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Abstract

We study the solution of large-scale nonlinear optimization problems by methods
which aim to exploit their inherent structure. In particular, we consider the all-
pervasive property of partial separability, first studied by Griewank and Toint (1982b).
A typical minimization method for nonlinear optimization problems approximately
solves a sequence of simplified linearized subproblems. In this paper, we explore
how partial separability may be exploited by iterative methods for solving these
subproblems. We particularly address the issue of computing effective preconditioners
for such iterative methods. Numerical experiments indicate the effectiveness of these
preconditioners on large-scale examples.
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1 Introduction

In this paper, we study algebraic aspects of the numerical solution of large-scale uncon-
strained optimization problems. To be specific, we suppose that we wish to minimize a
partially separable objective function f(x). The function f is said to be partially separable
(see Griewank and Toint, 1982a and Griewank and Toint, 1982c¢) if

flx) = Zfi(«’v), (1.1)

where each element function f; has a large invariant subspace. Typically, this occurs when
fi(x) is only a function of a small subset of the variables @, but may, of course, happen for
other reasons (see, for example, Conn et al., 1990). The decomposition (1.1) is extremely
general. Indeed, Griewank and Toint (1982b) show that any sufficiently differentiable
function with a sparse Hessian matrix may be expressed in this form.

In this paper, we shall be concerned with those partially separable functions for which
p .
fla) =) fi@"), (1.2)
i=1

where

1. each set of local variables, & € R":, is a subset of the global variables, x € R", and

Thus, the Hessian matrix of each f; is a low-rank, sparse matrix — typically it will differ
from the zero matrix only in a full block in the rows and columns corresponding to the
variables x*. The overall Hessian is thus the sum of extremely sparse matrices — the
element Hessians — and is thus frequently itself also sparse.

In unconstrained optimization, one is normally concerned with obtaining an (approximate)
solution, d, to the Newton equations

Veof(®)d = =V, f() (1.3)

If f has the form (1.2), these equations become

We are thus concerned with constructing efficient methods for solving systems of this form
which exploit the algebraic structure as fully as possible.
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Putting this is a more general context, we suppose that the real, symmetric, n by n matrix
H may be expressed as

D
H=) H, (1.5)
=1

where the symmetric elementary matrix H; only has non-zeros in n; rows and columns.
We consider solving the linear system

Hd= (f: HZ-) d=—g (1.6)

where H is large and normally positive definite. Clearly, the system (1.4) is of this form.
Similar linear systems arises when solving constrained optimization problems using aug-
mented Lagrangian methods (see, for example, Hestenes, 1969, Powell, 1969 and Conn
et al., 1990), and when using finite-element methods to solve elliptic partial differential
equations (see, for instance, Zienkiewicz, 1977). Both direct and iterative methods may be
appropriate for solving (1.6). Frontal or multifrontal direct (factorization) methods (see,
for example, Irons, 1970, Duff and Reid, 1983 and Reid, 1984) are appropriate so long as
there is room to store the fill-in which occurs during the matrix factorization. If this is not
the case, one is forced to consider iterative methods. The symmetry and definiteness of H
normally makes the preconditioned conjugate gradient method (see, for example, Golub
and Van Loan, 1989) the method of choice. The difficulty is, of course, the choice of an
effective preconditioner (see, Axelsson, 1976, for a discussion of general issues).

When designing an iterative solver for the solution of (1.6), certain features appear to be
desirable or even crucial.

e Since the matrix (1.5) is initially unassembled, we do not especially want to assemble
it.

¢ We would like to find a preconditioner that can be computed element-wise. It is also
desirable not to have to assemble this preconditioner.

e The computations involved in forming and using the preconditioner should ideally
be vectorizable and parallelizable, since we are interested in solving large problems.
Note that in the conjugate gradients, the most consuming parts at each iteration
are the matrix-vector product and the solve of the preconditioned system. As the
matrix-vector product can be very well parallelized, it is thus crucial to parallelize
the solve.

e As there is no absolute guarantee that the matrix (1.5) is positive definite, we would
like to be able to detect when the matrix is indefinite. Thereafter, we might perturb
the original matrix so that in all cases we compute the solution of safely positive
definite systems.
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e For optimization problems we must guarantee that the preconditioner is symmetric
and positive definite.

The LANCELOT package for the solution of large-scale nonlinear optimization problems
uses a variety of techniques to solve systems of the form (1.4). As well as direct methods,
the package allows the use of conjugate gradients with various preconditioners. These
include

e diagonal preconditioners,

e band preconditioners,

e incomplete Cholesky preconditioners,
e expanding band preconditioners, and

e full-matrix factorization preconditioners.

Further details are given in Conn et al., 1992.

We have decided to explore other alternatives, keeping in mind that the preconditioners
should take advantage of the structure of the problems given by the partial separability
and that we must be able to control their inertia. Thus, in this paper, we study the use of
the following element-by-element preconditioners:

e The Element matrix Factorization (EMF) of Gustafsson and Lindskog (1986) based
on a Cholesky factorization of each element;

e The Finite Element Preconditioner (FEP) of Kaasschieter (1989) and Wathen (1992);

e The one-pass (EBE) and two-pass (EBE2) element-by-element preconditioners of
Hughes et al. (1983) and Ortiz et al. (1983), initially described and used in the

context of finite element techniques for partial differential equations; and

e The “Gauss Seidel” EBE preconditioner (GS EBE).

In Section 2, we describe the various element-by-element preconditioners used in the finite
element solution of partial differential equations. In Section 3, we propose a generalization
of the EBE preconditioner. In Section 4, we compare the numerical behaviour of these
preconditioners with classical preconditioners on a set of numerical experiments. Finally,
in Section 5, we make some remarks on the influence of the partitioning of the matrix (1.5)
into elementary matrices.

We use the following notation: we let I denote the (appropriately dimensioned) identity
matrix and we let A(A) be the diagonal matrix whose diagonals are the diagonals of A.
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2 Finite Element preconditioners

In this section, we review the range of element-by-element preconditioners which have been
proposed for solving the linear systems that arise from finite-element solution of partial
differential equations. We note that specific error analyses are possible for particular classes
of model differential equations, but a more general analysis is most likely impossible. Thus,
all of the preconditioners should be viewed as heuristics which aim to approximate (1.5) at
low cost.

2.1 Connectivity matrices

As we are assuming that the element matrix H; has non-zeros in just n; rows, we may
write

H,=C!H;C, (2.1)
where the rows of the n; by n connectivity matrix, C;, are simply the rows of the n by
n identity matrix corresponding to the variables used in the element, and H; is a dense

n; by m; symmetric matrix. In what follows, we may occasionally say that H; is positive
definite when strictly we mean that H; is positive definite.

2.2 Element Matrix Factorization

First, we assume that the elementary matrices H; are positive definite. The basic idea
(see, Gustafsson and Lindskog, 1986) for forming the preconditioner is to factorize each
elementary matrix into

H;=L;L{", (2.2)

where L; is a lower triangular matrix. The preconditioner is then

Ppur = (Zp: Li) <zp: Li) ) (2-3)

1=1

where L; = CTL§. Clearly Y?_, L; is also lower triangular and thus (2.3) is easy to invert.
More generally, letting L; = L; + D;, where L; is the strictly lower triangular part of L;
and D; = A(L;), we might choose

T
P P P P
Pryur(d) = ((1 +6)7' > L+ (1+96) ZDL.) <(1 +0)7> L+ (1+6)) D,-) ,
1=1 1=1 1=1 1=1

(2.4)
where 6 is a non-negative parameter. In our experiments for simplicity we choose 8 = 0,
but other choices have been suggested by Gustafsson and Lindskog (1986) for finite-element
applications.
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2.3 Finite Element preconditioner

If H; is positive semi-definite, Kaasschieter (1989) and Wathen (1992) have suggested
modifying the previous preconditioner so that

H;,=(D;+ L,)Df (D; + I/?)a (2.5)

where D} is the pseudo-inverse of D;. Then, if 37, D; has positive diagonal entries, the
finite element preconditioner (FEP) is

Prpp = (ij D;+ Zp: Li) (zp: Di> 7 (zpj D; + Zp: Ef) . (2.6)

i=1

2.4 The EBE preconditioner

Element-By-Element (EBE) preconditioners were introduced by Hughes et al. (1983) and
Ortiz et al. (1983) and have been successfully applied in a number of applications in
engineering and physics (see, for example, Hughes et al., 1987, and Erhel et al., 1991). A
detailed analysis of this technique is given by Wathen (1989).

