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ABSTRACT

The multiple front algorithm is an extension of the frontal method to allow parallelism to be
exploited in the solution process. The finite-element domain is partitioned into a number of
subdomains and a frontal decomposition is performed on each subdomain separately. For a
given partitioning of the domain, the efficiency of the multiple front algorithm depends on the
ordering of the elements within each subdomain. We look at the limitations of existing
element reordering algorithms when applied to a subdomain and consider how these
limitations may be overcome. Extensive numerical experiments are performed on a range of
practical problems and, on the basis of the results, we propose a new element resequencing
algorithm for use with a multiple front algorithm.
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1 Introduction

In this paper, we are concerned with the solution of n × n linear systems of equations

Ax = b, (1.1)

where A is a large sparse matrix arising from finite-element analysis. The matrix A is a sum of

elemental matrices

m
[l]A = A . (1.2)∑

l=1

[l]Each matrix A has entries only in the principal submatrix corresponding to the variables in

element l and represents contributions from this element. This principal submatrix is assumed

to be dense. The matrix A may be unsymmetric but the form (1.2) implies that the sparsity

pattern is symmetric with nonzero diagonal entries. One possible direct solution method for

(1.1), and the one which is still frequently the method of choice in many structural

engineering applications, is the frontal method (see, for example, Irons 1970, Hood 1976,

Duff 1983).

The efficiency of a frontal scheme, in terms of both storage and computation time, is

dependent upon the ordering of the elements. This is because, in the frontal method, the

system matrix A is never assembled explicitly but the assembly and Gaussian elimination

processes are interleaved, with each variable being eliminated as soon as its row and column
[l]are fully summed, that is, after its last occurrence in a matrix A . This allows all intermediate

working to be performed in a full matrix, termed the frontal matrix, whose rows and columns

correspond to variables that have not yet been eliminated but occur in at least one of the

elements that have been assembled. Since the order of the frontal matrix increases when a

variable appears for the first time and decreases whenever a variable is eliminated, the order

in which the elements is input is critical.

Let us introduce some notation. With reference to equation (1.1), column j is said to be

active in row i if j ≥ i and there is a nonzero entry in column j with a row index k ≤ i. Letting f i

denote the number of active columns in row i, the maximum wavefront of the matrix A = (a )ij

is given by

F = max {f }. (1.3)i
1≤i≤n

The root-mean-squared (r.m.s.) wavefront is defined to be

–12n1 2F̃ = f . (1.4)∑ in i=1

The profile of the matrix A is the total number of coefficients in the lower triangle when any

zero ahead of the first entry in its row is excluded. That is,
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n

P = max {i+1−j} . (1.5)∑
a ≠0i=1 ij

Note that since it is assumed that A has a symmetric sparsity pattern, it follows that

n

P = f . (1.6)∑ i
i=1

In a frontal algorithm, the average number of floating-point operations in a single elimination

step is proportional to the r.m.s. wavefront and the maximum amount of storage required for

the frontal matrix during the Gaussian elimination is dependent upon the maximum

wavefront. Moreover, the total storage required and the amount of work involved in the back

substitution stage depends on the profile of the matrix. Thus the elements should be numbered

in such a way as to reduce F, F̃, and P.

In recent years, many algorithms for automatically ordering finite elements have been

proposed in the literature. These include the methods described by Akin and Pardue (1975),

Bykat (1977), Razzaque (1980), Pina (1981), Sloan and Randolph (1983), Fenves and Law

(1983), Sloan (1986), Shephard, Baehmann, and Griece (1988), Duff, Reid, and Scott (1989),

Kaveh (1991), Koo and Lee (1992), Medeiros, Pimenta, and Goldenberg (1993), and Paulino,

Menezes, Gattass, and Mukherjee (1994). Each of these algorithms is designed to reorder all

the elements in the finite-element domain (they are global reordering schemes). However, in a

multiple front method, the finite-element domain is partitioned into a (small) number of

subdomains and a frontal decomposition is performed on each subdomain separately (Duff

and Scott 1994a, 1994b). For a multiple front method, a global reordering algorithm is

unlikely to provide efficient element orderings.

Consider a finite-element domain which has been partitioned into (non-overlapping)

subdomains. Variables which belong to a single subdomain are termed internal variables and

variables which lie on the interface boundaries of the subdomains are called interface

variables. In general, each subdomain will contain some elements whose variables are all

internal variables and some elements with both internal and interface variables. Elements

containing only internal variables are called internal elements and those with one or more

interface variables are called interface elements. Internal variables may be eliminated as soon

as they are fully summed (provided, of course, that stability criteria are satisfied) but interface

variables cannot be eliminated within a subdomain since they are shared by more than one

subdomain. In a multiple front algorithm, a frontal solver is applied to each subdomain

separately. At the end of the assembly and elimination processes for the subdomains, for each

subdomain i there will remain a subdomain frontal matrix F and a corresponding frontali

right-hand side vector c (or matrix, if there are multiple right-hand sides) satisfyingi

F y = c . (1.7)i i i

If there are nsub subdomains, nsub equations of the form (1.7) are generated and these may be

assembled to give
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Fy = c, (1.8)

where the order of the matrix F is the number of interface variables (plus any internal

variables not eliminated for stability reasons). By treating each of the subdomain frontal

matrices F as an elemental matrix, the system (1.8) may also be solved by a frontal scheme.i

Once (1.8) has been solved, the results for the interface variables must be passed back to the

subdomains so that back-substitution for the internal variables can be performed (for details,

see Duff and Scott 1994a, 1994b).

In the multiple front algorithm, once an interface variable has entered the subdomain

frontal matrix it cannot be eliminated. Therefore, an element ordering scheme which yields an

efficient global ordering may give very inefficient orderings when applied to a single

subdomain. The aim of this study to develop a new element ordering scheme which is

efficient when used with the multiple front algorithm.

The remainder of this paper is organised as follows. In Section 2 we introduce some basic

concepts from graph theory. In Section 3 we discuss the main features of the algorithm used

by the Harwell Subroutine Library (HSL) (Anon 1993) routine MC43, which is designed to

resequence elements for use with the HSL frontal code MA42 (Duff and Scott 1993, 1995),

and look at why this algorithm is unsuitable for reordering elements for use with the multiple

front algorithm. In Section 4 we propose two new schemes for ordering elements in a

subdomain and in Section 5 we report on the performance of these methods when used on a

range of practical problems. Finally, in Section 6 concluding remarks and comments are

made.

2 Graphs and finite-element domains

Associating graphs with finite elements is useful when developing element reordering

algorithms. In this section, we briefly recall some basic definitions from elementary graph

theory which are of relevance to this paper.

An undirected graph G is defined to be a pair (V, E), where V is a finite set of nodes (or

vertices), and E is a finite set of edges defined as unordered pairs of distinct nodes. A labelling

(or ordering) of a graph G = (V, E) with n nodes is a bijection of {1, 2,..., n} onto V. The

integer i (1 ≤ i ≤ n) assigned to a node in V by a labelling is called the label (or number) of that

node. Two nodes i and j in G are said to be adjacent if (i, j) ∈ E. The degree of a node i ∈ G is

defined to be the number of nodes in G which are adjacent to i, and the adjacency list for i is

the list of these adjacent nodes. A path of length k in G is an ordered set of distinct nodes

(i , i ,..., i ) where (i , i ) ∈ E for 1 ≤ j ≤ k. Two nodes are connected if there is a path joining0 1 k j−1 j

them. A graph G is connected if each pair of distinct nodes is connected. Otherwise, G is

disconnected and consists of two or more components.

