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Abstract

Sparse matrix factorization algorithms are typically characterized by irregular memory access
patterns that limit their performance on parallel-vector supercomputers. For symmetric
problems, methods such as the multifrontal method replace irregular operations with dense
matrix kernels. However, no efficient LU factorization algorithm based primarily on dense
matrix kernels exists for matrices whose pattern is very unsymmetric. A new unsymmetric-
pattern multifrontal method based on dense matrix kernels is presented. Frontal matrices
are rectangular instead of square, and the assembly tree is replaced with a directed acyclic
graph. As in the classical multifrontal method, advantage is taken of repetitive structure in
the matrix by amalgamating nodes in the directed acyclic graph, giving it high performance
on parallel-vector supercomputers. The performance of three sequential versions is compared
with the classical multifrontal method and other unsymmetric solvers on a Cray YMP-8/128.
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1 Introduction

Conventional sparse matrix factorization algorithms rely heavily on indirect addressing. This
gives them an irregular memory access pattern that limits their performance on typical
parallel-vector supercomputers. In contrast, the multifrontal method of Duff and Reid [16]
is designed with regular memory access in the innermost loops. Its kernel is one or more
steps of LU factorization within each square, dense frontal matrix defined by the nonzero
pattern of a pivot row and column. These steps of LU factorization compute a submatrix
of update terms that are held within the frontal matrix until they are assembled (added)
into the frontal matrix of its parent in the assembly tree. The assembly tree (a variant of
the elimination tree [26]) controls parallelism across multiple frontal matrices, while dense
matrix operations [6] provide parallelism and vectorization within each frontal matrix.

However, this method is based on an assumption of a symmetric nonzero pattern, and so has
a poor performance on matrices whose patterns are very unsymmetric. If this assumption
is not made, the frontal matrices are rectangular instead of square, a directed acyclic graph
(called the assembly dag) replaces the assembly tree, and frontal matrices are no longer
assembled by a single parent.

A new unsymmetric-pattern multifrontal approach respecting these constraints is presented
[4]. Tt builds the assembly dag either during factorization or in a preprocessing phase. As in
the symmetric multifrontal case, advantage is taken of repetitive structure in the matrix by
amalgamating nodes in the assembly dag. Thus the algorithm uses dense matrix kernels in
its innermost loops, giving it high performance on parallel-vector supercomputers.

1.1 Previous work

The D2 algorithm [5] is based on a non-deterministic parallel pivot search that constructs
a set of independent pivots (m, say) followed by a parallel rank-m update of the active
submatrix. Near the end of the factorization, the active submatrix is considered as a dense
matrix (and factorized with dense matrix kernels).

The multifrontal method of Duff and Reid (MA37) [2, 9, 10, 16] will be referred to as the
classical multifrontal method. The method takes more advantage of dense matrix kernels
than D2, but is unsuitable when the pattern of the matrix is very unsymmetric. Many
methods for symmetric matrices use dense kernels; a survey may be found in [25].

Most recently, Gilbert and Liu [23] and Eisenstat and Liu [18] have presented symbolic
factorization algorithms for unsymmetric matrices, assuming that the pivot ordering is known
a priori. The algorithms are based on the elimination directed acyclic graph (dag) and its
reductions, which are similar to the assembly dag presented in this paper. Moreover, we
also indicate how our graphs can be applied to the case where the pivot ordering is not
known a priori. Also, Matstoms [28] has recently developed a multifrontal QR factorization



algorithm.

1.2 Outline

The following sections present the unsymmetric-pattern multifrontal method and three
sequential algorithms based on the method. Section 2 describes LU factorization in terms of
general frontal matrices. Section 3 demonstrates that both the elimination tree and assembly
tree are unsuitable for the unsymmetric-pattern multifrontal method. Section 4 presents the
assembly graph D and assembly dag G, and discusses amalgamation and edge reduction on
these graphs. The assembly dag G is to the unsymmetric-pattern multifrontal method as the
assembly tree is to the classical multifrontal method. Section 5 discusses an analysis-only
algorithm, which computes a symbolic factorization when the pivot sequence is not known in
advance. Section 6 presents a factor-only algorithm based on D and highlights several open
problems such as the effects of numerical pivoting. It requires a previous analysis phase,
either from the analysis-only algorithm or the combined analysis-factor algorithm described
in Section 7. The performance of three analysis-factor algorithms is illustrated in Section 8.
Finally, Section 9 summarizes the unsymmetric-pattern multifrontal method, including open
problems and future research.

2 LU factorization with general frontal matrices

The LU factorization of an n-by-n matrix A into the product of a lower triangular matrix
L (with unit-diagonal) times an upper triangular matrix U consists of n major steps. In
the outer-product formulation of Gaussian elimination, A is transformed into the product
LW AU after step k — 1 and just before step k (1 < k <n, Al = A [P+ = [ Ui+l =
U). Throughout this paper, the notation XU will refer to the state of X just before step
k, where X is a matrix, set, graph, scalar, etc. The state of X after LU factorization is

complete is denoted by XU*+11,

The active submatriz, Agck.].mk“n, is the portion of the matrix Al that has still to be reduced
after step £ — 1 has finished. We can write

(k] k k
L[k]A[k]U[k] — Ll.[.k]—l,l..k—l 0 ] [ T 0 ][ Ul[..]k—l,l..k—l Ul[..]k—l,k..n (1)

k
ka..n,l..k—l ]n—k—}—l 0 AEﬁ:]n,kn 0 ]n—k—}—l

where matrices L[ﬁk—m..k—l and Ul[l.g.]k—l,l..k—l are (k—1)-by-(k—1) lower and upper triangular
matrices, respectively, [;_; is the (k — 1)-by-(k — 1) identity matrix, and I,_x41 is the
(n — k +1)-by-(n — k + 1) identity matrix.

When we include pivoting to preserve sparsity and maintain numerical accuracy, the matrix
PAQ (instead of A) is factorized into LU. The permutation matrices P and () define



the row and column permutations performed during factorization or during a preprocessing
phase. However, to simplify the notation used to describe the method, we will assume that
permutations rename rows and columns of L¥| A¥l and U, Thus, the partial factorization

shown in Equation 1 will be considered as the factorization of P AQ¥ where P and QU]
are the permutations applied through step & — 1.

An entryin row 2 and column j of a sparse matrix A is a single value a;; that is symbolically
represented in the sparse data structure for A. An entry is typically numerically nonzero,
but explicit zero entries might be included if the pattern represents a class of matrices to
which the given A belongs. Numerical cancellation is ignored during factorization, so entries
in A¥l might become numerically zero. Entries are interchangeably referred to as nonzeros
in this paper, with the understanding that such a “nonzero” might actually be numerically
Zero.

Step k selects a single pivot entry ay;] from the active submatrix Agck.].mk“n, and interchanges

row ¢ and column j with the k-th row and column of Agc]nkn Step k then computes LF+1
AP and UFH from L AL and U,

For a sparse matrix A, define the row and column structure (or pattern) as the index pattern
of the entries in rows or columns of A, viz.

Struct (Ai.) ={j | a;j # 0}

Struct (Ay;) = {t | ai; # 0}.
(%]

7

(i > k) is the number of entries in row 7 of Al and the column degree
so that

The row degree r

cg-k] (7 > k) is the number of entries in column j of A

rl[-k] = |Struct (Agi])|
cgk] = |Struct (A[*];])|

The LU factorization can be described in terms of general frontal matrices. An element or
general frontal matriz Ky is a dense, rectangular (CE-k —by—rl[»k]) submatrix that corresponds to

the pivot (ay;]) selected at step k. The columns in Ej are defined by the set Uy, which is the
set of column indices of entries in the pivot row ¢ selected at step k. Similarly, the rows in
E} are defined by the set £, which is the set of row indices of entries in the pivot column j
selected at step k. That is,

U = Struct (Agi])
Ly = Struct (A[*];])

The sets Ly and U, are referred to as the row and column pattern, respectively, of the frontal
matrix Fj.

Let us assume that another g — 1 pivots (g > 1) have the same pivot row and column
pattern (excluding earlier pivots) as the first pivot in the frontal matrix. In this case, their
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pivot rows and columns are also in the element Ej. Entries not in the first ¢, rows or columns
of E} form the contribution block, Dy, of update terms that are added to Al to obtain the
reduced matrix A¥+9: The elements Eyyq to Egy,, _1 are not explicitly represented, having
been amalgamated into the single element £;. The g, major steps of LU factorization within
a single element Fj can be performed with dense matrix kernels. Element E} is referred to
as a supernode with a pivot block of rank g if gx > 1, or as a simple node if g = 1. Two or
more rows with identical pattern are referred to as a super-row, and columns with identical
column pattern are referred to as a super-column.

The row and column pattern of Ej (L) and U}) divide into two disjoint subsets:
Ly=L,UL]

(where £} is the set of g; pivot rows in Fj) and
Uy =U, UU)

(where U], is the set of g; pivot columns in Ey). The sets £}, £, U}, and U}’ divide the element
Ej into four submatrices: Fj (the gx-by-gi pivot block), By, C, and Dy (the contribution
block),

Uy u
Ek = E?g Fk Bk ) (2)
AR

where the matrix is shown before factorization. The matrices Fy, By and C} are fully
assembled before the factorization of this frontal matrix begins. That is, after assembly no
other nonzeros remain in the ¢, pivot rows and columns except those in Fj,. However, the
submatrix Dy may only hold a partial summation of the original matrix entries and update
terms from previous elements.