We now assume that H is positive definite. We may rewrite H as
P P P
H=) M;+> (H;—M;)=M+) (H;— M)), (2.7)
1=1 =1 =1

where M; = A(H;) and M = Y%_, M;. Now, let M = L,,L}; be the Cholesky factoriz-

ation of M; of course L, is simply a diagonal matrix. Then,
P P
H=1L, (I +Y Ly (H; - Mi)LMT) L =L, <I+ ZE,-) Ly, (2.8)
i=1 i=1

where we have defined E; = L,/ (H; — M;)L,;. Consider the product [[?_,(I + E;). A

simple calculation reveals that
p P
[[T+E)~1+> E; (2.9)
i=1 i=1
where the error in the approximation may be expressed in terms of second and higher
order products of the components E; and E; with ¢ # j. Thus I + 37, E; will be well

approximated by [[%_,(I + E;) if the the norms of the terms involving products of the E;
are small compared to 1. This may be true for various reasons:

e Individual E; may be small or zero (likely to be true if H; is very diagonal dominant);
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e The product of the overlapping components E, and E; is small or zero.

Note that the order used for writing the product is not without importance. The precondi-
tioner has to be symmetric as we intend to use conjugate gradient. The E; are symmetric
matrices but E,F; is, in general, not. There are, of course, ways of symmetrizing the
approximation (2.9), such as writing

I+ EP:EZ = (ﬂ(I+ %Ei)> (ﬁ(I+ %Ei)) (2.10)

i=1 i=p

but a discussion of probably the best such scheme is deferred until Section 2.5.

The first fundamental feature of the EBE preconditioner is that we replace I+ | E; by
P (I + E;) in (2.8) We then assume that I + E; is positive definite and has an LDLT
factorization
W, Y 1+E,=L,D,LT; (2.11)
the matrix W is known as the Winget decomposition of H; (see Hughes et al., 1983). In
this case, (2.8), (2.9) and (2.11) imply that

P

H~L, (H LiDiLf) L?. (2.12)
i=1

Unfortunately, (2.12) is not symmetric, and thus is not a satisfactory preconditioner.

However, if we further assume that a rearrangement of the product

f[LiD,.Lf ~ (ﬁ L,-) <ﬁ D,-) (f[ LT ) (2.13)

i=1

introduces little additional error, we obtain the matrix

Prpr =1Ly (ﬁ Li) (ﬁ Dz) (ﬁ L:f) LFE,\:I (2.14)

which may be used as a preconditioner for H. Such a matrix is known as the EBFE precon-
ditioner. Note that the second approximation (2.13) is, as the previous one, exact if there
is no overlap between the blocks and will be good under exactly the same circumstances
as its predecessor.

Clearly, the efficiency of the EBE preconditioner depends on the the partitioning of the
initial matrix and on the size of the off-diagonal elements of the elementary matrices. In
order to solve efficiently the system of equations Pgzppx = y, we exploit the decomposition

(2.14).

We are free to order the elements in any way we choose and may thus encourage parallel-
ism by consecutively ordering non-overlapping elements so that we can perform groups of
forward and backsolve in parallel.



2 FINITE ELEMENT PRECONDITIONERS 8

2.5 Two-pass EBE preconditioners

Here we consider another proposal in the same vein (see Hughes, 1987). We proceed, as in
Section 2.4, to approximate the sum I + Y% | E; by a product of invertible matrices. We
dismissed using the approximation (2.12) as a preconditioner because of its non-symmetry.
Instead, we combine (2.8) and the relationship

p p 1
I+ E; = [[(I+1E)[[(I+1E;) (2.15)
i=1 i=p

i=1

to give the preconditioner

Pppgs = Ly, <ﬁ(1+ %Ez)) (ﬁ(I+ %E’J) L3 (2.16)

i=p

Note that (2.16) is positive definite if and only if all the matrices I + 1E; are nonsingular.
To use this preconditioner, we merely require that each I + LFE; is invertible, and to be
able to solve systems of equations of the form Pgpg,x = y efficiently.

As before, we are free to order the elements in any way we choose and may thus encourage
parallelism by consecutively ordering non-overlapping elements. We may also choose to
obtain explicit inverses of the I + LE; to exploit vectorization in the forward and back
substitutions.

The main problem with the approximation (2.15) is that the terms 1 E,*, which result when
expanding the product (2.16), are non-zero even if there is little overlap between distinct
element Hessians E; and E; (¢ # j). Furthermore, as a solve using EBE2 is roughly twice
as expensive as one with EBE, in practice EBE2 is less efficient than EBE. But it can be
interesting if we use inverse or approximate inverse elements or if we can find a way to
subtract the terms 1E,;” in the solve.

2.6 The GS EBE preconditioner

The GS (Gauss-Seidel) EBE preconditioner is based on the same decomposition as the
EBE preconditioner. But instead of using a Crout factorization, we instead use the decom-
position

E,=L,+LT (2.17)

where L; is a strictly lower triangular matrix. The preconditioner is then

Pos=1Ly ﬁ(I+Li)ﬁ(I+L§F)L7A} (2.18)

i=1 i=p
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The advantage of this preconditioner is obviously that it is very easy to construct. In
fact, if the matrix is initially scaled, the preconditioner is not constructed and no more
storage than diagonal is required. The principal drawback is that it is not exact, even
when there is no overlap between element Hessians, because of the terms L;L} which arise

when approximating I + > Y | E; by [1¥_,(I + L;) HLP(I + LT,

2.7 Definiteness of the preconditioner

The preconditioning matrix P should be positive definite. In the context of optimization
problems, we have no guarantee that H and a fortior: P is positive definite. We describe
here a simple strategy that guarantees that P is positive definite. Note that, if the ele-
mentary matrices H; are positive definite, H will be positive definite. We also note that,
when considering the EBE and EBE2 preconditioners, a sufficient condition for P to be
positive definite is that all the H;, and hence the I + E;, are — if H; positive definite for
all ¢, so a fortiori are I + E; and I 4+ LE;. However, this is not necessary since the I 4+ E;
and P may be positive definite even if some H; are not. Griewank and Toint (1984) study
conditions under which partially separable functions have convex decompositions, that is
those functions whose Hessian matrix is the sum of positive semi-definite element Hessians.

The preconditioners we have considered in this section all depend upon the decomposition
of a collection of matrices W;, where W; = H;, I + E; or I + LFE; depending on the
preconditioner. It thus seems natural to consider the use of a modified Cholesky factoriza-
tion for these decompositions to guarantee that the preconditioner is positive definite. We
use the modified Cholesky factorization proposed by Schnabel and Eskow (1991) that com-
putes the Cholesky factorization of a matrix W if it is positive definite, or the Cholesky
factorization of W; 4+ B;, where B; is a non negative diagonal matrix, otherwise. There
is no need to know a prior: if W, is positive definite, and the matrix B; is determined
during the factorization process. This modified Cholesky factorization exhibits marginally
better properties in terms of computational costs and upper bound on |W ||, than those

described by Gill and Murray (1974) and Gill et al. (1981).

The main drawback of such a strategy for forming the preconditioner, is that we may
perturb W, even if the initial matrix is positive definite. Before attempting to form the
preconditioner, we should first amalgamate elementary matrices whose sparsity structure
lies completely within that of another element. We might also consider amalgamating
indefinite elements with positive definite ones if the composite element is positive definite,
even if this means introducing structural zeros that is zeros within the element — the
amalgamation of an indefinite element might, for example, be made with the elementary
matrix having the largest intersection. While we have not developed a fail-safe scheme
here, the simple strategy just presented appears to work well in practice.
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3 Generalizing the EBE preconditioner

Let H satisfy (1.5). In Sections 2.4 and 2.5, we considered the classical and two-pass EBE

preconditioners
P P 1
Pppr =Ly (H Li) ( Di) HL;F Lfd (3-1)
i=1 i=1 i=p

and

Pgpp, = Ly <ﬁ(I+ %Ez)> (ﬁ(I+ %Ez)) Ly, (3.2)

i=p

where M & A(H) = L,,L%, M, = A(H,), E; € L;}(H; — M;)L; and the Winget

decomposition, W;, had a factorization
W, Y 1+E,=L.D,LT. (3.3)

In this section, we consider a generalization of M with the intention of including more
than simply the diagonal of H.