The distance between nodes i and j in a connected graph G (or in a component of a
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disconnected graph) is denoted by d(i, j), and is defined to be the number of edges on the

shortest path connecting them. The diameter D(G) of G is the maximum distance between any

pair of nodes. That is,

D(G) = max {d(i, j) | i, j ∈ V }.

Nodes at opposite ends of a diameter of G are known as peripheral nodes. A pseudo-diameter

δ(G) is defined by any pair of nodes i and j in G for which d(i, j) is close to D(G). A

pseudo-diameter may be slightly less than, or equal to, the true diameter and is found by some

heuristic algorithm. Nodes defining a pseudo-diameter are termed pseudo-peripheral nodes.

A level structure rooted at a node r ∈ V is defined as the partitioning of V into levels

l , l ,..., l such that1 2 h(r)

(i) l = {r}1

(ii) for i > 1, l is the set of all nodes that are adjacent to nodes in l but are not ini i−1

l , l ,..., l .1 2 i−1

The level structure rooted at node r may be expressed as the set L(r) = {l , l ,..., l }, where1 2 h(r)

h(r) is the total number of levels and is termed the depth. The number of nodes on level i is the

width of level i and is denoted by |l |. The width of the level structure L(r) is given byi

w(r) = max {|l |} .i
1 ≤ i ≤ h(r)

A list is an ordered set. A priority queue is a list from which deletions or extractions are

made on the basis of a priority function.

A finite-element domain is a collection of finite elements in which the elements are joined

at their common boundaries and vertices. Finite-element nodes may lie at vertices, along the

sides, on the faces, or within the element itself. Associated with each finite-element node is a

set of one or more variables corresponding to the freedoms at that node. A convenient way of

associating a graph with a finite-element domain consists of choosing the nodes of the graph

to be the finite elements and using the interconnection of the finite elements to determine the

edges. Relabelling the nodes of this element connectivity graph is equivalent to reordering the

elements of the associated finite-element domain and an algorithm which does this is termed a

direct element reordering algorithm (Duff, Reid, and Scott 1989).

There are several possible ways to use the interconnection of the finite elements to

determine the edges of an element connectivity graph. Bykat (1977) defines two elements to

be adjacent to one another whenever they share a common edge and describes his algorithm in

detail for planar triangular elements. Fenves and Law (1983) generalize this definition to

problems in n dimensions, n = 1, 2, 3. They define two elements in n dimensions to be adjacent

whenever they possess a common boundary of (n − 1) dimensions. Thus in three dimensions

two volumetric elements are adjacent if they share a common two-dimensional boundary face;

in two dimensions planar elements are interconnected by one-dimensional boundary lines;
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and one-dimensional finite elements are adjacent if they have a common finite-element node.

Fenves and Law noted that the adjacency of elements cannot always be completely

represented by this definition of adjacent elements, since n –dimensional elements are not

necessarily connected through (n − 1) –dimensional boundaries. In addition, adjacent finite

elements do not necessarily have the same geometric dimensions. In such examples, the

element connectivity graph may become disconnected, and each component must be

numbered independently. This contributes to the difficulties associated with attempting to use

this definition of element adjacency.

To avoid these difficulties, Duff, Reid, and Scott (1989) adopt a simpler definition: they

define two elements to be adjacent to each other whenever they have one or more variables in

common. Using this definition, it is not difficult to generate the associated element

connectivity graph; the user does not need to provide information on the different types of

elements in the grid other than a list of the variables associated with each finite element. From

their numerical experiments, Duff et. al. report that using this definition to generate the

element connectivity graph and then employing their direct element reordering algorithm did

not, in general, lead to a significant increase in the computed maximum and r.m.s. wavefronts

compared with those obtained using the element connectivity graph resulting from the

adjacency definition of Fenves and Law. The definition of adjacency introduced by Duff et.

al. has recently been used by Paulino, Menezes, Gattass, and Mukherjee (1994), who term the

resulting connectivity graph the element communication graph. Throughout the remainder of

this paper we will use the element communication (EC) graph.

3 Element reordering using MC43

In this section we look at the key features of the direct element reordering algorithm used

by MC43 and illustrate the shortcomings of the algorithm if it is used in conjunction with the

multiple front method. The MC43 element reordering algorithm exploits the profile reduction

algorithm of Sloan (1986). It has three distinct steps:

(1) selection of a pair of pseudo-peripheral elements (nodes)

(2) element relabelling

(3) computation of the maximum wavefront.

In the first step, for each component of the element communication (EC) graph, a pair of

pseudo-peripheral elements is located. It has been found that, because these elements tend to

yield rooted level structures which are deep and narrow, they make good starting elements for

profile and wavefront reduction algorithms (see Gibbs 1976 and Sloan and Randolph 1983).

The procedure used in MC43 to locate pseudo-peripheral elements is a modification of that

described by Gibbs, Poole, and Stockmeyer (1976) and George and Liu (1979). A starting

element s ∈ G of minimum degree is chosen, and the rooted level structure L(s) is generated.
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The last level set l is ‘shrunk’ by retaining only elements with distinct degrees, ties beingh(s)

broken arbitrarily. The level structures rooted at each element in this reduced set (selected in

order of increasing degree) are then computed. If, for some r ∈ l , the depth of L(r) exceedsh(s)

h(s), r replaces s as the starting element, and the procedure is repeated. If no such element r is

found, and e is the element in l whose associated level structure has the smallest width, theh(s)

elements s and e are chosen as pseudo-peripheral elements. A ‘short circuiting’ strategy by

which wide level structures are rejected as soon as they are detected is incorporated. This

algorithm for locating s and e has also recently been used by Medeiros, Pimenta, and

Goldenberg (1993).

In the second step of the algorithm, the elements in each component of the EC graph are

renumbered to obtain a profile which is smaller than that given by the original labelling of the

graph. The pseudo-peripheral elements s and e serve as starting and end elements for the

relabelling within their component. The rooted level structure L(e) is generated and the

distance d(e,i) of each element i from the end element e is computed. The starting element s is

relabelled as element one and a list of elements that are eligible to receive the next label is

formed. At each stage in the relabelling process the list of eligible elements comprises those

elements which are either adjacent to a element which has been relabelled or are adjacent to a

element which is itself adjacent to a relabelled element. The next element to be given a new

number is the element among all eligible elements with the highest priority, where the priority

P of element i is defined to bei

P = −W ∗ngain(i) + W ∗d(e,i) − W ∗nadj(i). (3.1)i 1 2 3

Here W , W , and W are integer weights, ngain(i) is the number of variables element i will1 2 3

introduce into the front less the number that can then be eliminated, and nadj(i) is the number

of elements adjacent to element i which have not yet been relabelled. The basic idea of the

algorithm is that, during the reordering process, elements which will make only a small

increase to the front size (or will decrease the front size) and which are at a large distance

from the end element and have a small number of unlabelled neighbours are labelled first. The

values assigned to the weights determines the importance of each of these criteria. As a result

of numerical experimentation, in MC43 the weights have the values W = 10, W = 5, and1 2

W = 1. We remark that although the EC graph does not take into account the number of3

variables in each element, the priority P of element i given by (3.1) does depend on thei

number of variables it has.