The numerical factorization within this frontal matrix computes the LU factorization of F
(Fr = L,U}), computes the block column L} of L and the block row U}/ of U, and updates
the contribution block with the Schur complement

Dy — D}, = D, — LU}

Any entries in Fj can be selected as pivots, as long as they are numerically acceptable.
Numerical considerations require pivoting within the pivot block Fj and might limit the
number of pivots to less than the maximum (in which case g, is taken to be the actual
number of pivots found in Ej). The matrices L) and L} define columns k through &+ g, — 1
of L, and U}, and U} define rows k through k + g — 1 of U. The factorized frontal matrix is

u, uy
Ey= L) [ L\u, vy ] : (3)
crloL Dy



Entries in the lower-right (n — k 4 1)-by-(n — k + 1) submatrix of P AQM that are not yet
assembled in a frontal matrix form the active part of A, denoted as M™, where

0 ifi<kVjy<k,
(M[k])ij =<0 if (P[k]AQ[k])ij has been assembled into some E; (1 <t < k),
(PMAQWM),;  otherwise.
(4)

The active part of A is simply the set of original entries that have not yet been assembled
into some frontal matrix. The assembly of original entries of A is done when a row or column
becomes pivotal, or earlier as a by-product of the degree update. The active submatrix is
represented as a sum of elements created during factorization, plus the active part of A,

teVIFl

where VI is the set of all frontal matrices created through step & — 1 of the factorization.
The active part of an element E; just before step k (denoted as Et[k]) is a submatrix of F;
formed by rows and columns that are non-pivotal just before step k (where 1 <t < k), and
also have not been assembled into subsequent frontal matrices. The row and column pattern
of Et[k] are denoted as ,C[gk] and Ut[k], respectively. Note that £} = ,CECHQ’“], u! = U,£k+gk], and
Dy = B,

2.1 Example matrix

Consider the matrix

B2 XX ]
X py X - X X
X X p3 - X
A=] x TP X (6)
X X . X X
X X
i X X . . X X i
with the partially factorized matrix L4 AM {4
[pr - - | x X ]
X py X | x X X
X X p3|x X X
X Pa X
X X X X X X
X X
L X X X X X X i




just before the fourth step of LU factorization. An entry is denoted as x, a zero is a small
dot, and p; denotes the k-th pivot entry. The pivots are assumed to lie on the diagonal in
order. The two elements already created are the dense rectangular matrices, £y and FEj.

1 14 5
1]p1| X X
2| X | X x

E1_3><><><
41 x| x x
TIx | x X
2 3|14 5 7

2 py X | X xX X

Fy= 3| x p3|x X X
5| X X | X x X
Tlx X |x X X

The pivot rows and columns have been delineated from the contribution blocks. The active
submatrix just before step 4 is

AR = MW 4 B4

or
4 5 6 7
41 x x - - 4 5 EEE
AEE].7,4..7:5 X X + 4| x X 4+ H|lxX X X.
6 X X Tl x x Tl x X X
7 X X

Note that Fj3 is not generated, since it lies entirely within F,. If the entry a[ﬂ (labeled as
pa) is selected at step 4 as the fourth pivot, then the resulting element £, would be

415
_4p4 X
E4_5>< X
71 % | %

Also note that element F; makes a contribution to the pivot row of K4 which cannot
be assembled into or represented by the intermediate element F,, even though FE; affects
portions of F;. This would not occur if the pattern of A was symmetric.

Row 7 of F; can be assembled into £y, since UI[Q] C U;, even though the contribution that F;
makes to row 7 is not needed to factorize Ey. If this assembly is performed, row 7 is removed
from ,C[14] since the notation EF] refers only to portions of E; that are not yet assembled
into subsequent frontal matrices just before step 4. This assembly is performed by the edge
reductions described in Section 4.2.
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3 Elimination and assembly trees

The elimination tree, T, [26] and its variants (such as the assembly tree [15]) are used either
explicitly or implicitly in most parallel sparse matrix algorithms [25]:

T =(Ty,7:)

Tv =1...n
Ze = {(i,5) | ) = parent (i)}
parent (1) = min{j | ¢ < j,1;; # 0}.
Starting with the elimination tree, 7, an assembly tree is constructed by amalgamating
a connected (node-induced) subgraph into a single supernode. The minimum label of the
nodes in the subgraph becomes the label of the new supernode. Edges contained in a
subgraph are removed, and any edges incident on only one node in the subgraph become
incident on the resulting supernode. The process repeats until the desired assembly tree is
obtained. Elimination and assembly trees are typically defined only for symmetric-patterned

LU factors, with the exception of partial-pivoting methods [21, 22]. A more general graph
is needed for the unsymmetric-pattern multifrontal method.

The classical multifrontal method [2, 9, 10, 15, 16] is based on the assembly tree. It has
a similar formulation as the general frontal matrix formulation described in the previous
section, except that the analysis is performed on the pattern of A + AT. Frontal matrices
are square. The method is usually divided into two phases: symbolic analysis and numerical
factorization. The symbolic phase finds a suitable pivot ordering using a sparsity preserving
heuristic such as minimum degree [20], determines the assembly tree, and finds the patterns
of L and U. Each node k in the assembly tree represents the work associated with element
Ej. The assembly tree describes the large-grain parallelism between the nodes.

The column pattern U, of the frontal matrix Fy is given by the union of the column pattern
U][k] of each child j of node k and the pattern of row k of the upper triangular part of A.
A node can be amalgamated with one of its children if the column pattern of the parent is
identical to the child (excluding the index of the child’s pivot column). That is, if i), = Z/{][k]
for a single child 5 of node k. Additional amalgamation may be allowed if the patterns are
not quite identical, in which case extra fill-in occurs.

The numerical factorization phase uses the assembly tree to compute the LU factorization.
The tree guides the assembly process and construction of new elements and describes the
precedence between nodes. At node k, the frontal matrices E][-k] of each child node j are
assembled into Ej. Because of the symmetric-pattern assumption, the pattern Uj is a
superset of the pattern Z/{][k] of the contribution block of each child j. The entire contribution
block D; of a child can always be assembled into its parent, since all the rows and columns
that are affected by D; are present in Ej. The method takes advantage of the dense matrix

11



kernels [6, 7] to factorize Fj: the Level-2 BLAS for simple nodes (gx = 1) or the Level-3
BLAS for supernodes (gx > 1).

The classical multifrontal method is not the only method based on the elimination tree or
its variants. In the sparse column-Cholesky factorization of George et al. [19], the work at
node k in the elimination tree is the computation of column k& of L. The work at node k
modifies column k with columns corresponding to a subset of the descendants of node & in
the elimination tree. This is in contrast to the classical multifrontal method, in which data
is assembled only from the children of a node.

However, the assembly tree is not appropriate in a multifrontal method if the frontal matrices
have unsymmetric patterns. This is due to the incomplete assembly that takes place.
Consider the inter-relationships between three elements, E;, E;, and Ey (i < j < k and
gi = g; = gr = 1) that results from the following 3-by-3 submatrix of L\U formed from the
pivot rows and columns z, 7, and k:

Pi Uiy Uk
lii pi ujk
[P i Pk

(the notation L\U when applied to matrices refers to two matrices packed in the same array).
Assume that there are other nonzeros in these rows and columns of U and L, respectively.
If, for example, w;, = ujr = u;; = ly; = 0, the inter-relationships become

Pi :
Li pi - |- (7)
Iy - Pk

In this case, a contribution from F; is assembled into both F; and Fj (assuming that there
are other nonzeros in row ¢), but the work at nodes j and k may proceed in parallel after
the work at node ¢ completes. The corresponding fragment of a possible subgraph that
characterizes these relationships is shown in Figure 1. An assembly tree is not suitable since
node ¢ has more than one parent; the parallelism between j and k cannot be described by
a tree rooted at node n, and the contributions of a child (node ¢) are not assembled by a
single parent. The contribution that £; makes to row k£ cannot be assembled into FE;, but
the contribution that E; makes to row 7 must be assembled into £;.

row | @ row k

Figure 1: A possible subgraph that characterizes Equation 7
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If the assembly tree is unsuitable, what kind of graph can guide the unsymmetric-pattern
multifrontal method? The elimination dag [18, 23] is one possibility. Define G(L) as the
directed graph associated with L. That is, (z,j) is an edge of G(L) if and only if [;;
is nonzero. Similarly, (i,7) is an edge of G(UT) if and only if u;; is nonzero. Several
reductions to these graphs are described in [18, 23] (such as transitive reduction, which
leads to the elimination dag). If the graphs are constructed for a symmetric-patterned
matrix and a simple reduction is applied (namely, symmetric reduction), then the graphs
become equivalent to the elimination tree. The next section extends the results in [18, 23]
by allowing for arbitrary sparsity preserving and numerically acceptable pivoting during the
factorization. Further extensions are discussed in Section 7.

4 The assembly graph and assembly dag

The assembly graph
D=(AG,F)

is constructed during the factorization as the pivot sequence is determined. Edge reductions
are applied as it is constructed. The notation DK, A G and FI¥ refer to the state of
each of these graphs or edge-sets just before step k of the factorization.

The composite graph consists of three types of nodes in two types of graphs. Conceptually,

the bipartite graph
k k

represents the unassembled form of the active submatrix, Agﬂwk“m where,
A = AR A,

A%] = {row k,...,row n},
A[Ck] = {column k, ..., column n},
A= {(i.j) i€ AR nj e A ndl # 0.

The edges .A[gk] in the bipartite graph A are not explicitly stored. Rather, they are
represented as the active part of A plus any unassembled contribution blocks (as in
Equation 5).

The factorized frontal matrices are described by the assembly dag (directed acyclic graph)

V¥ = {1 | E, is a frontal matrix created before step k}
VR C {1, k=1

13



e = ey g

EW = {(s,t) | s<t<knseVHAteYHA

one or more entire rows of E assembled into E,}.

EM = {(s,t) | s<t<kAseVHAteVHA
one or more entire columns of E[f assembled into E;}
Edges in EH are referred to as inactive L-, U-, or LU-edges. Inactive edges describe the
{L/U/LU}-{parent/child} relationship of factorized frontal matrices. Node s is an LU-
child of its LU-parent node ¢ if B is assembled into F; in its entirety ({s,t) € SE“] N 5[[?]).

Otherwise, node s is an L-child of its L-parent node t if (s,1) € SE“], or a U-child of its

U-parent node t if (s,t) € SI[Jk]. In the assembly dag, the term parent refers to any type of
parent, and the term child refers to any type of child.

An active edge in F connects a frontal matrix in G with a row or column in A for which it
holds an unassembled contribution. That is,

k k
FH = 7y 7Y
jfjgk] = {(t,row DEENS Egk]}

.7'—[[?] = {(t,column VRS Ut[k]}.

These edges are referred to as active L-edges and active U-edges, respectively.

4.1 The basic graph

Before factorization starts, the dag Gl!! is empty and AM is the bipartite graph of the original
matrix, A.

The pivot search selects a pivot and permutes it to the first row and column (renaming
them as row and column one, in our notation). Consecutive pivots with identical pattern
are included in the first frontal matrix £y which after being factorized is given as

uouy
Bo= gy [ L\ or)
I

where ¢g; = |£}]| = |U] is the number of pivots in the pivot block of Ej.

The first node of G is constructed. This node refers to the newly factorized frontal matrix
E;. The column pattern U; of E; is given by the set of edges in A incident to row nodes 1

14



through ¢;. Similarly, the row pattern of E; (£;) is given by the set of edges in AM incident
to column nodes 1 through g¢;. Pivot row and column nodes 1 through ¢; (having been
renamed) and edges in AM incident to these nodes are then removed from A. The pattern
L' defines new active L-edges in .7:%71“] that are added from node 1 of G to row nodes in A.
Similarly, U]’ defines new active U-edges that are added from node 1 in G to column nodes
in A. Note that edges from pivots 2 through ¢; are not added, since nodes 2 through ¢,
will not appear in G. This is the first case of edge reduction, and is a result of no-fill node
amalgamation (additional amalgamation is described in Section 4.3).

