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ABSTRACT

The convergence properties of the new Regularized Euclidean Residual method for solving

general nonlinear least-squares and nonlinear equations problems are investigated. This

method, derived from a proposal by Nesterov (2007), uses a model of the objective func-

tion consisting of the unsquared Euclidean linearized residual regularized by a quadratic

term. At variance with previous analysis, its convergence properties are here considered

without assuming uniformly nonsingular globally Lipschitz continuous Jacobians, nor ex-

act subproblem solution. It is proved that the method is globally convergent to first-order

critical points, and, under stronger assumptions, to roots of the underlying system of non-

linear equations. The rate of convergence is also shown to be quadratic under stronger

assumptions.
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1 Introduction

Finding values that minimize a specified norm ‖F (x)‖ of a given vector-valued continuously-

differentiable function F ∈ IRm of several variables x ∈ IRn is one of the corner-stones of

computational mathematics. Although other norms are of interest, we shall concentrate

here on the Euclidean-norm case, for this then leads to the equivalent nonlinear least-

squares problem

min
x∈IRn

f(x)
def
= 1

2
‖F (x)‖2 (1.1)

involving the continuously differentiable f(x). This problem is not only of practical impor-

tance for its own sake in applications such as parameter identification, image registration

and data assimilation, but its solution also forms the basis of many methods for solving

optimization problems involving constraints. It is, for example, crucial when reducing con-

straint violation in several sequential quadratic programming (SQP) techniques (see Celis,

1985, Byrd, Schnabel and Shultz, 1987, Omojokun, 1989, Vardi, 1985, Powell and Yuan,

1990, etc.). The central problem of solving systems of nonlinear equations

F (x) = 0 (1.2)

for n = m is also covered by the formulation (1.1) in the sense that one then wishes to

reduce the objective function f(x) to zero. More generally, first-order optimality conditions

for (1.1) require that

g(x) ≡ JT (x)F (x) = 0

involving the Jacobian J(x) of F (x), and it is these conditions that we seek to satisfy.

Nearly all efficient methods for the solution of this problem are variants of Newton’s

method, in which (structured) quadratic approximations to f(x) are minimized. However,

such methods are well-known not to be globally convergent, and must then be modified to

include safeguards to guarantee convergence from arbitrary starting points. Linesearch and

trust regions (in which the quadratic model is minimized in a restricted neighbourhood of

the current iterate) offer two standard safeguards (see Nocedal and Wright, 1999, or Conn,

Gould and Toint, 2000, for more details).

Interestingly, other techniques are possible, and methods based on adaptive regular-

ization have recently created some interest (see Griewank, 1981, Nesterov and Polyak,

2006, Weiser, Deuflhard and Erdmann, 2007, or Cartis, Gould and Toint, 2007). In such

methods, the smooth objective function’s model is minimized in a neighbouhood implicitly

defined by a regularization term which penalizes the third power of the step length. In

this paper, we consider another new technique proposed by Nesterov (2007) for the special

case of nonlinear systems (1.2). This technique is different from previous approaches in

that it uses a non-smooth model of ‖F (x)‖, based on a linearization of F , rather than the

smooth f(x) which is then regularized by a quadratic term. In his paper, Nesterov proves

interesting complexity results, but one might consider his assumptions rather restrictive

as they require that m ≤ n, that J(x) is uniformly non-singular and globally Lipschitz

continuous, and that the model is globally minimized exactly at every iteration. Note



Convergence of a regularized Euclidean residual algorithm for nonlinear least-squares 3

that this is a simplified version of the generalised class of proximal-point methods (e.g.,

Rockafellar, 1976) applied to the model rather than actual objective ‖F (x)‖.
The purpose of our paper is to investigate the convergence properties of this new class

of methods in the weaker setting of general (possibly over- or under-determined) nonlinear

least-squares, without any global full-rank property, with minimal Lipschitz continuity

of the Jacobian and without requiring the exact solution of subproblems. Section 2 first

describes the method in more details. The global convergence analysis to first-order critical

points is then carried out in Section 3 under very weak assumptions on the step calculation.

Section 4 then investigates how a more accurate step can be computed and the implication

of this improvement on the local convergence properties. Finally, some conclusions and

perspectives are discussed in Section 6.

Throughout the paper, a subscript will denote an iteration counter, and for a particular

iterate xk and relevant function h(x), hk will be shorthand for h(xk). The (appropriately-

dimensioned) identity matrix will be denoted by I.

2 The method

We start by introducing the “modified Gauss-Newton method” proposed by Nesterov

(2007) and its extension to the general nonlinear least-squares case, which uses the same

motivation. If we assume that J(x) is globally Lipschitz continuous (with constant 2L)

and since Taylor’s theorem gives that, for some iterate xk,

F (xk + p) = F (xk) + J(xk)p+

∫ 1

0

(J(xk + tp) − J(xk))p dt,

we deduce from the triangle inequality that

‖F (xk + p)‖ ≤ ‖Fk + Jkp‖ + ‖p‖
∫ 1

0

‖J(xk + tp) − Jk‖ dt (2.1)

≤ ‖Fk + Jkp‖ + L‖p‖2 def
= mN

k (p). (2.2)

Therefore, if we knew the constant L and if we were able to compute a step pk minimizing

the model mN

k (p), then the point xk+1 = xk + pk must improve ‖F (x)‖ and hence the

objective function f(x) of (1.1). Here we follow a more indirect approach suggested by

Griewank (1981) and Cartis et al. (2007) and introduce a dynamic positive parameter σk

and the non-smooth model

m0
k(p)

def
= ‖Fk + Jkp‖ + σk‖p‖2 (2.3)

of ‖F (x)‖ around xk. Cartis et al. (2007) provide rules for adapting the parameter σk in a

numerically efficient manner. In this regard, it is important to note that the model (2.3)

is an exact penalty function for the problem

min
p∈IRn

‖p‖2 subject to Jkp = −Fk,
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and for all σk sufficiently small its minimizer solves Fk + Jkp = 0, if such system is

compatible (see Nocedal and Wright, 1999, §15.3). We would thus expect the Newton step

(satisfying Jkp = −Fk,) to be taken asymptotically for small enough σk.

In Nesterov (2007), the solution of the subproblem

min
x∈IRn

mN

k (p) (2.4)

is expressed in terms of the solution of a one-dimensional optimization problem with a non-

negative simple bound while Cartis, Gould and Toint (2008) rely, for the minimization of

m0
k in (2.3), on the equivalent differentiable constrained optimization problem

min
x∈IRn,ν∈IR

ν + σk‖p‖2, subject to ‖Fk + Jkp‖2 = ν2. (2.5)

The first-order optimality conditions for (2.5) take the form

(

σkp

1

)

= µ

(

Jk
T (Fk + Jkp)

−2ν

)

, (2.6)

for any p such that the residual ν = ‖Fk + Jkp‖ is nonzero1. Letting

Bk = Jk
TJk and gk = JT

k Fk,

the vector p solves (2.6) if p = p(λ) where λ > 0 and

(Bk + λI)p = −gk, λ = 2σk ‖Fk + Jkp‖. (2.7)

Note that if there is a p for which Fk +Jkp = 0, then this p satisfies (2.7) along with λ = 0

and this case must be checked for before attempting to find another vector p̃ and a scalar

λ̃ > 0 which solve (2.7).

In this paper, we consider a slightly more general model of the form

mk(p)
def
=

√

‖Fk + Jkp‖2 + µk‖p‖2 + σk‖p‖2 (2.8)

for some scalar µk ≥ 0 and attempt to find a step p by (possibly approximately) solving

min
p∈IRn

mk(p). (2.9)

If µk > 0, the model mk(p) is continuously differentiable, but this is not the case if µk = 0

since its first and second derivatives are both undefined when Fk + Jkp = 0. However, it

always enjoys the following desirable property.

Lemma 2.1. The model mk(p) is strictly convex for all µk ≥ 0.

1If Fk + Jkp = 0, the constraint qualification (LICQ) fails for (2.5) and the first-order conditions (2.6)

do not apply.
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Proof. Indeed, since mk(p) = φ(p) + σk‖p‖2, where

φ(p)
def
=

√

‖Fk + Jkp‖2 + µk‖p‖2, (2.10)

and the function σk‖p‖2 is strictly convex, mk(p) is strictly convex if φ(p) is convex.

But the functions g1(p) = ‖Fk + Jkp‖, g2(p) =
√
µ

k
‖p‖ are convex and nonnegative for

all p ∈ IRn. Since
√

g1(p)2 + g2(p)2 must be convex if g1(p) and g2(p) are convex and

nonnegative (see item 4 of Example 3.14 in Boyd and Vandenberghe, 2004, p. 87, with

k = p = 2), it follows that φ(p) is convex. 2

The algorithm adopted to solve (1.1) then uses the model mk along the lines of the adaptive

cubic overestimation method proposed by Cartis et al. (2007). As in this method, an

approximate solution of (2.9) is allowed, in the sense that one accepts any step p such

that the model (2.8) at p produces a value of the model smaller than that achieved by the

Cauchy point given by

pc
k = −αkgk, αk = argmin

α≥0
mk(−αgk). (2.11)

Observe that αk is uniquely defined in this last expression since mk is strictly convex.

We may now state our algorithm more formally as Algorithm RER on the following

page. As is usual in trust-region methods, the iteration k will be called successful if ρk ≥ η1

and unsuccessful otherwise.

For future reference, we state the following simple properties of Algorithm 2.1.