Once all the elements have been renumbered, MC43 computes the maximum wavefront for

the new ordering. If this is larger than the maximum wavefront for the initial ordering, the

user is warned that no reduction in the maximum wavefront was achieved and the initial

ordering is retained. The value of the maximum wavefront returned by MC43 is useful if the

HSL frontal solver MA42 is to be employed since it assists the user in choosing the size of the

frontal matrix required and the sizes of the files which will hold the LU factors of A.
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Experience has shown that, when used with MA42, the orderings generated by MC43 are

efficient (Duff, Reid, and Scott 1989 and Duff and Scott 1993, 1995). There are, however,

weaknesses in each step of the MC43 algorithm if it is employed to resequence the elements

in a subdomain for the multiple front algorithm. When locating pseudo-peripheral elements,

MC43 does not distinguish between internal and interface elements. As a result, MC43 may

choose as a starting element an element containing interface variables. In general, this will be

a poor choice since the element numbering should start with elements lying away from the

interface boundaries so as to delay the introduction of interface variables into the subdomain

front for as long as possible. To illustrate this consider an N × 2N rectangular domain of

rectangular elements. Suppose the elements are initially ordered pagewise parallel to the side
2of length N and the domain is then partitioned into two, with elements 1 to N in subdomain 1

2and elements N + 1 to 2N in subdomain 2. If MC43 is applied to each subdomain (with the ith
2element in subdomain 2 corresponding to element N + i in the original domain) the initial

orderings will be returned. That is, the ordering for subdomain 1 will start at the exterior

boundary and work towards the interface boundary while for subdomain 2 the elements along

the interface boundary will be reordered first and those on the exterior boundary last. MC43 is

not able to distinguish between these two orderings but, in the multiple front algorithm, the

ordering for subdomain 2 will be much less efficient than that for subdomain 1. For example,

if N = 8 and there are five variables at the corners, mid-points of the sides, and centre of each

element, numerical experimentation shows that in the multiple front algorithm the two
7subdomains have r.m.s. wavefronts of 90.6 and 167.0, respectively, and require 1.95*10 and

75.85*10 floating-point operations, respectively.

In the second step of the MC43 algorithm, the reordering is based on the priorities of the

elements computed using (3.1). As we have already seen, an element has a high priority if (a)

the net gain it makes to the wavefront is small, (b) it is at a large distance from the end

element, and (c) it has a small number of neighbours which have not already been relabelled.

Since MC43 is a global algorithm, when calculating the net gain to the wavefront, it is

assumed that any variable appearing for the last time may be eliminated. For a subdomain this

is no longer true since interface variables may not be eliminated within the subdomain.

Failure to take this into account can lead to interface elements being assigned a high priority

and being relabelled early in the reordering algorithm. Furthermore, MC43 may select as the

end element e an element lying a long way from the interface boundary. In this case, d(e, i)
will be large if i is an interface element and will again lead to a high priority for interface

elements. This unlikely to yield an efficient ordering.

In the final step, MC43 returns the original and new maximum wavefronts to the user.

When a frontal scheme is applied to a domain which has not been partitioned, in general the

maximum wavefronts will occur after some, but not all, the elements have been assembled.

However, when the domain is partitioned into subdomains, the maximum wavefront may
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occur after all the elements have been assembled, and the remaining front then comprises the

interface variables (plus any internal variables which have not been eliminated for stability

reasons). Since MC43 is unable to distinguish between interface and internal nodes, the

maximum wavefronts it returns may be significantly smaller than the wavefronts required by

the multiple front method. As already noted, if MC43 finds that the maximum wavefront for

the ordering it generates is larger than for the original ordering, it will reject the new ordering

and retain the original ordering. But in the multiple front algorithm, the rejected ordering can

be more efficient then the accepted ordering. To illustrate this we took the test problem

AEAC5081 and partitioned the domain into 8 subdomains using the code Chaco (see Section

5 for details of the test problems and Chaco). MC43 was applied to subdomain 5. The

maximum wavefront for the initial ordering was 68. MC43 generates an ordering with a

maximum wavefront of 75 so MC43 accepts the original ordering. In the multiple front

algorithm, the original ordering gives maximum and r.m.s. wavefronts of 172 and 144.2,

respectively, while the rejected ordering yields wavefronts of 172 and 133.0. Thus, for this

subdomain, the ordering which was rejected by MC43 provides a more efficient ordering than

the one which was accepted.

From the above discussion it is clear that the global reordering algorithm implemented by

the code MC43 is not suitable for reordering the elements in a subdomain. Other global

reordering schemes applied to a subdomain suffer similar problems to those experienced by

MC43 because they too have no concept of internal and interface elements. To be able to use

a multiple front algorithm effectively we need to develop a reordering scheme which takes

account of interface variables; this is the subject of the rest of this paper.

4 Reordering elements in a subdomain

Algorithms to reorder elements in a subdomain require knowledge of the interface variables.

The interface variables also need to be known when the frontal code MA42 is used to

implement the multiple front algorithm outlined in Section 1. We have already developed an

HSL routine, MA52A, which will generate the list of interface variables for a subdomain.

Following the terminology of Duff and Scott (1994a, 1994b), this list is termed the guard

element.

Intuitively, reordering of a subdomain should begin well away from the interface boundary.

We consider two approaches for finding a suitable starting element and we compare the

performance of the two approaches in Section 5. Throughout Sections 4.1 to 4.4 we will

assume that the element connectivity (EC) graph is connected; in Section 4.5 we will consider

the case of it having more than one component.

4.1 Approach I

In Approach I we locate starting and end elements s and e using a modified version of the

algorithm used by MC43. The steps in finding s and e are as follows.
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(1) Generate a list of interface variables. Flag all elements containing interface variables as

interface elements. The unflagged elements are internal elements.

(2) Select an element s of minimum degree (that is, an element with the smallest number of

adjacent elements), if necessary breaking ties by giving preference to internal elements.

(3) Generate the rooted level structure L(s) = {l , l ,..., l }.1 2 h(s)

(4) Sort the elements in the last level l in ascending order of their degrees.h(s)

(5) Shrink l to a list l̃ by retaining only one element of each degree, if necessary breakingh(s)

ties by giving preference given to internal elements.

(6) Set w = ∞

(7) For each element r ∈ l̃ in order of increasing degree, generate L(r). If h(r) > h(s) and

w(r) ≤ w, set s = r and go to 4. Else if w(r) ≤ w, set e = r and w = w(r).

(8) If s is an internal element go to 9. Else if s is an interface element and e is an internal

element then set s = e and e = s and go to 9. Else s and e are interface elements. Generate

L(s) and consider the elements in the middle level set l . If there are no internalh(s)/2

elements go to 9. Else choose s to be the internal element in l of minimum degree,h(s)/2

breaking ties arbitrarily.

