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1. Intreoduction

The purpose of this report is to describe a collection of subroutines

for solving sparse symmetric sets of n linear equations

Ax=5% (1.1)
by Gaussian elimination. The package is called MA27 and contains 15
gubroutines and three common blocks. Fach subroutine is associated with

just one of the three tasks

(a) analyze the sparsity pattern of the matrix and prepare for

handling numerical values,

(b) factorize numerically a matrix whose pattern has already been

analyzed, and
(c) solve a set of equations whose matrix A has been factorized.

For each of these tasks we devote a section of this report and for each
subroutine we devote a subsection. The common blocks are used during all
the tasks, so these are described as a subsection of Section 2, in which our
overall strategy is explained. This structure should aid the reader in
relating this report to the actual code and means that the contents page
provides an index to the purposes of the routines. To give an idea of the
varying complexity of the different routines, we show, in Table 1.1,
statistics on the length of each subroutine when the double length versions
were compiled on the IBM 3033 using the H-extended enhanced compiler at an
optimization level of 3. Note that this compiler counts a logical IF as two

statements.

We expect only three of the routines to be called directly by users.
These are MAZ27A (to analyze a pattern), MA27B (to factorize a matrix) and
MA27C (to solve a set of equations). These driver subroutines have been
kept relatively short. Their main function is to subdivide workspace and
provide most of the diagnostic printing. The data manipulation and

numerical computation is performed by the other (auxiliary) subroutines



which are called by the drivers. Details of how to call the driver

subroutines are given in the library specification reproduced in the

appendix.

To give the reader a feel for the relative expense of the various
subroutines and to illustrate some effects which are problem dependent, we
show a breakdown of execution times for subroutines in the MA27 package in

Table 1.2.

A companion paper (Duff and Reid, 1982) introduces the algorithms and
compares them with alternatives, but does not describe the code other than
in broad outline. Our aim is for this paper to be self-contained, though we
advise the reader to study the companion paper first. Here we concentrate
on what the code does rather than why we chose to write it this way. We do
not describe the code in fine detail. For such detail the code itself and

its comments must be studied.

During most of this report we refer to just one Versioﬁ of the code,
which uses single precision reals and has some of its integer arrays of IBM
type INTEGER*2. This may be converted into a Fortran 66 version that
satisfies the PFORT verifier (Ryder, 1974) by deleting "*2" from each
INTEGER*2 statement. Other versions are for double~length arithmetic,
complex and double complex arithmetic and for greater efficiency on the
CRAY-1. 1In all cases the changes are simple and not very numerous. The
actual runs that yielded the data in Tables 1.1 and 1.2 used the double

precision version.



Length of double

Number of precision compiled

Subroutine f:::ir of fzztzzzn:;ztszents code (bytes IBM
TBM H-compiler) H-extended enhanced
compiler, opt=3)
MA27A 130 90 3150
MA27B 150 140 3440
MA27C 30 70 1740
MA27D/E/F 70 10 0
MA27G 180 140 2060
MA27H 380 240 3580
MA271 60 40 640
MA27J 170 130 2000
MA27K : 130 70 1300
MA27L 130 90 1380
MA27M 180 100 1940
MA27N 210 140 2150
MA270 650 500 6640
MA27P 40 30 590
MA27Q 170 120 1700
MA27R 180 130 2070
Total for 2920 2000 34400

MA27 package

Table 1.1 Code lengths for MA27 package (rounded to a multiple of 10)



Order 147 1176 130 1G09

Non zeros 1298 9864 713 3937
Subroutine
MA27A .82 .576 .099 .512
MA27G .017 .127 .009 .050
MA27H 015 .116 .057 .208
MA27E .008 .033 .007 .054
MA27J .013 .101 .007 .039
MA27K .020 .108 .011 .133
MA27L . 004 .032 . 004 026
MA27M .011 .102 .010 .055
MA27B .085 .576 .039 .659
MA27N .016 .123 .008 .048
MA270 .069 L452 .030 .611
MA27P - - - -
MA27C .009 . 047 .005 .070
MA27Q .004 .022 .002 .033
MAZ7R .005 .024 . 002 .036

Table 1.2 Breakdown of time (in seconds on an IBM 3033) spent in MA27
subroutines (double length versions)



2. Overall strategy

We regard the matrix A as having the form
A= %B(e) (2.1)

€4

).
where each matrix B is zero except in a small number of rows and columns.