Lemma 2.2.

i) The sequence {µk} is non-negative and monotonically decreasing and µk ≤ min[µ0, γ3‖Fk‖].
As a consequence, the initial choice µ0 = 0 implies that µk = 0 for all k, in which

case mk(p) = m0
k(p) at every iteration.

ii) If there exists a limit point x∗ of the sequence {xk} of iterates generated by Algorithm

RER such that F (x∗) = 0, then all limit points of {xk} are roots of F (x) = 0.

Proof. ii) Since the sequence {‖Fk‖} is decreasing and bounded below, it is conver-

gent. Then, the existence of a limit point x∗ such that F (x∗) = 0 implies that all limit

points share this property, and thus every limit point of {xk} is a zero of F . 2

3 Global Convergence Analysis

We first make note of a simple bounding result, whose proof follows by inspection.

Lemma 3.1. For all α ∈ [0, 1], we have that 1
2
α ≤ 1 −

√
1 − α ≤ α.
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Algorithm 2.1: Regularized Euclidean Residual (RER) Algorithm

An initial point x0 and the constants µ0 ≥ 0, σ0 > 0, 1 > η2 > η1 > 0, γ2 ≥ γ1 > 1,

γ3 > 0 are given.

For k = 0, 1, . . . until convergence

Step 1: Compute an approximate minimizer pk of mk(p) such that

mk(pk) ≤ mk(p
c
k), (2.12)

where pc
k is given in (2.11).

Step 2: Compute

ρk =
‖F (xk)‖ − ‖F (xk + pk)‖

‖F (xk)‖ −mk(pk)
, (2.13)

Step 3: Set

xk+1 =

{

xk + pk if ρk ≥ η1,

xk otherwise.

Step 4: Set

σk+1 ∈







(0, σk] if ρk ≥ η2 (very successful),

[σk, γ1σk ) if η1 ≤ ρk < η2 (successful),

[γ1σk, γ2σk ) otherwise (unsuccessful).

(2.14)

Step 5: Set

µk+1 =

{

min(µk, γ3‖Fk+1‖) if ρk ≥ η1,

µk otherwise.
(2.15)

In order to prove global convergence to first-order critical points, we first derive an easy

consequence of the fact that an iterate is not first-order critical.

Lemma 3.2. Assume that gk 6= 0. Then, for µk ≥ 0,

Fk 6= 0, 〈gk, (Bk + µkI)gk〉 > 0, and 〈pk, (Bk + µkI)pk〉 > 0 (3.1)

and also that

mk(p
C

k) < ‖Fk‖. (3.2)

Proof. The first statement in (3.1) immediately results from our assumption that

gk = JT
k Fk 6= 0, from which we also deduce that ‖Bk‖ = ‖JT

k Jk‖ > 0. Moreover,
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JT
k Fk ∈ range(JT

k ) = null(Jk)
⊥ and thus Jkgk = JkJ

T
k Fk is nonzero. The first in-

equality in (3.1) then results from the identity 〈gk, (Bk + µkI)gk〉 = ‖JkJ
T
k Fk‖2 +

µk‖gk‖2. We also observe that (3.2) follows from the convexity of mk(p) and the iden-

tity 〈∇xmk(0), gk〉 = ‖gk‖2/‖Fk‖ > 0. Finally, mk(pk) ≤ mk(p
C

k) < ‖Fk‖ because of

(3.2) and (2.12). Thus Jkpk is nonzero and the last inequality of (3.1) follows from

〈pk, (Bk + µkI)pk〉 = ‖Jkpk‖2 + µk‖pk‖2. 2

We now provide a lower bound on the decrease attained at the Cauchy step.

Lemma 3.3. Assume that gk 6= 0. Then we have that

‖Fk‖ −mk(pk) ≥ ‖Fk‖ −mk(p
c
k) ≥

‖gk‖2

4‖Fk‖
min

[

1

2σk‖Fk‖
,

1

‖Bk + µkI‖

]

. (3.3)

Proof. For any α ≥ 0, we deduce from (2.8) and (2.10) that

mk(−αgk) = φ(−αgk) + σkα
2‖gk‖2 = ‖Fk‖

√

1 − π(α) + σkα
2‖gk‖2, (3.4)

where

π(α) =
2α‖gk‖2 − α2gT

k (Bk + µkI)gk

‖Fk‖2
,

and the denominator of this last expression is nonzero because of Lemma 3.2. Trivially,

we have that 1 − π(α) ≥ 0; moreover π(α) > 0 for any α ∈ (0, ᾱ) where

ᾱ =
2‖gk‖2

gT
k (Bk + µkI)gk

,

which is also well-defined for µk ≥ 0 because of Lemma 3.2. Choosing α ∈ (0, ᾱ), it

follows that 0 < π(α) ≤ 1. By Lemma 3.1, this implies that
√

1 − π(α) ≤ 1 − π(α)/2,

and (3.4) then yields that

mk(−αgk) − ‖Fk‖ ≤ ‖Fk‖
(

1 − 2α‖gk‖2 − α2gT
k (Bk + µkI)gk

2‖Fk‖2

)

+ σkα
2‖gk‖2 − ‖Fk‖

= − α

2‖Fk‖
[2‖gk‖2 − αgT

k (Bk + µkI)gk] + σkα
2‖gk‖2

≤ α‖gk‖2

‖Fk‖
( − 1 +

α

2
‖Bk + µkI‖ + σkα‖Fk‖). (3.5)

The right hand side of the last inequality is negative for any α ∈ (0, α̂) with

α̂ =
2

‖Bk + µkI‖ + 2σk‖Fk‖
.

Note that ᾱ > α̂ as

ᾱ ≥ 2‖gk‖2

‖Bk + µkI‖‖gk‖2
>

2

‖Bk + µkI‖ + 2σk‖Fk‖
.
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Now, introduce

α∗ =
1

2 max(2σk‖Fk‖, ‖Bk + µkI‖)
. (3.6)

Clearly, α∗ < α̂. Then, from (3.5) we obtain

mk(−α∗gk) − ‖Fk‖ ≤ α∗‖gk‖2

‖Fk‖

(

−1 +
α∗

2
‖Bk + µkI‖ + σkα

∗‖Fk‖
)

≤ α∗‖gk‖2

‖Fk‖

(

−1 +
1

2

)

= − ‖gk‖2

4‖Fk‖
1

max(2σk‖Fk‖, ‖Bk + µkI‖)
,

which completes the proof since mk(pk) ≤ mk(p
c
k) ≤ mk(−α∗gk) because of (2.11) and

(2.12). 2

Using a similar methodology, we now derive a bound on the step.

Lemma 3.4. Assume that gk 6= 0. Then we have that

‖pk‖ ≤ 2‖gk‖
σk‖Fk‖

. (3.7)

Proof. The fact that mk(pk) < ‖Fk‖ gives that ‖pk‖ > 0, 〈gk, pk〉 ≤ 0 and

‖Fk‖
√

1 − τk(pk) + σk‖pk‖2 < ‖Fk‖, (3.8)

where

τk(pk)
def
= −2〈gk, pk〉 + 〈pk, (Bk + µkI)pk〉

‖Fk‖2
=

2|〈gk, pk〉| − 〈pk, (Bk + µkI)pk〉
‖Fk‖2

, (3.9)

and also that 0 < τk(pk) ≤ 1. Note that τk(pk) is well-defined because of Lemma 3.2.

Hence, we have that

σk‖pk‖2 < ‖Fk‖
[

1 −
√

1 − τk(pk)
]

≤ ‖Fk‖τk(pk) =
2|〈gk, pk〉| − 〈pk, (Bk + µkI)pk〉

‖Fk‖
,

where we have used Lemma 3.1. This yields, using (3.1) and the Cauchy-Schwarz

inequality, that

σk‖Fk‖ ‖pk‖2 < 2|〈gk, pk〉| − 〈pk, (Bk + µkI)pk〉 ≤ 2|〈gk, pk〉| ≤ 2‖gk‖ ‖pk‖. (3.10)

Dividing both sides by ‖pk‖ then gives (3.7). 2

To proceed in our analysis we make a further assumption on the Jacobian of F (x).

Assumption 3.1. Let {xk} be the sequence generated by the RER Algorithm. Then, there

exists a positive constant κJ such that, for all k ≥ 0 and all x ∈ [xk, xk + pk],

‖J(x)‖ ≤ κJ. (3.11)
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Note that the monotonic nature of the sequence {‖Fk‖} implies that, for all k,

‖Fk‖ ≤ ‖F0‖. (3.12)

We then immediately deduce from (3.11) and Lemma 2.2 that, for k ≥ 0,

‖Bk + µkI‖ ≤ κ2
J
+ γ3‖F0‖ def

= κD. (3.13)

Another consequence of (3.11) is that in the conditions of Lemma 3.4, (3.7) implies

‖pk‖ ≤ 2κJ

σk
, k ≥ 0. (3.14)

Next we give a bound on the error between the objective function and the model at the

new candidate iterate.

Lemma 3.5. Suppose that F : IRn 7→ IRm is continuously differentiable. Then

‖F (xk + pk)‖ −mk(pk) ≤ ‖pk‖
∫ 1

0

‖J(xk + tpk) − Jk‖ dt− σk‖pk‖2, k ≥ 0. (3.15)

Furthermore, if Assumption 3.1 holds, then

‖F (xk + pk)‖ −mk(pk) ≤
2κJ

σk

∫ 1

0

‖J(xk + tpk) − Jk‖ dt, k ≥ 0. (3.16)

Proof. The mean-value theorem implies that

F (xk + pk) = F (xk) + Jkpk +

∫ 1

0

[J(xk + tpk) − Jk]pk dt,

which further gives

‖F (xk + pk)‖ ≤ ‖Fk + Jkpk‖ + ‖pk‖
∫ 1

0

‖J(xk + tpk) − Jk‖ dt.