Let M be a symmetric n; by n; matrix, for each 1 < ¢ < p, such that the composite
matrix,

P
M=> M, (3.4)
i=1
is positive definite, and where

Then we observe that the descriptions of the EBE and two-pass EBE preconditioners given
in Sections 2.4 and 2.5 do not depend on M being the diagonal of H. We may thus think
of using (3.1) or (3.2) with a non-diagonal M. However, a restriction on the choice of M
has to be made, since we want to have the same structure for the matrices H; and E;. A
general matrix M — indeed even a band matrix — may introduce fill-in, complicate the
required data structures and increase storage and computational overheads. For simplicity
in this section, we only consider matrices M for which no fill-in occurs.

3.1 Overlapping blocks of the matrix

The ideal preconditioner, if it could be economically formed and factorized, would be to
pick M; = H;, and hence P = M = H. Unfortunately, this is frequently out of the
question. We must, therefore, be content with an approximate preconditioner. We know,
from Section 2.4 that the primary source of errors in the EBE preconditioners may be
attributed to the overlap between the E;. It is thus of interest to mitigate this effect by
aiming to include as many of the overlapping portions of the elements in M as is possible.
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Example. To illustrate our ideas, we consider what happens in a simple structured problem
with two elements.

Suppose H = H, + H, In this case, the error, E, due to the replacement of the sum by a
product is

E=Ly(I+E,)I+E,)Ly—H=(H,—- M,)M '(H, - M,). (3.6)

It is useful to make this error as small as possible, since the additional error due to the
rearrangement (2.13) depends on E.

Now suppose H, and H, are

A, BT 0 0 0 O
H1 == Bl C]_ O and H2 == O Cz B;r‘ . (37)
0 0 O 0 B, A,

Further, suppose we choose M = M, + M ,, where

N; 0 0 0 0 0
Ml = 0 C]_ 0 and M2 = 0 02 0 (38)
0 0 O 0 0 N,

and IN; and N, are any matrices of appropriate dimensions. Then, combining (3.7) and
(3.8), we obtain
0 0 BT(C,+C,)'Bf
E=|00 0 . (3.9)
0 0

If, on the other hand, M = A(H), the error is

0 B’fA(Cl +C,)7H(C, — A(Cy)) BTA(Cl + Cz)_lezp
E=|0 (C;-A(C))A(C,+C,)"(C; — A(C3)) (C1—A(CL))A(C, + Cz)_lBg
0 0 0

(3.10)

Remarkably, the errors do not depend upon IN; or N,. While this example is rather simple,
it indicates the potential for allowing non-diagonal contributions within M. In general, it
may prove advantageous for M to be block diagonal, so long as the factorization of M
remains cheap.

3.2 Construction

Since we wish to avoid an increase in storage/calculation, we are quite limited in the
choice of the diagonal blocks M ;. For example, suppose H = H, + H, + H3; where
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H , involves variables z,, z,, 23, x4, H, involves variables z,, z3, z4, 5, ¢ and H 3 involves
variables z3, x4, z5, z; (see figure 3.1). Then the only block we can include in M is the
one corresponding to the variables 3 and z,. For, taking the block involving 4, zs, 4
would introduce fill-in when calculating E3 while taking that for z3, z,, 25 would introduce
fill-in when calculating F;. We note, however, that in this example, it would be useful to
amalgamate H, and H, or H, and H .

X1 x2 x3 x4 x5 x6 X7

x1 H1
X2

X3
x4

x5

X6

X7

Figure 3.1: Example where the only block that will not introduce fill-in is z3, z,4.

With this in mind, we propose the following algorithm to construct a generalized EBE
preconditioner:

1. Compute the list of all elements involving a given variable;
2. Group together all variables involved with the same set of elements;

3. Assemble the blocks M ;, each M ; corresponding to a group of variables computed
in step 2;

4. Compute M, = LMiLZA:,i;

5. Construct the E; and calculate the modified Cholesky factorization of I + FE,.

3.3 Remarks

We note that the construction of Section 3.2 is rather restrictive. For example, if we consider
a tridiagonal matrix found by summing elements with variables z; and z;,,, 1 <1t < p, our
construction would prevent M from including more than 1 by 1 diagonal blocks.

We might hope that, by taking into account the zeros created when subtracting M; from
H;, we might be able to include more of H in M without introducing fill-in in E;.
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Whenever the initial matrix M introduced fill-in to the Winget decomposition, we have
tried removing, one at a time, those elements of M which caused this fill-in. Unfortunately
the tests we performed with this in mind indicated that such a strategy is rarely better
than the simpler construction of Section 3.2.

Thus, so long as we prohibit fill-in within the Winget decomposition, we are quite restricted

as to choice of M. It would be of interest to allow limited fill-in within E; and we intend
to investigate this in the future.

3.4 Other possible generalizations
3.4.1 Higher order approximations to the summation

We indicated that a difficulty with EBE2 was due to the terms 1E? when using the ap-
proximation (2.15). To remove these terms, one may use the approximation

D p 1
I+ E;~|[[I+:E;—:E)[[I+1E; - E}) (3.11)
1=1

=1 i=p

which is based on the second-order approximation I + E; = (I + 1E; — tE7)?> + O(E?).
Such an approximation is only really of use when the spectrum of E; is within [—1,1], as
otherwise the O(E?) term may dominate. Higher-order approximations are also possible.
Unfortunately, such approximations do not appear to offer significant improvements over

EBE2 in the tests we have performed. In view of their additional complexity, they will not
be considered further in this paper.

3.4.2 Use of the square root of [ + E;

Another way of symmetrizing the preconditioner is based on using the square root of I+ F;
when it exists. The square root of a positive definite matrix A is defined to be the unique
positive definite matrix X such that X* = A. Combining (2.8) and

we obtain the preconditioner

L, <ﬁ «/I+Ei) (f[ \/I+Ei) LT, (3.13)
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This is an exact preconditioner when there is no overlap and it does not need any additional
approximation of the type (2.13). However, the cost of computing the matrix square root
can sometimes be prohibitive, even for small elements. In tests, such a scheme appears to
give a preconditioner whose effectiveness lies somewhere between EBE and EBE2, but at
quite an additional cost. Again, we shall not consider this method further in this paper.

4 Experiments with Element-by-Element preconditioners

A number of the preconditioners described in Section 2 are known to work well in practice
when applied to classes of problems arising from partial differential equations. In this
section, we aim to investigate whether these preconditioners are effective in the more general
context of systems which arise from partially separable optimization applications. Although
our experiments are still preliminary, they do lead to interesting conclusions and are helpful
in deciding future directions of research.

4.1 Tests on structured matrices with specified values

We first test our preconditioners on randomly generated matrices H whose structure reflects
that which frequently arises in optimization applications. For such problems, the overlap
appears only between two successive elements; the structure of the test matrices is the one
defined in Figure 4.2.

Each matrix is the sum of randomly generated blocks; we merely specify the range of the
spectrum within each block. We construct problems with p blocks, each of size k£ and each
of which overlaps with the last r rows and columns of the previous block — the order of
the whole matrix is thus n = (k —r) xp+r.

The results presented here arise from two types of matrices :
e Type I: the eigenvalues of each block are randomly generated in the range [0; 10000.0];
e Type II : there are three ranges of eigenvalues depending on the blocks : [0.01;5.0],

[10.0; 100.0] and [500.0; 10000.0].

In addition to the preconditioners discussed in Sections 2 and 3, we also consider the
following:

Richardson : For this method there is no preconditioner. (P = I)
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Bl

B2

B3

Bp

Figure 4.2: structure of the test matrices

Diagonal : The diagonal of H is used : P = A(H).

Block Jacobi : The preconditioner is formed from the diagonal blocks of the matrix. Here
we have chosen to assemble the blocks where there is some overlap; elsewhere, the
diagonal is taken. This preconditioner may be more efficient than diagonal when
there is significant overlap. Of course, we could have chosen other block structures
but this is a reasonable choice.

