
RAL-TR-2008-031

December 23, 2008

Mario Arioli, D. Kourounis, and Daniel Loghin

Discrete fractional Sobolev norms for

domain decomposition preconditioning



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



RAL-TR-2008-031

Discrete fractional Sobolev norms for

domain decomposition preconditioning

M. Arioli1, D. Kourounis2 , and D. Loghin3

ABSTRACT
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1 Introduction

The usefulness of any domain decomposition method (DD) rests on the ability to solve a prob-
lem involving a pseudo-differential operator: the Steklov-Poincaré operator. Since under dis-
cretisation this gives rise to a system with a dense matrix, for large problems this needs to
be solved approximately via a procedure which computes the action of the inverse of the dis-
crete operator on a given vector. To this aim, a great number of iterative approaches have
been suggested in the literature; classical algorithms include Dirichlet-Neumann, Neumann-
Neumann, FETI methods, Schwarz methods, together with two-level and overlapping variants.
For descriptions and analyses see Toselli and Widlund, 2005 and Quarteroni and Valli, 1999.
An alternative that has not been considered to date and which can be shown to be competitive is
based on a well-known property of the discrete Steklov-Poincaré operator: it is norm-equivalent
to a Sobolev norm-matrix of index 1/2 Quarteroni and Valli, 1999, the discrete representation of
which can be written in terms of the square-root of a discrete Laplacian defined on the union of
the boundaries of each subdomain Peisker, 1988. This discrete norm has a non-sparse represen-
tation; however, since only the action of its inverse on a vector is required, we can achieve this
using a standard approach based on a Krylov subspace approximation. The resulting algorithm
is a generalised Lanczos procedure and the ensuing preconditioning procedure is independent of
the size of the problem.

2 Problem description

We review below the standard formulation of non-overlapping domain decomposition problems
for a general scalar elliptic problem.

2.1 Notation and definitions

Throughout the paper we will use the following notation and standard results. Given an open
simply-connected domain U in R

d its boundary will be denoted by ∂U . We denote by C∞
0 (U)

the space of infinitely differentiable functions defined on U with compact support in U . We will
also denote by L2(U) the Lebesgue space of square-integrable functions defined on U endowed
with inner-product (·, ·) and by Hm(U) the Sobolev space of order m equipped with norm ‖·‖m,U

and semi-norm | · |m,U with the convention H0(U) = L2(U). The Sobolev spaces of real index
0 ≤ s ≤ m are defined as interpolation spaces of index θ = 1 − s/m for the pair [Hm(U), L2(U)]

Hs(Ω) := [Hm(U), L2(U)]θ θ = 1 − s/m.

For any s, the space Hs
0(U) denotes the completion of C∞

0 (U) in Hs(U) (see e.g. Lions and
Magenes, 1968, p 60). In particular, we shall be interested in the interpolation space

H1/2(U) = [H1(U), L2(U)]1/2.

for which there holds H
1/2
0 (U) ≡ H1/2(U). Another space of interest is H

1/2
00 (U) which is a sub-

space of H
1/2
0 (U) and is defined as the interpolation space of index 1/2 for the pair [H1

0 (U), L2(U)]

H
1/2
00 (U) = [H1

0 (U),H0(U)]1/2.

Norms on H1/2(U),H
1/2
00 (U) will be denoted by the same notation | · |1/2,U or ‖ · ‖1/2,U , with

the assumption that it is evident from the context which space is under consideration. We

will return to the definition of these norms in Section 3. The dual of H
1/2
00 (U) is denoted by

1



(H
1/2
00 (U))′ ⊂ H−1/2(U) where H−1/2(U) := (H1/2(U))′ ≡ (H

1/2
0 (U))′. The duality between

H
1/2
00 (U) and its dual will be denoted by 〈·, ·〉.

Finally, we will make use of the trace operator γ0 : H1(U) → H1/2(∂U) which is known to be
surjective and continuous, i.e., there exists a constant cγ(U) such that

‖γ0v‖1/2,(∂U) ≤ cγ(U)‖v‖1,U ∀v ∈ H1(U). (1)

A similar inequality holds if we take γ0 : H1
0 (U) → H

1/2
00 (∂U):

‖γ0v‖1/2,(∂U) ≤ cγ(U)‖v‖1,U ∀v ∈ H1
0 (U). (2)

We will also assume that the following Poincaré inequality holds

‖v‖0,U ≤ CP (U)|v|1,U . (3)

2.2 Domain decomposition for scalar elliptic PDE

Let now Ω denote an open subset of R
d with boundary ∂Ω and consider the problem

{
Lu = −div(a∇u) +~b · ∇u+ cu = f in Ω,

u = 0 on ∂Ω.
(4)

where f ∈ L2(Ω), c ∈ L∞(Ω), ~b is a vector function whose entries are Lipschitz continuous real-
valued functions on Ω̄, and a is a symmetric d × d matrix whose entries are bounded, piecewise
continuous real-valued functions defined on Ω̄, with

0 < amin ≤ ζTa(x)ζ ≤ amax ∀ζ ∈ R
d, a.e. x ∈ Ω̄. (5)

We will also assume the following standard condition holds

c−
1

2
∇ ·~b ≥ cmin a.e. x ∈ Ω. (6)

The weak formulation of problem (4) reads
{

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω),
B(u, v) = (f, v).

(7)

where the bilinear form B(·, ·) : H1
0 (Ω) ×H1

0 (Ω) → R is defined via

B(v,w) = (a · ∇v,∇w) +
(
~b · ∇v + cv,w

)
.

Let

Ω̄ =
N⋃

i=1

Ω̄i, Ωi ∩ Ωj ≡ ∅ (i 6= j),

and let Γ ⊂ R
d−1 denote the set of internal boundaries associated with the above partition of Ω

Γ =
N⋃

i=1

Γi (Γi := ∂Ωi \ ∂Ω).