(&)

We refer to each B as an "element matrix” by analogy with finite element
(&)

problems where each B is associated with a finite element. We use the

frontal method, in which advantage 1is taken of the fact that eliminpation

steps

a a, . (2.2)

do not have to wait for all the assembly steps

= (&)
3547 Ay + bij (2.3)
from (2.1) to be complete. It is only necessary that the pivot row and

column is fully summed.

At a typical step we use a full matrix of workspace (the frontal
matrix) to accumulate all those B(f) that have non-zeros in the next pivot
row or column. An assoclated index list indicates the correspondence
between rows and columns in this full matrix and rows and columns in the
overall sparse matrix. The actual elimination operations (2.2) may then be
performed in this full matrix. The pivot row and column are then stored
el sewhere for use in forward and back substitution and the remaining part of

0

the frontal matrix is treated as another matrix B Therefore the rest of

the matrix (the reduced matrix) also has the form (2.1). We refer to

matrices B(E) created by elimination as "generated element matrices”.

The whole process may be represented by a tree. Each terminal node is

(€)

associated with one of the original element matrices B and each non-

terminal node is associated with a generated element matrix B(e). The sons
of a node correspond to the matrices accumulated prior to the elimination

@)

that created its associated matrix B



The operations may be performed in any order that leads to all soms of
a node being treated before the node itself, since the only differences are
the very minor roundoff effects from summing quantities in different orders.
We use an order determined by a depth-first search of the tree because then
the generated element matrices may be stored on a stack since they will
always be wanted on a last-in first-out basis. Note incidently that this
implies that when the user provides a pivot order, the order actually used
is not necessarily exactly the order given though it does lead to results

which are identical except for minor roundoff effects.

So far we have assumed that just one elimination is performed for each
non-terminal tree node. This can lead to nodes having only one son and an
implementation in which generated elements are stored on the stack and
immediately retrieved for further use without modification. We obtain
worthwhile gains by recognising this situation and permitting more than one

elimination to be associated with non—terminal tree nodes.

To obtain an initial set of matrices B(e) for a given matrix A, we

simply associate a B(e) with each diagonal entry a;y in A and a B(C) with

each off-diagonal pair aij’ aji'

The analysis subroutines (see Section 3) construct the tree and perform
a depth-first search of it, thereby finding a pivot sequence. They pass the
pivot sequence and the tree to the factorizationm routines (see Section ).
The tree is passed as an operator list with one entry (consisting of a pair
of integers) for each non-terminal node. The entries are in depth-first
search order and indicate the number of generated matrices to be retrieved
from the stack and the number of eliminations to be performed. Perhaps
surprisingly, this is sufficient information. If the non-zeros of the upper
triangular part of the permuted matrix are stored by rows, then those in the
rows of the variables to be eliminated may be regarded as original element

matrices B({) and assembled with thoce indicated as needed from the stack.

During elimination the pivots are checked for size and if necessary
interchanges are performed and possibly 2x2 pivots are used. Sometimes the

generated elements are bigger than anticipated during analysis because



some eliminations are delayed. These changes can lead to more operations

being performed than were anticipated during analysis and more storage may

be needed,

but our experience is that such increases are never great (indeed

integer storage requirements are often less). No such increases happen for

positive (or negative) definite matrices.

2.1 MA27D/E/F : Common blocks

The MA27 package contains the following common blocks

i) MA27D

ii) MA27E

iii) MA27F

(a)

(b)

contains four parameters whose default settings in BLOCK DATA are
usually adequate. However the user may wish to reset the
relative pivot threshold U used by MA270 ( see Section 4.3) or the
parameters LP, MP, LDIAG that control printed output. For
further details, see Section 2.2 of the specification in the

appendix.

contains variables which are set by the MA27 subroutines to hold
information likely to be of interest to the user, including
operation count, space requirements, number of data structure
compresses, number of 2x2 pivots and extra error information.

For details, see Section 2.2 of the specification in the

appendix.

contains variables whose values may depend on the machine but are
unlikely to depend on the problem being solved. They are there-
fore not likely to be of interest to the user and are not
detailed in the specification in the appendix. They are given

default values by BLOCK DATA and are as follows:~

IOVFLO (default value 32639) is the largest integer such that all
integers i in the range -IOVFLO i ¢ TOVFLO can be handled by

the shortest integer type in use.