We ran the preconditioned conjugate gradient method (see, for example, Golub and Van
Loan, 1989) to solve the system Hx = b, starting with the estimate & = 0, and stopping as
soon as ||[Hx — b||; < 107°||b||,. The right hand side b was either (1,1, ...,1)*, or problem
dependent. All of the experiments reported in this paper were performed in double precision
on a single processor of an Alliant FX /80, with vectorization of the inner loops of the solves
and the matrix-vector products.

Tables 4.1, 4.2 and 4.3 give some results of the preconditioned conjugate gradient with
different preconditioners. On these tables, we observe that EBE is more efficient than
diagonal so long as there is low overlap between elements.

'For EMF and FEP, the times of execution are not reported because the triangular matrices were
assembled as dense matrices and thus the implementation is suboptimal
2Block Jacobi was not tested for overlaps 8 and 9 because of double overlapping : the strategy used in
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Preconditioner
Over- | Order Block

lap of H None | Diagonal | Jacobi EBE | EBE2 | GS EBE | EMF! | FEP!
0 | 600 | 180/4.4 | 160/4.0 | 160/4.0 | 1/0.24 | 48/5.2 | 64/4.9 1 1
1 | 581 || 159/3.9 | 127/3.2 | 127/3.8 | 12/1.2 | 37/4.0 | 48/3.7 | 20 12
2 562 144/3.6 | 110/2.8 | 110/3.4 | 12/1.1 | 33/3.6 47/3.6 21 15
3 543 133/3.2 98/2.5 97/3.1 | 13/1.2 | 30/3.3 | 39/3.0 23 16
4 524 118/2.9 84/2.1 83/2.7 | 14/1.3 | 26/2.8 33/2.5 23 16
5 | 505 | 112/27| 75/1.9 | 75/25 | 13/1.2 | 24/2.6 | 30/2.3 | 24 | 17
6 | 486 | 107/2.6 | 69/1.7 | 68/2.3 | 13/1.2 | 21/2.3 | 27/2.0 | 26 18
7 | 467 || 85/2.1 | 58/1.5 | 57/2.0 | 11/0.99 | 19/2.1 | 24/1.8 | 27 | 20
8 | 448 | 79/1.9 | 54/1.4 | 52/1.9 | 11/0.98 | 17/1.9 | 22/1.6 | 26 18
9 | 429 | 73/1.8 | 50/1.3 | 48/1.8 | 11/0.96 | 16/1.7 | 20/1.5 | 26 18
10 | 410 || 70/1.7 | 47/1.2 | 45/1.7 | 11/0.95 | 16/1.7 | 19/1.4 | 26 19
11 | 391 || 66/1.6 | 43/1.1 | 41/1.6 | 11/0.94 | 15/1.6 | 18/1.3 | 25 20
12 372 61/1.5 38/0.99 37/1.5 | 10/0.85 | 13/1.4 16/1.2 25 18
13 | 353 | 60/1.5 | 36/0.94 | 33/1.4 | 10/0.84 | 13/1.4 | 16/1.2 | 24 | 18
14 334 52/1.3 34/0.89 30/1.2 | 10/0.83 | 12/1.3 14/1.0 24 19
15 | 315 || 46/1.2 | 31/0.83 | 27/1.1 | 11/0.89 | 12/1.2 | 14/1.0 | 22 18

Table 4.1: Number of iterations and time for convergence of the Preconditioned Conjugate
Gradient Algorithm on a matrix of type I with 20 blocks of size 30.

Preconditioner
Over- | Order Block
lap of H None Diagonal | Jacobi EBE EBE2 | GS EBE | EMF! | FEP!
0 3000 || 322/26.0 | 323/27.5 | 323/27.5 | 1/0.81 | 97/43.6 | 125/39.7 1 1
1 2801 || 213/17.2 | 158/13.4 | 158/21.0 | 17/6.4 | 50/22.3 | 67/20.9 29 22
2 2602 || 145/11.6 98/8.3 97/14.0 | 18/6.6 | 32/14.2 | 39/12.0 31 23
3 2403 111/8.8 80/6.7 80/12.2 | 16/5.7 | 26/11.4 | 33/9.9 31 24
4 2204 106/8.4 66/5.5 66/10.5 | 14/4.8 | 23/9.9 28/8.2 30 24
5 2005 82/6.4 52/4.3 51/8.7 | 13/4.4 | 19/8.1 21/6.1 27 21
6 1806 73/5.7 43/3.5 40/7.2 | 12/3.9 | 16/6.7 18/5.1 28 22
7 1607 56/4.3 37/3.0 32/5.9 | 12/3.7 | 14/5.8 16/4.4 26 21
8 1408 39/3.0 32/2.6 2 11/3.3 | 13/5.3 14/3.8 26 19
9 1209 37/2.9 28/2.3 2 11/3.2 | 12/4.8 12/3.2 22 18

Table 4.2: Number of iterations and time for convergence of the Preconditioned Conjugate
Gradient Algorithm on a matrix of type I with 200 blocks of size 15
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Preconditioner

Over- | Order Block

lap | of H None Diagonal | Jacobi | EBE | EBE2 | GS EBE | EMF! | FEP!

1800 || 3944/186 | 116/5.7 | 116/6.0 | 1/0.51 | 36/9.7 | 47/9.0 1
1651 || 2507/118 | 76/3.8 | 73/6.5 | 6/1.5 | 24/6.5 | 31/58 | 35
1502 || 1721/79.5 | 54/2.7 | 53/5.1 | 6/1.5 | 17/4.5 | 22/41 | 39
1353 || 1372/62.9 | 49/2.4 | 48/5.0 | 6/1.4 | 16/4.2 | 20/3.6 | 36
1204 || 1132/51.3 | 49/2.4 | 45/49 | 5/1.2 | 16/4.1 | 20/3.4 | 31
1055 || 822/36.7 | 49/2.3 | 42/49 | 5/1.1 | 16/4.0 | 20/3.3 | 26
996 || 389/17.3 | 48/2.3 | 35/4.3 | 5/1.1 | 16/3.9 | 20/3.2 13

S UL W N~ O

17
20
18
15
13

Table 4.3: Results for a matrix of type II with 150 blocks of size 12

In Figure 4.3, we illustrate the convergence behaviour for each of our preconditioners for a
matrix of type II with 150 elements of size 12 with an overlap of 2 (third line of Table 4.3).

A good preconditioner for the conjugate gradient algorithm is supposed to cluster the ei-
genvalues. On matrices of type II, the element-by-element preconditioners are very efficient
because of the initial intervals of eigenvalues. Frequency histograms of the eigenvalues are
given Figure 4.4.

4.2 Tests on real matrices

EBE, EBE2, EMF and FEP have already proved to be competitive on finite element prob-
lems. FEP and EMF were studied by Kaasschieter (1989) while Gustafsson and Lindskog
(1986) reported on EMF. EBE and EBE2 have been shown to be efficient for 2D and es-
pecially for 3D problems (see Hughes et al., 1987, Erhel et al., 1991, Wathen, 1989). In
this section, we aim to consider matrices which arise from both PDE and optimization
applications.

4.2.1 Set of test matrices

The matrices come either from the Harwell-Boeing collection (CEGB2802, MAN5976,
LOCK3491), see Duff et al. (1989), or are problems in SIF format from the CUTE collec-
tion, see Bongartz et al. (1993). In the case of the Harwell-Boeing, we removed all rows
and columns which corresponded to unused variables. Furthermore, we have used random
numerical values because they were originally not present. Since the choice of these values

the choice of the diagonal blocks cannot be applied
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Figure 4.3: Convergence of the conjugate gradient for a matrix of type II with P = 150,

K=12and P =2
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Min Max Mean

Problem Number of | element | element | element | Degree of | Condition
name Order | elements size size size overlap number
CEGB2802 2694 108 42 60 58.7 24 2.5 x 10?
CEGB2802 2694 108 42 60 58.7 24 5.7 x 104
MANS5976 5882 785 20 20 20.0 2.7 5.0 x 10*
LOCK3491 3416 684 6 24 19.8 4.0 1.3 x 102
MAT32 57 157 1 3 2.2 6.0 1.3 x 10!
MAT33 637 273 1 3 2.6 6.0 5.5 x 10!
BIGGSB1 998 1001 0 2 2.0 2.0 4.0 x 10°
TORSION1 3360 3792 1 5 4.4 5.0 6.7 x 10°
NOBNDTOR | 480 562 1 5 4.2 4.9 1.8 x 102
CBRATU3D | 4934 4934 5 8 7.5 7.5 3.4 x 10!
NET3 512 531 1 6 2.6 2.7 2.4 x 10°

Table 4.4: Summary of the characteristics of each test problem

influences the conditioning of the matrices, and since this conditioning is relevant to the
performance of our solution techniques, we have created two instances of CEGB2802 with
significantly differing spectra.