Given a function v defined on Ω we will denote by vi the restriction of v to Ωi: vi = v |Ωi . With
this notation, we define the bilinear forms Bi(·, ·) : H1

0 (Ωi) ×H1
0 (Ωi) → R similarly to B(·, ·):

Bi(vi, wi) = (ai · ∇vi,∇wi) +
(
~bi · ∇vi + civi, wi

)
.
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Let now
H1

D(Ωi) =
{
w ∈ H1(Ωi) : w |∂Ω∩∂Ωi

= 0
}

and let v ∈ H1
0 (Ω). Then vi = v |Ωi∈ H1

D(Ωi) and there holds

B(u, v) =
N∑

i=1

Bi(ui, vi), (f, v) =
N∑

i=1

(f, vi). (8)

Let u denote the solution of (4) and let ui = u |Ωi . Assuming the value of the exact solution is
known on each Γi, say ui |Γi= λi, problem (4) can be equivalently be written as a set of problems
defined on Ωi for all i 




Lui = f in Ωi,
ui = 0 on ∂Ω ∩ ∂Ωi,
ui = λi on Γi.

(9)

Under the same assumption that λi are known, problems (9) can be decoupled into two sets of
problems





Lu
{1}
i = f in Ωi,

u
{1}
i = 0 on ∂Ω ∩ ∂Ωi,

u
{1}
i = 0 on Γi.





Lu
{2}
i = 0 in Ωi,

u
{1}
i = 0 on ∂Ω ∩ ∂Ωi,

u
{2}
i = λi on Γi.

(10)

with the solution u |Ωi= ui = u
{1}
i + u

{2}
i .

To find an equation for λi we integrate the two sets of problems in (10) against vi ∈ H1
D(Ωi) to

get the identities

B(u
{1}
i , vi) = (f, vi) +

∫

Γi

ni · a · ∇u
{1}
i vids(Γi)

and

B(u
{2}
i , vi) =

∫

Γi

ni · a · ∇u
{2}
i vids(Γi).

Adding them up and then summing over i we find (using (8))

B(u, v) = (f, v) +
N∑

i=1

∫

Γi

ni · a · ∇u
{1}
i vids(Γi) +

N∑

i=1

∫

Γi

ni · a · ∇u
{2}
i vids(Γi)

which yields, using (7), the Steklov-Poincaré equation for the decomposition (9)

N∑

i=1

∫

Γi

ni · a · ∇u
{2}
i vids(Γi) = −

N∑

i=1

∫

Γi

ni · a · ∇u
{1}
i vids(Γi).

Let now η ∈ H
1/2
00 (Γ) with ηi = η |Γi and let vi be the solution to the problem





Lvi = 0 in Ωi,
vi = 0 on ∂Ωi \ Γi,
vi = ηi on Γi.

(11)

Note that in the case of the Poisson problem where L = −∆ the functions vi are harmonic
extensions of ηi to Ωi. In general, one can view vi as L-extensions of the corresponding data ηi to
Ωi. Furthermore, the function v defined via v |Ωi= vi can be viewed as a generalised L-extension

of the function η ∈ H
1/2
00 (Γ) to the domain Ω. Henceforth, such generalised L-extensions of
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functions η or ηi will be denoted by Eη and Eiηi, respectively. Any other extensions will be
denoted by Fη and Fiηi.
We will also need the following elliptic regularity result which is known to hold for the weak
solution of (11) (see for example Agmon, Douglis and Nirenberg, 1959)

‖vi‖1,Ωi = ‖Eiηi‖1,Ωi ≤ Ce‖ηi‖1/2,Γi
. (12)

We define the Steklov-Poincaré operator S : H
1/2
00 (Γ) → (H

1/2
00 (Γ))′ as follows. Let η, µ ∈ H

1/2
00 (Γ)

with η |Γi=: ηi, µ |Γi=: µi. We define S via

〈Sη, µ〉 =

N∑

i=1

∫

Γi

ni · a · ∇(Eηi) µids(Γi) =:

N∑

i=1

〈Siηi, µi〉 . (13)

Using integration by parts the operator S can be given the following alternative representation

〈Sη, µ〉 = B(Eη,Fµ) =

N∑

i=1

Bi(Eiηi, Fiµi) ∀η, µ ∈ H
1/2
00 (Γ). (14)

Note that these definitions amend those given in Quarteroni and Valli, 1999, pp 142–143.
With this definition of S our model problem can be recast as an ordered sequence of three
decoupled sets of problems involving the same operator L with essential boundary conditions on
each subdomain together with a problem set on the interface Γ.

(i)





Lu
{1}
i = f in Ωi,

u
{1}
i = 0 on ∂Ωi,

(ii)

{
Sλ = −

N∑

i=1

ni · a · ∇u
{1}
i on Γ,

(iii)





Lu
{2}
i = 0 in Ωi,

u
{2}
i = λi on Γi.

u
{2}
i = 0 on ∂Ωi \ Γi.

(15)

The resulting solution is

u|Ωi = u
{1}
i + u

{2}
i .

We now turn to the properties of the interface operator S. Given representation (13) we can
immediately see that S is non-symmetric unless ~b = 0. One can show further that S is a

bounded positive operator on H
1/2
00 (Γ).

Lemma 2.1 Let S be defined by (13) and let (6) hold. Then there exist constants α1, α2 such

that for all η, µ ∈ H
1/2
00 (Γ)

α1‖η‖
2
1/2,Γ ≤ 〈Sη, η〉 , 〈Sη, µ〉 ≤ α2‖η‖1/2,Γ‖µ‖1/2,Γ.

Proof: Let vi = Eiηi, wi = Eiµi satisfy (11). We have, using (6),
〈
S〉ηi, ηi

〉
= Bi(vi, vi)

= (a · ∇vi, vi) +
(
~b · ∇vi, vi

)
+ (cvi, vi)

= (a · ∇vi, vi) +

(
(c−

1

2
∇ ·~b)vi, vi

)

≥ amin|vi|
2
1,Ωi

+ cmin‖vi‖
2
0,Ωi

≥ min {amin, cmin} ‖vi‖
2
1,Ωi
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Moreover, using the Poincaré inequality (3) we get

〈
S〉ηi, µi

〉
= Bi(vi, wi)

≤ amax|vi|1,Ωi |wi|1,Ωi + ‖~b‖L∞(Ωi)|vi|1,Ωi‖wi‖0,Ωi + ‖c‖L∞(Ωi)‖vi‖0,Ωi‖wi‖0,Ωi

≤ max
{
amax + ‖~b‖L∞(Ωi)CP (Ωi), ‖c‖L∞(Ωi)

}
‖vi‖1,Ωi‖wi‖1,Ωi .