Therefore, using (2.10) and the inequality
√
a2 + b2 ≥ a for all a, b ≥ 0, we obtain that

‖F (xk + pk)‖ −mk(pk) = ‖F (xk + pk)‖ − φ(pk) − σk‖pk‖2

≤ ‖Fk + Jkpk‖ − φ(pk) + ‖pk‖
∫ 1

0

‖J(xk + tpk) − Jk‖ dt− σk‖pk‖2

≤ ‖pk‖
∫ 1

0

‖J(xk + tpk) − Jk‖ dt− σk‖pk‖2,

as desired. The bound (3.16) now follows from (3.14) and (3.15). 2

Next we show that provided there are only finitely many successful iterations, all later

iterates are first-order critical.
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Theorem 3.6. Let F : IRn 7→ IRm be continuously differentiable. Suppose that Assump-

tion 3.1 holds and that there are only finitely many successful or very successful iterations.

Then xk = x∗ for all sufficiently large k and g(x∗) = 0.

Proof. After the last successful iterate is computed, indexed by say k0, the construc-

tion of the algorithm implies that xk0+1 = xk0+i
def
= x∗, for all i ≥ 1. Since all iterations

k ≥ k0 + 1 are unsuccessful, the updating rule (2.14) implies that σk+1 ≥ γ1σk, with

γ1 ≥ 1, for all k ≥ k0 + 1, and so

σk → +∞, as k → ∞. (3.17)

If ‖gk0+1‖ > 0, then ‖gk‖ = ‖gk0+1‖ def
= ǫ > 0, for all k ≥ k0 + 1. It now follows from

(3.3), (3.12) and (3.13) that

‖Fk‖ −mk(pk) ≥
ǫ2

8‖F0‖2
min

{

1

σk
,
2‖F0‖
κD

}

, k ≥ k0 + 1,

and so, as (3.17) implies 1/σk → 0, we have

‖Fk‖ −mk(pk) ≥
ǫ2

8‖F0‖2σk
, for all k ≥ k0 + 1 sufficiently large. (3.18)

This, (2.13) and (3.16) imply

0 ≤ 1 − ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≤ 16κJ‖F0‖2ǫ−2

∫ 1

0

‖J(xk + tpk) − Jk‖ dt,

for all k ≥ k0 + 1 sufficiently large; the first inequality above holds, since ρk ≥ 1

implies that k is very successful, which contradicts k ≥ k0 + 1 unsuccessful. Note that

xk + tpk = x∗ + tpk for all k ≥ k0 + 1, and that due to (3.14), (3.17) and t ∈ [0, 1], we

have x∗ + tpk → x∗ as k → ∞. Since Jk = J∗, k ≥ k0 + 1, and J continuous, we now

conclude that

‖J(xk + tpk) − Jk‖ → 0, k → ∞, t ∈ [0, 1],

and so ρk → 1 as k → ∞. This implies that for all k sufficiently large, ρk ≥ η2 and thus

k is very successful. This contradicts k ≥ k0 + 1 unsuccessful. Thus gk0+1 = g∗ = 0. 2

The following theorem states that at least one limit point of the sequence {xk} is a

stationary point of problem (1.1).

Theorem 3.7. Assume F : IRn 7→ IRm is continuously differentiable and that Assumption

3.1 holds. Then

lim inf
k→∞

‖gk‖ = 0. (3.19)

Proof. Note that if gk = 0 for some k, then the RER Algorithm terminates and

(3.19) holds (finitely). Also, if there are finitely many successful iterations, Theorem
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3.6 implies the above. Thus without loss of generality, we may assume that gk 6= 0 for

all k and that there are infinitely many successful iterations, and let

S = {k ≥ 0 | iteration k is successful or very successful}.

To show that {‖gk‖} is not bounded away from zero, let us assume the contrary, namely,

that there exists ǫ > 0 such that

‖gk‖ ≥ ǫ, for all k ≥ 0. (3.20)

Let us first prove that (3.20) implies that

∞
∑

k∈S

1

σk
< +∞. (3.21)

It follows from (2.13), (2.14), (3.3) and (3.20) that

‖Fk‖ − ‖Fk+1‖ ≥ η1
ǫ2

4‖Fk‖
min

{

1

2σk‖Fk‖
,

1

‖Bk + µkI‖

}

, k ∈ S,

and furthermore, from (3.12) and (3.13),

‖Fk‖ − ‖Fk+1‖ ≥ η1ǫ
2

8‖F0‖2
min

{

1

σk
,
2‖F0‖
κD

}

, k ∈ S. (3.22)

Since {‖Fk‖} is bounded below and monotonically decreasing, it is convergent and

hence the minimum in the right-hand side of (3.22) will be attained at 1/σk as the

left-hand side of (3.22) converges to zero. Thus we have

‖Fk‖ − ‖Fk+1‖ ≥ c0
σk
, k ∈ S sufficiently large,

where c0
def
= η1ǫ

2/(8‖F0‖2), which summed up over all k ≥ 0 sufficiently large, larger

than some k0, gives

‖Fk0
‖ − lim

k→∞
‖Fk‖ ≥ c0

∞
∑

k∈S,k=k0

1

σk
,

and so, since {‖Fk‖} is convergent, (3.21) holds.

Next we estimate the ratio ρk in (2.13). For its denominator, note that (3.21) implies

1/σk → 0, k ∈ S, k → ∞. (3.23)

Thus (3.3), (3.12), (3.13) and (3.20) imply, similarly to (3.18), that

‖Fk‖ −mk(pk) ≥
ǫ2

8‖F0‖2σk
, for all k ∈ S sufficiently large. (3.24)
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It follows from (2.13), (3.16) and (3.24) that

1 − ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≤ 16κJ‖F0‖2ǫ−2

∫ 1

0

‖J(xk + tpk) − Jk‖ dt, (3.25)

for all k ∈ S sufficiently large. Now let us argue that the sequence of iterates {xk},
k ≥ 0, is a Cauchy sequence, and hence convergent. The construction of the algorithm,

(3.14) and (3.21) imply

‖xk+l − xk‖ ≤
k+l−1
∑

i=k

‖xi+1 − xi‖ =

k+l−1
∑

i=k,i∈S

‖pi‖ ≤ 2κJ

k+l−1
∑

i=k,i∈S

1

σi
→ 0, as k → ∞,

and hence {xk} converges to some x̃. Furthermore, ‖xk + tpk − x̃‖ ≤ ‖xk − x̃‖ + ‖pk‖,
for all t ∈ [0, 1]. Also, (3.14) and (3.23) imply that ‖pk‖ → 0, k ∈ S, k → ∞. Thus

xk + tpk → x̃, k ∈ S, k → ∞, for all t ∈ [0, 1],

and we conclude

‖J(xk +tpk)−Jk‖ ≤ ‖J(xk +tpk)−J(x̃)‖+‖Jk−J(x̃)‖ → 0, k ∈ S, k → ∞, ∀t ∈ [0, 1],

which implies, together with (3.25), that either ρk ≥ 1 or ρk → 1, k ∈ S, k → ∞.

Both these conditions imply that k is a very successful iteration for k ∈ S sufficiently

large, which together with (2.14), gives that σk+1 ≤ σk, k ∈ S sufficiently large. Now,

if all k belong to S for k sufficiently large (i. e., there are no unsuccessful iterations for

k sufficiently large), then the latter inequality contradicts (3.23), and so (3.20) cannot

hold. Otherwise, recalling that we assumed S to be infinite (which implies not all

iterations can be consecutively unsuccessful for all k sufficiently large), let {ki} denote

an (infinite) subsequence of very successful iterations such that {ki −1} is unsuccessful

for all i (since all k ∈ S are very successful for all k sufficiently large, without loss of

generality, we can ignore successful iterates; also, if such a subsequence {ki} does not

exist, then we are in the previous case of all iterates being very successful for all k

sufficiently large). Then, from (2.14), we have σki
≤ γ2σki−1, for all i, which together

with (3.23), implies

1/σki−1 → 0, i→ ∞. (3.26)

It follows that the inequality in (3.24) holds for k replaced by ki−1, for all i sufficiently

large. Hence, (3.25) holds for ki−1, for all i sufficiently large. Further, (3.14) and (3.26)

imply ‖pki−1‖ → 0, i→ ∞, and thus, since xk → x̃, k → ∞, we have xki−1+tpki−1 → x̃,

i → ∞. As above, we can now conclude that either ρki−1 ≥ 1 or ρki−1 → 1, i → ∞.

But this implies that ki − 1 is a very successful iteration for all i sufficiently large.

This contradicts our assumption that ki − 1 is an unsuccessful iteration for all i. Thus

all iterations are very successful for sufficiently large k, a case which we have already

addressed. 2
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Note that Theorems 3.6 and 3.7 only required Jk to be bounded above; the bound

(3.11), however, will be needed next.

To be able to show that the whole sequence {gk} converges to zero, we employ the

additional assumption below.

Assumption 3.2. The Jacobian J is uniformly continuous on the sequence of iterates

{xk}, i. e.,

‖J(xti) − J(xli)‖ → 0, whenever ‖xti − xli‖ → 0, i→ ∞, (3.27)

where {xti} and {xli} are subsequences of {xk}.

Clearly, Assumption 3.2 is satisfied if J is uniformly continuous on IRn; it is also satisfied

in J is Lipschitz continuous on IRn.

The next theorem states that all limit points of the sequence {xk} are stationary points

of problem (1.1). It also indicates a case where such limit points solve the problem of finding

a root of F (x) = 0.

