
J.J. Park et al. (Eds.): STA 2011, CCIS 186, pp. 29–36, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SecPAL4DSA: A Policy Language for Specifying Data
Sharing Agreements

Benjamin Aziz1, Alvaro Arenas2, and Michael Wilson3

1 School of Computing, University of Portsmouth, Portsmouth, U.K.
benjamin.aziz@port.ac.uk

2 Department of Information Systems, Instituto de Empresa Business School, Madrid, Spain
alvaro.arenas@ie.edu

3 e-Science Centre, STFC Rutherford Appleton Laboratory, Oxfordshire, U.K.
michael.wilson@stfc.ac.uk

Abstract. Data sharing agreements are a common mechanism by which
enterprises can legalise and express acceptable circumstances for the sharing of
information and digital assets across their administrative boundaries. Such
agreements, often written in some natural language, are expected to form the
basis for the low-level policies that control the access to and usage of such
digital assets. This paper contributes to the problem of expressing data sharing
requirements in security policy languages such that the resulting policies can
enforce the terms of a data sharing agreement. We extend one such language,
SecPAL, with constructs for expressing permissions, obligations, penalties and
risk, which often occur as clauses in a data sharing agreement.

Keywords: Data Sharing Agreements, Deontic Logic, Security Policies.

1 Introduction

Data sharing is becoming increasingly important in modern enterprises. Every
enterprise requires the regular exchange of data with other enterprises. Although the
exchange of this data is vital for the successful inter-enterpriseal process, it is often
confidential, requiring strict controls on its access and usage. In order to mitigate the
risks inherent in sharing data between enterprises, Data Sharing Agreements (DSAs)
are used to ensure that agreed data policies are enforced across enterprises [1].

A DSA is a legal agreement (contract) among two or more parties regulating who
can access data, when and where, and what they can do with it. DSAs either include
the data policies explicitly as clauses, or include existing enterpriseal data policies by
reference. DSA clauses include deontic notions stating permissions for data access
and usage, prohibitions on access and usage which constrain these permissions, and
obligations that the principles to the agreement must fulfill. A DSA can be created
between an enterprise and each of many collaborators. DSAs are represented in
natural languages with their concomitant ambiguities and potential conflicts, which
are exacerbated by DSA combinations. Therefore, analysing such natural language
DSAs [2] is desirable before they can be enforced, which is usually done through a
transformation into executable policy languages [3].

30 B. Aziz, A. Arenas, and M. Wilson

This paper is mainly concerned with defining an approach for the modelling and
enforcement of DSAs based on the SecPAL policy language [4]; a simple and
powerful language defined by Microsoft Research. The approach involves enriching
SecPAL with deontic predicates expressing permissions and obligations. These
predicates can then be used to model DSA clauses. Second we extend the definition
of clauses to associate them with penalties, in case clauses are violated. Finally, we
provide a risk-based approach for calculating SecPAL queries, which takes into
consideration the level of assurance of the infrastructure or the reputation of the user
and the penalty associated with clauses.

There has been a fresh interest in the concept of data sharing agreements,
motivated mainly by models exploiting Internet as a technological platform for
businesses, in which sharing data and information is central. An initial model of
DSAs was proposed by Swarup et al in [5]. The model is based on dataflow graphs
whose nodes are principals with local stores, and whose edges are channels along
which data flows. Agreement clauses are modelled as obligation constraints expressed
as distributed temporal logic predicates over data stores and data flows. In [6], an
operational semantics expressing how a system evolves when executed under the
restriction of DSA is defined, and in [9], the model is encoded in the Maude term-
rewriting system and several DSA properties are automatically verified.

Our work has been influenced by the work of Arenas et al. [2] on using the Event-
B specification language for modelling DSAs. There, a method is defined for
representing deontic concepts into event-based models, and how those models can be
exploited to verify DSA properties using model-checking techniques. However, our
work goes further by using an implementable specification language, SecPAL, and by
including quantitative factors such as penalties and their associated risk. Closer to our
approach is the work on using SecPAL for modelling privacy preferences and data-
handling policies [8]. The work focuses on defining a notion of satisfaction between a
policy and a preference with the aims of developing a satisfaction-checking
algorithm. By contrast, our work has concentrated on giving precise formal
definitions to the notions of permissions and obligations as key concepts in DSAs.