Since γ0vi = ηi, γ0wi = µi, the trace inequalities (1,2) read for all i = 1, . . . ,N

‖ηi‖1/2,Γi
≤ Cγ(Ωi)‖vi‖1,Ωi , ‖µi‖1/2,Γi

≤ Cγ(Ωi)‖wi‖1,Ωi

and the result follows from the regularity estimate (12) and the definition (13) of the operator S.

3 Finite element discretisations

In order to write down the weak formulation of problems (15) we re-write the set of equations
(15,(iii)) as

(iii)





Lũ
{2}
i = −Lzi in Ωi,

ũ
{2}
i = 0 on Γi.

ũ
{2}
i = 0 on ∂Ωi \ Γi.

where ũ
{2}
i = u

{2}
i − z. With this new notation, the weak formulations of problems (15) are

(i)





Find u
{1}
i ∈ H1

0 (Ωi) such that for all vi ∈ H1
0 (Ωi),

Bi(u
{1}
i , vi) = (fi, vi).

(ii)





Find λ ∈ H
1/2
00 (Γ) such that for all η ∈ H

1/2
00 (Γ),

s(λ, η) := 〈Sλ, η〉 =
∑N

i=1

[
(fi, Fiηi) −Bi(u

{1}
i , Fiηi)

]
.

(iii)





Find ũ
{2}
i = u

{2}
i − zi ∈ H1

0 (Ωi) such that for all vi ∈ H1
0 (Ωi),

Bi(ũ
{2}
i , vi) = −Bi(zi, vi).

(16)

Note that zi ∈ H1(Ωi) and z ∈ H1(Ω) with γ0(Γi)zi = λi.
Let Pr(t) denote the space of polynomials in d variables of degree r defined on a set t ⊂ R

d. Let

V h
i = V h,r

i :=
{
w ∈ C0(Ωi) : w|t ∈ Pk ∀t ∈ Th, w |∂Ω∩∂Ωi

= 0
}
⊂ H1

D(Ωi) (17)

be a finite-dimensional space of piecewise polynomial functions defined on some subdivision Th

of Ω into simplices t of maximum diameter h. Let further V h
iI , V

h
iB ⊂ V h

i satisfy V h
iI ⊕ V h

iB ≡ V h
i .

Let also

V h
iI = span

{
φi

k, k = 1 . . . nI
i

}

and

V h
iB = span

{
ψi

k, k = 1 . . . nB
i

}

and set nI =
∑

i n
I
i . Let further

V h
B =

N⋃

i=1

V h
iB

5



and let {ψk, k = 1, . . . nB} denote a basis for V h
B . Let Sh

i = span
{
γ0(Γi)ψk, k = 1 . . . nB

i

}
with

Sh = ∪N
i=1S

h
i . Finally, let

V h =
N⋃

i=1

V h
i ⊂ H1

0 (Ω).

The finite element discretisation of the weak formulation (7) reads

{
Find uh ∈ V h such that for all vh ∈ V h,
B(uh, vh) = (f, vh).

(18)

The finite element discretisations of the weak formulations (16) are as follows.

(i)





Find u
{1}
hi ∈ V h

iI such that for all vhi ∈ V h
iI ,

Bi(u
{1}
hi , vhi) = (fi, vhi).

(ii)





Find λh ∈ Sh such that for all ηh ∈ Sh,

s(λh, ηh) =
∑N

i=1

[
(fi, Fiηhi) −Bi(u

{1}
hi , Fiηhi))

]
.

(iii)





Find ũ
{2}
hi = u

{2}
hi − zhi ∈ V h

iI such that for all vhi ∈ V h
iI ,

Bi(ũ
{2}
hi , vhi) = −Bi(zhi, vhi).

(19)

3.1 Matrix formulation

Formulation (19) amounts to a Schur complement approach for the solution of the discrete weak
formulation (18). For completeness of exposition we include this characterisation below.
Let

Au =

(
AII AIB

ABI ABB

)(
uI

uB

)
=

(
fI
fB

)
= f (20)

represent the linear system associated with the discrete formulation (18) with A ∈ R
n×n,u ∈ R

n

where n = nI + nB and AII ∈ R
nI×nI , AIB , A

T
BI ∈ R

nI×nB , ABB ∈ R
nB×nB are given by

AII =




A1
II

. . .

Ai
II

. . .

AN
II



, AIB =




A1
IB
...

Ai
IB

. . .

AN
IB



, AIB =

(
A1

BI · · · Ai
BI · · · AN

BI

)

with

(Ai
II)kk = Bi(φ

i
k, φ

i
k),

(Ai
IB)kj = Bi(φ

i
k, ψ

i
j),

(Ai
BI)jk = Bi(ψ

i
l , φ

i
l),

(ABB)ll = B(ψl, ψl),

for all k = 1, . . . , nI
i , j = 1, . . . , nB

i , l = 1, . . . , nB .

6



Lemma 3.1 With the above notation, the solution of problems (11) has finite element coefficients

v =

(
vI

vB

)
=

(
−A−1

II AIBvB

vB

)
,

where vB are the coefficients of η with respect to the basis of V h
B .

Proof: We start by considering the weak formulation of problems (11). If we let wi |Γi= ηi we
can re-write our problems as





Lṽi = −Lzi in Ωi,
ṽi = 0 on ∂Ωi \ Γi,
ṽi = 0 on Γi.

(21)

where we set ṽi = vi − zi. This problem has the following discrete weak formulation

{
Find ṽhi = vhi − zhi ∈ V h

iI such that for all whi ∈ V h
iI ,

Bi(ṽhi, whi) = −Bi(zhi, whi).

so that the global matrix representation resulting after summing over i is

(
wT

I 0
)( AII AIB

ABI ABB

)(
vI − zI

0

)
= −

(
wT

I 0
)( AII AIB

ABI ABB

)(
zI

vB

)

and the statement of the lemma follows.
Consider now the matrix representation of operator S in the basis {ψk, k = 1, . . . , nB}. The

discrete form of definition (14) is

s(ηh, µh) = Bi(Eiηih, Fiµih) (22)

where we recall that Fi is an arbitrary extension operator to Ωi while Ei is an L-extension to the
same domain. Setting v |Γi= ηih, w |Γi= µih, the corresponding discrete representations of these
extensions will have the form (using the Lemma 3.1)

Eiηih =

(
−A−1

II AIBvB

vB

)
, Fiµih =

(
wI

wB

)
.