NEMIN (default value 1) controls the amalgamation of tree nodes
at which few eliminations are performed (see Section 3.7 for

further details).



(c)

IFRLVL is an array of length 20 that controls whether direct or

indirect addressing is performed during forward and back

substitution (see Sections 5.2 and 5.3 for details, including

default settings).



3. Analyeis of sparsity pattern

In this section we describe those subroutines which analyze the
sparsity pattern of a symmetric matrix. Note that numerical values are not
passed and that a stable factorization of any symmetric matrix having this
pattern can subsequently be obtained. This approach has the advantage that
the storage and operation counts for numerical factorization can be
estimated. The analysis itself is relatively fast and its storage require-

ments are known in advance.

3.1 MA27A : Driver subroutine for analysis

MA27A is the driver subroutine called directly by the user. For his
convenience we ask for the positions of the non-zeros to be provided as
pairs IRN(K), ICN(K) of entries in two INTEGER*2 arrays and we do not demand
that they be in any particular order. This means that MA27A must first
perform a sort. Unfortunately the requirements of the minimum-degree
analysis subroutine (MA27H), which is called if the user does not provide a
pivot order, differ from those for the analysis subroutine (MA27K) called if
a pivot order is given, so separate sort routines (MA27G and MA27J) have
been written for the two cases. Therefore MA27A calls MAZ27G and MAZVH if
the sequence is not given and MA27J and MA27K if it is given. 1In both cases
it then calls MA27L to perform a depth-first search of the tree and finally
MA27M is called to calculate the storage requirements and number of
multiplications needed for actual numerical factorization. The two analysis

routines may call MAZ71 to compress the data structure. We summarize the

call trees in Figures 3.1 and 3.2,

It should be noted that the storage requirements of MA27A depend only
on the order, n, and number of non-zeros, nz. There is no possibility of
failure even if there is severe fill-in during numerical factorization. On
the other hand the storage needed by MA27B is not predictable from n and nz.
For this reason we have included the subroutine MA27M which calculates the

minimal storage requirements both with and without compreseces of the data

- 10 -
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Call tree .from MA27A, pivot sequence not given.

MA271,
depth—first
tree search

MAZ7M
space and operation
count evaluation

Call tree from MA27A, given pivot sequence




gtructure (calls of MA27P). These values apply to the positive-definite
case but our experience of non-definite cases is that the requirements at

worst only increase slightly and may even decrease.

The original sparsity pattern is needed by MAZYM if it is to calculate
the space requirements exactly. TIn any case we expect the user to want it
preserved since it is needed again for the call to MA27B. However, if he
wishes to save storage and is willing to regenerate the pattern, then he may
equivalence the arrays IRN and ICN which hold the pattern with the
work—-array IW. In this case MA27M calculates estimates of storage
requirements which are high (safe). An automatic test for equivalence is
made by setting IW{1l) = IRN(1)-1 before calling MA27M and testing IW(l) and
IRN(1l) for equality at the start of MA27M.

The remaining roles played by MA27A are to subdivide the workspace
arrays dynamically, provide two levels of diagnostic printing on entry and
exit and to print error messages. We have tried to avoid including any
printing in the routines it calls. The only printing is of warning messages
about out-of-range indices when they are found by either of the sort

routines. We show details of how the arrays are subdivided in Figures 3.3

e —fen -
MA27A | v |
MA27G i IW FLAG |
|
MA2 7H | i jnv [ NXT |
MA27J | W FLAG |
MA27K | Iw { NV FLAG |

-

MA27L NV

MA27M ND

Figure 3.3 Sharing the workspace IW
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and 3.4. Where a subarray is used to pass information from one subroutine
to another, we show thisg by an arrow. In most such cases we use the same
names, but sometimes different names were needed for clarity within the
auxiliary routines. Further details of the purposes of the subarrays are
given in the subsections for the individual subroutines. The reason for
having three arrays is because only IKEEP is left containing information
needed for matrix factorization and because IW can be an INTEGER*2 array on
IBM machines provided n § 32639 (INTEGER*2 1imit under WATFIV) whereas IWl

must be an INTEGER array unless the number of non-zeros is to be severely

limited.
k—nalt—-nfll'_ K— 1 —3%— 11 --He— 11—
MA27A 1wl | IKEEP |
k! J
MA27G IPE | IQ
L'
MA27H IPE [FLAG [ LST | IPD |