New fill-in edges are (implicitly) added to A for each entry in the contribution block that is
not already present in the active submatrix. The resulting bipartite graph is A1+l with
row and column nodes numbered from ¢; + 1 to n. The resulting G+ contains a single
node. The factorization of the first frontal matrix satisfies steps 1 through ¢; of the LU
factorization. The next step of LU factorization will be step ¢; + 1.

An example of a graph DI is shown in Figure 2 for the matrix A in Equation 6 in Section 2.1.
The first frontal matrix £ consists of only one pivot and is the first node in the graph G,
To avoid too many lines, edges in the implicit bipartite graph A[?l are shown in array form.
An original edge between a row ¢ and a column j is shown as an X, a fill-in edge is shown as
a ®, and a zero is shown as a small o (for which no edge in A exists). The two graphs, Gl
and AP are separated by a dashed line. Edges in F!¥! cross this dashed line, while edges in
E will be placed to the upper-left of this line (£ is empty).

At a subsequent step k, a new pivot row 7 and column j are selected, and frontal matrix £y
is created. Additional pivots with identical pattern are also included, so that Ej contains
pivots k through k + ¢, — 1. After permutations are made, active edges in F* incident
to row and column nodes k through k + g; — 1 in Al represent unassembled numerical
contributions to the pivot rows and columns of Ej. These contributions must be assembled
before factorizing Ej. Active edges are assembled, removed from F¥, and combined into
inactive edges in E¥+9]. Thus,

(s,row i) € FIINi € £} — (s, k) € £ (8)

and
(s,column j) € F,Ei“] NjeU, — (s k)€ Sl[f—l_gk]. (9)

If both Equations 8 and 9 hold, then the entire E* is assembled into Ej (a symmetric edge
reduction, see Section 4.2).

Pivot row and column nodes k through k£ + ¢g. — 1 and edges incident to these nodes are
removed from A. New active edges are added from node k£ in G to row and column nodes
in A defined by £} and U], respectively. New fill-in edges are added (implicitly) to A in
the same manner as fill-in from the first frontal matrix. The factorization of the frontal
matrix F}, satisfies steps k through k£ + ¢gr — 1 of the LU factorization. The next step of LU
factorization will be k + ¢;.

15



dag,G

active U-edges

column nodes
O X
O X
@) @)
X O

active L-edges O O O O X X

X 0 @ X 0O X
bipartite graph, A2

row nodes

Figure 2: Assembly graph DIl = (AR GBI 712 for matrix A in Equation 6
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The graphs A" and G correspond to specific submatrices of the partial LU factors in

Equation 1. G is an assembly dag for the L[llﬂk—l,l..k—l and U1[].C.]k—1,1..k—1 matrices. The
]

active L-edges are a subset of the nonzero pattern of Lgck..ml“k_l, and the active U-edges are

a subset of the nonzero pattern of UIEI.C.]n,l..k—l'

Figure 3 continues the example shown in Figure 2, where the second frontal matrix £ has
been factorized. The single inactive L-edge (1,2) in GH is shown in bold (node 2 is an
L-parent of its L-child node 1). This L-edge is due to the nonzero entries l5; and [3;, and
(at this point in the discussion) represents the assembly of two rows from the contribution
block of F; into the pivot rows of F,. The resulting bipartite graph A is also shown.

Figure 4 shows the graph DPl = (APl GBl FBl) after the factorization of Ey. The inactive
U-edge (2,4) in GVl represents the assembly into F, of the contribution that F, makes to
row 4. It is present because of the nonzeros us4 and wusy4. The inactive LU-edge (1,4)
represents the assembly into K4 of the contribution of F; to both row and column 4. It is
present because of the nonzeros [4; and u; 4. In the next section these inactive edges will be
used to represent the assembly of additional contributions, and some of the active edges in
Figures 3 and 4 will be removed.

4.2 Edge reductions

Potentially, every off-diagonal nonzero in the LU factors can define a single, unique edge in
the assembly dag G. Some of the these potential edges are never created, due to the no-fill
amalgamation described in the previous section. Additional edge reductions are described
in this section. Some of these are in the style of Eisenstat, Liu, and Gilbert [18, 23], except
that we apply them to our partially constructed graph when the pivot order is not fully
known. A class of edge reductions that goes beyond transitive reduction is applied during
the approximate degree update phase described in Section 7.2.

Up to this point in the discussion, an active L-edge (s,row ¢) € Fy (or an active U-edge
(s,column j) € Fy) represents an unassembled contribution from K to row ¢ (or column
J) of the active submatrix. This contribution remains in FEs until row ¢ becomes pivotal
in Fy, or until E; is assembled into its LU-parent Ej; (where s < k < t). With no
additional edge reductions, contributions of a frontal matrix remain unassembled until the
latest possible step of the factorization. A frontal matrix persists until its contribution
block is completely assembled into subsequent frontal matrices. Edge reductions improve
the memory requirements of the method by assembling these contributions at the earliest
possible step. They also simplify the pivot search and approximate degree update described
in Section 7.

Two types of simple edge reductions, L-child and U-child reductions, can be applied at step
k. For an L-child edge reduction, consider the lower triangular part of the submatrix formed
from rows and columns s to s+ g, — 1, k to k + g — 1, and ¢ of LIFt9xl\ Alk+ax] where s and
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k are nodes in GIFt9xl and i > k + g

Ll

L' L'k CL[-]-H—gk]
This reflects the status of the factorization just before step k + ¢r. It is not yet known
when row ¢ will become pivotal. In Equation 10, matrix Ly g4g,-1,s44.—1 15 denoted as L,
Lis s4g.-1 1s denoted as L;s, and L; g gyg,—1 1s denoted as L.

If Lys # 0, then s is an L-child of k. Fill-in from FE; causes
Ut c u,. (11)

If £, and Ej both contribute to a common row ¢, the contribution that element £, makes to
row ¢ (with pattern ) is assembled into Ej at step k before row i becomes pivotal. The
active edge (s,row 7) is removed, reducing the size of the active edge-set Fy,. The entry for
row 7 is removed from £F+9:] Row i can be found by scanning all the active edges incident
on all rows in £}. If an L-child of & is found in this scan, the active edge can be removed.

U-child edge reduction is the transpose of the L-child case. Both reductions are applied if
a node s is an LU-child of a new node k, forming a symmetric edge reduction. In this case,
the entire contribution block of Ej is assembled into K, and all active edges from node s
are removed.

Removal of active edges also results in fewer inactive edges in G. If all active L-edges from
node s to pivot rows of Fj are removed before step k, then no inactive L-edge (s, k) appears

ing.

As an example, refer again to matrix A in Equation 6, and to Figure 3. When FE, is created,
its column pattern

UQ = {27 3) 47 57 7}

is a superset of the pattern

Ul = (4,5}

because of fill-in. Row ¢ = 7 is in both row patterns of ,C[12] and L£7. Thus, the contribution
that F; makes to row 7 is assembled into Fy (before row 7 becomes pivotal). The active
L-edge from node 1 to row 7 is assembled and deleted.

Similarly, in Figure 4, node 4 € G is a U-parent of node 2. Node 2 contributes to column
5; this contribution is assembled and the active U-edge (2, column 5) is removed. Node 4 is
also an LU-parent of node 1. All contributions from F; are assembled into F,, and all active
edges originating at node 1 are removed.

The edge reductions presented here do not result in a graph, G, with the minimal number
of edges. However, we can perform these edge reductions as a byproduct of the approximate
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degree update phase of the analysis-factor algorithm, because the active edges terminating at
rows and columns affected by a newly factorized Ej are scanned to compute bounds on the
number of nonzeros in those rows and columns of the active submatrix. Transitive reduction
[1] could remove more edges, but would be too costly.

4.3 Additional amalgamation

No-fill amalgamation has already been described. Additional amalgamation can improve
the unsymmetric-pattern multifrontal method by increasing the ratio of Level-3 BLAS to
Level-2 BLAS operations and by simplifying the symbolic computations. If a parent node &
and child node s in G are amalgamated into a single supernode r, the amalgamated element
E, has row pattern £, U L, and column pattern U; U U.

If k£ is an LU-parent of s, then extra fill-in can occur only in the pivot rows and columns of
E;, because

and

Rows and columns that are pivotal through step k + gr — 1 are removed from these patterns,
maintaining the subset relationship:

us[k-l-gk u[k-l-gk (12)

cltarl C plitorl (13)
as shown in Figure 5 (where k' = k + ¢).

If k is only an L-parent of s, then the two row patterns £; and L, are unrelated (Equation 12
holds, but not Equation 13), as shown in Figure 6 (where &' = k + g;). Fill-in can occur in
pivot columns ¢}, and ¢}, and in pivot rows L/, but not in pivot rows £}. Fill-in can also occur
in the contribution block of E,, specifically, the submatrix defined by columns U,£k+gk]\1/{£k+gk]

and rows ££k+9k]\ﬁgck+gk] (outlined with a dashed box in Figure 6). Amalgamation between
s and a U-parent node k is the transpose of the L-parent case.

When two nodes k and s are amalgamated into a new node r, the edge (s, k) € £ is removed,
any edges that terminated at either k£ or s now terminate at r, and any edges that start at
either k or s now start at r. Duplicate edges are combined.

5 Analysis-only algorithm

In the symbolic analysis phase, we wish to use a sparsity preserving heuristic to generate an
ordering and symbolic factorization information so that a subsequent numerical factorization
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can use this information to effect an efficient decomposition. Thus, in this symbolic analysis-
only algorithm, the values of the nonzeros are not taken into account and only the sparsity
structure of the matrix is considered. We did start to design such an analysis phase but
were not convinced of its utility because of the problems with perturbing the data structures
that we mention in Section 6. However, we can apply recent work of Duff and Reid [17]
based on algorithms developed by Duff, Gould, Reid, Scott, and Turner [11] to obtain a
suitable analysis. We discuss the use of their algorithms in this section. Methods based on
the elimination dag are presented in [18, 23].