Hence (22) has the representation

wT
BSvB =

(
wT

I wT
B

)( AII AIB

ABI ABB

)(
−A−1

II AIBvB

vB

)

which is equivalent to
wT

BSvB = wT
B(ABB −ABIA

−1
II AIB)vB

for all vB ,wB ∈ R
nB×nB so that S is the Schur complement of ABB in the global matrix A.

With this notation, (19 (i)) has the following matrix formulation

(i) AIIu
{1}
I = fI ,

while (19 (ii)) becomes

(ii) wT
BSuB =

(
wT

I wT
B

)

 fI

fB


−

(
wT

I wT
B

)

 AII AIB

ABI ABB




 u

{1}
I

0


 ,
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for any wi ∈ R
nI ,wB ∈ R

nB ; this equation simplifies to

(ii) SuB = fB −ABIu
{1}
I .

Finally, using Lemma 3.1, the discrete form of (19 (iii)) is seen to be

(iii) u
{2}
I = −A−1

II AIBuB.

These equations are easily seen to represent a Schur complement approach for the original linear
system (20) with global solution u given by

u =

(
uI

uB

)
=

(
u
{1}
I

u
{1}
B

)
+

(
u
{1}
I

u
{1}
B

)
.

4 Preconditioners for the Steklov-Poincaré operator

The result of Lemma 2.1 holds also in the discrete case for the choice of space Sh introduced
in the previous section. In particular it translates into the following coercivity and continuity
bounds for s(·, ·) : Sh × Sh.

Lemma 4.1 Let s(·, ·) be defined as in (16) and let (6) hold. Then there exist constants α1, α2

such that for all ηh, µh ∈ Sh ⊂ H
1/2
00 (Γ)

α1‖ηh‖
2
1/2,Γ ≤ s(ηh, ηh), s(ηh, µh) ≤ α2‖ηh‖1/2,Γ‖µh‖1/2,Γ.

In order to derive the corresponding matrix formulation of the above result we need to recall the
results in Arioli and Loghin, 2008.

4.1 Discrete fractional Sobolev norms

Let X,Y denote two Hilbert spaces with X ⊂ Y , X dense and continuously embedded in Y . Let
〈·, ·〉X , 〈·, ·〉Y denote the corresponding inner products, and ‖ · ‖X , ‖ · ‖Y the respective norms.
By the Riesz representation theory (see for example Riesz and Sz-Nagy, 1956) there exists an
operator J : X → Y which is positive and self-adjoint with respect to 〈·, ·〉Y such that

〈u, v〉X = 〈u,J v〉Y . (23)

Using the spectral decomposition of J we define the operator E = J 1/2 : X → Y , which in turn
is positive self-adjoint. Moreover, the spectral decomposition of E can be used to define any real
power of E . Let θ ∈ [0, 1] and let ‖ · ‖θ denote the scale of graph norms

‖u‖θ :=
(
‖u‖2

Y + ‖E1−θu‖2
Y

)1/2
. (24)

One can then show that the domain of E1−θ endowed with the inner-product

〈u, v〉θ = 〈u, v〉Y +
〈
E1−θu, E1−θv

〉
Y

is a Hilbert space (Lions and Magenes, 1968). This is an interpolation space of index θ for the

pair [X,Y ] and is denoted by [X,Y ]θ

[X,Y ]θ := D(E1−θ), 0 ≤ θ ≤ 1.

8



Let now Xh ⊂ X,Yh ⊂ Y denote two finite-dimensional subspaces of X,Y respectively, with n =
dimXh = dimYh. They are Hilbert spaces when endowed with the inner-products 〈·, ·〉X , 〈·, ·〉Y .
We can similarly define corresponding positive, self-adjoint operators Jh, Eh : Xh → Yh

〈uh, vh〉X = 〈uh,Jhvh〉Y uh, vh ∈ Xh (25)

where Jh is positive self-adjoint and Eh = J
1/2
h . We define the discrete interpolation spaces

[Xh, Yh]θ := D(E1−θ
h ).

Furthermore, we define the scale of discrete norms

‖uh‖θ,h :=
(
‖uh‖

2
Y + ‖E1−θ

h uh‖
2
Y

)1/2
. (26)

The following result can be found in Arioli and Loghin, 2008.

Lemma 4.2 Let Xh ⊂ Yh,X ⊂ Y be Hilbert spaces with inner-products 〈·, ·〉X , 〈·, ·〉Y and let

‖ · ‖θ, ‖ · ‖θ,h be defined by (24), (26), respectively. Let us assume that there exists an operator Ih
such that Ih : L(X;Xh) ∩ L(Y ;Yh) and Ihu = uh for all uh ∈ Xh. Then the norms ‖ · ‖θ, ‖ · ‖θ,h

are equivalent on [Xh, Yh]θ for all θ ∈ (0, 1).

In the following we assume that Γ is the union of planar (straight) faces (segments) Γi. We let Y
be the space of square-integrable functions defined on Γ and let ∇Γ denote the tangential gradient
of a scalar function v(x) : Ω

∇Γv(x) := ∇v(x) − n(n · ∇v(x)) (27)

i.e., the projection of the gradient of v onto the plane tangent to Γ at x ∈ Γ. Let the Sobolev
space of index 1 be defined as

H1(Γ) :=

{
v ∈ L2(Γ) :

∫

Γ
|∇Γv|

2 ds(Γ) <∞,

}
.

Let ∂Γ ⊂ ∂Ω denote the set of points (faces) on the boundary of our domain which represent the
skeleton boundary. We define X as follows

X = H1
0 (Γ) :=

{
v ∈ H1

0 (Γ) : v |∂Γ= 0
}
.

We endow X with the norm
|v|H1

0
(Γ) = ‖∇Γv‖L2(Γ).