(9) Accept s and e as starting and end elements, respectively. Compute the distance d(e, i) of

each element i in the subdomain from the end element e.

We remark that the choice for s made in step 8 in general ensures that we begin the element

renumbering away from an interface boundary. The case when the elements s and e found in

step 7 are both interface elements may occur if the subdomain has interface variables on all

sides. Choosing the starting element to lie in the middle level set l is then a way of startingh(s)/2

the element reordering with an element at the approximate centre of the subdomain.

4.2 Approach II

In our second approach, we treat the guard element g for the subdomain as an extra element.

Suppose there are nelt finite elements in the subdomain and let g be labelled element nelt + 1.

Let the element communication graph for this augmented set of elements be denoted by

EC(g). Recall that in an element communication graph, two elements are adjacent if they have

a variable in common. Since the variables in the guard element are the interface variables, in

the EC(g) graph the guard element is adjacent to all the interface elements. By considering the

rooted level structure L(g), we can locate elements which lie away from the interface

boundary and which should make a good choice for the starting element for reordering

elements in the subdomain.

Using this idea, the steps in Approach II for choosing a starting element s are as follows.
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(1) Generate the guard element g.

(2) Generate the element communication graph EC(g).

(3) Generate the rooted level structure L(g) = {l , l ,..., l }.1 2 h(g)

(4) Shrink l to a list l̃ by retaining only one element of each degree (with breaking tiesh(g)

arbitrarily).

(5) Set h = 1.

(6) For each element r ∈ l̃ in order of increasing degree, generate L(r). If h(r) > h, set

h = h(r), s = r.

In this way, the starting element is chosen to be at a maximum distance from the interface

boundary. For a subdomain with interface variables on all sides, Approach II provides a

straightforward way of locating an element at the approximate centre of the subdomain. An

advantage of this approach is that it avoids the need to locate pseudo-peripheral elements and,

except when all the elements in the subdomain are interface elements, the starting element

will always be an internal element. The end element is taken to be the guard element, that is,

e = g. The distance d(e, i) is the distance of element i from the interface boundary. A

disadvantage of Approach II is that (s, e) may not provide a good estimate to the diameter of

the element communication graph. Furthermore, the EC(g) graph has more edges than the EC

graph, the number of extra edges being dependent upon the number of interface variables. The

EC(g) graph therefore takes longer to generate than the EC graph and can lead to Approach II

being slower than Approach I. However, in our experience, the difference in the times for

Approaches I and II was insignificant compared with the time taken to solve the underlying

finite-element problem using the multiple front algorithm (see Tables 5.2 and 5.5 in Section

5).

4.3 Element relabelling

Approaches I and II are procedures for choosing starting and end elements s and e for a

subdomain. The algorithm we use to relabel the remaining elements in the subdomain is based

on that used by MC43 but is modified to take into account interface variables. A priority

queue is used where now the priority P of element i given byi

P = −W ∗ngain(i) + W ∗d(e,i) − W ∗nadj(i) − W ∗nint(i). (4.1)i 1 2 3 4

Here W , W , W , and W are integer weights. The quantity ngain(i) is the number of variables1 2 3 4

element i will introduce into the front less the number of internal variables that can then be

eliminated. Since interface variables cannot be eliminated within a subdomain, if element i

contains one or more interface variables, ngain(i) will be higher than for the same element in

a single domain problem and the element will therefore have a lower priority. As in (3.1),

nadj(i) is the number of elements adjacent to element i which have not yet been relabelled.
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The quantity nint(i) is the number of interface variables the element will introduce into the

front and is nonzero only if i is an interface element. The aim of (4.1) is to give a high priority

to internal elements. For Approach II, in which the end element e is the guard element, d(e, i)
will be large if element i is well away from the interface boundary and this will lead to these

elements being given a high priority. Moreover, for Approach II, nint(i) will be nonzero only

if d(e, i) is equal to 1 and so for this approach we set W = 0. On the basis of our numerical4

experiments, we suggest choosing the weights to have values W = 12, W = 6, W = 1, and (for1 2 3

Approach I only) W = 2. These weights were used in the numerical experiments reported on4

in Section 5. We found that, in general, small changes to these weight values had no

significant effect on the quality of the orderings obtained but, if the ratios between the weights

were substantially altered, for some of our problems the resulting orderings had significantly

larger wavefronts An example to illustrate this is included in Section 5 (see Table 5.6).

4.4 Selecting the element order

In MC43, the maximum wavefront is computed for the original and new element orderings. If

the new ordering has a maximum wavefront which is no smaller than the maximum wavefront

of the original ordering, the original ordering is retained. For the subdomain problem,

returning the maximum wavefront which takes into account the interface variables is useful

since the frontal solver will need a frontal matrix of at least this size. However, it is not

necessarily the appropriate criteria to use to choose between the original and new orderings.

As we have already mentioned, for a subdomain, the maximum wavefront may occur after all

the elements have been assembled and, in our experience, the reordering algorithms often

failed to produce an ordering with a maximum wavefront which was smaller than that for the

original ordering. An alternative criteria is to use the r.m.s. wavefront so that if the new

ordering provides a smaller r.m.s. wavefront than the original ordering, the new ordering is

chosen.

In general, we have found that the choice we have made between the original user-supplied

ordering and the new element orderings based on the r.m.s. wavefront has been the correct

one. That is, when the frontal solver has been applied to the subdomain, the number of

floating-point operations required by the accepted ordering has been fewer than the number

required by the rejected ordering. However, even if stability considerations do not cause

pivots to be delayed, it is possible that the accepted ordering may still result in the multiple

frontal solver requiring more floating-point operations than would be needed by the rejected

ordering. When computing the maximum and r.m.s. wavefronts for a given ordering, it is

straightforward to also compute the number of floating-point operations the Harwell frontal

solver MA42 will require when applied to the subdomain (assuming stability considerations

do not cause variables to remain in the front once they are fully summed). In our numerical

experiments we compute the number of floating-point operations and choose the ordering for

which this is smallest. In this way, when combined with the multiple front algorithm, the

element ordering we use never requires more work than the original ordering.
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4.5 Coping with more than one component

For the single domain problem, if the EC graph has more than one component, each

component is reordered separately. The maximum wavefront and the r.m.s. wavefront are

independent of the order in which the components are renumbered. However, for the

subdomain problem we need to consider the case of more than one component more carefully

since the quality of the element ordering will depend upon the order in which the components

are renumbered. To illustrate this consider, for example, a subdomain with an associated EC

graph with two components, a and b. Suppose the elements in component a are passed to the

frontal solver first. Let F denote the frontal matrix after the last element in component a hasa

been assembled. F is of order at least nsub , where nsub is the number of interfacea a a

variables lying within component a. After some of the elements in component b have been

assembled the frontal matrix will be of the form

F 0aF = . (4.2)
0 F̃

The frontal solver MA42 treats the frontal matrix as dense and so is unable to exploit the zero

blocks in (4.2). Thus unnecessary work will be performed and, unless nsub is small, it isa

better to split the subdomain into two subdomains, corresponding to the two components a

and b. If the subdomain is not partitioned, we renumber the components in increasing order of

the number of interface variables they contain. Note that, if there are any components with no

interface elements, these components can be renumbered first using the standard MC43

algorithm.