The patterns of CEGB2802 and LOCK3491 arise from structural engineering problems;
MAN5976 comes from deformation problems; MAT32 and MAT33 are finite element matri-
ces generated with the SPARSKIT software (see Saad (1990)), TORSION1 and NOBNDTOR
are quadratic elastic torsion problems arising from as an obstacle problem on a square,
NETS is a very ill-conditioned example which arises from the optimization of a high-
pressure gas network and CBRATU3D is obtained by discretizing a complex 3D PDE
problem in a cubic region.

A summary of each problem characteristics is given Table 4.4. The degree of overlap is
the average number of elements containing each variable, that is the sum of the element
dimensions divided by the order of the matrix.

4.2.2 Results on test matrices

The results of the execution of the Preconditioned Conjugate Gradient Algorithm on our
test problems are given in Tables 4.5 and 4.6. In this table, we present the time spent to
calculate the preconditioner, the number of iterations required for convergence, the time
for convergence, the time per iteration and the logarithm of the norm of the final residual
obtained for different preconditioners.
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We observe that, unlike the structured matrices of Section 4.1, element-by-element pre-
conditioners do not appear to be significantly more effective than diagonal preconditioning
on many of the current test examples. However we notice that, as we might hope, these
preconditioners do appear to be more effective than their diagonal counterparts for the ill-
conditioned problems. For example, the ratio EBE/diagonal for the Harwell-Boeing matrix
CEGB2802 significantly improves as the conditioning changes.

4.3 Remarks on the storage and the vectorization

Thus far, we have reported on experiments where packed storage is used for element
matrices, that is, where we store only the lower triangular part of each element. In Table
4.7, we compare the time per iteration for runs using the matrix CEGB2802 in which we
consider both packed or full storage of the element matrices. We performed the tests on a
variety of preconditioners and consider the performance both with and without vectoriza-
tion. Only the inner loops were vectorized, with vectors of length no larger than 60.

It appears that the full storage is more efficient for vectorized conjugate gradients with no
or diagonal preconditioning and less efficient for preconditioners involving triangular solves.
This is due to the relative efficiency of the computational kernels used both for the matrix-
vector products and the triangular solves. An interesting strategy — if extra workspace is
available — would be to use full storage for the Hessian, because of the beneficial effect
on matrix-vector products, and packed storage for the preconditioners, because of the
advantages this gives for triangular solves.

The gain due to vectorization is between 2 and 5, depending on the preconditioner and the
storage applied. We would expect to improve these ratios for example with longer vectors
or more powerful vector computers.

Instead of using factorizations of the W, it might be better to form explicit inverses, as
the sequence of solves may then be replaced by a sequence of matrix-vector products. This
has some advantage in terms of using tuned BLAS routines to form the products. For
EBE2, this could be especially useful since two triangular solves would be replaced by only
one matrix-vector product. Unfortunately, the elements in our examples are typically small
and we did not observe any benefit from such a strategy.

4.4 Testing the generalized EBE preconditioner

To date, the generalized EBE preconditioner has only been tested on matrices with reg-
ular patterns like in Figure 4.2. We do not believe that additional tests are necessary at
this stage, as we are able to predict the likely overall behaviour of the generalized EBE
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Problem Precondi- | Calculating the | Number of | Time for Time per Residual
name tioner preconditioner | iterations | convergence | iteration | norm (logl0)

CEGB2802 None 0 121 29.0 0.24 9.1

Diagonal 0.035 35 8.6 0.24 -9.0

k=2.5x 102 EBE 6.4 12 7.7 0.59 -9.5

EBE2 6.3 11 10.9 0.90 -9.3

GS EBE 0.68 17 10.5 0.58 -9.4

CEGB2802 None 0 2040 481.5 0.24 -9.0

Diagonal 0.035 661 158.4 0.24 -9.1

k=5.7x10* EBE 6.4 129 75.7 0.58 -9.0

EBE2 6.3 145 131.0 0.90 -9.0

GS EBE 0.68 362 211.2 0.58 -9.0

MAN5976 None 0 68 22.7 0.33 -9.1

Diagonal 0.081 28 9.8 0.33 -9.1

k=5.0x 10! EBE 5.2 10 10.1 0.91 -9.4

EBE2 5.0 11 17.5 1.45 -9.6

GS EBE 0.85 12 11.9 0.91 -9.3

LOCK3491 None 0 69 20.0 0.29 -9.1

Diagonal 0.068 24 7.3 0.29 -9.4

k=1.3 x 102 EBE 4.7 9 7.9 0.78 -9.3

EBE2 4.5 9 12.7 1.26 -9.3

GS EBE 0.71 11 9.4 0.78 -9.3

MAT32 None 0 21 0.36 0.013 -9.2

Diagonal 0.014 21 0.36 0.013 -9.2

k=1.3x 10! EBE 0.060 14 0.71 0.043 -9.3

EBE2 0.053 12 0.97 0.069 -9.1

GS EBE 0.027 15 0.76 0.043 -9.8

MAT33 None 0 48 2.2 0.043 -9.1

Diagonal 0.028 48 2.2 0.043 -9.1

k=5.5x 10! EBE 0.22 28 4.9 0.17 -9.2

EBE2 0.19 24 7.1 0.28 -9.0

GS EBE 0.076 29 5.1 0.17 -9.2

Table 4.5: Results for our test problems ( I ). The times are in seconds
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Problem Precondi- | Calculating the | Number of | Time for Time per Residual
name tioner preconditioner | iterations | convergence | iteration | norm (logl0)
BIGGSB1 None 0 499 29.5 0.059 -9.3
Diagonal 0.035 499 30.1 0.060 -9.3
k=4.04 x 10° EBE 0.29 276 67.3 0.24 -9.0
EBE2 0.24 328 133.6 0.41 -9.0
GS EBE 0.11 376 90.7 0.24 -9.0
TORSION1 None 0 24 8.5 0.34 -9.0
Diagonal 0.14 25 8.9 0.34 -9.3
k=6.7x10° EBE 2.2 12 16.1 1.23 -9.1
EBE2 1.9 11 24.9 2.07 -9.7
GS EBE 0.62 12 16.0 1.22 -9.0
NOBNDTOR None 0 68 3.5 0.050 -9.0
Diagonal 0.028 68 3.6 0.051 -9.2
k=1.8 x 10? EBE 0.33 35 6.5 0.18 -9.2
EBE2 0.30 33 10.3 0.30 -9.2
GS EBE 0.096 37 6.8 0.18 -9.3
CBRATU3D None 0 53 31.6 0.58 -9.1
Diagonal 0.20 53 31.8 0.59 -9.1
k=3.4x10 EBE 5.4 24 49.4 1.97 -9.2
EBE2 5.0 20 69.2 3.29 -9.2
GS EBE 1.2 25 50.8 1.96 -9.2
NETS3 None 0 3755 142.4 0.038 -9.0
Diagonal 0.025 1561 59.9 0.038 -9.0
k=2.4x10° EBE 0.20 628 89.7 0.14 -9.1
EBE2 0.18 559 133.2 0.24 -9.0
GS EBE 0.072 742 105.5 0.14 -9.1

Table 4.6: Results for our test problems ( II ). The times are in seconds

Preconditioner scalar mode vector mode
used Packed | Full | Packed | Full
None 0.613 1.02 0.235 | 0.214

Diagonal 0.618 1.03 0.237 | 0.217
EBE 1.52 1.98 0.582 | 0.594
EBE2 2.40 2.92 0.897 | 0.970

GS EBE 1.52 1.97 0.582 | 0.591

Table 4.7: Time per iteration in CEGB2802




4 EXPERIMENTS WITH ELEMENT-BY-ELEMENT PRECONDITIONERS 24

preconditioner from the tests we report here.