Let now Xh = (Sh, ‖·‖H1

0
(Γ)) ⊂ X,Yh = (Sh, ‖·‖L2(Γ)) ⊂ Y . A norm for the discrete interpolation

space [Xh, Yh]1/2 has the matrix representation Arioli and Loghin, 2008

H1/2 = M +M(M−1L)1/2, (28)

which can be shown to be spectrally equivalent to (Arioli and Loghin 2008)

Ĥ1/2 = M(M−1L)1/2, (29)

where
Mij = (ψi, ψj)L2(Γ) , Lij = (∇Γψi,∇Γψj)H1

0
(Γ)

where ψi ∈ Sh for i = 1, . . . , nB . With this notation, Lemma 4.2 applies with Ih the finite element
projector onto Sh. Thus, for all λh ∈ Sh with λh =

∑nB
i=1λλλiψi there exist constants κ1, κ2 such

that
κ1‖λh‖1/2,Γ ≤ ‖λλλ‖H1/2

≤ κ2‖λh‖1/2,Γ.

We immediately derive the following result.
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Proposition 4.3 Let s(·, ·) be defined as in (16) and let (6) hold. Let βββ,µµµ denote the coefficients

of ηh, µh with respect to the basis {ψi, i = 1, . . . , nB} of Sh. Let S denote the matrix representation

of s(·, ·) with respect to the same basis. Then there exist constants α̃1, α̃2, α̂1, α̂2 such that

α̃1‖βββ‖
2
H1/2

≤ βββTSβββ, µµµTSβββ ≤ α̃2‖βββ‖H1/2
‖µµµ‖H1/2

and

α̂1‖βββ‖
2
bH1/2

≤ βββTSβββ, µµµTSβββ ≤ α̂2‖βββ‖ bH1/2

‖µµµ‖ bH1/2

for all ηh, µh ∈ Sh ⊂ H
1/2
00 (Γ).

We will see below that the above equivalence indicates that the norm-matrices H1/2, Ĥ1/2 can be
used as preconditioners for the Schur complement and that they are optimal in some sense to be
described.

4.2 Mesh-independent preconditioners

The solution of linear system (20) requires an iterative approach in the case of large scale prob-
lems. A useful approach is to consider an iterative solver such as GMRES together with a suitable
preconditioning strategy. In our case, one could for example employ a right preconditioner which
will incorporate the solution of problems posed on the interior of each domain (achieved in paral-
lel) and the (approximate) solution of a problem involving the discrete Steklov-Poincaré operator.
Given the equivalence in Proposition 4.3, a candidate as right preconditioner can be taken to be

PR =

(
AII AIB

0 H1/2

)
.

With this choice, the preconditioned system is

AP−1
R =

(
I 0

ABIA
−1
II SH−1

1/2

)
.

This block structure indicates that the convergence of an iterative algorithm such as GMRES
will depend on the ability of H1/2 to approximate S. In particular, the eigenvalues of the above

preconditioned matrix are either equal to one or coincide with one of the eigenvalues of SH−1
1/2.

Note that the spectrum of S depends on nB and also on the subdomain decomposition: number
of subdomains, partitioning configuration, subdomain regularity etc. We show below that the
eigenvalues of SH−1

1/2 lie in a region of the complex plane which is independent of the size of
the problem nB and which also lies in the right half-plane. We will investigate numerically the
dependence on the type of decomposition employed.
We start by recalling the definition of the H-field of values of a matrix A, given a symmetric and
positive-definite matrix H.

Definition 1 Let R,H ∈ R
n×n, with H symmetric and positive definite. The H-field of values

of the matrix R, denoted by WH(R), is a set in the complex plane given by

WH(R) =

{
z ∈ C : z =

x∗HRx

x∗Hx
=

〈x, Rx〉H
〈x,x〉H

, x ∈ C
n \ {0}

}
.

When H = I, the set is called the field of values and is denoted by W(R).

We also need to recall a related result concerning the convergence of GMRES (see Elman, 1982
and Saad, 2003).
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Lemma 4.4 Let H ∈ R
n×n be a positive-definite matrix. Let R,P ∈ R

n×n be nonsingular

matrices such that the following bounds hold:

ξ1 ≤

〈
x, RP−1x

〉
H

〈x,x〉H
,

‖RP−1x‖H

‖x‖H
≤ ξ2 (30)

for some positive constants ξ1 and ξ2. Then the GMRES algorithm in the H-inner product yields

a residual rk after k iterations which satisfies

‖rk‖H

‖r0‖H
≤

(
1 −

ξ21
ξ22

)k/2

. (31)

The following result provides bounds on the H−1
1/2-field of values.

Proposition 4.5 Let the hypothesis of Proposition 4.3 hold. Then the H−1
1/2-field of values of

SH−1
1/2 is in the right half-plane and is bounded independently of nB.

Proof: The projection on the real line of the H−1
1/2-field of values is bounded from below by

min
z∈WH

1/2
(SH−1

1/2
)
|z| = min

βββ∈R
nB \{0}

〈
βββ, SH−1

1/2βββ
〉

H−1

1/2

〈βββ,βββ〉H−1

1/2

= min
βββ∈R

nB \{0}

βββTSβββ

βββTH1/2βββ
≥ α̃1 > 0.

An upper bound for the field of values is provided by the numerical radius which in turn is
bounded by the maximum H−1

1/2-singular value. The resulting bound on the H−1
1/2-field of values

of SH−1
1/2 is

|z| ≤ max
βββ∈R

nB \{0}

‖Sβββ‖H−1

1/2

‖βββ‖H1/2

= max
βββ∈R

nB \{0}
max

µµµ∈R
nB \{0}

βββSµµµ

‖βββ‖H1/2
‖µµµ‖H1/2

≤ α̃2.

Note that the above bounds also imply the following bounds independent of nB on the eigenvalues
of the preconditioned discrete Steklov-Poincaré operator:

α̃1 ≤
∣∣∣λ(SH−1

1/2)
∣∣∣ ≤ α̃2.

Given the result of Proposition 4.3, a convergence bound can be immediately derived for a system
of equations with SH−1

1/2 as a coefficient matrix.

Proposition 4.6 Let the hypothesis of Proposition 4.3 hold. Then GMRES algorithm applied to

the linear system

SH−1
1/2ỹ = z, (ỹ = H1/2y)

in the H−1
1/2-inner product yields a residual rk after k iterations which satisfies

‖rk‖H1/2

‖r0‖H1/2

≤

(
1 −

α̃2
1

α̃2
2

)k/2

. (32)

The following result is adapted from Loghin and Wathen, 2004, Thm 3.7
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Proposition 4.7 Let the hypothesis of Proposition 4.3 hold and let PR be given by

PR =

(
AII AIB

0 ρH1/2

)
.