2 Overview of Data Sharing Agreements

Data sharing requirements are usually captured by means of collaboration agreements
among the partners. They usually contain clauses defining what data will be shared,
the delivery/transmission mechanisms and the processing and security framework,
among others. Following [5], a DSA consists of a definition part and a collection of
agreement Clauses. The definition part includes the list of involved Principals; the
start and end dates of the agreement; and the list of Data covered by the agreement.

Three types of clauses are relevant for DSAs: Authorisation, Prohibition and
Obligation clauses. Authorisations indicate that specified roles of principals are
authorised to perform actions on the data within constraints of time and location.
Prohibitions act as further constraints on the authorisations, prohibiting actions by
specific roles at stated times and locations. Obligations indicate that principals, or the
underlying infrastructure, are required to perform specified actions following some
event, usually within a time period. The DSA will usually contain processes to be

 SecPAL4DSA: A Policy Language for Specifying Data Sharing Agreements 31

followed, or systems to be used to enforce the assertions, and define penalties to be
imposed when clauses are breached.

The set-up of DSAs requires technologies such as DSA authoring tools [6], which
may include controlled natural language vocabularies to define unambiguously the
DSAs conditions and obligations; and translators of DSAs clauses into enforceable
policies. We represent DSA clauses as guarded actions, where the guard is a predicate
characterising environmental conditions like time and location, or restrictions for the
occurrence of the event, such as “user is registered” or “data belongs to a project”.

Definition 1: (Action). An action is a tuple consisting of three elements 〈p,an,d〉,
where p is the principal, an is an action name, and d is the data.

Action 〈p,an,d〉 expresses that the principal p performs action name an on the data d.
Action names represent atomic permissions, where actions are built from by adding
the identity of the principal performing the action name and the data on which the
action name is performed. We assume that actions are taken from a pre-defined list of
actions, possibly derived from some ontology. An example of an action is “Alice
accesses product data”. We shall consider in this paper two types of clauses only:
permissions and obligations. Clauses are usually evaluated within a specific context
represented by predicates for environmental conditions like location and time.

Definition 2: (Agreement Clause). Let G be a predicate and a = 〈p,an,d〉 be an action.
The syntax of agreement clauses is defined as follows:

C ::= IF G THEN Ρ(a) | IF G THEN Ο(a)

A permission clause is denoted as IF G THEN Ο(a), which indicates that provided the
condition G holds, the system may perform action a. An obligation clause, on the
other hand, is denoted as IF G THEN Ο(a), which indicates that provided the
condition G holds, the system eventually must perform action a. A data sharing
agreement can be defined as follows.

Definition 3: (Data Sharing Agreement). A DSA is a tuple 〈Principals,Data,
ActionNames, fromTime,endTime,℘(C)〉

Principals is the set of principals signing the agreement and abiding by its clauses.
Data is the data elements to be shared. ActionNames is a set containing the name of
the actions that a party can perform on a data. fromTime and endTime denotes the
starting and finishing time of the agreement respectively; this is an abstraction
representing the starting and finishing date of the agreement. Finally, ℘(C) is the set
of clauses of the data sharing agreement.

3 SecPAL4DSA: SecPAL for Data Sharing Agreements

SecPAL [4] is a declarative authorization language with a compact syntax and a
succinct unambiguous semantics. It has been proposed for modelling various security
policy idioms, such as discretionary and mandatory access control, role-based access
control and delegation control, and within the scope of large-scale distributed systems

32 B. Aziz, A. Arenas, and M. Wilson

like Grids [7]. It has also been recently suggested as a framework for modelling
privacy preferences and data-handling policies [8].