In Approach II, the EC(g) graph is generated. Although the EC graph may have more than

one component containing interface variables, the EC(g) graph has only one such component.

We could apply the two-step algorithm described in Sections 4.2 and 4.3 directly to this single

component graph but this can lead the reordering ‘jumping’ about between the components

(that is, some of the elements in the first component may not have been renumbered before

some of the elements in another component are renumbered). As might be expected,

numerical experimentation shows that this can result in poor orderings. Instead, when the

EC(g) graph has more than one component, we modify Approach II so that, when

constructing rooted level structures L(r) using the EC(g) graph, we only include elements

lying in the same component of the EC graph as the root r. This is equivalent to splitting the

guard element into ncomp guard elements, where ncomp is the number of components in the

EC graph. Each of these ncomp guard elements is a list of the interface variables lying in the

corresponding component of the EC graph. The improvements this can give may be illustrated

using problem LOCK1074 from the Harwell-Boeing sparse matrix collection (Duff, Grimes,

and Lewis 1989, 1992). We partitioned the finite-element domain into 4 using the code Chaco

(see Section 5 for details) and generated the EC graph for each subdomain. The EC(g) graphs

for subdomains 3 and 4 were found to have 3 and 2 components, respectively. Applying
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Approach II applied to the single component EC(g) graphs for these subdomains gave r.m.s.

wavefronts of 185.8 and 196.3, respectively. However, using the proposed modification, the

r.m.s. wavefronts were reduced to 118.4, and 114.7, respectively.

5 The test problems

In this section, we report the results of using our proposed subdomain element resequencing

algorithms on a range of test problems. All our numerical experiments were performed on a

CRAY Y-MP8I using single precision arithmetic and all the reported CPU timings are in

seconds. In our experiments, we have only used a single processor of the CRAY but since the

reordering of the elements in each subdomain are independent, this can be done in parallel and

the frontal method can be applied to each subdomain in parallel. Throughout this section, all

computed wavefronts allow for the interface variables, that is, they are the wavefronts for the

multiple front algorithm. For the MC43 element ordering the wavefronts are computed

outside the MC43 code.

We first use a model problem in which the elements are nine-node rectangular elements

with nodes at the corners, mid-points of the sides, and centre of the element. A parameter to

the element generation routine determines the number of variables per node. We have chosen

this parameter to be five in our numerical experiments. The elements are arranged in a

rectangular grid of size 4N × 4N and are initially ordered pagewise. The grid is partitioned into

k equal subdomains of order 4N × 2N if k = 2, 2N × 2N if k = 4, N × 2N if k = 8, and N × N if

k = 16. If k is equal to 2 or 4, it is straightforward to order the elements efficiently within each

subdomain. However, if the number of subdomains is 8 or 16, even for this simple problem it

is less apparent how to do this. In Tables 5.1a, 5.1b, and 5.1c we present results for MC43,

Approach I, and Approach II applied to the 4–, 8–, and 16-subdomain problem, respectively.

For each subdomain, the maximum wavefront F and the r.m.s. wavefront F̃ for the different

element orderings are given and the ordering which gives the smallest r.m.s. wavefront is in

bold typeface. The CPU times required by the element-reordering algorithms for 2, 4, 8, and

16 subdomains are shown in Table 5.2. In addition, the number of floating-point operations

(flops) and the CPU time taken by the multiple front algorithm are given. The number of

floating-point operations include the floating-point operations for the frontal algorithm in

each subdomain together with the floating-point operations needed f the interface problem

(1.8) using the HSL code MA42.
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Table 5.1a A comparison of MC43, Approach I, and Approach II
for the 4-subdomain model problem.

MC43 Approach I Approach II
Subdomain

F F FF̃ F̃ F̃

1 505 374.2 505 374.2 505 348.9
2 515 383.5 505 374.7 505 348.9
3 745 603.1 505 376.5 505 348.9
4 750 612.7 505 377.0 505 348.9

Table 5.1b A comparison of MC43, Approach I, and Approach II

for the 8 subdomain model problem.

MC43 Approach I Approach II
Subdomain

F F FF̃ F̃ F̃

1 385 258.6 385 258.6 385 258.6
2 625 399.1 625 399.1 625 399.1
3 625 399.1 625 399.1 625 399.1
4 385 267.4 385 258.6 395 267.4
5 505 371.0 405 259.0 385 275.0
6 735 504.2 625 399.6 625 399.1
7 735 504.2 625 399.6 625 399.1
8 510 380.1 385 259.0 385 275.0

From Tables 5.1a – 5.1c we see that the orderings generated by Approaches I and II have

smaller r.m.s. wavefronts than the MC43 ordering and, in general, they also have smaller

maximum wavefronts. For each subdomain in the 4- and 16-subdomain problems, Approach

II generates an element ordering with a smaller r.m.s. wavefront than Approach I. In some

subdomains in the 8-subdomain problem, Approach I does slightly better than Approach II.

However, the quality of the ordering generated by Approach I appears to be more dependent

on the initial ordering than the Approach II ordering is. For example, for the 4-subdomain

problem, Approach II produces orderings with the same maximum and r.m.s. wavefronts for

each of the subdomains but Approach I gives orderings which have slightly different r.m.s.

wavefronts in each subdomain. From Table 5.2 we see that MC43 is cheaper to use than

Approaches I and II, but the small extra cost entailed in using one of the new approaches is

more than justified by the savings which the resulting element orderings give in the CPU

timings for the multiple front algorithm. We also observe the amount of work can be reduced

by partitioning the domain into more subdomains. However, as the number of subdomains

increases, the number of interface variables increases and the work involved in solving the

interface problem also increases and this rapidly dominates the computation costs. To increase

efficiency further, the multiple front algorithm can be nested (see, for example, Benner,

Montry, and Weigand 1987).
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Table 5.1c A comparison of MC43, Approach I, and Approach II

for the 16 subdomain model problem.

MC43 Approach I Approach II
Subdomain

F F FF̃ F̃ F̃

1 265 190.8 265 190.8 265 179.2
2 385 262.3 385 262.3 385 262.3
3 385 262.3 385 262.3 385 262.3
4 275 199.7 265 191.6 265 179.2
5 385 306.6 385 262.3 385 262.3
6 500 371.9 500 367.5 500 349.0
7 500 371.9 500 367.5 500 349.0
8 395 315.4 405 302.6 385 262.3
9 385 306.6 385 262.3 385 262.3

10 500 371.9 500 367.5 500 349.0
11 500 371.9 500 367.5 500 349.0
12 395 315.4 405 302.6 385 262.3
13 385 300.9 285 190.8 265 179.2
14 495 365.9 385 262.3 385 262.3
15 495 365.9 385 262.3 385 262.3
16 390 310.1 385 190.8 265 179.2

Table 5.2 CPU times (seconds) for reordering the elements together

with floating-point operation counts (flops) and CPU times (seconds)

for solving the model problem using the multiple front algorithm.