Then there exists ρ0 > 0 such that for all ρ > ρ0 conditions (30) hold with R,P replaced by A,PR

and for the choice

H =

(
AII 0
0 H1/2

)−1

.

As before, this result indicates that block triangular preconditioners PR(ρ) are optimal precon-
ditioners when we use a suitable GMRES iteration to obtain the solution of the global linear

system.

Remark 4.1 All results in this section apply with H1/2 replaced by Ĥ1/2 as defined in (29).

4.3 Algorithms for the matrix square-root

The discrete fractional Sobolev norms introduced in the previous section require the evaluation
of the square root function of a matrix. According to application this task can be achieved in
different ways. Direct approaches are based on a generalised eigenvalue decomposition which is
known to have complexity O(n3); for problems with structure we can also employ fast algorithms
such as the FFT (Peisker 1988) with reduced complexity (O(n log n)). The alternative is to use
iterative techniques. Standard iterations, such as Newton’s method, may not have better com-
plexity than a direct method. Hale, Higham and Trefethen, 2008 could claim reduced complexity
. In our implementation we used a Krylov subspace approximation which takes advantage of the
sparsity properties of the matrices involved in the definition of our discrete fractional Sobolev
norms. In particular, we employed a generalised Lanczos algorithm which we describe below
together with some related approximations required inside a preconditioning procedure.

4.4 A generalised Lanczos algorithm

Given a pair of symmetric and positive-definite matrices (M,L), the generalised Lanczos algo-
rithm constructs a set of M -orthogonal vectors vi such that

LVk = MVkTk + βk+1Mvk+1e
T
k , V T

k MVk = Ik

where the columns vi of Vk = [v1,v2 . . . ,vk] are known as the Lanczos vectors and Ik ∈ R
k×k is

the identity matrix with kth column denoted by ek, while the matrix Tk ∈ R
k×k is a symmetric

and tridiagonal matrix (Parlett 1998). The standard algorithm corresponds to the case M = I.
Note that Tk can be seen as a projection of L onto the space spanned by the M -orthogonal
columns of Vk

V T
k LVk = Tk, V T

k MVk = Ik. (33)

In exact arithmetic, when k = n, the algorithm can be seen as providing simultaneous factorisa-
tions of the matrix pair (M,L) as

L = V −T
n TnV

−1
n , M = V −T

n V −1
n .

We recall the algorithm below (Parlett 1998).
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Algorithm 1. Generalised Lanczos Algorithm

Input: L,M ∈ R
n×n(spd),v ∈ R

n

Output: Vk ∈ R
n×k, Tk ∈ R

k×k

Set β1 = 0,v0 = 0,v1 = v/‖v‖M

for i = 1 : k
wi = M−1Lvi − βivi−1

αi = (wi,vi)M
wi = wi − αivi

βi+1 = ‖wi‖M

if βi+1 = 0 stop
vi+1 = wi/βi+1

end
Tk = tridiag[βββ,ααα,βββ]

The explicit form of Tk is given below

Tk = tridiag[βββ,ααα,βββ] =




α1 β2 0

β2 α2
. . .

. . .
. . . βk

0 βk αk



.

Consider now the generalised Lanczos factorisation for the same matrix-pair (M,L) written as:

LV = MV T, V TMV = I. (34)

where we used the notation V = Vn, T = Tn. We can immediately derive the following result.

Lemma 4.8 Let (34) hold and let H1/2 = M +M(M−1L)1/2 and Ĥ1/2 = M(M−1L)1/2. Then

H1/2 =
(
V (I + T 1/2)−1V T

)−1
= MV (I + T 1/2)V TM (35)

and

Ĥ1/2 =
(
V T−1/2V T

)−1
= MV T 1/2V TM. (36)

The complexity of the full (k = n) generalised Lanczos algorithm is in general O(n3). However,
in many applications of interest we do not need to compute H1/2, but simply apply it (or its
inverse) to a given vector z ∈ R

n. In such cases, a truncated version of the algorithm is used in
practice with only k Lanczos vectors being constructed. As we are interested in approximations
of H1/2z we note first that if we start the Lanczos process with v = z then

V T
k Mz = e1‖z‖M

where e1 ∈ R
k is the first column of the identity Ik. This leads us to consider the following

approximations of the matrix-vector products:

H1/2z ≈MVk(Ik + T
1/2
k )e1‖z‖M .

and

Ĥ1/2z ≈MVkT
1/2
k e1‖z‖M

13



Similarly, if we wish to apply the inverse of H1/2 to a given vector z we first note that if we start
the iteration with v = M−1z then

V T
k z = V T

k M(M)−1z = e1‖M
−1z‖M = e1‖z‖M−1 .

This leads us to consider the following approximations (cf. Lemma 4.8)

H−1
1/2z ≈ Vk

(
Ik + T

1/2
k

)−1
V T

k z = Vk

(
Ik + T

1/2
k

)−1
e1‖z‖M−1 . (37)

and
Ĥ−1

1/2
z ≈ VkT

−1/2
k V T

k z = VkT
−1/2
k e1‖z‖M−1 (38)

The complexity of the above operations depends on the complexity corresponding to the appli-
cation of the inverse of M . If this operation can be achieved in O(n) operations, then the overall
complexity of computing H1/2z,H

−1
1/2z is of order O(kn) for k ≪ n, with storage requirements of

the same order.

5 Numerical experiments

We performed a series of experiments on some standard elliptic problems both for 2D and 3D
domains. The domains were subdivided a priori (prior to triangulation) so that the resulting
subdomain boundaries were linear (planar) faces. This allows for tangential gradient (27) to
be implemented in a natural way. In both cases we used a number of levels of refinement to
investigate performance. Mesh information is included for each test problem.
The iterative method employed in all cases is the GMRES method with right preconditioners

PR =

(
AII AIB

0 H1/2

)
, P̂R =

(
AII AIB

0 Ĥ1/2

)
.

and we recall here that

H1/2 = M +M(M−1L)1/2, Ĥ1/2 = M(M−1L)1/2.