A policy in SecPAL is represented as an assertion context, AC, which is simply a
set of assertions, A ∈ AC, written according to the following syntax:

AC ::= {A1,…,An}
A ::= E says fact0 if fact1 … factn where c
fact ::= e pred e1 … em | e can say fact
e ::= x | E

Where c is a constraint in the form of a logical condition, E is some principal entity
(such as a user or a system process), x is a variable, fact is a sentence stating a
property on principals in the form of the predicate, e pred e1 … em or allowing
delegations in the form of e can say fact. A main feature of SecPAL is that it is
extensible in the sense that any set of predicates e pred e1 … em can be added to a
specific instance of SecPAL. Such predicates will be defined based on the specific
domain for which the policies are required, for example, in the domain of scientific
experiments, predicates could include A canVisualise(data) or A canAnalyse(data).

The main contribution of this paper is to propose a new instance of SecPAL for
expressing assertions and queries on DSAs, called SecPAL4DSA. SecPAL4DSA
extends the syntax of facts of the previous section with the following predicates:

fact ::= permitted((an,d)) | obligeduser((an,d)) | obligedsys((an,d))

The permitted((an,d)) predicate implies that the user is permitted to execute the
action an on the data d. On the other hand, obligeduser((an,d)) means that the user is
obliged to execute an on d sometime in the future. Here, we do not deal with real-time
temporal constraints on obligations, though these would be possible to incorporate.
Finally, obligedsys((an,d)) means that the system infrastructure is obliged to execute
an on d sometime in the future.

The extra predicates we define above represent the deontic operators of
permissions and obligations for users and systems. Note that at present, SecPAL does
not allow negative predicates in the language of assertions because of issues related to
the complexity of assertion deductions. Therefore, we do not deal with prohibitions
and assume that any action not permitted is prohibited by default.

Example 1. In the context of DSAs, a principal E may represent any of the signatories
of the DSA. So, for example, assuming there are two signatories, A and B, then the
following two assertions express a DSA that demands payments for data accesses:

(Assert1) A says B permitted(access, data) if A hasFinished(authenticate, B)
where c
(Assert2) A says B obligeduser(pay, amount) if B permitted(access, data), B
hasFinished(access, data) where currentTime ≤ PaymentDeadline

The first assertion will allow A to grant B the permission to access data if A
successfully authenticates B (modelled by the predicate hasFinished) and some
condition c holds (which could be relevant to some of B's attributes). The second
assertion states that whenever B has finished accessing the data, then it is obliged by
A to pay an amount of money within some predefined deadline.

 SecPAL4DSA: A Policy Language for Specifying Data Sharing Agreements 33

Next, we define precisely what we mean by the permitted and obliged deontic
operators in the context of SecPAL4DSA.

3.1 Semantics of the Permission and Obligation Predicates

The semantics of permissions, user obligations and system obligations are given here
in terms of Linear Temporal Logic (LTL). LTL formulae are defined based on a set of
propositional variables, p1,p2 …, which are in our case the predicates themselves, and
logical operators (¬, ∧, ∨, →) including future temporal operators such as  (always),
◊ (eventually) and  (next). They may also include past versions of these. Here, we
shall write P ⇒ Q to denote the formula (P ⇒ Q), and we write the two-way
conditional, B ⎨ A ⎬ C, to denote that if A is true, then C is true, otherwise if A is false,
then B is true.
1. Semantics of User Obligations: We start with the semantics of user obligations.

This semantics is defined in terms of two actions: bF and bS. bF represents a
system action corresponding to the failure of executing an action by the user and
bS is a system action corresponding to the success of the user in executing some
action. bF would normally represent a penalty action that the system will execute
in case of user failure. On the other hand, bS is a follow-up action that the system
executes after the user successfully fulfils his obligation to carry some action.
Either or both of bF and bS could be inactive actions, such as (null, null).
However, more meaningful examples would be for bF to be the disabling of
some system resources, bF=(disable, resource), and for bS to be the enabling of
system resources, bS=(enable, resource). Now, assuming that p(a) is the post
condition of action a; this means that a has already occurred and its effect on the
state of the system is modelled as the predicate p(a), we can define the semantics
of B obligeduser(a) (i.e. B is obliged to do a) in terms of the semantic function,
[fact]=P defined as follows:

[B obligeduser(a)] = ∃bF, bS: G ⇒ ◊ ([Sys obligedsys(bF)]) ⎨ p(a) ⎬ [Sys
obligedsys(bS)]

where G is a general predicate on the current state of the system enabling and
could include for example p(request), which is a predicate indicating that the
action representing a request from the user to execute a has occurred. This
meaning of user obligations is defined in terms of the meaning of system
obligations, which we discuss next. The rationale behind this is that user
obligation cannot be enforced; users by their nature can always violate an
obligation. However, such violations can trigger corrective or compensatory
system obligations.