Theorem 3.8. Let F : IRn 7→ IRm be continuously differentiable and suppose that As-

sumptions 3.1 and 3.2 hold. Then,

lim
k→∞

‖gk‖ = 0. (3.28)

Furthermore, if m ≤ n and there exists a limit point x∗ of the sequence {xk} of iterates

generated by Algorithm RER such that F (x∗) = 0 and J(x∗) is full-rank, then all limit

points of {xk} are roots of F (x) = 0.

Proof. To prove (3.28), assume that there exists an infinite subsequence {ti} ⊂ S
such that

‖gti‖ ≥ 2ǫ, for all i, (3.29)

for some ǫ > 0. By (3.19), for each ti there is a first successful iteration li > ti such

that ‖gli‖ < ǫ. Thus {li} ⊆ S and

‖gk‖ ≥ ǫ, ti ≤ k < li and ‖gli‖ < ǫ. (3.30)

Letting K = {k ∈ S | ti ≤ k < li}, we observe that this index subset is also infinite.

Moreover, (2.13), (3.3), (3.12), (3.13) and (3.7) imply that

‖Fk‖−‖Fk+1‖ ≥ η1ǫ

16‖F0‖
min

[

2‖gk‖
σk‖Fk‖

,
4ǫ

κD

]

≥ η1ǫ

16‖F0‖
min

[

‖pk‖,
4ǫ

κD

]

, k ∈ K. (3.31)

The sequence {‖Fk‖} is monotonically decreasing and bounded below, hence it con-

verges, and so the left-hand side of (3.31) converges to zero, implying that

‖pk‖ → 0, k ∈ K, k → ∞,
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on the right-hand side of (3.31). Thus (3.31) becomes

‖Fk‖ − ‖Fk+1‖ ≥ κg‖pk‖, for all ti ≤ k < li, k ∈ S, i sufficiently large, (3.32)

where κg

def
= η1ǫ/(16‖F0‖). Summing up (3.32) and using xk+1 = xk + pk gives

‖Fti‖ − ‖Fli‖ ≥ κg

li−1
∑

k=ti,k∈S

‖pk‖ = κg

li−1
∑

k=ti

‖xk+1 − xk‖ ≥ ‖xti − xli‖, (3.33)

for all i sufficiently large. Again using that {‖Fk‖} is convergent, the left-hand side of

(3.33) converges to zero, and thus

li−1
∑

k=ti,k∈S

‖pk‖ → 0 and ‖xti − xli‖ → 0, as i→ ∞. (3.34)

We now show that the second limit in (3.34) implies that

‖gti − gli‖ → 0, as i→ ∞. (3.35)

We have

‖gti − gli‖ ≤ ‖JT
ti
‖ · ‖Fti − Fli‖ + ‖Fli‖ · ‖Jti − Jli‖, for all i.

Recalling (3.11), (3.12) and (3.27), (3.35) holds provided ‖Fti − Fli‖ → 0. To see the

latter, employ Taylor’s theorem and (3.11) to get

‖Fti − Fli‖ ≤
li−1
∑

k=ti,k∈S

‖Fk − Fk+1‖ ≤ κJ

li−1
∑

k=ti,k∈S

‖pk‖,

whose right-hand side tends to zero due to (3.34). This proves (3.35). We have now

reached a contradiction since (3.29) and (3.30) imply ‖gti − gli‖ ≥ ‖gti‖ − ‖gli‖ ≥ ǫ.

Hence (3.29) cannot hold and we conclude that (3.28) must hold.

Finally, assume that {xkj
} converges to x∗ with J(x∗) being full-rank and m ≤ n.

Then (3.28) ensures that ‖Fkj
‖ converges to zero because the singular values of Jkj

must remain uniformly bounded away from zero by continuity (for j large enough). We

may now conclude our proof by using Lemma 2.2 ii). 2

Note that roots of F (x) = 0 must be second-order critical points of problem (1.1), and

our last theorem may then be interpreted as guaranteeing convergence to such points

if the Jacobian remains uniformly full-rank over the iterates. Of course, a guarantee of

convergence to second-order points that are not roots of F cannot be given in the framework

of the present first-order Gauss-Newton-like method, where the model ignores all second-

derivative terms ∇xxFi(x).

Note that Theorem 3.8 still holds if we require only Jk to be bounded above and J to

be uniformly continuous also on the line segments inbetween successful iterates.

Theorems 3.6, 3.7 and 3.8 extend results concerning the convergence of trust-region

methods given in Moré (1983); see also Thomas (1975).
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4 Beyond the Cauchy Point

In practice, more model reduction is sought than that achieved at the Cauchy step, with

the objective of improving the speed of convergence. We thus need to investigate the

properties of the model further and to describe how a better step can be computed before

stating improved convergence results.

4.1 The model and its minimizer

In this section we characterize the minimizer of the model mk(p).

Lemma 4.1. Let F : IRn 7→ IRm be continuously differentiable and assume ‖gk‖ 6= 0.

i) If the vector p∗k is the solution of (2.9), then there is a nonnegative λ∗ such that (p∗k, λ
∗)

solves

(Bk + λI)p = −gk, (4.1)

λ = µk + 2σkφ(p), (4.2)

where φ(p) is given in (2.10).

ii) If µk > 0, then there exists a unique solution (p∗k, λ
∗) of (4.1) and (4.2), and p∗k solves

(2.9).

iii) If µk = 0 and there exists a solution (p∗k, λ
∗) of (4.1) and (4.2) with λ∗ > 0, then p∗k

solves (2.9). Otherwise, the solution of (2.9) is given by the minimum norm solution

of the linear system Bkp = −gk.

Proof. i) If p∗k solves (2.9) and µk = 0 then (4.1) and (4.2) follow from (2.7). On the

other hand, if µk > 0, then φ(p) is positive, mk(p) is differentiable for any p and the

gradient ∇mk(p) has the form

∇mk(p) =
gk +Bkp + µkp

φ(p)
+ 2σkp. (4.3)

Thus, ∇mk(p) vanishes when (4.1) and (4.2) are satisfied.

As ∇mk(p
∗
k) = 0, it follows that p∗k solves (4.1) and (4.2) along with

λ∗ = µk + 2σkφ(p∗k). (4.4)

ii) If µk > 0, as mk(p) is differentiable for any p, it follows that a solution (p∗k, λ
∗) of

(4.1)-(4.2) satisfies

∇mk(p
∗
k) = 0.

Then, the strict convexity of mk(p) implies that p∗k solves (2.9) and (p∗k, λ
∗) is the unique

solution of (4.1) and (4.2).
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iii) If µk = 0 and there exist p∗k and λ∗ > 0 satisfying (4.1)-(4.2), then p∗k solves

(2.9) from (2.6). Otherwise, there is no solution of the first-order conditions and the

constraint qualification (LICQ) must fail. Thus ν = 0 in (2.5) and the minimizer p∗k
satisfies Jkp = −Fk, i.e., it satisfies (2.7) along with λ∗ = 0. Since mk(p) = σk‖p‖2 for

all p such that Jkp = −Fk, we can conclude that p∗k is the minimum norm solution to

Bkp = −gk. 2

Next, we let p(λ) be the minimum-norm solution of (4.1) for a given λ ≥ 0 and p∗k =

p(λ∗), the minimum of mk(p). The following lemma is an intermediate result towards

proving an upper bound on the scalar λ∗.

Lemma 4.2. Assume ‖gk‖ 6= 0 and let p(λ) be the minimum norm solution of (4.1) with

λ ≥ 0. Assume furthermore that Jk is of rank ℓ and its singular-value decomposition

is given by UkΣkV
T
k where Σk = diag(ς1, . . . , ςν), with ν = min(m,n). Then, denoting

r = UT
k Fk, we have that

‖p(λ)‖2 =
ℓ

∑

i=1

ς2i r
2
i

(ς2i + λ)2
and ‖Fk + Jkp(λ)‖2 =

ℓ
∑

i=1

λ2r2
i

(ς2i + λ)2
+

m
∑

i=ℓ+1

r2
i . (4.5)

Proof. (See also Lemmas 2.2 and 4.1 in Cartis et al., 2008). The defining equation

(4.1) and the singular-value decomposition of Jk give that

p(λ) = −Vk(Σ
T
k Σk + λI)+ΣT

k r

where the superscript + denotes the Moore-Penrose generalized inverse. Taking the

square norm of this expression then yields the first part of (4.5). We also deduce that

Fk + Jkp(λ) = Uk(r − Σk(Σ
T
k Σk + λI)+ΣT

k r),

whose squared norm then gives the second part of (4.5). 2

Lemma 4.3. Assume ‖gk‖ 6= 0 and let p(λ) be the minimum norm solution of (4.1) with

λ ≥ 0. Then, the function φ(p(λ)) is monotonically increasing in (µk,+∞) and

φ(p(λ)) ≤ ‖Fk‖. (4.6)

Moreover, if p∗k = p(λ∗) is the minimizer of mk(p), then

λ∗ ∈ [µk, µk + 2σk‖Fk‖ ]. (4.7)

Proof. Using (2.10) and (4.5), we deduce that

φ(p(λ)) =

√

√

√

√

ℓ
∑

i=1

(λ2 + µkς2i )

(λ+ ς2i )2
r2
i +

m
∑

i=ℓ+1

r2
i . (4.8)
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and

φ′(p(λ)) =
1

φ(p(λ))

ℓ
∑

i=1

(λ− µk)ς
2
i

(λ+ ς2i )3
r2
i .

Thus φ(p(λ)) is monotonically increasing in (µk,+∞). Moreover, we deduce from (4.8)

that

lim
λ→∞

φ(p(λ)) =

√

√

√

√

m
∑

i=1

r2
i = ‖Fk‖, (4.9)

and we conclude that (4.6) holds. Finally, (4.7) trivially follows from (4.2) and (4.6).