Duff et al. [11] design algorithms for factorizing symmetric indefinite matrices which use
block pivots of order 1 or 2, chosen from the diagonal to preserve symmetry, and are suitable
even when there are zero entries on the diagonal. In particular, they have tested their codes
on augmented matrices of the form
I A
AT 0

which arise from the solution of least-squares problems. They also consider the more general
case where the upper left identity matrix is replaced by a general symmetric matrix, H,
say corresponding to the augmented matrix that occurs when solving constrained nonlinear
programming problems. The strategy used to select pivots in their symmetric analysis is
that of minimum degree, generalized to handle 2 x 2 pivots of the form

l x i ] (full pivots),

X
o X

l % ] (tile pivots), and

l 0 ; ] (ox0 pivots).

Now, if we consider the augmented system

0 - s

where B is a nonsingular unsymmetric matrix of order n, the first n components of the
solution are just the solution of the set of unsymmetric linear equations

Bx =b.

Furthermore, if the algorithm of Duff et al. [11] is used to choose pivots from the coefficient
matrix of Equation 14, then n oxo pivots will be chosen. In addition, their generalization of
the minimum degree criterion will ensure that the off-diagonal entries of the oxo pivot will
be the same as the entry in B (and BT) with the lowest Markowitz count. Thus we can use
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the symmetric minimum degree ordering of Duff et al. [11] to obtain a symbolic analysis of
an unsymmetric matrix. The code of Duff and Reid [17] will also produce the equivalent
of our directed acyclic graph (G) which could, after suitable modification, be used as input
to the factor-only algorithm of this paper. Because numerical values were not taken at all
into account in the analysis phase, we do not, however, recommend this route because of
the large amount of modification to the resulting directed acyclic graph by the subsequent
numerical factorization phase.

6 Factor-only algorithm

This section describes the factor-only algorithm, an unsymmetric-pattern multifrontal
method that factorizes A into LU using the patterns of the LU factors and the final assembly
dag, GI*t1 computed in the analysis-only or analysis-factor algorithm. Numerical pivoting
is performed in this phase, so it must be able to handle changes in the predicted patterns of

L and U.
The work at node ¢ consists of the following (for ¢ € V):

1. Wait until all children of node 7z in G have finished.

2. Create F; and assemble into it the contributions represented by the edges in G that
terminate at node :. These are the L-children, U-children, and LU-children of node
1. Deallocate elements of children that no longer have unassembled contributions.
The row and column pattern of F; is £; and U;, which were precomputed in the
symbolic phase (although they might change due to numerical pivoting considerations
as described below).

3. Factorize the pivot block F; into LI\U!, and compute the block row U} of U and block
column LY, overwriting them in F;. Then store them in a separate, statically-allocated
data structure for L and U. The symbolic factorization predicted g¢; pivots, but this
number might be less due to pivot failures within F;, or more due to pivot failures in
children of node 2. Set g; to the number of pivots actually found.

4. Compute the update terms with a rank-g; update to the contribution block D;, using
the Level-2 BLAS if ¢; = 1, or Level-3 if ¢; > 1. Parallelism can occur within these
kernels, as well as between independent nodes [24].

5. If node 7 is the last child to complete for a parent j then enable node ;.

Numerical pivoting considerations might not allow the expected number of pivots to be
chosen from a pivot block F;. The work associated with the failed pivots must be performed
later. This can be regarded as a forced amalgamation of the failed pivots with one or more
parents of 7 in G with any fill-in constraints removed.
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In the classical multifrontal method, the failed pivots are amalgamated with the single parent
node j of 2. The g; steps of LU factorization in node j and that of any failed pivots of its
children are attempted. Numerical pivoting causes only local changes in the assembly tree
and in the patterns of L and U, although these changes can ripple up if the pivots also fail
in the parent node. The changes are limited to the failed pivot rows and columns. This case
also occurs in the unsymmetric-pattern multifrontal method if node ¢ has a single LU-parent
and no L-parents or U-parents. Otherwise, larger disruptions can occur.

If a node ¢ has either L-parents or U-parents in G and is found to have numerically
unacceptable pivots, the effects are not limited to a single pair of nodes. In the following
example, node j is the L-parent of a simple node ¢ with a single failed pivot,

pi - Uik
lii pi ujk
lei - pr

One option is to amalgamate nodes ¢ and j, as was done for numerical pivoting failures in
the classical multifrontal method. However, this causes fill-in in the contribution block of F;,
since the pivot rows are not likely to be identical (see Figure 6 and the related discussion).
This fill-in causes far-reaching effects in G in any ancestors of :. Catastrophic fill-in and loss
of parallelism can result.

The second option for recovering from numerical pivoting failures is to amalgamate node :
with its single LU-parent k, assuming it exists. This has the effect of reordering the matrix
so the pivot p; follows py,

Pr Uki

i pi
Limited fill-in occurs in the intermediate nodes between node ¢ and node k that are L-parents
and U-parents of node 7. In this example, the column pattern ¢/, of element E; is augmented
by including the failed pivot column i (because of entry u;;). The fill-in in column ¢ from E;
(assuming p; is not a column singleton) is

/:i — /:,2 U ,C;/

If node j was instead a U-parent of node 7, then the row pattern £; of element F; would be
augmented by the single failed pivot row :. The fill-in in row 2 from E; would be

UZ' — Z/{Z U Z/{]H

Nodes 7 and j are not amalgamated, so catastrophic fill-in does not occur in the contribution
block of E;, as in the first option. Instead, fill-in in any contribution block is limited to row
or column ¢. Fill-in also occurs in both row and column ¢ when it is amalgamated with £.

In general, node 7 is shifted past each intervening L-parent and U-parent node, augmenting
each L-parent by column : and each U-parent by row ¢. Let m be the final position of pivot
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¢ in the modified pivot order. Each L-parent j causes fill-in with pattern ,Cgm] in column ¢,

and each U-parent j causes fill-in with pattern Z/{][m] in row z. Finally, node ¢ is amalgamated
with its single LU-parent, node k, augmenting both £} and ¢} by ¢ (where k < m < k+ gx).
Amalgamation with the LU-parent k does not cause fill-in in the contribution block of Ej
because L already contains the pattern ,Cgm] of any L-parent node j of 7, even without
amalgamation. This can be seen in the example above (prior to reordering). If j is an

L-parent of 7, and k is an LU-parent of ¢, then u;; is nonzero (because of fill-in) and ,Cgm] C
,Cgk] C L. Similarly, U][m] C U][k] C Uy, for any U-parent node j of :.

The graph G is only locally modified, but this option breaks down if node : does not have
an LU-parent k. In this case, node 7 is delayed until its last L-parent or U-parent. Fill-in is
caused in row and column ¢ by every ancestor of node ¢ until that point. The failed pivot row
and column might easily become dense, leading to a high level of fill-in if many numerically
unacceptable pivots are encountered.

To summarize, the factor-only algorithm presented in this section can take advantage of
the Level-3 BLAS to factorize a sparse matrix with an unsymmetric pattern. This method,
however, is “fragile” with respect to numerical pivoting perturbations in the numerical phase.
The graphs and the patterns of L and U can change drastically from those found by the
symbolic phase. The changes are less drastic in the assembly tree and the patterns of L and
U for the classical multifrontal method. Limiting the perturbations caused by numerical
pivoting is the most important open problem facing the development of a practical factor-
only algorithm, and we have suggested a possible first step in this direction. The next section
presents an alternative that bypasses this problem by combining the symbolic and numerical
phases into a single phase.

7 Analysis-factor algorithm

Combining the symbolic and numerical factorization into a single phase is more typical of
conventional factorization algorithms for unsymmetric sparse matrices. The advantage is
that the numerical values are available during the pivot search. No pivot preordering is
assumed. Pivots are chosen as the algorithm progresses via some sparsity preserving and
numerical criteria. Unsymmetric permutations are allowed, and probably required, since no
assumption is made about a zero-free diagonal or the positive-definiteness of the original
matrix. The disadvantage to this approach is the lack of a precomputed assembly dag
to guide the construction of new elements, the assembly process, and the exploitation of
parallelism. The algorithm must compute the graph D and the patterns of L and U during
factorization. Some form of the active submatrix must be maintained to allow for arbitrary
pivoting and the degree of each row and column of the active submatrix must be maintained.

Three approaches for performing additional amalgamation are described below (the AFup,
AFdown, and AFstack algorithms). Before using any of these algorithms, we perform

26



an (optional) preprocessing stage that scales the matrix and permutes it to upper-block-
triangular form (the diagonal blocks are factorized independently) [10]. The performance of
these algorithms is presented in Section 8.

7.1 Data structures

All data structures are allocated out of a pair of one-dimensional real and integer arrays. The
original matrix A is stored in both row and column form, followed by various workspaces and
data structures of size n. The two arrays hold a stack containing the pattern and numerical
values of the LU factors.

Portions of D = (A,G,F) are held implicitly. The bipartite graph ALKl is an implicit
representation of the active submatrix. The active submatrix Agc]nkn is represented as
the unassembled entries of the active part of A and all unassembled portions of contribution
blocks (see Equation 5). The dag, G = (V, &), is explicitly stored with the LU factors. The
edge set &€ is not needed in the analysis-factor algorithm, but it is required as input to the
factor-only algorithm.

The active L-edges in f,gk] are held as a set of L-child lists. Similarly, the active U-edges in
.7:[[?] are held as a set of U-child lists. The L-child list for a row 7 in A" holds a set of tuples,

L-child list ¢ = {(¢, f) | {t,row @) € J—"E“] A f = offset of row ¢ in FE,},

one for each active L-edge that terminates at row ¢ (similarly, U-child list j holds tuples for
active U-edges that terminate at column j of A¥). A tuple (¢, f) in an L-child list i contains
a reference to a node ¢, and an offset f to the contribution to row ¢ in E;.

The space between the original matrix and fixed arrays and the LU factors holds the frontal
matrices and L-child and U-child lists. The frontal matrices and the L-child and U-child
lists are allocated when elements are created and deallocated when their corresponding
contribution blocks have been completely assembled. These form the main dynamic data
structures in the algorithm.

7.2 Pivot search, degree update, and edge reductions

The three algorithms use a similar global pivot search strategy and degree update phase
(although AFstack combines the numerical assembly with this phase), and perform similar
edge reductions.

The pivot search is based on Markowitz strategy [27], which selects the pivot ag-l;] with
minimum upper bound on fill-in (or cost),

(1 — 1) —1). (15)



The rows and columns of the active matrix are not held explicitly, rather, they are held as a
set of contribution blocks and entries from the original matrix A. Scanning a row ¢ of Aggk]nkn
involves scanning row ¢ of the active part of A and tuples in the L-child list 2. Adding these
terms gives the pattern and numerical values of row ¢ in Agck]nkn Columns are scanned
similarly. Many candidate pivots will need to be searched, so this is an expensive operation
for only calculating the degree. To avoid this, only upper and lower bounds of the degree of
each row and column are computed. Upper and lower bounds of a degree r are denoted as
upper(r) and lower (r), respectively. The initial upper and lower bounds are simply the true
degrees of the rows and columns of A. If the true degree is calculated during factorization,
the two bounds are set equal to the true degree. Only the first few columns with minimum
upper bound degree are searched (not unlike the truncated pivot search options in [14] and
[31]), and the true degrees of these columns are computed. The pivot search is assisted by
a set of n linked lists. The d-th linked list holds those columns with upper bound degree d,
that is {7 | upper(cg-k]) = d}.