Preconditioner
Overlap | Order None Diagonal | EBE | GEN EBE
0 500 102/1.7 | 116/2.0 1/0.20 1/0.20
1 451 111/1.8 | 100/1.6 | 19/1.3 19/2.6
2 402 102/1.7 86/1.4 | 20/1.3 18/2.5
3 353 96/1.5 70/1.2 | 20/1.2 17/2.3
4 304 84/1.3 59/0.97 | 17/0.99 15/2.1
5 255 59/0.96 | 50/0.83 | 18/0.99 12/1.7

Table 4.8: Comparison of EBE and GEN EBE on a well conditioned problem (number of
iterations / time to converge)

Table 4.8 gives a comparison between EBE and GEN EBE for a problem whose structure
is described in Figure 4.2 and for which the logarithms of the eigenvalues in each element
are randomly chosen between —1 and 1. There are 50 elements, each of dimension 10. We
allow the overlap to vary and report on the effect of this in the table. For these matrices,
we observe that GEN EBE appears to be more effective as the overlap increases.

Preconditioner

Overlap | Order None Diagonal EBE GEN EBE
0 500 >5000 / >76.5 | >5000 / >79.3 1/0.20 1/0.20
1 451 >5000 / >76.5 4272/67.1 253/15.2 | 253/32.7
2 402 4306/65.0 2617/40.5 381/21.6 | 421/53.4
3 353 2584/38.6 1823/27.9 359/19.4 | 414/53.2
4 304 1390/20.5 998/15.1 223/11.5 | 246/30.2
5 255 664/9.9 552/8.2 171/8.3 167/20.5

Table 4.9: Number of iterations and time for convergence of EBE and GEN EBE on a
badly conditioned problem (number of iterations/time to converge)

In Table 4.9, we illustrate the same effects on a worse conditioned example. The structure
is as before, but the logarithms of the eigenvalues in each element are randomly chosen
between —3 and 3. The results here are much less clear; no overall trend is observed.

Finally, in Table 4.10, we report on an experiment in which the matrix is the same as
that examined in Table 4.8 except that all the entries in positions where two elements
overlap have been multiplied by 10°. GEN EBE is much more efficient than EBE on these
problems, but we should note that they have been especially constructed to exhibit good
behaviour of the former method and that, alas, we are unlikely to observe such a difference
in practice.
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Preconditioner
Overlap | Order None Diagonal | EBE | GEN EBE
0 500 102/1.7 | 116/2.0 1/0.20 1/0.20

451 || 853/13.1 | 88/1.5 | 2/0.25 | 2/0.46
402 || 1058/16.1 | 68/1.14 | 9/0.64 | 2/0.45
353 || 913/13.7 | 46/0.79 | 11/0.72 | 2/0.45
304 || 766/11.4 | 34/0.60 | 12/0.74 | 2/0.44
255 44/0.74 | 31/0.55 | 13/0.74 | 1/0.32

T W N =

Table 4.10: Number of iterations and time for convergence of EBE and GEN EBE on a
special problem

We observe that GEN EBE is not very effective according to Tables 4.8 and 4.9. Except
in the extreme case of Table 4.10, EBE is always better when CPU times are compared.
On well-conditioned problems, we observe a reasonable improvement in the number of
iterations required, but this is insignificant when CPU times are compared. Indeed, the
time per iteration can be much larger for GEN EBE than for EBE, especially if there is much
overlapping. Thus, the results are not encouraging. This is undoubtedly partially because,
even if the H; — M ; are small compared to H;, the matrices E; = L;ll (H;— M,-)LX,IT are
not necessarily small. Furthermore the norms | Ly E;E;Ly| = |(H; — M;)M ' (H; —
M ;)|| may be significantly bigger than is usually observed for classical EBE, especially on
badly conditioned problems. It would be interesting to derive different ways of decreasing
the errors introduced in the approximate factorizations, perhaps taking into account the
values of the elemental Hessians and not just their patterns.

4.5 Conclusions on the use of element-by-element preconditioners

The results of the previous sections indicate that element-by-element preconditioners are
effective, in terms of the numbers of iterations required and the clustering of eigenvalues of
the preconditioned Hessian, particularly if the overlap between blocks is small. EBE seems
to be the best of our block preconditioners and it does not require any assembly of the
matrix. EMF and FEP do not require an assembly of the matrix either but the resulting
triangular incomplete factors need to be partially assembled, which can make each solve
rather costly.

A disadvantage of EBE2 and GS EBE is that the terms 1E? and LW 'L} may give
rise to poor approximations even when there is little overlap between elements. If there is

significant overlap, the efficiency of EBE2 and GS EBE is close to that observed for EBE.

Usually, the number of iterations required by EBE is smaller than that for EBE2 which is,
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in turn, smaller that that for GS EBE — the only case where this is not so is for problems
with very large overlap. As GS EBE is the easiest preconditioner to construct, it may be
beneficial to use GS EBE when we do not need much accuracy in the solution of our system,
as, for example, is common in the early stages of optimization calculations. However in
more general cases, we prefer EBE.

We have not found it useful to replace the triangular solves by products of inverses. To
obtain some benefit from this, we would need larger elements so as to exploit better vec-
torization/parallelization.

A difficulty for general matrices is that we have no a prior: information on the sizes of the
elements. On finite-element problems, typically all elements have the same size. We may
thus colour the elements — that is, partition the complete set of elements into subsets, or
colours, of independent (non-overlapping) elements — to encourage both vectorization and
parallelization. In our case, vectorization is restricted to the treatment of each individual
element, so is not usually very effective. A potentially better strategy would be to vectorize
at a coarser level, treating blocks of the same size within each colour together.

In our experiments, except for ill-conditioned problems, EBE is not significantly more
efficient than diagonal preconditioning. We believe that this is for three reasons. The first
is because of the structure of the elements. When there is lower overlap, EBE appears much
more efficient than diagonal preconditioning (see section 4.1). Amalgamating elements may
reduce the number of iterations by decreasing the degree of overlap in the new partition.
The second is that vectorization here is not as efficient as it could be. If we knew a prior:
that all blocs have the same size, it would be possible to vectorize the solve more efficiently,
as was reported in previous experiments by, for example, Erhel et al. (1991). The third
is that no colouring, parallelization and specific code optimizations have been yet been
carried out.

Finally, we believe that further study, on real problems with less regular matrix structures,
will inevitably lead to a better understanding of the classes of problems for which each of
the preconditioners we have considered is particularly appropriate.

5 Remarks on the importance of element regrouping

Let f(x) be of the form (1.2). Clearly, the decomposition (1.2) may not be unique, and
different decompositions may significantly affect the performance of the preconditioners
considered in this paper. In some of the experiments reported in the previous chapter, the
limitation in performance of the conjugate gradient method, both for vectorization and
parallelization, is due to a non-optimal choice of the decomposition. Indeed, frequently
the local variable set for one element may be completely contained within another and it
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would pay to merge the two elements into a single super-element or group. More generally,
the local variable sets for two elements may significantly overlap and again it may be
advantageous to merge the elements into a single group.

Conn et al. (1993) have considered this problem from the point of view of improving the
matrix-vector products at the heart of many iterative methods for minimizing partially
separable functions. In this section our scope is larger in that we hope to produce more
effective preconditioners by amalgamating similar elements. We need to take into account
the following goals:

¢ Amalgamation should aim to merge elements which involve many common variables;
this improves the behaviour of the element-by-element preconditioners and decreases
the amount of work;

e In the case of generalized EBE, amalgamation may allow bigger blocks M in the
matrix M;

e If we wish to vectorize outside the elements (longer vectors than in the case of vec-
torization inside the treatment of each element), amalgamation should aim to keep
many elements of the same size. Each routine would then be applied to vectors of
elemental matrices instead of elemental matrices themselves and this should make
vectorization very efficient. For the moment, we do not take this point into account
because we do not try to vectorize outside the elements.