MA27J | TPE | 1q ] PERM
MA27K [ IPELJ 1PS

MA27L IPE FIps ] NE| WA |

MA27M [LSTKI| LSTKR [PERM | NE | NA |

Figure 3.4 Sharing the arrays IWl and IKEEP

3.2 MA27G : sort prior to minimum degree analysis

Our minimum degree code (MA27H, Section 3.3) assumes that diagonal
entries are always suitable as pivots (the pivotal sequence 1is altered
slightly during factorization, see Section 2 (or Section 4 for more detail),
if a diagonal element is later found to be unsuitable). We therefore assume
for the purpose of analysis that the diagonal elements are all present,

which means that there is no need to store them explicitly. Following (2.1)

_13_



we can thus define the pattern of A

a= Jp'® (3.1)
{

£) - Rapid access

where each B corresponds to an off-diagonal pair aij’

a,.
_ Ji
is needed to i given j and vice-versa, so we sort all the off-diagonal
entries of A by rows and include both aij and aji in each case. Ordering

within each row is unnecessary.

As explained at the beginning of Section 3.1, we require the user to
specify each non-zero as a pair IRN(K), ICN(X) of entries in two INTEGER*2
arrays. Each pair i = TIRN(K), j = ICN(K) is taken to specify both aij and
a,e We begin by scanning the pairs to count the number of off-diagonal
non-zeros in each row. If any index lies outside the range [l,n] then we
ignore the pair after printing a warning message (for the first ten cases)
and setting appropriate error flags. We also ignore diagonal entries. The

indices 1 and j for each valid pair are transferred to a work array IW.

Once the numbers of non-zeros in the rows are known we may accumulate
them to set up pointers to row starts in the sorted version. This permits
an in-place sort to be performed on the non-zeros, now held in array IW. At
an Iintermediate stage in the sort, part of each row will be in its final
position. These sorted parts are held at the front of the space that
eventually holds the whole row and pointers to the starts of the remaining
parts of the rows are kept. Actual moves are made in groups that we call
chains. The first non-zerc in a chain is moved to just behind the sorted
part of its row; if this position holds an unsorted non-zero then it is
treated similarly; the sequence continues until a position that does not
hold a non-zero is reached. The pointers are updated as each chain 1is
traversed and the non-zeros sorted in the chain are flagged (by the signs of
the row indices). The heads of the chains are found by a simple search for

unflagged non-zeros.

This would complete the sort were it not that duplicate elements must
be ignored for the row counts needed by the minimum degree algorithm. It

seemed sensible to eliminate duplicates during the sort se that the row

- 14 -




counts were as required and so that storage is saved. To identify
duplicates we use an array of n INTEGER*2 flags, initially set to zero. We

then scan the rows in turn. For a non—zero aij we set FLAG(j) = 1 unless it
already has this value which indicates a duplicate that can be removed.
Note that by using a different flag value for each row (Gustavson, 1978) we
avoid the need to reinitialize the flags when treating a fresh row. If any
duplicates are found, then the row counts are revised and the non—-zeros are

moved to fill in the gaps.

The reason for transferring the indices to the work array IW and
performing an in-place sort there is that this preserves the user's input
arrays, which are certainly needed for a.tual numerical factorization and
are also needed if exact calculations of space requirements are to be made
by MA27M (see Section 3.8) later. If the user is willing to regenerate his
data and wishes to save space then he may associate IRN and ICN with parts
of IW (for details see the specification in the appendix). Care has been

taken to ensure that the code works correctly in this case.

3.3 MA27H : minimum degree analysis

1f the user does not provide a pivot order, then one is constructed
using the algorithm of "minimum degree”. ' The degree of a variable 1is the
number of non-zeros in the corresponding row of the matrix, and each pivot
is chosen in turn to minimize its degree in the current reduced problem.
Note that the degrees of all the variables active (in the front) during a
pivotal step may change because of the eliminations performed and the

fill-ins that they may cause.