On a uniform mesh with mesh-size h the mass matrix is known to be spectrally equivalent to a
h2-scaling of the identity: M ≈ M̃ := h2IBB . This allows us to reduce Ĥ1/2 to

H̃1/2 = M̃(M̃−1L)1/2 = hL1/2.

We denote the corresponding block-triangular preconditioner by P̃R.
The preconditioners were implemented using the following decomposition of the inverse precon-
ditioner

P−1
R =

(
A−1

II 0
0 IBB

)(
III −AIB

0 IBB

)(
III 0

0 H−1
1/2

)
.

which highlights the fact that this choice of block-triangular preconditioner is parallelizable. In
particular, we need to invert a discrete operator separately on each subdomain (AII being block-
diagonal), perform in parallel some boundary-to-domain updates (AIB being a block-rectangular
matrix) and also apply the action of a discrete H1/2-norm on the internal boundary (or skeleton).
The latter was achieved both exactly using a direct method to compute a generalised eigenvalue
decomposition and iteratively using the Lanczos approximations (37), (38), in which case we
employed the flexible GMRES method (Saad 1993) to take into account the changing nature of
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nB

level n N = 4 N = 16 N = 64 N = 256

1 16,641 253 753 1,729 3,585

2 66,049 509 1,521 3,521 7,425

3 263,169 1,021 3,057 7,105 15,105

Table 1: Mesh information for two-dimensional experiments

the preconditioner. Note that while in some cases the problem is symmetric, our preconditioner
is non-symmetric - we found that the block-triangular preconditioner introduced in the previous
section out-performed standard symmetric Krylov solvers. Not least, our aim was to monitor me-
thodically the performance of a single (non-symmetric) iterative method as the problems become
more and more non-symmetric (e.g., convection-diffusion problem with diminishing diffusion).
Finally, we remark here that we did not use a two-level approach in order to highlight the raw
performance of our preconditioners. Clearly, a multi-level approach can also be considered in this
case in a standard fashion.

5.1 2D results

In this section we present the numerical experiments obtained by solving some standard elliptic
problems in two dimensions. The problems were solved on the same domain Ω = (−1, 1)2. We de-
composed Ω into N = Nx×Ny subdomains of size 2/Nx×2/Ny each, with Nx = Ny ∈ {2, 4, 8, 16}.
Each subdomain was triangulated uniformly so that we work with a sequence of nested grids as
well as nested subdomain partitions. The mesh/subdomain information is shown in Table 1 to-
gether with the number of nodes nB on the internal boundary (skeleton). We also used the same
domain decomposition with non-uniform mesh refinements with parameters n, nB of the same
order as those corresponding to the uniform case. We chose not to include here the mesh in-
formation for the non-uniform case in order to keep the presentation of numerical results succinct.

Problem 1 Consider the following standard model problem

{
−∆u = 1, in Ω,

u = 0, on Ω.
(39)

The results for the choice of preconditioner P̂R implemented exactly are shown in Table 2. We
find indeed that the number of iterations is independent of the size of the problem n, but increases
logarithmically as the size of the subdomains is reduced. We also show in Table 2 the results
for the simplified choice P̃R computed exactly. As in the first case, the number of iterations
is independent of the size of the problem n, but exhibits still a logarithmic dependence on the
number of subdomains, though the number of iterations was reduced.

We also solved Problem 1 using a sequence of non-nested, non-uniform meshes. The results are
shown in Table 3 and they indicate similar convergence behaviour: independence of level (size of
problem) and logarithmic dependence on the number of subdomains.

Problem 2 We consider now the following model for reaction-diffusion problems posed on the
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same domain and using the discretisations detailed in Table 1.

{
−∆u+ αu = 1, in Ω,

u = 0, on ∂Ω.
(40)

The iteration counts for α = 1, α = 10, and α = 100 are shown in Table 4. It is known
that increasing α makes the problem ‘easier’ to solve iteratively, due to a increasingly dominant
mass matrix. Our preconditioning strategy reflects this behaviour. Aside from independence of
problem size, we see that a larger α leads to independence of number of domains as well.
Problem 3 Consider the following convection-diffusion problem

{
−ν∆u+~b · ∇u = 0, in Ω,

u = u0, on ∂Ω.
(41)

with ‘diagonal wind’~b = (−1,−1) and also with ‘rotating wind’~b = (2y(1−x2),−2x(1−y2)). The
boundary data u0 was chosen to be constant on some part of the boundary and zero elsewhere.
This is a non-symmetric problem with a non-symmetric Steklov-Poincaré operator which results
in a non-symmetric boundary Schur complement. While our preconditioners are non-symmetric,
the matrices H1/2, Ĥ1/2, H̃1/2 are all symmetric and positive-definite. We would therefore expect
performance to deteriorate as the degree of non-symmetry increases, which is the case for decreas-
ing ν. We solved the problem using a standard stabilisation technique: streamline upwinding
Petrov-Galerkin (SUPG). Our implementation adds an amount of diffusion in the direction of ~b
which decreases with the Peclet number Pe = h‖~b‖/ν.
The results are shown in Table 5 for diagonal wind and Table 6 for ‘rotating wind’. In both

cases we see that while independence of the size of the problem still holds for this problem, as
predicted by theory, the number of iterations remains approximately constant with decreasing
ν on finer meshes. Furthermore, the number of iterations decreases with decreasing h - this is
due to the fact that the discrete operator is better resolved on finer meshes, with the amount of
SUPG diffusion reduced considerably.
Finally, the logarithmic dependence on the number of subdomains remains unchanged for coarser
meshes, but vanishes when the problem is well-resolved. Domain independence is neither pre-
dicted nor infirmed by our analysis; it appears that for the convection-diffusion problems under
consideration this property holds rather robustly. Further analysis is required to explain the
numerics.

5.2 3D results

We now present the numerical experiments obtained by solving some of the above elliptic prob-
lems in three dimensions. The problems were solved on the same domain Ω = (0, 1)3. We
decomposed Ω into N = Nx × Ny × Nz subdomains of size 1/Nx × 1/Ny × 1/Nz each, with

preconditioner= P̂R P̃R

domains = 4 16 64 256 4 16 64 256

level = 1 13 16 19 27 8 11 14 19

2 14 16 20 27 8 11 15 20

3 14 16 21 28 9 12 15 20

Table 2: GMRES iterations for Problem 1 using a uniform mesh.
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preconditioner= P̂R P̃R

domains = 4 16 64 256 4 16 64 256

level = 1 12 15 19 27 9 12 16 23

2 12 15 20 27 9 12 16 23

3 13 16 20 26 10 12 16 23

Table 3: GMRES iterations for Problem 1 using a non-uniform mesh.