The pivot agf-] at step k must also satisfy the threshold partial-pivoting criterion [10]:
LI (%] .
(%]

The candidate pivot is the numerically acceptable entry a;; with lowest approximate
Markowitz cost using the true column degree and the upper bound row degree,

(upper (rP) — 1) - 1). (17)

The approximate degree update finds the upper and lower bounds of the degrees of each row
t € L and column j € U] by scanning their L-child and U-child lists, respectively. The new
lower bound on the row degree, for example, cannot be smaller than the upper bound on
fill-in in row ¢ or the maximum number of unassembled columns of each contribution block
affecting row ¢ (these can be found in the L-child list 7). The new upper bound on the row
degree can be computed in a similar way. Only a short scan of each L-child list and U-child
list in the affected rows ({¢|: € £}}) and columns ({5 | 7 € U}'}) suffices. The lists are kept
short via edge removal. The time taken for this scan is linear in the sum of the sizes of the

L-child/U-child lists of the affected rows and columns.

However, at the cost of an additional scan of either the affected L-child or U-child lists, more
accurate degree bounds can be computed, based on the external row and column degrees of
previous frontal matrices with respect to the current frontal matrix, £;. The time taken is
asymptotically unchanged.

The column pattern U] of an unassembled contribution block E* divides into two disjoint
subsets with respect to Uy: internal entries

~

U = UH U U,
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and external entries
Ui = UMN\U,
and thus, by definition,
UR = U Ul

An external entry j € U, is an unassembled column of F,, that is not present in the column
pattern of the current frontal matrix Ej. Let the internal and external row degree of F,,
with respect to £} be denoted as

fmk = |amk

and

u’mk

Tk =

respectively. Thus,

The external and internal column degrees are defined similarly, based on £,, and L. Note
that the external row and column degrees are not affected by the assembly of contributions
from £, into the current frontal matrix Fj. Assembly can decrease the internal degrees.

Each U-child list for columns j € U5, contains a tuple (m, f) (where f is the offset of where
column j appears in E,,). The internal degree, 7,,;, can be computed by simply counting
how many times node m appears in the U-child lists for columns 53 € Uy. This count can
be done for all frontal matrices affecting Ej in a single scan of all U-child lists for columns
J € Ug. The external row degree of E,, can then be computed with Equation 18.

[k+9]

The new lower bound degree of row ¢ (lower (r; )), then, is the largest of the following:

(%]

7

1. r[k+9k]

7

) — gk, since the degree cannot drop by more than the number of
pivots applied to row ¢,

> lower(r

2. plEtosl > | Struct (M.[k+g’“])|, which is the number of unassembled entries in row ¢ of the

% Tk

active part of A (see Equation 4), and

3. the number of columns in the contribution block of Fj, plus the maximum external row
degree of the frontal matrices in the L-child list for row . That is,

k+ .
rl[- 9x] > U+ max = Tk
{m, row 2)6]:[L +9k]

This lower bound is tight if the column patterns of all the external entries of frontal
matrices affecting row ¢ of Ey,

Uy, Y{m | (m,row 1) € f£k+gk]}7

are all subsets of the largest such column pattern.
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[k+9]

The new upper bound degree of row ¢ (upper(r; )) can be computed in a similar way. It

is the smallest of the following:

1. T[k+gk]

upper bound on the fill-in in row 2,

< upper(rz[-k]) + ||, since the row degree cannot increase by more than the

9 [k+9]

LT <n—k—gr+ 1, which is the size of the active submatrix after Ey is factorized,

and

3. the number of columns in the contribution block of Ej plus the sum of the external
row degrees of the frontal matrices in the L-child list for row 2. That is,

TZ[_k-I-gk] < |u]:7/| + Z P

. [k+gp]
{m, row 7)€F} k

This upper bound is tight if the column patterns of all the external entries affecting
row ¢ are disjoint.

An approximate degree update (and edge reduction) based on external row and column
degrees requires one extra scan of either the U-child lists of the affected columns 57 € U} or
the L-child lists of the affected rows ¢ € Ly, as follows:

1. Scan the U-child lists for all columns j € Uy, and compute the external row degree for
each frontal matrix F,, appearing in the lists. Perform edge reduction if £, is a true

U-child or LU-child.

2. Scan the L-child lists for all rows : € £;. Compute both the external column degree
for each frontal matrix £, appearing in the lists, and the approximate degree bounds
for each row ¢ (using the external row degrees computed in the first scan). Perform
edge reduction if E,, is a true or effective L-child or LU-child (see below).

3. Re-scan the U-child lists for all j € Uy, and compute the approximate degree bounds
for each column ¢ (using the external column degrees computed in the second scan).

Perform edge reduction if £, is an effective U-child or LU-child.

If 7 = 0, then node m is an effective L-child of node k. Similarly, node m is an effective
U-child of node k if ¢,z = 0. When the affected L-child or U-child lists are scanned, any
edge from a true or effective child of node k is removed, and the corresponding numerical
contribution is assembled. Node m is an effective LU-child if 7, = ¢é,.x = 0, in which case
the entire ET[r’f] is assembled into F.

Edge reductions from effective children remove any edge that would have been removed
by transitive reduction. Furthermore, these edge reductions take advantage of coincidental
overlap between previous frontal matrices and the current one, and thus remove even more
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edges than is possible by transitive reduction. Consider Equation 10 in Section 4.2. If
Lis = 0, then node s is not a true L-child of the node &, the frontal matrix currently being
factorized. Equation 11 may still hold, by coincidence, even though E; does not cause fill-in
in the g pivot rows of Fj. In this case, node k is an effective L-father of node s. If both FE;
and FEj contribute to a common row 2, then the contribution from E is assembled into FEj,
and the active L-edge (s,row ¢) is removed. If transitive reduction were applied, this edge
might not be removed.

Edge reductions from true children are still useful (as described in Section 4.2), since the
edges from these nodes can be removed in the first scan of the affected L-child and U-child
lists, rather than in the second scan of either set of lists.

Our experiments into the approximate degree update show a moderate, acceptable increase
in fill-in in exchange for a significant reduction in time when compared with computing the
true degrees (see performance results in Section 8).

7.3 The AFup algorithm

The first approach (the AFup algorithm) selects a single pivot using the global Markowitz-
like strategy described above, allowing a pivot to be selected from anywhere in the active
submatrix. The new node in G is augmented by additional pivot entries that lie within the
current element. The new node in G “grows upward” by considering nodes in A connected
via active edges to the new node.

The AFup algorithm can be outlined as follows. Initially, & = 1.

(]
]
columns j and k. The pivot row and column define U and Ly, respectively. The
L-children, U-children, and LU-children of node k& are now located in the L-child list &

and U-child list &.

1. The pivot search finds the pivot a;- in Agck]nkn and interchanges rows ¢ and k, and

2. Perform degree update, and try to extend frontal matrix to include near super-rows
and super-columns (rows and columns whose patterns can be considered identical with
the first pivot row and column). The search is limited to pivot entries lying in the
current element. It “looks upward” because it considers the amalgamation of a single
child & with one or more of its (potential) parents. Perform edge reduction, and find
the effective children of node k.

3. Allocate space for the numerical values of FEj, performing garbage collection if
necessary.

4. Assemble the children of node k into Ej. Deallocate any elements whose contributions
have been completely assembled. Let n,,, and n.,; be the number of rows and columns
in the super-row ¢ and super-column j, and let g, = min(n,ou, ot )-
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5. Perform up to gi steps of numerical factorization within the front. Set g to the number
of pivots actually found.

6. Update the L-child and U-child lists. Increment k& by g and repeat until the matrix is
factorized.

7.4 The AFdown algorithm

The upward-looking algorithm can sometimes lead to excessive fill-in due to its limited pivot
search. The downward-looking approach (AFdown) can decrease fill-in by replacing the local
search with a global search that looks at the entire active submatrix. The method constructs
a set S of unfactorized frontal matrices, each of which is a candidate for amalgamation.
These frontal matrices have been symbolically factorized, but not numerically factorized.
The method “looks downward” because it considers the amalgamation of a single node f
(corresponding to the latest pivot entry) with one or more of its unfactorized children (in
S). The pivot search finds a single pivot entry, corresponding to a new proposed node f in
the partially constructed graph. This node is amalgamated with its unfactorized children
and placed in &, unless doing so would cause excessive fill-in, in which case the children that
caused amalgamation to fail are factorized and removed from §.

It is interesting to note that the pivot blocks of the nodes in & form a block diagonal matrix.
Thus, the frontal matrices in & can be factorized in parallel.

If a proposed node f has one or more unfactorized children, the numerical test is only an
estimate, since the numerical values of the unfactorized children are not available. The
numerical criterion is also checked during the numerical factorization, and unacceptable
pivots are rejected.