Our minimum degree analysis subroutine, MA27H, uses an INTEGER array
IPE of length n to hold pointers to lists held in an INTEGER*2 work-array
{W. TEach list is headed by its length. Initially the lists contain the
column indices of the non—zeros in the rows and each index may be regarded
as a polnter to an element matrix B(E). They are later revised to contain a
mixture of pointers to generated and original element matrices B(E). When a
variable is eliminated we replace the list of elements with which it is

associated by a list of variables in the element matrix generated by its

elimination.

- 15 -



For speed it is important to avoid an expensive search for the pivet at
each stage of the elimination. We therefore hold doubly-linked chains of
variables having the same degree. Any variable that is active in a pivotal
step and whose degree may therefore change can then be removed from its
chain without any searching and once its new degree is known it can be
placed at the head of the corresponding chain. This makes selecting each
pivot particularly easy. It is always at the front of the current minimum

degree chain. The INTEGER*2 work-arrays IPD, NEXT, LST, each of length n,

are used for this purpose.

When we eliminate a variable we replace the list of elements with which
it is associated by a 1list of variables in the element generated. It is
therefore convenient to use as a name for the generated element the index
(i, say) of the variable eliminated. This has the further advantage that if
another row (j, say) originally contained a non-zero aij’ then the entry i

in its list now (correctly) acts as a pointer to the generated element.

The main lcop begins by choosing the next variable for elimination, an
easy task given the chains of variables of equal degree. We then remove it
from its chain. We next search its index list in IW. Entries are either
dummy ( for reasons to be explained) or point to element matrices B(z). We
construct a new index list by merging the index lists of all these element
matrices. The old lists can be discarded so no more storage will be needed
than previously, though some data compression may be required (MA27I,
Section 3.4) since we always insert the new list in the free space at the
end of IW. For each generated element ¢ merged in, we record a son—father
tree pointer. Son-father pointers for original element matrices B(e) are
not needed explicitly because we can assume that when variable i is

(&)

eliminated all original matrices B involving elements aij of row i are to

be included.
We use an INTEGER*2 array FLAG of length n to avoid duplicates in the

merged list. As variable i is inserted in the list FLAG(i) is set to zero

s0 that if i is encountered again the zero value of FLAG(i) will indicate

that i has already been included.

- 16 -




The degrees of all the variables in the generated element (but no

others) may change, so we remove them from their chains.

Once the new list of variables is constructed we run through it

revising the associated lists of elements B(8 ) and calculating the new

degrees. Fach variable in the list must be associated with at least one
B(e) absorbed into the new element. We therefore revise the list of each
variable encountered to remove all those elements absorbed but to add the
new element matrix. The new degree of a variable i is the number of
variables in the new element plus the number of other variables in other
elements associated with variable i. We use a different flag value for each

degree calculation but take advantage of the flags already set to zero for

the variables in the new element, starting each calculation from the known

number of variables in the new element.

This degree calculation is potentially very expensive so we have
included some other devices to aid it. If two rows have identical sparsity
pattern {either originally or because fill-ins make them so) then they will
have the same degree until one is eliminated. One will be eliminated only
if it has minimum degree and following its elimination the other will have
degree one less, which will certainly be minimum. It follows that we can
treat suich a pair together and eliminate them together. 1In general any
number of rows may have an identical pattern and may be treated together.
We regard the corresponding variables as grouped into a "supervariable”. Ve
name the supervariable after one of its variables (its principal variable, 1
say) hold a list of element matrices B(g) only for it and calculate only its
degree. We indicate the association of another variable, j say, with i by
setting the pointer IPE(j) to i. We also need to store the number of
variables in each supervariable because this will now be needed in each
degree calculation. We use an INTEGER*2 array NV for this purpose. The
degree calculation is used to help recognize identical rows. All variables
active at a pivot step and having equal degrees are in any case linked
together at the front of a same-degree chain of wvariables. When each new
variable is added to the front of a chain the array FLAG will have been set
during the preceding degree calculation to flag the variables in the matrix

row corresponding to the new variable. Other variables in the chain can be



tested quickly to see if they have any different variables in their matrix

rows.