2

Note that if φ(p(λ∗)) > 0 then it follows from (4.2) that λ∗ > 0; this is the case whenever

µk > 0.

4.2 Computing the Trial Step Accurately

We now consider tools for computing an approximate minimizer pk of the model mk (see

Step 1 of Algorithm RER). In practice, we look for a step pk satisfying the sufficient

decrease condition (2.12) and such that

pk = p(λk), (Bk + λkI)pk = −gk, (4.10)

where λk is an approximation to λ∗ in (4.4), i.e.

‖∇mk(p(λk))‖ ≤ ωk (4.11)

for an iteration-dependent tolerance ωk > 0. Our procedure is based on the observation

that the optimal scalar λ∗ solves the so-called secular equation given in (4.2), i.e.,

ρ(λ) = λ− µk − 2σkφ(p(λ)) = 0. (4.12)

In what follows, we suppose that ρ(λ) admits a positive root and we explore ways to solve

(4.12) by root-finding methods and propose alternative one-dimension nonlinear equations

in the variable λ. It is easy to see that ρ′(λ) may change sign in (µk,+∞), while ζ(λ) in

the equation

ζ(λ)
def
= (λ− µk)

2 − 4σ2
k(φ(p(λ)))2 = 0,

is increasing for λ ∈ [λ∗,+∞) but is not guaranteed to be convex. Therefore, applying

Newton’s method to these nonlinear equations safely needs an accurate initial guess. As an

alternative to the secular equation (4.12), we consider the problem of finding the positive

root of the function −ρ(λ)/λ, i.e.,

ψ(λ) = 2σk
φ(p(λ))

λ
+
µk

λ
− 1 = 0. (4.13)

The following result establishes desirable properties of this formulation.
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Lemma 4.4. The function ψ(λ) is convex and strictly decreasing in (µk,+∞) and Newton

method applied to (4.13) will converge globally and monotonically to the positive root λ∗ of

(4.2) for any initial guess λ(0) ∈ (µk, λ
∗). The secant method has the same properties for

any initial guesses λ(0), λ(1) such that µk < λ(0) < λ(1) ≤ λ∗.

Proof. By (4.5) and the cited result by Boyd and Vandenberghe (2004) [p. 87] verify

that the functions

‖Fk + Jkp(λ)‖
λ

=

√

√

√

√

ℓ
∑

i=1

(

ri

ς2i + λ

)2

+

m
∑

i=ℓ+1

(ri

λ

)2

and

‖p(λ)‖ =

√

√

√

√

ℓ
∑

i=1

(

ςiri

ς2i + λ

)2

are convex and nonnegative on (µk,+∞). (see also Lemma 4.1 in Cartis et al., 2008

for the case where µk = 0). Moreover,

(

‖p(λ)‖
)

′

= − 1

‖p(λ)‖

ℓ
∑

i=1

ς2i r
2
i

(ς2i + λ)3
< 0,

and hence ‖p(λ)‖ is decreasing. As a consequence,
√
µk‖p(λ)‖/λ is also convex and

nonnegative. Applying again the cited result by Boyd and Vandenberghe (2004) [p.

87], we deduce that

φ(p(λ))

λ
=

√

(‖Fk + Jkp(λ)‖
λ

)2

+

(√
µk‖p(λ)‖
λ

)2

.

is convex and the convexity of µk/λ finally ensures that of ψ(λ).

Now, since ψ(λ) > −1 for all λ ∈ (µk,∞) and has a horizontal asymptote at −1

for λ → ∞, we deduce that ψ(λ) must be strictly decreasing in (µk,∞). Thus λ∗

(whose existence is assumed) is the unique positive root of (4.13) and the convergence

properties of both the Newton method and the secant method applied to (4.13) follow

from Lemma A.1 in Cartis et al. (2008). 2

In order to apply the Newton method to (4.13), we need

ψ′(λ) = −2σk

λ2
φ(p(λ)) +

2σk

λ
φ′(p(λ)) − µk

λ2
. (4.14)

Differentiating (4.1) with respect to λ we get

(Bk + λI)∇λp(λ) + p(λ) = 0, (4.15)
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where ∇λp(λ) is the gradient of p(λ). Furthermore, by using (4.1), we obtain that

φ′(p(λ)) =
2(Bkp(λ) + gk)

T∇λp(λ) + 2µkp(λ)T∇λp(λ)

2φ(p(λ))

=
(µk − λ)p(λ)T∇λp(λ)

φ(p(λ))

=
(λ− µk)p(λ)T (Bk + λI)−1p(λ)

φ(p(λ))
.

If the Cholesky factorization Bk + λI = RTR is available, then ψ′(λ) takes the form

ψ′(λ) = −2σk

λ2
φ(p(λ)) +

2σk(λ− µk)‖R−Tp(λ)‖2

λφ(p(λ))
− µk

λ2
, (4.16)

and the Newton method for (4.13) then gives Algorithm 4.1 on the current page.

Algorithm 4.1: Newton method for (4.13) using Cholesky factorization.

An initial λ(0) > µk is given. For ℓ = 0, 1, . . . until convergence

1. Compute Bk + λ(ℓ)I = RTR .

2. Solve RTRp(λ(ℓ)) = −gk.

3. Solve RT z(λ(ℓ)) = p(λ(ℓ)).

4. Compute ψ(λ(ℓ)) and ψ′(λ(ℓ)) given in (4.13) and (4.16).

5. Set λ(ℓ+1) = λ(ℓ) − ψ(λ(ℓ))

ψ′(λ(ℓ))
.

Practical versions of the above algorithms should not iterate until convergence to λ∗

is obtained with high accuracy but return an approximate solution to λ∗, producing an

approximate step pk. In practice, a root-finding algorithm must iterate until conditions

(4.11) and (2.12) are met. Unfortunately, this requires the computation of pc
k. Note that,

because

mk(−αgk) = φ(−αgk) + σkα
2‖gk‖2

=
√

‖Fk‖2 − 2α‖gk‖2 + α2gT
k (Bk + µkI)gk + σkα

2‖gk‖2,

it follows that pC

k = −αC

kgk where αC

k ∈ (0, ‖gk‖2/gT
k (Bk +µkI)gk) is the unique solution to

the scalar nonlinear equation

2σk‖gk‖2 αkφ(−αkgk) = ‖gk‖2 − αkg
T
k (Bk + µkI)gk. (4.17)

In practice, αC

k can be computed solving this equation by a root-finding method, at the

cost of computing the Hessian-vector product in the last term of (4.17).
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4.2.1 Local Convergence Analysis

We may now complete our convergence results. More specifically, we are able to prove

that, when {xk} admit a limit point x∗ such that F (x∗) = 0 and J(x∗) is of full rank, then

the iterations must be very successful for k sufficiently large, irrespective of the relative

values of m and n. The following assumption is needed for the latter to hold.

Assumption 4.1. Let {xk} be the sequence generated by the RER Algorithm. Then there

exists a constant κS > 0 such that, if ‖x− xk‖ ≤ κS and x ∈ [xk, xk + pk], then

‖J(x) − J(xk)‖ ≤ 2κL‖x− xk‖, for all k. (4.18)

Clearly, (4.18) is automatically satisfied when J(x) is globally Lipschitz-continuous over

IRn. Note that if Assumption 4.1 replaces Assumption 3.2 in the conditions of Theorem

3.8, the latter still holds. To see this, note that the first limit in (3.27) for the subsequences

of interest in the proof of Theorem 3.8 is implied by (4.18) and the first limit in (3.34).

We first prove that the error between the objective function and the model decreases

quickly enough with the steplength.

Lemma 4.5. Assume that F : IRn 7→ IRm is continuously differentiable and that Assump-

tion 4.1 holds. If ‖pk‖ ≤ κS, then

‖F (xk + pk)‖ −mk(pk) ≤ (κL − σk)‖pk‖2. (4.19)

Proof. The bound (4.19) follows from (3.15) since (4.18) applies for x = xk + tpk due

to ‖pk‖ ≤ κS. 2

We now prove that the iteration must be very successful when σk is sufficiently large.

Lemma 4.6. Let F : IRn 7→ IRm be continuously differentiable and suppose that Assump-

tions 3.1 and 4.1 hold. Assume that gk 6= 0 and that

σk ≥ max

[

κL,
2κJ

κS

]

. (4.20)

Then ρk ≥ 1, iteration k is very successful and σk+1 ≤ σk.

Proof. Note that (3.14) and the second term in the maximum in (4.20) imply that

‖pk‖ ≤ 2κJ

σk
≤ κS.

We can now apply Lemma 4.5 and deduce that (4.19) holds. But the right-hand side

of this inequality is non-positive because of (4.20), and hence, since

1 − ρk =
‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
,

and since ‖Fk‖−mk(pk) > 0 by construction (also see (3.3)), we deduce that ρk ≥ 1 >

η2. The conclusion then follows from the mechanism of the algorithm. 2
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The following result then shows that the sequence of parameters {σk} is bounded above.

Lemma 4.7. Let F : IRn 7→ IRm be continuously differentiable. Suppose that Assumptions

3.1 and 4.1 hold and that gk 6= 0 for all k. Then there exists a constant σmax > 0 such

that, for all k ≥ 0,

σk ≤ σmax. (4.21)

Proof. Note that for any k ≥ 0, we know from Lemma 4.6 that (4.20) implies that

σk+1 ≤ σk. Hence, applying the updating rule (2.14), the parameter σk cannot be larger

than γ2 times the right-hand side of (4.20). Since the initial value σ0 may exceed this

value, the bound on σk takes the form

σk ≤ max

[

γ2κL,
2γ2κJ

κS

, σ0

]

def
= σmax.