2. Semantics of System Obligations: The semantics of system obligations, Sys
obligedsys(b), on the other hand, are defined in terms of [fact]=P, as:

[Sys obligedsys(b)] = G ⇒ ◊p(b)

Where G is a general predicate (e.g. on the system state) that enables the
obligation. This meaning implies that if the action b is obliged to be executed by
the system, then it will eventually be executed as expressed by the LTL operator
◊. In general, ◊ has no time limit, but this can be constrained by the

34 B. Aziz, A. Arenas, and M. Wilson

computational limits of the system or by the time limit of the DSA contract (i.e.
its expiry date and time). The main aspect to note in the meaning of system
obligations is that, unlike user obligations, system obligations can be enforced
and their enforcement depends on the correct behaviour of the system
components responsible for their fulfilment.

3. Semantics of Permissions: The semantics of permissions are also defined in terms
of the special semantic function, [fact]=P as follows:

[User permitted(a)] = p(request) ⇒ ◊p(a)

This meaning simply says that to be permitted, as a user to execute an action, is
the same as saying that when a request to execute that action occurs, this will
eventually result in the execution of the action. Again, the ◊ operator leaves out
any time constraints, which could be introduced using a real-time version of the
operator or using next .

3.2 Mapping DSAs to SecPAL4DSA

Finally, we describe here an approach for mapping permission and obligation clauses
in the language of [2] to assertions in SecPAL4DSA, such that DSAs can be enforced
by a policy enforcement point.

As we mentioned earlier, one of the main features of SecPAL is that it expresses
the root of authority in each individual assertion. This is equivalent to saying that each
clause in a DSA must have a root of trust, which is more expressive than the normal
DSA clauses. Therefore, we assume that for each clause in a DSA, a signatory, A,
assumes the role of the root of trust for that clause. Based on this assumption, we
define the transformation function, F: C → A, as follows:

F(IF G THEN P((p,an,d))) = A says p permitted((an,d)) if G
F(IF G THEN O((p,an,d))) = A says p obliged((an,d)) if G

where obliged is either obligedsys or obligeduser depending on whether p is a system or
a user, respectively. The transformation function uses the structure of actions in the
language of DSAs to construct the corresponding parts of SecPAL4DSA permission
and obligation assertions.

4 Penalties in SecPAL4DSA

Another construct, which we use to extend the language of SecPAL4DSA is that of
penalties, which are added to the definition of assertions to form what we call penalty
clauses, defined by the following syntax:

Penalty Clause ::= (A, Penalty)

Where Penalty: Principal → Ν is a utility function mapping principals to some values
(e.g. natural numbers representing a monetary concept such as money). Going back to
Example 1, we can define a couple of penalty clauses as follows.

Example 2. Define the new penalty clauses based on the permission and obligation
clauses as follows.

 SecPAL4DSA: A Policy Language for Specifying Data Sharing Agreements 35

(Clause1) (A says B permitted(access, data) if A hasFinished(authenticate, B)
where c, (A → 10))
(Clause2) (A says B obligeduser(pay, amount) if B permitted(access,data) and B
hasFinished(access, data) where currentTime ≤ PaymentDeadline, (B → 50))

In Clause1, the failure of permitting the assertion to happen will incur a penalty on
A of 10 units. This means that even though A was meant to authorise B to access the
data, it failed to do so, which corresponds to a denial of service. Instead, in Clause2,
the failure is related to B failing to make a payment by the specified deadline, which
corresponds to a violation of an obligation. Therefore, it incurs a penalty of 50 units.