Nx = Ny = Nz ∈ {2, 4, 8}. We used a non-uniform refinement of each subdomain. The
mesh/subdomain information is shown in Table 7 together with the number of nodes nB on
the skeleton. The boundary preconditioner used in our block-triangular preconditioners was ap-
proximated using the Lanczos approximations of section 4 with k = 20. Note that this choice is
not optimal for all mesh configurations – see section 5.3 for details.

Problem 1 We solved the three-dimensional version of problem (39) posed in the unit cube.
The results are shown in Table 8.
As before, we see a domain dependence which appears to be logarithmic and virtually no depen-
dence on the size of the problem. However, the latter property is somewhat affected by the poor
Lanczos approximation (only 20 vectors).

Problem 2 We also solved the three-dimensional version of problem (40) for the same values of
α. The results are shown in Table 9.
We note that while the independence of n is still evident, there is a dependence on the number
of domains for all values of α. This was not the case for the 2D version of the problem; however,
this behaviour is due to the coarse Lanczos approximation of our boundary preconditioner.

5.3 Lanczos approximation of H
1/2-norms

We end our experiments with a numerical study of the Lanczos approximation L1/2. We chose to
run the 2D experiment corresponding to problem (39) on a uniform mesh using a Lanczos approx-
imation with several choices of k for all the mesh configurations employed in that experiment.
It is expected that the number of iterations deteriorates with decreasing k. On the other hand,
in the limit k = nB, we should be able to recover the results shown in Table 2 corresponding
to P̃R. Let it(k) denote the number of GMRES iterations corresponding to an approximation of
P̃R using k Lanczos vectors. To describe the dependence on k we chose to plot the additional
number of FGMRES iterations it(k) − it(nB) against k. The results are shown in Fig. 1 for all
levels and all domains. A comparison between domains for a fixed level is shown in Fig. 2 for
levels 1 and 2.

α= 1 10 100

domains = 4 16 64 256 4 16 64 256 4 16 64 256

level = 1 12 14 16 22 11 13 13 16 10 10 12 13

2 12 14 17 23 11 13 12 15 10 11 12 13

3 12 15 17 23 11 13 12 15 10 11 12 11

Table 4: GMRES iterations for Problem 2 using PR and a uniform mesh.
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ν= 1 10−1 10−2

domains = 4 16 64 256 4 16 64 256 4 16 64 256

level = 1 8 10 14 18 7 9 12 15 9 12 14 15

2 7 9 13 16 6 8 9 9 8 10 11 10

3 6 8 10 13 5 6 6 5 7 8 8 6

Table 5: GMRES iterations for Problem 3 with ‘diagonal wind’ using P̃R and a uniform mesh

ν= 1 10−1 10−2

domains = 4 16 64 256 4 16 64 256 4 16 64 256

level = 1 8 10 13 17 6 8 9 10 9 14 13 10

2 7 9 12 15 6 6 6 6 8 11 9 7

3 6 8 10 12 5 5 4 5 7 7 5 4

Table 6: GMRES iterations for Problem 3 with ‘rotating wind’ using P̃R and a uniform mesh

The experiments suggest that the size of the Lanczos basis depends on both nB and N . In
particular, note that in order to maintain a fixed number of GMRES iterations with varying
level we need to double the size of the Lanczos basis with each regular mesh refinement, i.e.,
k ≈ nB ≈ h−1. This result holds for any N . We can also deduce that k ≈ N1/2 for fixed n,
which is what Fig. 2 indicates. Finally, we note that while the above asymptotic behaviour indi-
cates a dependence on nB, the actual number of basis vectors needed in practice is remarkably
low (k ≈ 100 for n = 106) with the subdomain complexity dominating by far the overhead in
computing the action of the inverse of our H1/2-preconditioners.

6 Conclusions

We proved that our preconditioner is independent of the mesh size and we illustrated this in
our numerical experiments. However, we still have a logaritmic dependence on the number of
subdomains used. This dependence is more evident in the solution of Lapace equations, but for
the reaction-diffusion problems it seems to weaken for large values of α. The same behaviour
has been found for the convection-diffusion problems where for fine meshes we almost achieve
independence from both mesh size and number of subdomains.

The numerical cost of our preconditioner scales with nB and N , and we analysed experimen-
tally the effect of a reduced number of Lanczos steps on the overall algorithm. Lanczos subspaces

n nB

domains= 8 64 512 8 64 512

level=1 28,603 29,943 34,821 3,214 9,231 20,579

2 229,041 238,839 255,606 12,880 38,980 89,677

3 1,884,996 1,902,206 1,939,420 53,460 158,733 364,470

Table 7: Mesh information for three-dimensional experiments
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preconditioner= P̂R(k) P̃R(k)

domains = 8 64 512 8 64 512

level = 1 23 25 34 21 25 32

2 22 27 33 19 26 31

3 24 29 34 23 26 33

Table 8: FGMRES iterations for Problem 1 (3D): Lanczos with k = 20.
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(b) N = 16
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(c) N = 64
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(d) N = 256

Figure 1: Additional FGMRES iterations as a function of k for fixed N .

of very limited dimensions produce an effective preconditioner for all our test problems. In par-
ticular for 3D problems, the practical cost of computing the fractional norms is less than the cost

α= 1 10 100

domains = 8 64 512 8 64 512 8 64 512

level = 1 21 25 32 21 24 31 20 23 28

2 19 26 31 19 25 31 18 25 28

3 23 26 32 23 26 32 22 25 28

Table 9: FGMRES iterations for Problem 2 (3D) using P̃R: Lanczos with k = 20.
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(a) level= 2
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(b) level= 3

Figure 2: Additional FGMRES iterations as a function of k for fixed n.

of solving the 3D problem in one of the subdomain.

Further study will be devoted to the analysis of the approximation error and of the compu-
tational complexity of the Lanczos process for the computation of the H1/2-norms.
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