

≤ ‖s− y‖2, and so (4.44) follows by using that A is symmetric and

hence ‖A‖2 = ‖AT A‖. 2

As a consequence of this observation, we may keep the “low-level” values of the cubic regu-

larisation parameters fixed at some multiple of σk larger than 1 +
√

2 and then all iterations

of ACURCǫ applied to mk are very successful. Furthermore, the upper bound (3.52) on the

“low-level” cubic parameters is now independent on the accuracy tolerance of the subproblem.

The iteration complexity of solving the subproblem may seem discouraging at first sight, but

one has to remember that we have used a very naive algorithm for this purpose, and it does not

involve the problem’s nonlinear objective function at all.

5 Conclusions and perspectives

We have generalized the adaptive cubic overestimation method for unconstrained optimization

to the case where convex constraints are present. Our method is based on the use of the



Adaptive cubic regularisation for nonconvex optimization with convex constraints 29

orthogonal projector onto the feasible domain, and is therefore practically limited to situations

where applying this projector is computationally inexpensive. This is for instance the case if the

constraints are simple lower and upper bounds on the variables, or if the feasible domain has a

special shape such as a sphere, a cylinder or the order simplex (see Section 12.1.2 of Conn et

al., 2000). The resulting ACURC algorithm has been proved globally convergent to first-order

critical points. This result has capitalized on the natural definition of the first-order criticality

measure (3.1), which allows a reasonably easy extension of the unconstrained proof techniques

to the constrained case. As a by-product, the Lipschitz continuity of the criticality measure

χ(x) has also been proved for bounded convex feasible sets.

A variant of Algorithm ACURC has then been presented for which a worst-case function-

evaluation complexity bound can be shown, which is of the same order as that known for the

unconstrained case. Remarkably, this algorithm does not rely on global model minimization, but

the result obtained is only in terms of the global number of iterations and problem’s function’s

evaluations, leaving aside the complexity of solving the subproblem, even approximately.

The authors are well aware that many issues remain open at this stage, amongst which the

details of an effective step computation, the convergence to second-order points and the associ-

ated rate of convergence and the constraint identification properties, as well as the implications

of the new complexity result on optimization with equality and inequality constraints. Numerical

experience is also necessary to assess the practical potential of both algorithms.
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