4.1 Semantics of Penalty Clauses

We define the semantics of penalty clauses more formally in terms of the semantic
function, E[(A, Penalty)], defined as follows:

E[(A, Penalty)] = Penalty ∈ PenaltyLog ⎨p(a)⎬ Penalty ∉ PenaltyLog
where A=A says B dsaoperator(a) if fact where c
and dsaoperator ∈ {obligeduser, obligedsys, permitted}

The meaning of a penalty clause depends essentially on whether or not the action
of the deontic operator in an assertion has taken place or not. If this is the case, then
the penalty specified in the clause does not belong to the state called PenaltyLog, which
registers all the due penalties. Otherwise, if the action did not take place, then the
penalty is logged in the state.

4.2 Policy Queries

The additional extensions of the deontic predicates and penalties that SecPAL4DSA
incorporated into the policy language allow for richer semantics for the reference
monitor interpreting queries generated as a result of user requests. One such
interesting high-level semantics would be to include a risk-sensitive reference monitor
that compares the probability of the failure of an assertion (i.e. failure of granting
access, failure of fulfilling obligations) with the penalty incurred by that failure. For
example, we could define a risk-calculation function, R: Penalty Clause→ N, which
returns the risk of the failure of an assertion part of a penalty clause compared to the
penalty associated with that failure.

For example, taking the penalty clauses of Example 2 and assuming that the
probability of failure of the first assertion is 0.7 and for the second is 0.05, then
R(Clause1) = ((0.7 × 10)/100) = 0.07 and R(Clause2) = ((0.05 × 50)/100) = 0.025.
This demonstrates that the probability of failure combined with the penalty can give
indicate how delicate an assertion (i.e. DSA clause) is.

5 Conclusion and Future Work

This paper presented an extension to a popular policy language called SecPAL, for
modelling and expressing data sharing agreements among enterprises with different

36 B. Aziz, A. Arenas, and M. Wilson

administrative domains. The new language, SecPAL4DSA, is capable of encoding
permission and obligation clauses of a DSA, and can also express penalty clauses and
provide a quantitative means based on risk levels for evaluating policy rules against
requests submitted by external users for accessing and using local resources.

In its current form, SecPAL does not allow prohibitive clauses to be modelled due
to issues related to decidability of queries. For future work, we plan to investigate
other methods by which prohibitions can be modelled in terms of the current language
constructs. Also, we are planning to consider other quantitative factors related to
DSAs, such as modelling of bounded obligations. Finally, we plan to develop a query
evaluation engine for the new language, SecPAL4DSA and evaluate its performance
with regards to case studies taken from the domain of scientific data sharing.

References

1. Sieber, J.E.: Data Sharing: Defining Problems and Seeking Solutions. Law and Human
Behaviour 12(2), 199–206 (1988)

2. Arenas, A.E., Aziz, B., Bicarregui, J., Wilson, M.: An Event-B Approach to Data Sharing
Agreements. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 28–42.
Springer, Heidelberg (2010)

3. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp.
18–38. Springer, Heidelberg (2001)

4. Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and Semantics of a Decentralized
Authorization Language. Journal of Computer Security 18(4), 597–643 (2010)

5. Swarup, V., Seligman, L., Rosenthal, A.: A Data Sharing Agreement Framework. In: Bagchi,
A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 22–36. Springer, Heidelberg (2006)

6. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA a Controlled Natural Language for
Data Sharing Agreements. In: 25th Symposium on Applied Computing, Privacy on the
Web Track. ACM, New York (2010)

7. Dillaway, B.: A unified approach to trust, delegation, and authorization in large-scale grids.
Microsoft Corporation, Tech. Rep. (2006)

8. Becker, M.Y., Malkis, A., Bussard, L.: A Framework for Privacy Preferences and Data-
Handling Policies. Microsoft Research, Tech. Rep. MSR-TR-2009-128 (September 2009)

9. Colombo, M., Martinelli, F., Matteucci, I., Petrocchi, M.: Context- Aware Analysis of Data
Sharing Agreements. In: 4th European Workshop on Combining Context with Trust,
Security, and Privacy, CAT 2010, pp. 99–104 (2010)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