2

The next lemma gives useful asymptotic bounds on quantities of interest.

Lemma 4.8. Let F : IRn 7→ IRm be continuously differentiable. If x∗ is a limit point of

the sequence {xk} such that F (x∗) = 0 and J(x∗) is of full rank, then, for xk sufficiently

close to x∗,

‖Fk‖ ≤ θ‖xk − x∗‖ (4.22)

‖gk‖ ≤ ‖Jk‖ ‖Fk‖ ≤ θ‖Fk‖ (4.23)

‖pk‖ ≤ θ2‖gk‖ ≤ θ3‖Fk‖ ≤ θ4‖xk − x∗‖ (4.24)

where θ
def
= 2 max[‖J(x∗)‖, ‖J(x∗)+‖] . Moreover, if Assumptions 3.1 and 4.1 hold, then

λk ≤ χ‖Fk‖, (4.25)

with χ
def
= γ3 + 2σmax, and iteration k is very successful.

Proof. Since J(x∗) is of full rank, we may choose ǫ to be a positive scalar such

that, for any xk ∈ S(x∗, ǫ), Jk is full rank, ‖Jk‖ ≤ θ and ‖Jk
+‖ ≤ θ. Consequently,

‖B+
k ‖ ≤ θ2, for xk ∈ S(x∗, ǫ). For such an xk, we see that

‖Fk‖ ≤ ‖F (x∗) +

∫ 1

0

[J(x∗ + t(xk − x∗))](xk − x∗) dt‖ ≤ θ‖xk − x∗‖.

which is (4.22). Moreover, by (4.10), we have that

‖gk‖ ≤ ‖Jk‖ ‖Fk‖ ≤ θ‖Fk‖,
‖pk‖ ≤ ‖(Bk + λkI)

+‖ ‖gk‖ ≤ θ2‖gk‖ ≤ θ3‖Fk‖ ≤ θ4‖xk − x∗‖,
(4.26)
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proving (4.23)-(4.24). Suppose now that Assumptions 3.1 and 4.1 hold, and reduce ǫ if

necessary to ensure that

‖Fk‖ ≤ min

[

1

2σmaxθ2
,
κS

θ3
,

1 − η2

4κDκLθ4

]

(4.27)

for all xk ∈ S(x∗, ǫ), where κS is given by Assumption 4.1. Then (4.2), (4.7), Lemma 4.7

and Lemma 2.2 give that

λk ≤ µk + 2σk‖Fk‖ ≤ χ‖Fk‖,

which is (4.25). Observing that (4.24) and (4.27) imply that ‖pk‖ ≤ κS, we may also

verify that

ρk = 1 − ‖F (xk + pk)‖ −mk(pk)

‖Fk‖ −mk(pk)
≥ 1 − (κL − σk)‖pk‖2

‖Fk‖ −mk(pk)
≥ 1 − κL‖pk‖2

‖Fk‖ −mk(pk)
,

where we used Lemma 4.5 to derive the first inequality. But the bound ‖B+
k ‖ ≤ θ2

ensures that the minimum singular value of Bk is larger or equal to 1/θ2, and therefore,

because of (4.27), that

‖Bk + µkI‖ ≥ ‖Bk‖ ≥ 1

θ2
≥ 2σmax‖Fk‖ ≥ 2σk‖Fk‖.

As a consequence, the first term in the minimum of (3.3) is the largest and we deduce,

using (3.13), that

‖Fk‖ −mk(p
c
k) ≥

‖gk‖2

4‖Fk‖‖Bk + µkI‖
≥ ‖gk‖2

4κD‖Fk‖
.

Using this inequality, (2.12) and (4.24), we then obtain that

ρk ≥ 1 − 4κDκL‖pk‖2

‖gk‖2
‖Fk‖ ≥ 1 − 4κDκLθ

4‖Fk‖,

i. e., ρk ≥ η2, because of (4.27). 2

We now prove that, if m ≥ n and there exists a limit point x∗ such that F (x∗) = 0 and

J(x∗) is of full rank, then x∗ is an isolated solution of F (x) = 0 and the complete sequence

{xk} converges to x∗.

Theorem 4.9. Let F : IRn 7→ IRm be continuously differentiable and suppose that m ≥ n.

If x∗ is a limit point of the sequence {xk} such that F (x∗) = 0 and J(x∗) is of full rank,

then {xk} converges to x∗.

Proof. Since J(x∗) is of full rank n, J(x∗)+ J(x∗) = In. Thus, by continuity

‖In−J(x∗)+J(x∗+ t(x−x∗))‖ becomes arbitrarily small in a suitable neighbourhood of
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x∗. For any x sufficiently close to x∗ to ensure that ‖In−J(x∗)+J(x∗+t(x−x∗))‖ ≤ 1/2,

the mean value theorem then yields that

‖J(x∗)+F (x)‖ = ‖(x− x∗) −
∫ 1

0

(

In − J(x∗)+J(x∗ + t(x− x∗))
)

(x− x∗) dt‖,

≥
(

1 −
∫ 1

0

1

2
dt

)

‖x− x∗‖.

Using this inequality, we then obtain that, for any such x,

‖F (x)‖ ≥ ‖J(x∗)+F (x)‖
‖J(x∗)+‖ ≥ 1

2‖J(x∗)+‖‖x− x∗‖, (4.28)

and we conclude that x∗ is an isolated limit point of the sequence {xk}. Consider now

a subsequence {xkj
} converging to x∗ We may then apply (4.24) for j sufficiently large

and deduce that ‖pkj
‖ converges to zero. Using Lemma 4.10 in Moré and Sorensen

(1983), we finally conclude that {xk} converges to x∗. 2

In the following result we consider the case where x∗ is an isolated solution of the

overdetermined (m ≥ n) system F (x) = 0, and show that convergence is fast in this case

if one is ready to strengthen somewhat the assumptions on the Jacobian.

Theorem 4.10. Let F : IRn 7→ IRm be continuously differentiable. Suppose that m ≥ n

and that Assumptions 3.1 and 4.1 hold. Assume that x∗ is a limit point of the sequence

{xk} such that F (x∗) = 0 and J(x∗) is of full rank. Suppose moreover that J(x) is Lipschitz

continuous (with constant κ∗) in a neighbourhood of x∗ if m > n. Then {xk} converges to

x∗ Q-quadratically.

Proof. From Theorem 4.9 we know that {xk} converges to x∗. Let ǫ, θ and χ

be chosen as in Lemma 4.8 to ensure that (4.18), (4.22)-(4.25) and (4.27) hold, which

ensure that iteration k is successful and that ‖pk‖ ≤ κS. By (4.28), we obtain, for

xk ∈ S(x∗, ǫ), that

‖xk + pk − x∗‖ ≤ 2θ‖F (xk + pk)‖
≤ 2θ(‖F (xk + pk) − Fk − Jkpk‖ + ‖Fk + Jkpk‖)
≤ 2θ(κL‖pk‖2 + ‖Fk + Jkpk‖). (4.29)

Because (4.24) gives that ‖pk‖ ≤ θ4‖xk − x∗‖, we only need to bound ‖Fk + Jkpk‖ to

prove Q-quadratic convergence.

Let Jk = UkΣkV
T
k = (Uk,1, Uk,2)ΣkV

T
k where Uk,1 ∈ IRm×n, Uk,2 ∈ IRm×(m−n) and

Σk = diag(ς1, . . . , ςn). Then we have that

UT
k,1 = UT

k,1(J
T
k )+JT

k
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because (JT
k )+JT

k is the orthogonal projection onto the range of Jk. As a consequence,

we may write that

‖UT
k,1(Fk + Jkpk)‖ = ‖UT

k,1[(J
T
k )+(Bkpk + gk)]‖.

If we substitute (4.10) in the right-hand side and use (4.22), (4.24) and (4.25), we obtain

that

‖UT
k,1(Fk + Jkpk)‖ ≤ χθ‖Fk‖ ‖pk‖ ≤ χθ6‖xk − x∗‖2. (4.30)

Moreover, if m > n, we verify easily that

‖UT
k,2(Fk + Jkpk)‖ = ‖UT

k,2Fk‖. (4.31)

We now bound this last quantity as in Fan and Yuan (2005). Specifically, let qk =

−J+
k Fk, in which case Jkqk = −JkJ

+
k Fk = Uk,1U

T
k,1Fk. Since qk minimizes ‖Fk + Jkp‖,

we obtain that

‖UT
k,2Fk‖ = ‖Uk,2U

T
k,2Fk‖ = ‖Fk + Jkqk‖ ≤ ‖Fk + Jk(xk − x∗)‖ ≤ κ∗‖xk − x∗‖2. (4.32)

Combining together the triangle inequality and (4.30)-(4.32), we find that

‖Fk + Jkpk‖ ≤ ‖UT
k,1(Fk + Jkpk)‖ + ‖UT

k,2(Fk + Jkpk)‖ ≤ (χθ6 + κ∗)‖xk − x∗‖2,

which concludes the proof in view of (4.24) and (4.29). 2

The final theorem in this section studies the local convergence for underdetermined systems,

that is when m ≤ n. In this case, if x∗ is a limit point of the sequence {xk} and J(x∗) is

of full rank, then F (x∗) = 0, but in general x∗ is not an isolated solution of F (x) = 0.

Theorem 4.11. Let F : IRn 7→ IRm be continuously differentiable. Suppose that m ≤ n

and that Assumptions 3.1 and 4.1 hold. If x∗ is a limit point of the sequence {xk} and

J(x∗) is of full rank (and thus F (x∗) = 0), then {xk} converges to x∗ Q-quadratically.