Another device we use to speed the degree calculation is to watch out
for generated element matrices whose variables are all in the list of the
newly created element. Such an element matrix can be merged into the new
element before the elimination without causing any extra fill. By doing
this we simplify the later degree calculations for all its variables. It is
easy to build a suitable test into the degree calculation. Remember that
the flags of all the variables in the new element are zero and that we begin
the degree calculation as if this element had been searched. If a search of
another element matrix increases the degree we know that it must have at
least one other variable. If the degree does not increase, then we search

its list of variables to see if any have non-zero flags.

The absorption of variables into supervariables and elements into other

elementg may leave some dummy entries in lists. We use the value -1 in FLAG

to flag this but remove dummies only when they are later encountered.

3.4 MA271 : compress data structure during analysis

Both the analysis routines (MA27H and MA27K) hold lists of integers in

the INTEGER*2 array IW. Each list is headed by its length and is accessed
via the INTEGER array IPE of length n holding pointers to the starts of the

lists.

For simplicity, new lists are always written to the start of the free
space at the end of IW and no immediate attempt is made to reuse the space
occupied by the old list. This means that occasionally the storage will
need to be "compressed" so that all free space is at the end of IW. Such
compresses are performed by MA27I for both MA27H and MA27K. Our experience
is that these compresses are relatively infrequent and do not contribute
greatly to the overall cost (see Table 1.2) even when minimal storage is
allocated to IW. Note that discarding explicit non-zeros on the diagonal

usually yields plenty of "elbow room”.
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It is assumed that all the integers held in IW are non-negative and the
routine begins by overwriting the lengths at the head of each list by
-(its index), after having saved the length in the corresponding position in
array IPE. Then IW is scanned. When a negative number is found, this
yields an index and the entry length is recovered from the corresponding
position in array IPE. The entry is then copied forward and a pointer to it
is set in IPE. The scan is then continued from the end of the old position

of the list. Thus a single scan of the array IW is all that is needed.

3.5 MA27J : sort prior to analysis given a pivot sequence

The analysis code for the case when a pivot sequence is given (MA27K)
assumes, as does MA27H, that diagonal entries are always suitable as pivots
and for the purpose of analysis we do not store them explicitly. Again we

commence with

A = 23(8) (10.1)
¢

(&)

where each B corresponds to an off-diagonal pair aij’ aji' However
access is now required only from whichever of i and j appears earlier in the
given pivot sequence. This means that the work array IW need only be about
half as long as before and a somewhat different sort to that of MA2J/G is

needed. ‘

As in MA27G we begin by scanning the non-zeros, checking for invalid
indices and counting the numbers of non-zeros in the rows. Again we warn
about out-of-range indices and ignore diagonal entries, but now we transfer
only row indices into IW and only count the off-diagonal entries as
belonging in the upper triangular part of the permuted matrix. The dummy

value zero is placed in IW to indicate an entry to be ignored.

The row counts are then accumulated to give pointers to row ends and an
in-place sort is performed in IW, similar to that in MAZ7G (Section 3.2).
One difference is that within the sort itself we can now cnly use IW(i),
i =1,2,...,nz because we have declared to the user that ICN(l) may be

equivalenced with IW(i), i > nz. Tt is therefore not safe to leave gaps

_19..



ahead of each list ready to hold the list length. Instead we must move the

lists forward in storage after the sort.

Another difference is that duplicate entries in the rows are normally
innocuous in MA27K, so we do not remove them in MA27J. The only exception
is if the number of entries in a row with duplicates is too large for
INTEGER*2 storage. This cannot happen without duplicates because we assume
that n is snall enough to be stored as an INTEGER*2 variable. Therefore we
remove duplicates only in this case and for simplicity in the code do it for

all rows if we need to do it for any.

3.6 MA27K : analysis given pivot sequence

Knowing the pivot sequence makes analysis much easier. There is no
longer any need to calculate and revise the degrees of the variables. The
point at which a generated element matrix will be wanted is known at the
time of its creation, since this will be when the first of its variables (in
pivot order) becomes pivotal. We therefore chain together all generated
elements having the same first variable. At each pivotal step we merge the
index list of the row of the upper triangular part of A (i.e. all the
original element matrices B(z) needed at that step) with the index lists of
all the generated element matrices whose first variable is now pivotal.
Notice that the original matrix rows and the generated index lists are each
searched just once. There is therefore no point in looking for rows
identical to other rows or elements that may be absorbed since any such
tests would involve extra searches of the lists. One consequence is that
every internal node of the tree corresponds to the elimination of a single
variable, which would not be very efficient during factorization. However
this is rectified during the depth-first search (MA27L, see  next

subsection).