7.5 The AFstack algorithm

Both the AFup and AFdown algorithms make only a estimate of the numerical acceptability
of additional pivots (2 through gx) in a frontal matrix Fj. These pivots may then be delayed,
since the numerical factorization of the frontal matrix performs the accurate numerical test
after all g pivots in Ej have been selected. Delayed pivots cause additional fill-in and waste
the work performed in combining those pivots into Ej. The third approach (the AFstack
algorithm) is more suitable for matrices that experience excessive delayed pivoting in the
AFup and AFdown algorithms. It is essentially the same as the AFup algorithm, except
that the frontal matrix £} for the new node k is allocated on a stack, so that it can “grow”
while pivots are being included into node k. These additional pivot rows and columns are
factorized as they are included, so that an accurate numerical check can be combined with
the symbolic (fill-reducing) pivoting test. No pivots are delayed.
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The AFstack algorithm typically out-performs the other two (see Section 8), and is thus
presented in more detail in the following pseudo-code. Comments are enclosed in curly-
brackets. Let m = |Lx| and n = |Uy|, for the current m-by-n frontal matrix £;. The number
of factorized pivots contained in Fj is g (enumerated 1 through gi). Garbage collection is
performed as necessary. For simplicity, assume all variables are global.
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procedure AFstack
k1
ny «— block size for tradeoff between Level-2 and Level-3 BLAS
while (k < size of sparse matrix A) do
{ create and factorize frontal matrix Ej, }
call find_first_pivot_in_frontal_matrix
call extend_frontal_matrix
call factor_frontal matrix
k+— k+ gx
endwhile { factorizing }
end procedure { AFstack }

procedure find_first_pivot_in_frontal_matrix
global pivot search { find a), the k-th pivot in the factorization of A }

ij
Ly «— Struct (A[*];]) { row pattern of £y }
Uy — Struct (AE’i]) { column pattern of Ej }
m «— |Ly| { Ex is m-by-n }
n — |Ul
Lsame «— false { Lsame is true if the latest pivot does not change £y }
Usame — false { Usame is true if the latest pivot does not change Uy, }
allocate frontal matrix F; on a stack at the top of allocatable memory
Ek «—0
{ An initial frontal matrix of size m-by-n is allowed to grow as large as }
{ (Gm)-by-(Gn), where G is a user-settable parameter controlling the tradeoff }
{ between fill-in and amalgamation (typically 2 to 3). }
ko < 0 { Dy has been updated with the first kg pivots in Ej }
gr — 1 { number of pivots in Fj }
end procedure { find first_pivot_in_frontal matrix }
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procedure extend_frontal_matrix
{ Local pivot search to extend the frontal matrix, which currently has just one pivot }
while (extending the current frontal matrix, F;) do
do approximate degree update, and assemble from previous frontal matrices
delete edges in F that correspond to assembled contributions
{ some portions of update/assembly are skipped, depending on Lsame and Usame }
if (not Lsame) then
attempt to find a candidate pivot column, j € U},
for the (g + 1)-st pivot of Ej
{ based on column degree only. No scan of the column is done. }
endif
Lsame «— true { assembly and degree update completed for current size of Fj }
Usame «— true
while (Lsame and Usame) do
scale current pivot column using Level-1 BLAS { column g; of Ej }
{ At this point, ¢; pivots in Fj; have been successfully factorized }
if (gx mod ny = 0) then
update Dy with pivots kg + 1 to ¢ in E}
{ Level-3 BLAS matrix multiply, rank-n; update }
ko «— g
endif
g — gr + 1 { g is the leftmost column of £ to be updated in factor_frontal_matrix }
if (no acceptable candidate pivot column, j, for (gx + 1)-st pivot of Ej) then
return { amalgamation of node k has proceeded as far as possible }
endif
swap candidate column j. with column ¢;+1 of Ej
{ where column j. of Fj holds the contribution of Ej to column j of A }
update pivot column g; + 1 with previous pivots ko + 1 to gx {Level-2 BLAS }
g — gr + 2 { g is the leftmost column of £ to be updated in factor_frontal_matrix }

attempt to find a pivot row, ¢ € L}, such that ay;] is an acceptable pivot
{ pivot row search is both symbolic (Equation 17) and numerical (Equation 16) }
if (no acceptable candidate pivot row, ¢, for (gx + 1)-st pivot of Ej) then
return { amalgamation of node k has proceeded as far as possible }
endif
swap pivot row 7z, with row ¢.+1 of Ej
{ where row i. of F}; holds the contribution of Ej to row i of A }
{ entry ag-l;—l_gk] is the (gx + 1)-st pivot in Ej, }
{ and the (k + gx)-th pivot in the factorization of A }
update pivot row ¢ + 1 with previous pivots ko + 1 to gx { Level-2 BLAS }
{ the pivot row update excludes the pivot itself }

Lsame — (L = L U Struct (A[*];+gk]))
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if (Lsame) then
{ new pivot column adds no new rows to Ly, do cheap degree update }
decrement upper and lower bounds of degrees of each column j € U]
find a good candidate pivot column j € U}’ for next iteration, g + 2
{ based on column degree only. No scan of the column is done. }
endif
Usame — (Uy = Uy, U Struct (AE’j*g’“]))
if (Usame) then
{ new pivot row adds no new columns to Uy, do cheap degree update }
decrement upper and lower bounds of degrees of each row in ¢ € £}
endif
Ly — L U Struct (A[*];+gk])
Uy — Uy, U Struct (AFToH)
gk — gk + 1
endwhile { finding pivots without extending frontal matrix }
zero the newly extended portions of K}, on the stack
endwhile { finding pivots in local pivot search }
end procedure { extend frontal_matrix }

procedure factor_frontal matrix
{ The current m-by-n frontal matrix £y has been extended to include g, pivots.
L/ \U/ U//
E, = R\UE Uk ]
Ly Dy
where Li\UJ is ge-by-gx, UL is ge-by-(n — gi), L} is (m — gx)-by-gx, and Dy,
is (m — gx)-by-(n — gx). The contribution block Dj has been updated for pivots
1 through k. It is not updated for pivots kg + 1 to gi, except perhaps for
the first column of Dy (depending on g¢). }
if (gr # ko) then
update Dy with pivots ko + 1 to g { starting at column ¢ of Fj }
{ Level-3 BLAS matrix multiply, rank-b update, where 1 < b < n; }
endif
save the pivot rows and columns in the LU arrowhead { compress on the stack }
copy Dy to a new location allocated from the tail end of memory
{ Dy, will be deallocated when fully assembled into subsequent frontal matrices }
make an explicit list of the children of node k, and place in LU data structure
{ These are inactive edges in £, which may be used in a factor-only algorithm. }
add active L-edges {(k,row ¢) | ¢ € L]} to F,
add active U-edges {(k, column j) | j € U'} to Fu
end procedure { factor_frontal matrix }
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The AFstack algorithm has available to it the numerical values of the current frontal matrix,
E), when it performs degree update and edge reduction. The degree update, edge reductions,
and numerical assembly can all be done in a single phase (procedure extend frontal_matrix).
The AFup and AFdown algorithms split this work into two separate symbolic and numerical
phases (for each frontal matrix), resulting in a duplication of work. Note that in AFstack,
the assembly phase is skipped and degree update phase is simplified if the new pivot does
not extend the pattern of the frontal matrix.

The local pivot search attempts to find a candidate pivot column j based purely on symbolic
(sparsity-preserving) considerations. Once it is located, the AFstack algorithm updates the
candidate column with previous pivots (a Level-2 BLAS matrix-vector multiply), and then
searches the column j for an acceptable pivot, finding the row ¢ with lowest upper bound
degree (upper(r;)) such that a,; is numerically acceptable. No delayed pivots occur because
the algorithm checks the numerical acceptability of candidate pivots as it selects them. Only
one candidate column is updated and searched, since this could be an expensive operation.
Examining all entries in K}, for instance, would require an immediate Level-2 BLAS update
of the entire contribution block. This would defeat the use of the Level-3 BLAS in the
extend frontal_matrix procedure (although the Level-3 BLAS would still be used in the
factor_frontal_matrix procedure).

If a pivot is found, the candidate row is updated with a matrix-vector multiply. As soon
as sufficient pivots have accumulated (n;), the entire contribution block is updated with a
matrix-multiply operation (a rank-n; update). Thus, the Level-2 BLAS updates of individual
candidate rows and columns require no more than a rank-n, matrix-vector multiply. The
block-size parameter n; can be adjusted depending on the relative speed of the Level-3 BLAS
versus the Level-2 BLAS on a given computer. On the Cray YMP, with n, = 16, most of
the floating-point operations are performed using Level-3 BLAS subroutines (between 50%
and 96%), depending on the sparsity of the matrix).

7.6 Summary of the analysis-factor algorithm

Each version of the analysis-factor algorithm is based on the assembly graph, D, that guides
the pivot search, the construction of new elements, the assembly process, the detection
of super-rows and super-columns, and the degree update. Edge reductions and dynamic
amalgamation keep this graph pruned. Dynamic amalgamation allows the algorithms to
take advantage of the Level-3 BLAS. The analysis-factor algorithms do not suffer from the
disruptions in the graphs or in the patterns of L and U caused by numerical pivoting in the
factor-only algorithm. Parallelism is not yet addressed; this and other issues are considered
in Section 9, which presents open problems and future work. The following section compares
the performance of the three sequential versions of the analysis-factor algorithm with that
of the classical multifrontal method (Mups), the D2 algorithm, and the MA28 algorithm.
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& Performance results

We have developed three prototype sequential versions of the unsymmetric-pattern
multifrontal method, and have tested them extensively on a Cray-YMP. In this section,
we compare their performance with the MA28 algorithm [14], sequential versions of the
classical multifrontal method (Mups) [2], and the D2 algorithm [5].

Table 1 summarizes our results [3] for eighty-six matrices from the Harwell/Boeing collection
[12, 13] and other sources. Twenty-seven of these are symmetric positive-definite. Only
matrices of order 500 or larger were considered. The 7 matrices are chemical engineering
problems from S. Zitney and others [29] (Z/m2 is from a PDE). The Hm matrices are circuit
simulation matrices from S. Hamm (Motorola). Table 1 lists the results for these matrices
obtained on a Cray YMP-8/128, sorted by asymmetry (and by order if tied). Each line lists
the matrix number, name, order, number of nonzeros, and asymmetry. The asymmetry, s,
is the number of unmatched off-diagonal pairs over the total number of off-diagonal entries
(0 is a symmetric pattern, 1 is completely asymmetric). The run time includes both the
analysis and factorize time, in seconds, and is listed for the AFstack, AFdown, AFup, Mups,
D2, and MA28 algorithms. The fastest run time is shown in bold.

Of the three versions of the unsymmetric-pattern multifrontal method, the AFstack
algorithm typically out-performs the other two. It is faster than both AFdown and AFup
for 63 out of 86 matrices. When AFstack is slower than the other two algorithms, its run
time is no more than 1.3 times the run time of the faster of AFdown and AFup. The sum
of the run times of AFstack, AFdown, and AFup for all 86 matrices is 96.8, 154.0 and 161.3
seconds, respectively, whereas the sum of the best run time for each matrix (for these three
algorithms) is 94.0 seconds. The AFstack algorithm is clearly superior to AFdown and AFup.

Figures 7 through 9 show the normalized run time of AFstack, Mups, D2, and MA28, for all
86 matrices. The normalized run time is the run time divided by the fastest run time found
for that particular matrix. Thus the fastest method would have a normalized run time of

1.0.