Proof. Again let ǫ and θ and χ be chosen as in Lemma 4.8 to ensure that (4.18),

(4.22)-(4.25) and (4.27) hold, which ensure that iteration k is successful and that ‖pk‖ ≤
κS. If necessary, reduce ǫ further to ensure that

θ3ǫ(χθ2 + κLθ
4) ≤ 1

2
. (4.33)

Let ψ be a positive scalar such that

ψ ≤ ǫ

1 + 2θ4
(4.34)

and assume xk ∈ S(x∗, ψ) for some k ≥ k0, in which case (4.24) immediatley gives that

‖pk‖ ≤ θ4ψ. (4.35)
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To ensure that the sequence {xk} is convergent, we need to show that it is a Cauchy

sequence. We achieve this objective by proving, by recurrence, that, if xk ∈ S(x∗, ψ),

then

xk+ℓ ∈ S(x∗, ǫ) and ‖pk+ℓ+1‖ ≤ 1

2
‖pk+ℓ‖ (4.36)

for all ℓ ≥ 0. Consider the case ℓ = 0 first. Since (JT
k )+JT

k = Im, we deduce from (4.10)

and (4.25) that

‖Fk + Jkpk‖ ≤ ‖(JT
k )+‖ ‖Bkpk + gk‖ ≤ θ ‖Bkpk + gk‖ ≤ χθ ‖Fk‖ ‖pk‖. (4.37)

Thus using successively the triangle inequality, (4.35) and (4.34), we verify that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ + ‖pk‖ ≤ (ψ + θ4ψ) ≤ ǫ (4.38)

i.e. xk+1 ∈ S(x∗, ǫ). Then, (4.24) yields that, for any such iterate,

‖pk+1‖ ≤ θ3‖Fk+1‖ = θ3‖F (xk + pk)‖, (4.39)

since iteration k is successful. As a consequence, we see that

‖pk+1‖ ≤ θ3‖Fk + Jkpk + (F (xk + pk) − Fk − Jkpk)‖
≤ θ3(χθ‖Fk‖ + κL‖pk‖) ‖pk‖, (4.40)

where we used (4.18) and (4.37). Using now (4.22), (4.24), (4.35) and the bound ψ ≤ ǫ

implied by (4.34), we have that, whenever xk+1 ∈ S(x∗, ǫ),

‖pk+1‖ ≤ θ3ǫ(χθ2 + κLθ
4) ‖pk‖ ≤ 1

2
‖pk‖, (4.41)

where the last inequality results from (4.33). Hence (4.36) holds for ℓ = 0. Assume

now that (4.36) holds for iterations k + j, j = 0, . . . , ℓ− 1. Using this assumption, the

convergence of the geometric progression of factor 1
2

and (4.35), we obtain that

‖xk+ℓ − x∗‖ ≤ ψ +

ℓ−1
∑

j=0

‖pk+j‖ ≤ ψ +

ℓ−1
∑

j=0

(

1

2

)j

‖pk‖ ≤ ψ + 2 ‖pk‖ ≤ ψ + 2θ4ψ,

and hence xk+ℓ ∈ S(x∗, ǫ) because of (4.34). As for ℓ = 0, we then use (4.35) and the

successful nature of iteration k + ℓ (itself implied by the inclusion xk+ℓ ∈ S(x∗, ǫ)) to

deduce that

‖pk+ℓ+1‖ ≤ θ3‖F (xk+ℓ + pk+ℓ)‖ ≤ θ3(χθ‖Fk+ℓ‖ + κL‖pk+ℓ‖) ‖pk+ℓ‖.

But, by (4.24) and our recurrence assumption,

‖pk+ℓ‖ ≤ θ4‖xk+ℓ − x∗‖ ≤ θ4ǫ

and thus, using (4.22), we deduce that

‖pk+ℓ+1‖ ≤ θ3ǫ(χθ2 + κLθ
4) ‖pk+ℓ‖ ≤ 1

2
‖pk+ℓ‖,
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which concludes our proof of (4.36). We may thus conclude from (4.35) and (4.36) that,

if xk ∈ S(x∗, ψ), the successive steps after k satisfy the inequalities

‖pk‖ ≤ θ4ψ and ‖pk+ℓ+1‖ ≤ 1

2
‖pk+ℓ‖, ℓ = 0, 1, . . . . (4.42)

This in turn implies that {xk} is a Cauchy sequence and, as a consequence, that {xk}
converges. Since x∗ is a limit point of the sequence, we deduce that limk→∞ xk = x∗.

We finally show the Q-quadratic convergence rate by noting that, because of (4.42),

‖xk+1 − x∗‖ ≤
∞

∑

j=k+1

‖pj‖ ≤
∞

∑

j=0

(

1

2

)j

‖pk+1‖ = 2 ‖pk+1‖.

But (4.40), (4.22) and (4.24) together imply that

‖pk+1‖ ≤ θ3(χθ2‖xk − x∗‖ + κLθ
4‖xk − x∗‖) θ4‖xk − x∗‖ = θ9(χ + κLθ

2)‖xk − x∗‖2.

Combining these last two inequalities then completes the proof. 2

4.3 Computing the Trial Step in a Subspace

An alternative approach to compute a trial step consists in minimizing mk(p) over a se-

quence of nested Krylov subspaces (see Cartis et al., 2007, 2008). In each subspace a

secular equation is solved and the dimension of the subspace is progressively increased

until the gradient of the model is sufficiently small. Suitable strategies are then adopted to

recover an approximate solution at a low computational cost. The requirement to satisfy

the Cauchy condition (2.12) is then automatically fulfilled by including gk in each subspace,

which is obtained by initializing the Krylov sequence with that vector.

Our development of this approach parallels that of Cartis et al. (2008), but is briefly

restated here because it now includes the case where µk > 0 which was not considered in

this reference. Applying Golub-Kahan bi-diagonalization algorithm at iteration k, we get

matrices Wj ∈ IRm×j , Qj ∈ IRn×j and Cj ∈ IR(j+1)×j such that

JkQj = Wj+1Cj, (4.43)

where QT
j Qj = I, W T

j Wj = I and Cj is bidiagonal. Then a sequence of minimizers of

mk(Qj y) in the expanding subspaces p = Qj y, j = 1, 2, . . ., are sought. In fact, the

solution to (2.9) reduces to

min
y∈IRj

mk(Qj y) =
√

‖Cjy − β1e1‖2 + µk‖y‖2 + σk‖y‖2, (4.44)

with β1 = ‖Fk‖. The minimizer yj to (4.44) is the vector yj = yj(λj) satisfying

(CT
j Cj + λI)y = β1C

T
j e1, (4.45)

λ = µk + 2σk

√

‖Cjy − β1e1‖2 + µk‖y‖2. (4.46)
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Nested subspaces are constructed for increasing j until pj = Qj yj satisfies (4.11), at which

point the step pk is then taken as the last computed pj. We now study properties of the

sequence {xk} generated using this approach.

Lemma 4.12. Let x∗ be such that F (x∗) = 0 and J(x∗) is of full rank. Suppose moreover

that J(x) is Lipschitz continuous (with constant κ∗) in a neighbourhood of x∗ if m > n.

Then there exist constants χ, ǫ and θ such that, if xk ∈ S(x∗, ǫ) and ωk ≤ 1/(2θ), we have

that

‖Fk + Jkpk‖ ≤ θ

1 − θωk
(ωk

√
µk + λk)‖pk‖, if m ≤ n; (4.47)

‖Fk + Jkpk‖ ≤ θ

1 − θωk

[

(ωk
√
µk + λk)‖pk‖ + κ∗‖xk − x∗‖2

]

, if m > n; (4.48)

‖pk‖ ≤ ‖(Bk + λkI)
+‖ ‖gk‖ ≤ θ2 ‖gk‖ ≤ θ4‖xk − x∗‖. (4.49)

Moreover, if Assumptions 3.1 and 4.1 hold, then

λk ≤ χ‖Fk‖, (4.50)

with χ
def
= γ3 + 2σmax, and iteration k is very successful.

Proof. As above, let θ and ǫ be positive scalars such that for any xk ∈ S(x∗, ǫ), Jk

is of full rank, ‖Jk‖ ≤ θ, ‖Jk
+‖ ≤ θ. By (4.3) and (4.11) we have

‖(Bk + λkI)pk + gk‖ ≤ ωkφ(pk)

whenever ‖Fk + Jkpk‖ > 0, since this last inequality implies that φ(pk) > 0. Let

Jk = UkΣkV
T
k = (Uk,1, Uk,2)ΣkV

T
k where Uk,1 ∈ IRm×ν , Uk,2 ∈ IRm×(m−ν), Σk =

diag(ς1, . . . , ςν) and ν = min(m,n) . We may then derive that

‖UT
k,1(Fk + Jkpk)‖ ≤ ‖(JT

k )+(Bkpk + gk)‖
≤ θ(‖(Bk + λkI)pk + gk‖ + λk‖pk‖)
≤ θ(ωkφ(pk) + λk‖pk‖),

and this inequality also obviously holds if ‖Fk + Jkpk‖ = 0. Then, using the inequality√
a+ b ≤ √

a +
√
b for a, b ≥ 0, we deduce that

‖UT
k,1(Fk + Jkpk)‖ ≤ θ(ωk‖Fk + Jkpk‖ + ωk

√
µk‖pk‖ + λk‖pk‖).