MC43 Approach I Approach II

Number
of Reorder Total Solve Reorder Total Solve Reorder Total Solve

subdomains CPU flops CPU CPU flops CPU CPU flops CPU
time time time time time time

2 0.50 1.82E+10 82.46 0.63 1.7EE+10 79.45 0.55 1.70E+10 77.68
4 0.51 1.85E+10 83.62 0.66 1.04E+10 51.09 0.56 9.05E+09 45.26
8 0.55 1.21E+10 57.66 0.71 9.07E+09 45.11 0.61 9.26E+09 46.22

16 0.65 8.95E+09 44.63 0.83 7.51E+09 38.49 0.71 7.00E+09 36.10

In addition to the model problem, a range of problems arising from practical applications

have been used to test and assess the quality of the element reordering algorithms discussed in

this paper. The problems range in size from 360 to 23446 elements. A brief description of

each test problem is given in Table 5.3. Problems with origin HB were taken from the

widely-used Harwell-Boeing sparse matrix collection (Duff, Grimes, and Lewis 1989, 1992).

Those with origin AEAT were supplied by Andrew Cliffe of AEA Technology, Harwell

Laboratory; those with origin DNVR came from A. C. Damhaug of Det Norske Veritas

Research, Norway; and those with origin RALPAR were supplied by R. F. Fowler of the

Rutherford Appleton Laboratory. For the RALPAR problems, only element connectivity

information was available (that is, lists of the finite-element nodes belonging to each element
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were supplied but not the variables associated with each of the nodes). Thus the results we

present for the RALPAR problems may only be regarded as an indication of the relative

performance of the different reordering algorithms. They will be a good indication of

performance if the number of variables per finite-element node is relatively constant. For the

other problems, a list of the unknowns for each element in the finite-element domain was

available. These lists did not include the constrained variables lying on boundaries with

Dirichlet boundary conditions. Using these lists, the element orderings produced by the

reordering algorithms may differ slightly from those which would be obtained if complete

lists of the variables associated with each element in the finite-element domain were

available.

Table 5.3. The test problems

Problem Number of Number ofOrigin Descriptionidentifier variables elements

CEGB3024 HB 2D cross-section 2996 551
of a reactor core

CEGB3306 HB Framework problem from 3222 791
structural engineering

LOCK2232 HB Framework model of a 2208 944
launch umbilical tower

LOCK3491 HB 2D vehicle model 3416 684

AEAC5081 AEAT Double glazing problem 5081 800
RFLOW1 AEAT Flow problem 9731 1715

OPT1 DNVR Part of a condeep cylinder 15449 977
TRDHEIM DNVR Trondheim fjord model 22098 813
TSYL201 DNVR Part of a condeep cylinder 20685 960

JETN RALPAR 3D pipe model 548 360
CHAM RALPAR Part of an engine cylinder 12834 11070
TUBU RALPAR Engine cylinder model 26573 23446

Before we could test the element reordering algorithms it was necessary to partition the

underlying finite-element domains into subdomains. This problem has itself been the subject

of much research in recent years and a variety of methods have been discussed in the

literature. These methods include the greedy algorithm of Farhat (1987), bandwidth

minimisation (Malone 1988), Keringhan and Lin methods (Keringhan and Lin 1970), the

inertial bisection method (see, for example, Simon 1991), recursive graph partitioning

(Williams 1991), spectral partitioning methods (Pothen, Simon, and Liou 1990, and

Hendrickson and Leland 1992), and multilevel methods (Hendrickson and Leland 1993a). For

the RALPAR problems, a partitioning of the finite-element domain into subdomains was

supplied. This partitioning was obtained using the recursive graph bisection algorithm with
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the Keringhan and Lin refinement implemented in the Rutherford Appleton Laboratory code

RALPAR code (Greenough and Fowler 1994a, 1994b). For the HB and DNVR problems and

problem AEAC5081, the finite-element domain was partitioned using the Chaco package

from Sandia National Laboratories (Hendrickson and Leland 1993b). Spectral bisection with

the Keringhan and Lin refinement was used. For the RFLOW1 problem, a partitioning of the

domain was supplied with the problem.

In all our tests on the problems described in Table 5.3, we have chosen to partition the

domain into at most 16 subdomains. This is consistent with the number of subdomains we

anticipate when using the multiple front algorithm. Our experience has been that, as the

number of subdomains increases (and consequently the number of interface variables

increases), it becomes increasingly important to take into account the interface variables when

reordering the elements.

In Tables 5.4a-5.4d we present results for the different element ordering algorithms for the

HB, AEAT, DNVR, and RALPAR test problems, respectively. For each problem, the

maximum and r.m.s. wavefronts (F and F̃) are given for each subdomain for the original

user-supplied element ordering, the MC43 ordering, and the Approach I and Approach II

orderings. The ordering which gives the smallest r.m.s. wavefront is in bold typeface. CPU

timings for reordering the elements together with floating-point operation counts and CPU

times for solving the test problems using the multiple front algorithm are given in Table 5.5.

The RALPAR examples are not included in Table 5.5 since lists of variables associated with

the finite-element nodes were not available for these examples. For problems for which only

the matrix sparsity pattern was available (the HB problems and problem AEAC5081), values

for the matrix entries were generated using the Harwell Subroutine Library random number

generator FA04.
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Table 5.4a A comparison of the original, MC43, Approach I,

and Approach II element orderings for the HB test problems.

Number Number Original MC43 Approach I Approach II
of of F F F FF̃ F̃ F̃ F̃Problem Subdomain elements interface

variables

CEGB3024 1 67 74 115 84.1 108 72.0 85 62.3 80 55.6
2 66 82 95 58.0 104 72.3 95 57.4 92 56.9
3 65 90 128 95.4 96 70.2 97 69.1 92 67.9
4 71 42 99 70.8 88 61.4 69 37.9 62 34.4
5 72 46 104 69.5 72 47.7 78 55.4 63 43.1
6 74 66 100 73.7 80 54.3 81 52.5 78 43.5
7 69 112 136 91.3 144 94.2 128 86.2 118 82.0
8 67 72 106 82.2 90 64.4 88 65.2 80 60.1

CEGB3306 1 199 114 188 133.9 138 109.0 123 83.1 122 54.6
2 197 120 259 186.4 126 69.4 127 63.0 126 56.3
3 197 108 212 169.6 114 62.4 114 59.1 114 54.8
4 198 102 223 167.5 126 83.8 108 58.9 109 53.1

LOCK2232 1 117 150 276 197.2 156 100.2 156 102.3 156 92.3
2 118 120 294 215.2 144 107.0 138 103.0 126 82.1
3 118 108 246 191.9 126 92.8 126 83.4 114 74.5
4 117 90 234 166.9 138 98.7 108 67.6 96 45.6
5 117 120 210 93.3 138 98.7 138 92.3 126 64.4
6 117 78 300 209.1 126 91.7 120 88.0 84 59.8
7 123 48 246 157.4 102 74.2 78 49.8 66 41.8
8 117 162 300 214.7 186 123.3 168 109.1 168 92.3

LOCK3491 1 148 108 171 129.1 234 183.1 171 129.1 147 113.6
2 179 161 318 215.2 276 196.7 167 99.0 167 120.6
3 176 199 428 285.0 297 196.1 232 137.7 230 134.2
4 181 210 294 219.4 210 114.5 186 111.6 176 125.9