The new method (AFstack) is faster than Mups, D2 and MA28 for only 13 out of 86 matrices.
However, these matrices include nearly all of the large unsymmetric matrices which are not
extremely sparse. The present release of the Harwell /Boeing collection is very weak in this
class [12, 13]. Also, the method demonstrates a consistent performance for the entire range
of matrices, as can be observed in Figures 7 through 9. It usually takes no more than twice
the time as Mups for symmetric-patterned matrices, and is even occasionally faster (for
besstk08 and the two Hm/add matrices). This is because it takes advantage of dense matrix
kernels, as Mups does. It is faster than Mups for most matrices with asymmetry greater
than 0.5 because it does not make the symmetric pattern assumption (the gemat matrices
are notable exceptions; they become nearly symmetric-patterned when permuted to obtain a
zero-free diagonal, as is done in Mups). The new method also avoids the worst-case behavior
of D2 and M A28 for symmetric matrices and for very large matrices with substantial dense
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substructure (such as the large chemical engineering problems).

Table 2 presents detailed results for each method on nine representative matrices taken from
Table 1. The first section duplicates the matrix statistics from Table 1 (matrix names are
abbreviated), and also states whether or not the matrix is symmetric positive-definite. The
table then lists (1) the run time relative to the fastest method for each matrix, (2) the number
of nonzeros in the LU factors, (3) the number of floating point operations performed during
factorization, (4) the number of frontal matrices, (5) the number of pivots that were delayed
due to an unacceptable numerical value (there are no delayed pivots in AFstack), (6) the
number of edges in the assembly tree for Mups (7') and in the assembly dag (G) for AFdown,
AFup, and AFstack, and (7) the number of times an active edge in F is scanned during the
pivot search, assembly, and degree update phases in AFdown, AFup, and AFstack.

The sherman5 and mahindasb matrices contain 1674 and 669 singletons, respectively, which
are 1-by-1 diagonal blocks arising from a permutation to upper-block-triangular form [10].
These singletons are included in the count of frontal matrices for the AF algorithms. The
dags are unconnected for these matrices.

The number of delayed pivots in AFdown and AFup, although acceptable for many matrices,
can be quite high. A delayed pivot is selected on symbolic grounds and then rejected on
numerical grounds. The symbolic factorization then “retreats” by one step, possibly selecting
another pivot that will later be rejected. Thus, the number of delayed pivots can actually
exceed the size of the matrix, n, as is seen in the 7Z/m2 matrix for the AFdown algorithm.
The problem of delayed pivoting seems to be more acute for the larger matrices in our test
set.

The dag, G, found by the unsymmetric-patterned multifrontal method does not have many
more edges than the assembly tree for Mups (the number of edges in the tree is simply
the number of frontal matrices minus one). The number of times an active edge in F is
traversed is more critical to the performance of the new method than the number of edges
in G. Although this number is not guaranteed to be less than the number floating-point
operations in the LU factorization, in practice it is much less than that (by three orders
of magnitude for the larger matrices). It is usually less than the number of nonzeros in
the LU factors (the exceptions are for very sparse matrices). This result demonstrates the
effectiveness of our edge reductions.

The Z/rdist] matrix is a distillation column with 19 components and 100 stages [30].
Reactions occur in stages 35 to 70. Both Mups and AFstack can take advantage of its
unsymmetric block structure, which occurs within each stage. For example, of the 44.5
million floating-point operations in AFstack, only 80,255 are done in frontal matrices with
1 or 2 pivots (428 fronts). The remaining 44.4 million operations are performed in only 116
frontal matrices, (a typical one of which is 69-by-65 with 31 pivots). The largest frontal
matrix constructed by AFstack is 216-by-281, with 171 pivots. For this matrix, Mups is
directed to first find a maximum transversal [8], otherwise excessive fill-in is obtained. M A28
and D2 both find a poor pivot ordering for rdistl, when compared with Mups and the AF
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algorithms. MA28 and D2 use only a global pivot search, and do not consider the overlap
of the fill-in of a previous pivot with the current pivot. Using only a global pivot search
destroys the block structure of the matrix and leads to excessive fill-in.

Table 3 compares the performance of a true degree update and an approximate degree update
(described in Section 7.2) in the AFdown algorithm, for five matrices selected from Table 2.
These results are on an Alliant FX /80, and are based on more appropriate values of user-
settable parameters (for controlling amalgamation, pivoting, etc.) than those used on the
Cray YMP. Thus, the amount of fill-in for AFdown reported in Table 2 differs from that
reported in Table 3. Both versions allow some controlled fill-in due to amalgamation. The
approximate degree update typically results in slightly higher fill-in, in exchange for a drastic
reduction in run time, when compared with a true degree update. In two of these matrices
(shermanb and gre_1107), the use of approximate degrees instead of true degrees actually
results in less fill-in and floating-point work.

Overall, these results show that the sequential prototypes of the unsymmetric-pattern
multifrontal method are competitive algorithms when compared with the both classical
multifrontal approach (Mups) and algorithms based on more conventional sparse matrix

data structures (D2 and MA28).

9 Final remarks

The factor-only algorithm is “fragile” with respect to disruptions in the graphs and patterns
of L and U caused by numerical pivoting. This problem is addressed by the analysis-factor
algorithm. The disruptions are avoided by combining the numerical and symbolic phases
so that pivots can be selected on both sparsity preserving and numerical criteria. However,
the factor-only algorithm still forms an important part of a complete unsymmetric-pattern
multifrontal method. If multiple problems are to be solved that have similar pattern and
numerical characteristics (in solving nonlinear systems, for example), the pivot ordering of
the first matrix is often suitable for successive matrices. The analysis-factor algorithm would
factorize the first matrix and provide the pivot ordering to the factor-only algorithm, which
factorizes subsequent matrices. Few numerical problems would be expected in the factor-only
algorithm. However, a better handling of the disruptions caused by numerical pivoting is the
most important open problem facing the development of a practical factor-only algorithm.

Parallelism is not yet addressed in the sequential versions of the analysis-factor algorithm.
Some parallel work can take place within the dense matrix kernels, and while this is
important, it will not provide enough parallelism in general. A truly parallel version
must take advantage of parallelism across multiple frontal matrices. Parallelism can be
incorporated in one of several ways. The parallel pivot search of the D2 algorithm can be
adapted to this algorithm. The pivot search first creates an independent set of pivots (m,
say). Each factorization task takes a single pivot and extends it into a block of pivots via
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Table 1: Matrix statistics and run time

Matrix Statistics

Run Time (in seconds)

name n nz s | AFstack AFdown  AFup | Mups D2  MA28

1 662_bus 662 2474 0 0.087 0.139  0.103 | 0.072 0.044 0.066
2 nos6 675 3255 0 0.114 0.172  0.153 | 0.102 0.145 0.171
3 685_bus 685 3249 0 0.100 0.158 0.111 | 0.084  0.082 0.094
4 nosT 729 4617 0 0.218 0.281 0.386 | 0.186 0.341 0.997
5 besstkl9 817 6853 0 0.155 0.216  0.175 | 0.113 0.364 0.210
6 orsirr 2 886 5970 0 0.244 0.327 0.424 | 0.224 0.379 0.741
7 gr30.30 900 7744 0 0.231 0.287  0.275 | 0.154 0.502 0.552
8  nos2 957 4137 0 0.078 0.140  0.086 | 0.071 0.134 0.080
9 nos3 960 15844 0 0.311 0.411  0.397 | 0.194 1.201 1.187
10 pde 9511 961 4681 0 0.183 0.361  0.246 | 0.152 0.233 0.319
11  shermanl 1000 3750 0 0.162 0.270  0.204 | 0.148 0.174 0.303
12 orsirr_1 1030 6858 0 0.285 0.403  0.537 | 0.266 0.492 1.019
13 besstk08 1074 12960 0 0.474 0.845 0.636 | 0.894 0.775 1.604
14 besstk09 1083 18437 0 0.501 0.542  0.736 | 0.417 1.826 3.335
15  besstk10 1086 22070 0 0.268 0.374  0.329 | 0.207 1.254 0.833
16 besstm10 1086 22092 0 0.259 0.349  0.302 | 0.208 1.363 0.956
17  sherman4 1104 3786 0 0.143 0.244  0.187 | 0.172 0.165 0.214
18  1138_bus 1138 4054 0 0.129 0.208 0.140 | 0.113  0.062 0.087
19  besstk27 1224 56126 0 0.518 0.514  0.555 | 0.422 4.010 3.135
20 besstm27 1224 56126 0 0.537 0.528  0.572 | 0.422 5.793 3.136
21 besstkll 1473 34241 0 0.563 0.655  0.659 | 0.328 3.467 2.039
22 besstk12 1473 34241 0 0.563 0.657  0.659 | 0.328 3.459 2.039
23 besstm12 1473 19659 0 0.330 0.489  0.470 | 0.251 1.541 0.961
24 besstkl4 1806 63454 0 1.441 1.944  1.114 | 0.637 9.968 6.516
25 besstk26 1922 30336 0 0.597 0.696  0.736 | 0.357 1.934 2.291
26 orsreg_1 2205 14133 0 0.754 0.911  2.099 | 0.705 1.889 4.041
27 Hm/add20 2395 13151 0 0.293 0.602 0.339 | 0.390 0.179 0.264
28  besstk23 3134 45178 0 5.319 8.195  7.562 | 2.279  32.519 205.430
29  besstk24 3562 159910 0 2.510 2.208 2.955 | 1.420 36.899  66.472
30 saylrd 3564 22316 0 1.322 1.618 3.270 | 1.085  13.138 9.835
31  besstk21 3600 26600 0 1.324 1.740  2.114 | 1.131  13.682 5.375
32 besstklb 3948 117816 0 12.114 13.907 10.874 | 3.447  96.093 108.980
33 besstk28 4410 219024 0 2.770 2.670 4.014 | 1.829  48.904  26.865
34 besstkl6 4884 290378 0 7.298 6.886 13.163 | 3.404 153.726  76.674
35 Hm/add32 4960 19848 0 0.500 0.917  0.499 | 0.651 0.266 0.378
36 sherman3 5005 20033 O 1.237 2,782  2.361 | 1.372 5.508 6.157
37  besstkl8 11948 149090 0 16.943 30.794 60.287 | 4.870 168.935 393.710
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Table 1 continued. Matrix statistics and run time.