As in the case of minimum degree analysis (MA27H), each list is
constructed by merging old lists, =0 there will always be sufficient storage

available, though occasional compresses (by MA27T) may be needed.
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3.7 MA27L : depth—first tree search

The analysis routines (MA27H and MA27K) construct an assembly tree held
in the array IPE as son-father pointers. MA27H also stores variable-
supervariable pointers in IPE. Another array, NV, is used to flag which
variables represent their supervariables (and have generated elements with
the same numerical name). For these variables NV actually holds their

degrees just before their elimination.

A depth-first search, which we describe in detail in Duff and Reid
(1982), requires ready access from a node to all its sons. We therefore
change the way the tree is stored. Another INTEGER array IPS is used for
pointers from the nodes to their 'eldest' sons, and if node i has a younger
brother then IPE(i) is changed to point to him. By making these changes in
two passes, the first for nodes representing variables absorbed into
supervariables and the second for nodes at which eliminations take place, we

ensure that elimination nodes are always elder brothers of the others.

The depth—first search is organized in n stepe. Each begins by moving
from father to son to grandson, etc. as far as possible. The node reached
then represents the next variable in pivot sequence and all the father-son
links are removed immediately after use (to prevent reuse). We then move to
the next younger brother if there is one or failing this go back to the
father. This completes the moves of the step. The ordering of brothers
ensures that when a node with k eliminations is reached, the last k-1 nodes
visited will be nodes without eliminations representing variables absorbed
into a supervariable. It is easy to count their number as we go along. It
is also easy to accumulate the numbers of elimination node sons each node
has. These numbers are needed by the factorization subroutine to tell it
how many generated element matrices to retrieve from the stack at each
stage. If there is just one and the difference in degrees between the
father and his one son equals the number of eliminated wvariables, then the
father and son nodes can be amalgamated without any additional £fill-in.
This amalgamation 1is important for efficiency in the factorize subroutine
when analysis has been performed by MA27K since this subroutine deoes not

absorb variahles into supervariables. It can bhe useful also after MA2J7H
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since not quite all identical rows are recognised (only rows active in a

step are checked).

We also combine two steps if each involves less than NEMIN elimin-
ations, where NEMIN is a parameter in common block MA27F. Our hope was that
the extra efficiency of eliminating several variables together would
compensate for the consequent increase in fill-in. Our experience has been
that any gains when running on the IBM have been slight, although on the
CRAY-1 (see Duff and Reid, 1982) gains ( sometimeg as much as 30%) have been
recorded at a NEMIN level of 8. We therefore set the default value of NEMIN

to 1 for the IBM and 8 for the CRAY-1l, which means that such amalgamations

are not dome on the IBM.

The output from MA27L consists of a pivotal order (set in IPS), the
number of elimination stages (in NSTEPS) and for each stage the number of
variables eliminated (in NE), the number of generated element matrices
assembled from the stack (in NA) and the degree (in ND). This provides
sufficient information for storage and operation counts to be made by MA27M

and for actual factorization later.

3.8 MA27M : computer storage requirements and multiplication counts for

factorization

As we have stated earlier, an important feature of the MA27 package is
that the analysis can be performed in a predetermined amount of storage
(independent of fill-in) and will yield a forecast of the storage
requirements and number of multiplications in a subsequent numerical
factorization. If the matrix is definite and ctorage was not saved by
equivalencing IRN and ICN with IW, the forecast will be exact. For
indefinite systems, experience has shown that little extra storage is
needed and that sometimes the integer storage requirement 1is actually
reduced (see Duff and Reid, 1982). We now discuss subroutine MA27M which

calculates these forecasts.

The information computed by MA27M is returned to the user in common
block MA27E. Values for real and integer storage for the factorization

(both with and without compresses) and for the factors themselves are so
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returned in addition to the number of multiplications required to factorize
a definite matrix. When TW(l) has been equivalenced to IRN(l) to save
storage, MA2Z7M can only provide an estimate for the minimum real and
integer space. These will always be over-estimates, so it is quite safe to
use them in a subsequent factorization, but they are often rather

pessimistic (see Duff and Reid, 1982).