It is clear that determining an optimal partitioning of the elements into groups may be
costly, or even impossible. Frequently, the construction of an initial decomposition of f
into elements by a user depends more on considerations on the easiness of expressing the
function and its derivatives, rather than considerations of computational performance. It
is our experience with many of the test examples in the CUTE package (see, Bongartz et
al., 1993), for example, that the overlap between elements is high (and even that some
elements are entirely subsumed by other elements). Therefore, we regard it to be crucial
for performance to determine a heuristic to partition the original sets of elements into
computationally attractive disjoint groups.

5.1 Goals of the regrouping technique

Let x = (21,25, -+, x,)T, &' be the set of local variables involved in the elementary function
fi, for 1 <1 < p and V; be the set of indices of x'. For example, if

f(zy, @2, 25) = fi(zy, T2) + folxe, 23),

we have

' = {z,,7,}, 2% = {z3,23},V, = {1,2} and V,={2,3}.
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Our aim is to partition the index set of elements, P = {1,...p}, into a collection of groups

{G} such that

1. ng:P7
L GeNGi=0 for k#1.

3. If elements ¢ and j € Gy, either V;\ V; or V; \ V; is small.

[N

4. If element 7 € G;, and element 7 € G;, (k # 1), both V; \ V; and V; \ V; are large.

Thus, each group aims to collect elements whose overlap is large, while keeping the overlap
between groups small.

Once the groups have been determined, all of the elements indexed by a single group will
be summed to form a super-element. Thereafter, the algorithms described in Sections 2 —
4 of this paper should be applied to the sum of super-elements,

flz) = Zsk(ﬂf)y where s;, = Z fi(x?). (5.1)

k 1€Gk

5.2 Possible amalgamation algorithms

A natural approach, frequently used in sparse linear algebra, (see Duff and Reid, 1983, and
Amestoy, 1991) is to amalgamate two elements into a group if their overlap is large. The
main difficulty is to define a suitable heuristic to control the amalgamation process.

We start by assigning the index of each element to its own group. We call such a group
an elementary group and denote the group as G; = {¢}, 1 < ¢ < p. The algorithm proceeds
by merging groups until a satisfactory partitioning has been determined. Once a group
comprises two or more elements, it will be called an amalgamated group. By convention, if
we merge groups G; and G;, with ¢« < 7, we replace G; by G,|JG; and delete G;. We denote
the set of indices of variables used by elements in group G, by V.

A simple amalgamation algorithm is as follows. The fill-in between groups z and j is defined
to be twice the product of the cardinalities of the sets V; \ V; and V; \ V; — this is in fact
the number of extra (zero) entries introduced if the two group Hessians are amalgamated.
Of course, this fill-in should be limited to reasonable value, so we let h,,,, be the maximum
fill-in value allowed when amalgamating two groups. Then we amalgamate pairs of groups
for which the fill-in is smallest, until any remaining amalgamation would produce a fill-in
value larger than h,,,,. Ties are broken arbitrarily.
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Another approach, suggested by Conn et al. (1993) considers the number of flops gained
in the matrix-vector product. A list of elements is built for each variable and two elements
are amalgamated if it leads to decrease the number of floating point operations in the
matrix-vector product.

In this paper, we have chosen to concentrate on an algorithm that aims to decrease the
time spent in matrix-vector products and triangular solves on the target architecture. Our
overall goal is to reduce the cost of a (preconditioned) conjugate gradient iteration. As the
dominant cost of such an iteration is in solving a system involving the preconditioner and
in forming a matrix-vector product, it is of interest to reduce these costs.

5.3 An amalgamation algorithm

As a precursor to the main amalgamation algorithm, we apply the following scheme to
merge elements which are completely subsumed within others and to construct an amal-
gamation graph. The amalgamation graph has as its nodes the groups and has arcs between
the nodes for which there is some benefit from amalgamation. The arcs have associated
weights, b(G;, G;), which indicate the possible benefit to be obtained by merging nodes.

Initial phase (suppress complete inclusions and construct the amalgamation graph)
For each pair of groups G; and G;, 7 < j, such that V; NV; is not zero,
IfV;\V; or V; \ V; is zero,
Amalgamate these groups.
Else
Compute the benefit b(G;, G;)
Add the arc (G;, G;) with weight b(G;,§,) to the graph
End if

We then apply the main amalgamation algorithm.

Main amalgamation algorithm (simplified)

While there exists an arc for which b is positive
Find the arc G;, G;, b(G;, ;) of the graph for which b is maximum
Amalgamate the groups §; and G;
Update all the arcs of the graph incident on G; or G;

End while

End of the algorithm. The new partitioning into groups has been obtained.
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5.4 Computing the benefit

The choice of amalgamating two elements is based on the estimated gain of CPU time or
benefit of this amalgamation which is defined as

b(G;, G;) = t(card(V;)) + t(card(V;)) — t(card(V; UV]-)), (5.2)

where t(z) is the estimated time to treat an element of order .

The most costly operations in a preconditioned conjugate gradient iteration are

¢ p elemental size matrix-vector products, and

e ¢ elemental size triangular solves,
where p is the number of elements, and g is

e zero for no or diagonal preconditioning,
e two times p for EBE and GS EBE preconditioning, and

e four times p for EBE2 preconditioning.

In our current experiments, we shall only consider diagonal and EBE preconditioning, as
these proved to be the most effective of the preconditioners that we investigated in Section 4.
Thus we have two different possibilities:

Minimize the time spent in matrix-vector products. In what follows, this variant
will be called amalgl. It should be optimal for conjugate gradients without pre-
conditioner or with diagonal preconditioning. In this case, t(7) is an estimate of the
time spent to perform a matrix-vector product of order 2 on the considered architec-
ture. We consider the case where the element matrix is symmetric, stored in packed
symmetric storage and the accesses to the vectors are indirect.

Optimize the ordering for use of the EBE (or GS EBE) preconditioner. This
variant is called amalg2. The time estimate, ¢(7), is now the time spent in a matrix-
vector product plus twice the time of a triangular solve with indirect accesses to the
right-hand-side and the solution.
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Note that the time spent in constructing the preconditioner is not taken in account in
these costs, as this is an overhead for the whole conjugate gradient process, not just for an
individual iteration. The time spent in diagonal products — the matrix-vector products for
the diagonal preconditioner or the three products associated with the EBE preconditioner
— is not taken into account either, but such products are independent of the ordering.

The times of matrix-vector products and triangular solves for all realistic values of ¢ and
computed once and stored in a pair of data files. The values ¢(7) are read from these files
as required and stored in a real array. The benefit b(G;,G;) can then easily be computed
from (5.2). Throughout the algorithm, estimates of the total benefit along with the total
time for matrix-vector products and triangular solves before amalgamation are recorded.

5.5 Preliminary tests

We report the results of first running the amalgamation algorithm and then using diagonal
and EBE preconditioned-conjugate gradients to solve the linear system in question. Our
implementation is principally in Fortran but the amalgamation graph manipulation is coded
in C. All the times reported in this section are in seconds.

It is clear from Table 5.11 that amalgamation can be very effective. There are often large
gains in convergence times, both for diagonal and EBE preconditioning. As we would have
expected, it appears that, in most cases, the diagonal preconditioned method is faster with
amalgl and the EBE is faster with amalg2. For some other problems, such as CEGB2802,
however, amalgamation is not so useful as the function is already well decomposed. For
some problems, amalg?2 is less effective than amalgl with an EBE preconditioner, which
shows the limits of our heuristic. Such limitations likely arise because of the indirect
addressing of data and the fact that we do not know a prior: how the data is accessed
in the memory and hence the experiments do not fit exactly with the estimates. The
second reason is that the eigenvalue-clustering quality of the preconditioner may happen
to be worse with amalg2 than amalgl. This happens, for example, for the test problem
MAT33.