From Tables 5.4a – 5.4d we see that, in general, Approach II provides the element ordering

with the smallest r.m.s. wavefront. As a result, the Approach II element orderings are

generally the most efficient when combined with the multiple front algorithm (Table 5.5). The

only test problem for which Approach II does not give the best results is LOCK3491; for this

problem, Approach I gives slightly better results. In most examples, MC43 does provide a

better ordering (in terms of both the maximum and r.m.s. wavefronts) than the original

ordering, but this is not guaranteed. For example, for subdomains 1 and 2 of problem

TRDHEIM, the MC43 ordering has larger maximum and r.m.s. wavefronts than the original

ordering and when used with the multiple front algorithm, requires more floating-point

operations than the original ordering. As expected, Approach I, which is essentially the MC43

algorithm with modifications to allow for interface variables, almost always produces element

orderings which are an improvement on those generated using MC43 but tie-breaking means

that an improvement is again not guaranteed.
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The sizes of the reductions in the r.m.s. wavefronts and in the number of floating-point

operations which are achieved using the reordering algorithms are obviously dependent on the

original user-supplied element ordering. It is clear that for some of the test problems, the

original ordering was reasonable and the reordering algorithms were only able to produce

modest savings. From Table 5.5 we see that for problem AEAC5081, Approaches I and II

gave savings in the floating-point operation counts of little more than 10 and 20 per cent,

respectively. However, for many of the test problems the user was not able to provide a good

initial ordering and for these problems the reordering algorithms gave substantial savings. For

example, for problem OPT1, Approaches I and II reduced the floating-point operation count

by about 68 and 75 per cent, respectively. We performed some additional experiments in

which the initial element ordering was arbitrary (that is, the user-supplied ordering was

randomly permuted). The savings achieved using the reordering algorithms were impressive.

For an arbitrary element order, the total number of floating-point operations required by the
10multiple front algorithm for problem TRDHEIM was 2.04∗10 , but Algorithm II reduced

8this number by about 96 per cent to 8.25∗10 .

Table 5.4b A comparison of the original, MC43, Approach I,

and Approach II element orderings for the AEAT test problems.

Number Number Original MC43 Approach I Approach II
of of F F F FF̃ F̃ F̃ F̃Problem Subdomain elements interface

variables

AEAC5081 1 48 139 149 108.6 149 108.6 149 108.6 142 103.9
2 50 152 165 119.3 165 119.3 165 119.3 169 112.6
3 53 76 79 57.3 79 53.6 79 51.2 79 48.0
4 49 154 164 119.3 164 105.1 164 104.9 164 101.4
5 49 154 157 129.2 164 104.3 164 104.9 164 102.1
6 49 133 136 97.5 136 97.5 136 97.5 136 80.6
7 50 110 120 80.2 120 80.2 120 80.2 120 80.2
8 49 119 122 95.2 122 95.2 136 90.6 136 88.2
9 49 119 129 102.5 129 102.5 129 102.5 136 88.8

10 50 110 141 101.6 141 101.6 134 99.8 127 83.5
11 50 119 129 104.1 129 104.1 129 94.9 129 80.5
12 51 90 100 66.7 131 85.7 100 66.7 100 66.4
13 51 90 129 105.5 121 83.6 121 84.1 100 66.4
14 54 76 123 97.0 82 51.1 79 48.3 79 44.4
15 50 138 141 93.6 141 93.6 141 93.6 141 93.6
16 48 139 149 107.6 149 107.6 149 107.6 142 101.8

RFLOW1 1 740 668 698 434.1 678 469.7 698 434.1 672 387.6
2 575 1149 1462 925.0 1456 865.1 1456 864.8 1468 742.6
3 400 783 827 497.3 827 482.9 827 482.5 815 408.1

We remark that we found the Chaco code was well able to partition the finite-element

domains into subdomains having an (approximately) equal number of elements. The Chaco
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code attempts to minimise the total number of interface variables and this will reduce both the

amount of data which must be transferred between processors when the multiple front

algorithm is run in parallel and the amount of work needed to solve the interface problem.

However, Chaco can produce partitions in which the subdomains all have a very different

number of interface variables and this can lead to a wide variation in the subdomain

wavefronts and hence to poor load balancing. Consider the test problem TRDHEIM. We

partitioned the domain into 8 subdomains using Chaco and found that each subdomain had

101 or 102 elements but the number of interface variables ranged from 66 for subdomain 7 to

258 for subdomain 4 (Table 5.4c). After reordering the elements with Approach II, the number

of floating-point operations required by the frontal solver for these two subdomains were
7 83.33∗10 and 1.12∗10 , respectively. If all 8 processors on the CRAY Y-MP8I are used to

solve the problem (one for each subdomain), processor 7 completes its work in 0.93 seconds

while processor 4 takes 1.30 seconds. Domain partitioning algorithms which attempt to

balance the number of interface variables between subdomains are required for the multiple

front algorithm and we plan to investigate this in the future.

Table 5.4c A comparison of the original, MC43, Approach I,

and Approach II element orderings for the DNVR test problems.

Number Number Original MC43 Approach I Approach II
of of F F F FF̃ F̃ F̃ F̃Problem Subdomain elements interface

variables

OPT1 1 243 904 1638 1193.1 941 679.7 925 486.3 925 468.4

2 236 533 1161 783.1 539 295.8 539 297.7 539 288.6

3 244 590 1362 1088.6 967 679.2 876 676.6 602 355.8

4 254 889 1479 1157.3 1016 788.2 979 747.7 952 774.8

TRDHEIM 1 101 180 216 148.7 282 180.8 216 148.7 216 148.7

2 102 216 336 203.4 414 302.2 228 141.1 228 128.7

3 101 174 306 205.0 324 199.8 210 131.9 294 142.2

4 101 258 414 276.0 360 244.7 366 192.5 306 169.3

5 102 192 300 226.0 300 226.0 294 213.9 240 155.0

6 102 210 246 178.6 246 178.6 246 178.6 246 178.6

7 102 66 150 84.0 150 84.0 150 81.2 162 78.9

8 102 108 234 166.4 234 166.4 156 85.9 150 82.3

TSYL201 1 120 543 651 486.4 594 430.0 564 436.2 564 422.6

2 120 582 633 457.6 708 492.7 603 390.6 603 390.6

3 120 732 915 670.0 753 515.5 753 505.9 753 497.3

4 120 582 633 457.6 708 492.7 603 390.6 603 390.6

5 120 576 759 540.3 597 454.1 597 459.4 597 422.4

6 120 582 708 624.7 633 529.0 603 390.6 603 390.6

7 120 732 768 564.3 753 512.7 753 494.7 753 501.3

8 120 582 633 457.6 708 492.7 603 390.6 603 390.6
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Table 5.4d A comparison of the original, MC43, Approach I,

and Approach II element orderings for the RALPAR test problems.