Matrix Statistics

Run Time (in seconds)

name n nz s | AFstack AFdown AFup | Mups D2 MA28
38 hwatt_1 1856 11360 0.013 0.595 1.578 1.308 | 0.487 2.579  3.210
39 hwatt 2 1856 11550 0.020 0.581 1.370 1.302 | 0.534 2.623  3.306
40 Hm/mem+ 17758 99147 0.021 2.898 6.787 3.510 | 5.612 1.305  2.563
41  jpwh_ 991 991 6027 0.064 0.294 0.500 0.438 | 0.242 0.425 1.372
42 Ins_3937 3937 25407 0.150 3.073 4.788 3.358 | 1.062 6.075 19.277
43 Ins_3937d 3937 25407 0.150 3.480 5.224 3.311 | 1.053  7.527 17.483
44 nnc666 666 4032 0.179 0.170 0.256 0.182 | 0.103 0.152  0.377
45 Ins 511 511 2796 0.201 0.124 0.173 0.156 | 0.091 0.081 0.189
46 Ins_5llc 511 2796 0.201 0.132 0.177 0.163 | 0.090 0.072 0.206
47 pores_3 532 3474 0.258 0.106 0.163 0.117 | 0.067 0.124 0.116
48 sherman5 3312 20793 0.261 0.957 1.314 1.085 | 0.947 2.199 5.434
49 mc_fe 765 24382 0.301 0.338 0.560 0.387 | 0.440 0.723  1.685
50 fs_h41.4 541 4273  0.317 0.134 0.180 0.170 | 0.220 0.123 0.228
51 fsh41.1 541 4282 0.317 0.132 0.188 0.158 | 0.220 0.130 0.196
52 155412 541 4282 0.317 0.128 0.181 0.172 | 0.220 0.148  0.228
53 fs_541.3 541 4282 0.317 0.134 0.188 0.173 | 0.220 0.158  0.227
54  sherman2 1080 23094 0.329 0.805 0.918 0.697 | 0.449 1.397  8.262
55 fs_760_1 760 5739 0.354 0.329 0.336 0.370 | 0.176 0.218  1.036
56 fs_760_3 760 5739 0.354 0.327 0.336 0.370 | 0.176 0.218  1.036
57 pores_2 1224 9613 0.388 0.354 0.525 0.536 | 0.402 0.375 1.107
58 {56803 680 2471 0.439 0.058 0.081 0.065 | 0.085 0.049 0.059
59 {5 6802 680 2424 0.448 0.058 0.079 0.065 | 0.085 0.053 0.063
60 steam?2 600 5660 0.451 0.175 0.279 0.266 | 0.139 0.243  0.565
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Table 1 continued. Matrix statistics and run time.

Matrix Statistics

Run Time (in seconds)

name n nz s | AFstack AFdown  AFup | Mups D2  MA28
61 7Z/m2 8641 102449 0.508 | 13.596 31.595 14.975 | 33.691 93.621 362.766
62 Z/rdist3a 2398 61896 0.860 0.648 1.970 1.404 | 1.606 9.864 66.584
63 Z/rdistl 4134 94408 0.941 1.625 3.089 1.811| 2.506 33.013 267.308
64 Z/radfrl 1048 13299 0.946 0.221 0.373 0.240 | 0.252  0.787 2.668
65 Z/rdist2 3198 56834 0.954 0.886 1.388 0.861 | 1.252 7.504 117.395
66 west0989 989 3518 0.982 0.152 0.174  0.130 | 0.142 0.064 0.075
67 mahindas 1258 7682  0.983 0.223 0.381  0.218 | 0.825 0.096 0.156
68 bp_1600 822 4841  0.989 0.105 0.123  0.104 | 0.269 0.088  0.082
69 bp_1400 822 4790 0.990 0.116 0.136  0.119 | 0.275 0.089  0.087
70 bp-1000 822 4661 0.991 0.097 0.117  0.095| 0.283 0.079 0.073
71 bp-1200 822 4726  0.991 0.099 0.119  0.100 | 0.278 0.088  0.080
72 bp0 822 3276 0.991 0.024 0.020 0.020 | 0.157 0.031 0.025
73 bp-200 822 3802 0.994 0.046 0.048 0.042 | 0.204 0.047 0.039
74 bp-_600 822 4172 0.994 0.076 0.087 0.074 | 0.244 0.069 0.059
75 west0655 655 2808 0.994 0.108 0.151  0.114 | 0.131 0.058 0.082
76 bp-400 822 4028 0.995 0.069 0.074 0.063 | 0.222 0.058 0.050
77  bp-800 822 4534 0.995 0.091 0.106  0.091 | 0.261 0.074 0.065
78  west2021 2021 7310 0.997 0.324 0.379 0.275| 0.320 0.181 0.162
79 gematl2 4929 33044 0.999 0.606 1.016 0.771 | 0.549  1.245 0.831
80 gematll 4929 33108 0.999 0.597 0.919 0.716 | 0.520  0.961 0.756
81 west1505 1505 5414  0.999 0.234 0.277 0.204 | 0.220 0.117 0.120
82 gre 512 512 1976  1.000 0.140 0.209 0.182 | 0.128 0.064 0.263
83 shl.0 663 1687 1.000 0.016 0.013 0.013| 0.118 0.019 0.016
84 shl 200 663 1726 1.000 0.017 0.014 0.014 | 0.126  0.019 0.016
85 shl 400 663 1712 1.000 0.017 0.014 0.014 | 0.128  0.020 0.016
86 gre 1107 1107 5664 1.000 0.417 0.628 0.573 | 0.518 0.294 1.146

43




normalized run time
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matrix number

Figure 7: Relative performance: AFstack (solid) and Mups (dotted)
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normalized run time
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Figure 8: Relative performance: AFstack (solid) and D2 (dotted)
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normalized run time
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Figure 9: Relative performance: AFstack (solid) and MA28 (dotted)
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Table 2: Detailed results for nine representative matrices

Matrix

matrix number 29 37 42 48 61 63 67 80 86
name b24 b18 Ins | sherb m2 | rdistl | mah | gell gre
sym. pos. def.? yes yes no no no no no no no
order 3562 | 11948 3937 | 3312 8641 4134 | 1258 | 4929 | 1107
Nonzeros 159910 | 149090 | 25407 | 20793 | 102449 | 94408 | 7682 | 33108 | 5664
asymmetry 0 0| 0.150 | 0.261 0.508 | 0.941 | 0.983 | 0.999 | 1.000
Rel. run time

MA28 46.8 80.8 18.1 5.7 26.7 | 164.5 1.6 1.5 3.9
D2 26.0 34.7 5.7 2.3 6.9 20.3 1 1.8 1
Mups 1 1 1 1 2.5 1.5 8.6 1 1.8
AFdown 1.6 6.3 4.5 1.4 2.3 1.9 4.0 1.8 2.1
AFup 2.1 124 3.1 1.1 1.1 1.1 2.3 1.3 1.9
AFstack 1.8 3.5 2.9 1.0 1 1 2.3 1.1 1.4
Nz in LU (10°)

MA28 990.0 | 2910.7 | 427.1| 158.0 | 3045.0 | 2280.2 | 10.1 50.1 | 47.0
D2 1699.4 | 7389.7 | 847.3 | 316.3 | 4966.7 | 2431.0 | 11.2 72.3 | 71.0
Mups 592.4 | 1540.3 | 332.7 | 187.0 | 2805.6 | 279.4 | 50.3 79.4 | 187.6
AFdown 805.1 | 5123.3 | 1060.8 | 269.1 | 5928.2 | 624.0 | 16.1 92.9 | 132.8
AFup 1253.8 | 9087.6 | 937.7 | 260.6 | 3864.9 | 564.5 | 19.3 | 103.6 | 133.0
AFstack 1053.0 | 4733.0 | 543.1 | 285.3 | 3994.6 | 532.5 | 13.2 99.4 | 944
Flops (10°)

Mups 72.2 347.5 27.2 16.8 938.7 10.2 | 2.80 0.83 | 25.0
AFdown 141.4 | 47254 | 362.9 37.5 | 5301.9 49.8 | 0.39 1.18 | 21.7
AFup 325.6 | 9412.1 | 248.3 34.4 | 2380.2 40.7 | 0.38 1.65| 15.1
AFstack 181.5 | 2335.4 | 100.9 | 43.6 | 1636.1 24.5 1 0.16 1.08 5.7
Frontal mat.

Mups 285 3209 1521 | 2226 1860 579 508 983 342
AFdown 219 2130 1207 | 2057 1782 302 | 1027 641 425
AFup 224 2684 1248 | 2243 2894 449 822 | 1041 243
AFstack 189 3897 2213 | 2151 2881 544 | 1016 | 1144 334
Delayed pivots

Mups 0 0 1204 0 0 14 4 0 270
AFdown 51 3678 1339 177 | 11078 865 0 6 8
AFup 755 1225 453 190 1027 309 3 42 50
Edges in 7, G

Mups 284 3208 1520 | 2225 1859 578 507 982 341
AFdown 244 3398 3341 841 4284 541 616 692 | 1093
AFup 356 4479 3120 | 1286 5687 498 311 799 760
AFstack 254 4965 6300 886 5968 705 818 892 929
F scans (10?)

AFdown 168.2 | 2686.8 | 965.4 | 232.5 | 2146.8 | 280.7 | 186.5 | 86.5 | 159.7
AFup 183.6 | 1681.9 | 559.2 | 194.3 | 1440.8 | 132.2 | 39.7 | 50.8 | 111.0
AFstack 131.7 | 2219.4 | 865.4 | 140.8 | 2364.0 | 212.1 | 78.1 39.1 | 102.2
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Table 3: True versus approximate degree update (AFdown on Alliant FX/80)

Matrix

matrix number 42 48 67 80 86
name Ins_3937 | shermanb | mahindas | gematll | gre_1107
order 3937 3312 1258 4929 1107
nonzeros 25407 20793 7682 33108 5664
asymmetry 0.150 0.261 0.983 0.999 1.000
Run time (seconds)

True 420.5 66.9 8.5 15.5 29.9
Approximate 172.5 30.3 5.7 14.6 12.1
Nz in LU (10%)

True 597.6 210.3 22.6 72.9 78.9
Approximate 611.7 201.8 23.9 76.6 72.4
Flops (10°)

True 102.1 25.8 0.31 0.71 74
Approximate 117.9 22.9 0.37 0.85 4.9

dynamic amalgamation. Since multiple tasks can affect a single row or column in the active
submatrix, these tasks either cooperate to update the degrees, or a separate parallel degree
update phase is employed. When all factorization tasks finish, a new set of independent
pivots is found. A second approach would pipeline the pivot search with the numerical
factorization. The pivot search task (with one processor or a set of processors) searches for
pivots that are independent with the pivots of currently-executing factorization tasks. A
task k is created for each pivot (multiple processors can also be used within each task). Task
k creates the frontal matrix Fj, performs the assembly, factorizes it, and either cooperates
with other tasks to perform the degree update or requests the pivot search task to perform
the degree update. When it completes, it signals the pivot search task that the rows and
columns it affected (£} and U}/, respectively) are now candidates for the pivot search. In both
approaches, multiple factorizations of the associated frontal matrices are done in parallel.
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