While amalgamating does not normally effect the quality of the diagonal preconditioner
(i.e., the number of iterations), it improves significantly the numerical behaviour of the
EBE-preconditioned conjugate-gradients method. However, when considering, for example,
the test problem NET3, we observe a variation of the number of iterations with diagonal
preconditioning. This is entirely because the order of floating-point operations is altered
by the amalgamation, and different rounding properties come into effect (see Higham,
1993) when computing the diagonal preconditioner and matrix-vector products. When
considering the EBE preconditioned method, we observe that the convergence time is about
50 times faster with amalg2 than with the original matrix. This may be attributed to the
decrease ( 628 — 145 ) in the number of iterations due to a better preconditioner and to
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Amalgama- | Number | Average Diagonal EBE
tion time of element | Number | Prec. | Conv | Number | Prec. | Conv
symb | num | elements size of its constr | time of its constr | time
NET3 538 2.58 1561 0.023 | 57.3 628 0.20 | 89.7
NET3.amalgl 1.2 0.1 48 12.6 1582 0.011 | 23.2 171 0.14 6.3
NET3.amalg2 1.2 0.1 42 14.1 1670 0.011 | 24.6 145 0.15 5.4
BIGGSB1 1001 1.99 499 0.035 | 30.1 276 0.29 | 67.3
BIGGSB1.amalgl 1.37 | 0.18 64 16.6 499 0.013 | 12.3 104 0.21 6.4
BIGGSB1.amalg2 1.37 | 0.18 64 16.6 499 0.013 | 12.3 104 0.21 6.4
TORSION1 3792 4.42 25 0.14 8.9 12 2.2 16.0
TORSION1.amalgl 20.5 1.7 262 22.7 25 0.036 | 3.67 10 1.4 4.0
TORSION1.amalg2 21.4 1.8 198 28.0 25 0.033 | 3.68 10 1.5 3.9
MAT32 157 2.18 21 0.014 | 0.36 14 0.061 | 0.71
MAT32.amalgl 0.27 | 0.030 4 16.5 21 0.0084 | 0.11 10 0.030 | 0.095
MAT32.amalg2 0.27 | 0.032 3 21.3 21 0.0085 | 0.12 10 0.033 | 0.096
MAT33 637 2.57 48 0.028 2.2 28 0.22 4.9
MAT33.amalgl 2.09 | 0.15 19 20.2 48 0.0098 | 0.55 21 0.11 0.55
MAT33.amalg?2 1.98 | 0.16 18 21.3 48 0.0097 | 0.55 24 0.11 0.62
CEGB2802 & = 2.5 x 10? 108 58.7 35 0.035 8.5 12 6.4 7.7
CEGB2802.amalgl 0.7 2.0 106 59.4 35 0.033 8.5 12 6.4 7.6
CEGB2802.amalg?2 0.7 2.0 102 60.8 35 0.033 8.6 12 6.4 7.6
CEGB2802 & = 5.7 x 10t 108 58.7 661 0.035 | 156.7 129 6.4 75.7
CEGB2802.amalgl 0.7 2.0 106 59.4 660 0.034 | 155.5 111 6.4 65.1
CEGB2802.amalg?2 0.7 2.0 102 60.8 659 0.031 | 156.5 111 6.5 64.9
CBRATU3D 4394 7.54 53 0.20 31.8 24 5.5 48.8
CBRATUS3D.amalgl 53.7 3.8 851 25.1 53 0.097 | 25.6 21 7.3 28.4
CBRATU3D.amalg2 | 57.9 4.0 764 271 53 0.093 | 25.8 21 7.6 28.3
NOBNDTOR 562 4.16 68 0.028 3.6 35 0.33 6.5
NOBNDTOR.amalgl | 2.3 0.2 40 21.8 68 0.012 | 1.44 29 0.22 1.55
NOBNDTOR.amalg2 | 2.4 0.2 31 26.3 68 0.014 | 1.47 30 0.22 1.57

Table 5.11: Comparison of the preconditioned conjugated gradients applied to the original
matrices and the matrices with amalgamation strategies 1 and 2 on 1 processor of the
Alliant FX/80. Symb and num refer to the time taken to perform the amalgamation and

set up data structures for the resulting factors, and to the time required to insert the

numerical values into the resulting factors, respectively.
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the reduction in time ( 0.17 s — 0.034 s ) per iteration.

As far as we are concerned, the most important thing to note is that in certain cases, with
the best amalgamation strategy, EBE preconditioning is much more efficient than diagonal
preconditioning (e.g., 5.4 seconds versus 23.2 seconds for NET3).

5.6 Cost of the algorithm

The times spent in the amalgamation procedure are reported in the second and third
columns of Table 5.11. The second column gives the times required to perform the amal-
gamation and set up data structures for the resulting factors, while the third column shows
the additional time required to insert the numerical values into the resulting factors. The
algorithm is sequential and has not yet been optimized.

Currently, we consider the reported times for the amalgamation procedure to be significant.
Taking these times into account, it would appear that applying the amalgamation algorithm
is not always beneficial, particularly if we wish to solve a single linear system and if the
number of groups is large (see CBRATU3D). If, however, we have to solve a large number
of problems with the same matrix, or which have the same elemental structure — such as
might occur in a nonlinear optimization or PDE application — amalgamating the elements
is essential.

5.7 Conclusions on the use of element amalgamation

In our examples, we have observed that most of the benefit of amalgamations is due to the
Main Amalgamation Algorithm. However it seems natural to start the algorithm with an
initial phase in which complete inclusions are suppressed, because it reduces the number of
elements without introducing fill-in and saves obviously space and floating-point operations.

Obviously, the implementation of our algorithm is not optimal, but the results obtained
are very promising. The cost of the amalgamation procedure is currently rather costly, but
it is hoped that good heuristics will decrease this preprocessing cost with roughly the same
effect. As we may have to solve many systems with the same structure in the course of a
nonlinear optimization calculation, a good preprocessing step may pay handsome dividends
in the longer run.

The resulting numerical quality of the preconditioner seems to be difficult to appreciate in
general. All that we may hope is that decreasing the degree of overlap may also decrease
the number of iterations. But we note that even if the number of iterations following
the amalgamation process is not significantly reduced, the times for the calculation of the
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preconditioner and for obtaining the solution often decrease.

The ratio of EBE to diagonal preconditioner solution times decreases as the amalgamation
is applied, both because typically fewer iterations are required following the amalgamation
and because an increase in element sizes encourages efficient vectorization for EBE and
matrix-vector products — diagonal preconditioning is already completely vectorizable.

6 Final Comments

We have shown that element-by-element preconditioners may be extremely effective for
systems of equations which arise in partially separable nonlinear optimization applications.
Furthermore, they seem to offer great possibilities of vectorization/parallelization on multi-
processor architectures. The next step will be to include such a scheme within a nonlinear
optimizer.

It is clear that preprocessing should be applied to any large-scale optimization problem,
and that in our case it is important to amalgamate elements and find a suitable colouring
for later calculations. This is a difficult task as many criteria need to be taken into account.
This preprocessing may well be quite costly, but we expect there to be longer-term payoffs.

There seems to be three main approaches to fully exploiting parallelism:

e Try to keep the elements to be roughly the same size, with the aim of both vectorizing
and parallelizing over the elements within a colour;

e Vectorize the computations within each element, while handling the elements within
each colour in parallel;

e Apply graph partitionning techniques to decrease overlap between elements and ex-
ploit sparsity within large elements.

In either case we will need an outer sequential loop over the colours. In the first case there
is both a vector and a parallel loop over the elements — we need many of the elements
to be of the same size in each colour as the same calculations will be performed on each
element). In the second case there is a parallel loop over the elements and the treatment
of each element is vectorized — of course, the length of vectors is limited by the element
sizes. In the third case there is a parallel loop over the elements and the vectorization is
limited by the sparsity of the elements.

If we intend to solve large problems with small elements, the first approach is certainly
the best and was successfully applied to finite element problems. Even if there are some
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elements with smaller size, their structure should be relaxed. If the elements are large
enough with a range of different sizes, we should opt for the second. The third approach
may be very interesting for the point of view of numerical quality of the preconditioners.
In that case, frontal approaches could be used to compute the preconditioners and differ-
ent graph partitioning techniques need to be studied both for numerical efficiency of the
preconditioners and parallel implementation. However, the granularity may become quite
large and a compromise should be found between

e use large elements with low overlap and

e keep enough elements for an efficient parallelization and avoid increasing too much
the work at each iteration.

The third approach might be the best for very large ill-conditioned problems.

Anyway, the three implementations are of interest and maybe a dynamic choice is possible.
We shall report on this in a future paper.

Finally we aim to implement these preconditioning techniques in the LANCELOT package,
profiting from the preprocessing to optimize other parts of the algorithm such as the matrix-
vector products and linear solvers.
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