Number Number Original MC43 Approach I Approach II
of of F F F FF̃ F̃ F̃ F̃Problem Subdomain elements interface

variables

JETN 1 90 61 93 60.9 65 46.4 64 45.1 65 43.7
2 90 61 81 57.7 63 44.5 63 43.6 62 42.1
3 90 77 114 80.5 95 74.6 77 45.9 80 48.5
4 90 57 96 68.5 84 58.3 64 45.9 57 38.5

CHAM 1 1383 342 449 370.9 377 277.4 397 286.4 343 258.8
2 1383 403 640 484.7 419 300.2 418 302.8 410 274.0
3 1384 395 484 405.1 454 318.1 462 317.1 446 308.0
4 1384 489 571 440.0 575 390.7 546 371.4 549 367.8
5 1384 505 565 449.8 585 397.9 547 369.1 512 356.1
6 1384 373 490 404.7 420 294.2 385 287.6 374 256.4
7 1384 529 610 502.5 581 385.8 572 392.8 530 368.2
8 1384 513 595 460.0 548 377.3 577 383.4 514 363.2

TUBU 1 5861 296 707 533.6 540 366.0 540 361.1 536 352.8
2 5861 430 657 475.9 759 550.0 471 316.7 556 337.8
3 5862 691 1740 1305.6 1017 788.2 743 598.6 725 540.9
4 5862 736 1179 977.7 916 732.9 739 450.1 737 385.0

Table 5.5 CPU times (seconds) for reordering the elements together

with floating-point operation counts (flops) and CPU times (seconds)

for solving the test problems using the multiple front algorithm.

Original MC43 Approach I Approach II

Problem Total Solve Reorder Total Solve Reorder Total Solve Reorder Total Solve
flops CPU CPU flops CPU CPU flops CPU CPU flops CPU

time time time time time time time

CEGB3024 3.70E+07 0.82 0.07 2.75E+07 0.76 0.08 2.34E+07 0.71 0.08 2.04E+07 0.69

CEGB3306 1.82E+08 1.69 0.07 4.97E+07 0.90 0.08 3.39E+07 0.81 0.08 2.39E+07 0.74

LOCK2232 1.44E+08 1.46 0.10 4.65E+07 0.90 0.11 3.75E+07 0.85 0.12 2.48E+07 0.75

LOCK3491 3.62E+08 3.31 0.09 2.13E+08 2.21 0.10 1.09E+08 1.67 0.10 1.14E+08 1.70

AEAC5081 1.44E+08 2.41 0.14 1.34E+08 2.32 0.18 1.30E+08 2.31 0.17 1.12E+08 2.20

RFLOW1 8.98E+09 54.0 0.14 8.08E+09 51.30 0.18 7.98E+09 50.4 0.21 6.85E+09 44.2

OPT1 3.46E+10 148.7 0.29 1.39E+10 66.27 0.36 1.12E+10 57.8 0.39 8.61E+09 47.9

TRDHEIM 1.24E+09 12.56 0.22 1.40E+09 13.23 0.29 8.17E+08 10.49 0.28 6.95E+08 9.85

TSYL201 1.40E+10 69.54 0.27 1.12E+10 62.12 0.34 9.79E+09 53.52 0.34 9.57E+09 52.19

In Table 5.6 we illustrate the sensitivity of Approach II to the choice of the weights used in
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the priority function (4.1). Results are given for test problems TUBU (4 subdomains) and

RFLOW1 (3 subdomains). For each subdomain, the smallest r.m.s. wavefront is in bold

typeface. These two problems were selected since they illustrate that for some problems the

element ordering can be sensitive to the choice of weights while other problems are much less

sensitive. We see that the maximum and r.m.s. wavefronts for RFLOW1 are relatively

insensitive to the changes in the weights we considered. For problem TUBU, small changes to

the recommended values of 12, 6, and 1 for W , W , and W , respectively, have some effect on1 2 3

the wavefronts but the effects are small. However, for this problem, making substantial

changes to the ratios between the weights (such as giving the weights equal values) results in

significant increases in the wavefronts in some of the subdomains.

Table 5.6 The sensitivity of Approach II to the priority

function weights W , W , W .1 2 3

Weights Subdomain TUBU RFLOW1
W W W F FF̃ F̃1 2 3

12 6 1 1 536 352.8 672 387.6
2 556 337.8 1468 742.6
3 725 540.9 815 408.1
4 737 385.0

10 5 1 1 544 353.5 672 387.7
2 558 346.9 1468 742.6
3 721 541.2 815 408.1
4 744 389.5

12 6 2 1 538 358.1 672 387.8
2 449 317.5 1468 743.1
3 749 551.6 815 408.1
4 807 400.7

2 1 2 1 592 446.1 672 395.4
2 657 475.9 1468 759.5
3 942 723.1 818 410.3
4 792 430.7

1 0 0 1 707 533.6 672 387.5
2 476 345.0 1468 745.5
3 822 587.5 815 408.0
4 825 406.3

0 1 0 1 707 533.6 698 434.1
2 657 475.9 1462 925.0
3 1740 1305.6 827 497.3
4 1179 977.7

1 1 1 1 620 437.5 672 394.4
2 657 475.9 1468 758.6
3 885 639.9 818 409.4
4 800 426.8
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6 Conclusions

In this study we have proposed two algorithms for reordering elements for use with a multiple

front algorithm. This problem is more complicated than the problem of resequencing elements

for a frontal solver on a single domain since it is necessary to distinguish between variables

which can be eliminated once they are fully summed and interface variables that cannot be

eliminated within the subdomain. As far as the author is aware, this is the first time this

problem has been addressed. The two approaches we have considered involve two different

ways of locating a suitable starting element s for the reordering procedure. Once a starting

element has been selected, both methods use a modification of the method of Sloan (1986) to

reorder the remaining elements. Our first method (Approach I) for choosing s is based on

finding pseudo-peripheral nodes of the element communication graph. The second method

(Approach II), introduces an artifical element, the guard element, and uses this extra element

to find an element lying as far from the interface boundary as possible and uses this to start the

reordering. We have tested both approaches on a range of problems and compared their

performance with that of the HSL code MC43, which is designed for single domain problems.

Both approaches give significant improvements over MC43 and Approach II was almost

always the method of choice. On the basis of our findings, a code MC53 implementing

Approach II has been developed and will be included in the Harwell Subroutine Library.

Since we saw from Table 5.6 that the quality of the element ordering can be dependent on the

weights used in the priority function, these weights are passed to MC53 as control parameters.

They are given the default values of 12, 6, and 1 (which are the values we recommend on the

basis of our numerical experiments) but the user may choose to reset one or more of these

values.

Availability of the code

The frontal solver MA42 and the element reordering algorithm MC43 are included in Release

11 of the Harwell Subroutine Library (HSL) (Anon 1993). We plan to include the MA52

package, which allows MA42 to be used to implement a multiple front algorithm, in Release

12 of HSL. The subdomain element reordering code MC53 will also be included in Release

12. Anyone interested in using HSL routines should contact the HSL Manager: Ms L Thick,

Harwell Subroutine Library, AEA Technology, Building 8.19, Harwell, Oxfordshire, OX11

0RA, England, tel (44) 235 432688, fax (44) 235 432989, or e-mail libby.thick@aea.orgn.uk,

who will provide details of price and conditions of use.
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