If m ≤ n, since Uk,1 belongs to IRm×m, ‖UT
k,1(Fk + Jkpk)‖ = ‖Fk + Jkpk‖. Moreover, we

note that (4.32) remains valid whenever m > n. Thus, if ωk < 1/(2θ), we then obtain

(4.47) and (4.48). Regarding (4.49), note that, by (4.45),

‖pk‖ = ‖pj‖ = ‖yj‖ ≤ ‖(CT
j Cj + λI)−1‖ ‖β1C

T
j e1‖ (4.51)

and also that (4.43) gives the relations

CT
j Cj + λI = QT

j (Jk
TJk + λI)Qj and β1C

T
j e1 = −QT

j gk. (4.52)
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Now observe that the columns of Qj are by construction orthogonal to the nullspace of

Jk and hence the eigenvalues of QT
j (Jk

TJk + λI)Qj are interlaced between the nonzero

eigenvalues of (Jk
TJk +λI); they are therefore bounded above and below by the largest

and smallest nonzero eigenvalues of this last matrix. Using (4.51) with (4.52), the

definition of Bk = JT
k Jk and this last observation, we then deduce that (4.49) holds.

Finally, suppose that Assumptions 3.1 and 4.1 hold and consider (4.50). By (4.46) and

(4.52) we have that

λk = µk + 2σk

√

‖Cjyj − β1e1‖2 + µk‖yj‖2

= µk + 2σk

√

yT
j C

T
j Cjyj + 2yT

j Q
T
j gk + ‖Fk‖2 + µk‖yj‖2

where yj satisfies (4.45). Using the singular value decomposition of Cj, we deduce, as

in Lemma 4.3, that
√

‖Cjyj(λ) − β1e1‖2 + µk‖yj(λ)‖2

is monotonically increasing as a function of λ and converges to ‖Fk‖ for λ going to

infinity, which then, together with the upper bound (4.21) on σk, yields (4.50). The

proof of the very successful nature of iteration k is identical to that given in Lemma 4.8.

2

Following the lines of Theorem 4.10, we may now obtain the local convergence results

corresponding to Theorems 4.10 and 4.11 for the case where the step is computed in a

subspace.

Theorem 4.13. Assume that m ≥ n and that x∗ is a limit point of the sequence {xk} such

that F (x∗) = 0 and J(x∗) is nonsingular. Assume also that Assumptions 3.1 and 4.1 hold.

Suppose moreover that J(x) is Lipschitz continuous (with constant κ∗) in a neighbourhood

of x∗ if m > n. Then, if the scalar ωk in (4.11) is such that ωk ≤ κω

√

‖Fk‖ for some

κω > 0, the sequence {xk} converges to x∗ Q-quadratically.

Proof. The proof follows the same steps as those of Theorem 4.10, taking into

account that our assumptions on µk and ωk, the convergence of ‖Fk‖ to zero, (4.47)

and (4.48) together yield that, for k large enough,

‖Fk + Jkpk‖ ≤ 2θ[ (κω
√
γ3 ‖Fk‖ + λk)‖pk‖ + κ∗‖xk − x∗‖2]

≤ 2θ[ (κω
√
γ3 θ‖xk − x∗‖ + χθ‖xk − x∗‖) θ2‖gk‖ + κ∗‖xk − x∗‖2]

≤ 2θ[θ5(κω
√
γ3 + χ) + κ∗]‖xk − x∗‖2,

where we have used (4.22), (4.23), (4.49) and (4.50). Inserting this bound in (4.29)

then ensures the desired rate of convergence. 2
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Theorem 4.14. Let F : IRn 7→ IRm be continuously differentiable. Suppose that m ≤ n

and that Assumptions 3.1 and 4.1 hold. If x∗ is a limit point of the sequence {xk} and

J(x∗) is of full rank (and thus F (x∗) = 0), then, if the scalar ωk in (4.11) is such that

ωk ≤ κω

√

‖Fk‖ for some κω > 0, the sequence {xk} converges to x∗ Q-quadratically.

Proof. The proof parallels that of Theorem 4.11, where we first replace (4.37) by

the inequality

‖Fk + Jkpk‖ ≤ 2θ (κω
√
γ3 + χ) ‖Fk‖ ‖pk‖,

which follows, for k sufficiently large, from (4.47), our assumptions on µk and ωk, the

convergence of ‖Fk‖ to zero and (4.50). After deriving (4.35) and (4.38), (4.39) now

results from (4.49) and the successful nature of iteration k. The rest of the proof

then follows that of Theorem 4.11 step by step, with (4.49) replacing (4.24) and (4.50)

replacing (4.25). 2

5 Numerical results

In this section we present some numerical results obtained when solving nonlinear least-

squares problems from the CUTEr collection with Algorithm RER. All runs were performed

using a Fortran 95 code on a Intel Xeon (TM) 3.4 Ghz, 1GB RAM. A key role in the

performance of the Algorithm RER is played by the regularization parameter σk in Step

4. Here, σ0 = 1 and on very succesful iterations we set σk+1 = max(min(σk, ‖gk‖), ǫM),

where ǫM ≃ 10−16 is the relative machine precision. For other successful iterations σk is

left unchanged, while in case of unsuccessful iterations σk is doubled.

The approximate minimizer pk in Step 1 of the RER algorithm was computed mini-

mizing mk(p) over a sequence of nested Krylov subspaces. This computation is carried out

using the module L2RT (Cartis et al., 2008) from the GALAHAD library. The approximate

minimizer pk satisfies the accuracy requirement (4.11) with

ωk = min(0.1, ‖∇mk(0)‖1/2)‖∇mk(0)‖. (5.1)

First we run the RER algorithm with µ0 = 0. Then, the tests have been repeated with

µ0 = 10−4 and

µk+1 =

{

max[min(µk, 10−3‖Fk+1‖), ǫM ] if ρk ≥ η1,

µk otherwise,

which corresponds to the choice γ3 = 10−3 in (2.15).

The RER method is compared with a trust-region method which has been implemented

following the standard scheme (see Conn et al., 2000, Alg. 6.1.1). The approximate solution

pk of the trust-region problem is computed using the module LSTR (Cartis et al., 2008)

from the GALAHAD library with the stopping criterion (4.11) and the tolerance ωk defined

by (5.1); note that the LSTR technique is a first-order approach. When the solution of
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Test NNLSTR with NNLSTR beyond RER with RER with

problem n m ST point ST point µ0 = 0 µ0 = 10−4

Oiter Iiter Oiter Iiter Oiter Iiter Oiter Iiter

ARGTRIG 200 200 9 931 9 931 9 875 9 866

ARWHDNE 500 998 321 322 232 318 230 368 197 293

BROYDNBD 1000 1000 18 76 18 80 13 91 13 91

INTEGREQ 102 100 4 8 4 8 4 7 4 7

YATP1SQ 2600 2600 40 46 28 40 20 30 21 32

Table 5.1: The columns contain the name of the problem, its dimensions, the number of

outer (Oiter) and inner (Iiter) iterations performed.

the trust-region subproblem lies on the trust-region boundary, the Steihaug-Toint point is

computed (Steihaug, 1983, Toint, 1981). We also assessed whether there is any gain in

iterating beyond the Steihaug-Toint point in the solution of the trust-region subproblem.

On very successful iterations, the trust-region radius ∆k+1 is set to max{∆k, 2‖pk‖}, while

it is left unchanged on successful iterations, and it is halved otherwise. The initial trust-

region radius is set to 1.

The RER and trust-region algorithms are stopped whenever the criterion

‖Fk‖ ≤ max(10−6, 10−12‖F0‖) or ‖gk‖ ≤ max(10−6, 10−12‖g0‖)

is met.

In Table 5.1 we give the results obtained on the following five CUTEr test examples:

the three square nonlinear systems ARGTRIG, BROYDNBD, YATP1SQ, the underdetermined

problem INTEGREQ and the overdetermined test ARWHDNE. The number of outer iterations

performed by RER with positive µ0 is the same as in the case µ0 = 0, except for prob-

lems YATP1SQ and ARWHDNE. These exceptions point out the advantage that can be gained

sometimes by employing a positive regularization µ0.

The convergence history plot for problem YATP1SQ in Figure 5.1 illustrates the fast

asymptotic rate predicted by our theoretical results.

The numerical results we obtained are encouraging, as the RER Algorithm requires a

low number of outer iterations except for problem ARWHDNE. The slow convergence in the

latter case may be ascribed to the fact that the methods converge to a nonzero residual

solution with a final value of ‖F‖ ≃ 0.12× 102. This illustrates that the first-order Gauss-

Newton-like model employed by the algorithms discussed here may be not appropriate to

handle this situation. Furthermore, our implementations of Newton-like cubic overestima-

tion or trust-region schemes on this problem terminate in 6–7 outer iterations, implying

that significant gain can be made from using second-order information when solving such

nonzero-residual problems.
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Figure 5.1: Convergence history for problem YATP1SQ.

6 Conclusions and perspectives

We have described a variant of the Gauss-Newton algorithm for nonlinear least-squares, in-

spired by ideas of Nesterov (2007). The new variant includes the provision for approximate

solutions of the subproblem and also features an additional regularization which might be

advantageous in practice. We have developed a complete global convergence theory for this

new variant, and have also shown that convergence to zero residual solution is quadratic

under reasonable assumptions.

Several extensions of the present work are possible. It seems in particular desirable to

develop a variant of the full Newton’s method (as opposed to the Gauss-Newton algorithm)

which would be based on the regularized Euclidean residual and yet could handle negative

curvature and nonzero residuals. However, this extension does not seem obvious at this

stage. It is also of direct interest to investigate whether, as is the case for the adaptive

cubic overestimation (ACO) method, the complexity results obtained by Nesterov could

be extended to the case where the subproblems are solved inexactly.

Finally, the true potential of the new variant has yet to be compared to competing

techniques in extensive numerical tests, which are currently under way and will be reported

on separately.
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