We discussed, in Section 3.1, the method we wuse to discover
automatically whether IRN(l1) has been equivalenced to IW(l). If no
equivalence has been employed, MA27M first scans the original input and
calculates and stores (in array LSTKI) the number of non-zeros in each row
in the upper triangle of the permuted matrix. When an equivalence has been
used the total number of non-zeros in each row (passed from MA27G or MA27J)

is known and this is held in permuted row order in LSTKI.

We then, in the main loop of MA27M, run through the tree nodes at each
stage updating the storage requirements for the factors, the frontal
matrix, the stack and the remaining original matrix rows. A running total

of the number of multiplications required is also kept.

At each tree node we know (from the output in arrays NA, NE and ND
passed from MA27L) the number of stack elements, NSTK, and original rows
assembled, NELIM, the number of eliminations performed, NELIM, and the
order of the asgsembled frontal matrix, NFR. Since at most one element is
stacked at each tree node and the comstruction of the tree by MAZ7L has
ensured that at least one original row is assembled (and eliminated) at
each node, we can store the lengths of the stacked elements and the lengths
of the original rows in the same array (LSTKI). At each node we remove
NSTK elements from the stack, perform NELIM eliminations on a matrix of
order NFR and stack an element of order NFR-NELIM. Since NELIM original
rows are assembled at each step, it is a trivial matter to keep track of

the storage required for the remaining rows by subtraction from a running

total.

Finally, we must ensure that our storage forecasts are sufficient for

the sort routine MA27N, although in the vast majority of cases the storage

required for the actual factorization will dominate.




4., The nmumerical factorization

In this section, we are concerned with the numerical factorization of
the matrix. Calls to the factorization routines must follow calls to the

analysis routines (Section 3) and must precede calls to the solve routines

(Section 5).

The driver subroutine for numerical factorization is MA27B which in
turn uses the auxiliary routines MA27N, NA270 and MAZ27P to effect the

factorization. We show the call tree for numerical factorization in Figure

4.1 and discuss the driver and its auxiliary routines in subsections 4.1 to

4.4.

MA27B
factorize
driver
MAZTN MA270
soTrt factorize

MAZ27P
compress

Figure 4.1 Call tree for numerical factorization
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4.1 MA27B : driver subroutine for numerical factorization

MA27B is the driver subroutine called by the user to factorize a given

matrix, following the analysis of its pattern by MA27A.

The non-zeros may again be in any order so the first tack necessary is
to sort them. This sort is quite similar to that needed by MA27A when the
pivot sequence is known but the added presence of the reals and the fact
that diagonal entries are needed here and not there made it impossible to

use the same code without loss of speed. Therefore a third sort routine,

MA27N, is called here.

Following this, the factorization routine MA270 is called, which
itself makes occasional use of a very simple routine (MA27P) for

compressing the data structure.

As for MA27A, this driver provides two levels of diagnostic printing
on entry and exit and prints error messages. The only printing outside it
is of warning mescages about out-of-range indices in the sort routine MAZ7N
and of unexpected changes in signs of pivots in the factorization routine

MA27C.

We call the order passed to MA27B the "tentative” pivot order because
in the non-definite case it may be modified during numerical factorizatien.
Similarly the number of eliminations at each stage is tentative and may be
changed. However we treat the number of stack assemblies as firm, even
though some may, strictly gpeaking, become redundant. We do not, however,
actually alter any of the arrays output from MA27A. Thus, the analysis
information can be used for a sequence of matrices with the same spatrsity

pattern.

4.2 MAZ7N : sort prior to factorization

The sort prior te numerical factorization, performed by subroutine
MA27N, is similar to that of MA27J although in MA27N we must also sort the

real values and include entries on the diagonal. For convenience later in

MA270, we place the diagonals first in their rows.
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As in MA27J, we first pass through the user's input data copying row
indices to our work array {(IW) and accumulating the number of non-zeros in
each row in the upper triangle of the matrix permuted according to the
tentative pivot order passed to us from MA27A. Entries out—of-range are
flagged with a zero in the appropriate entry of IW, a diagnostic flag is
set, and up to ten warning messages are printed. During this scan diagonal
entries are accumulated and the IW entry for these set to zero also. We do
the accumulation at this stage because it avoide problems later with the
identification of diagonal entries which are not present (we will hold them
as explicit zeros), saves storage and facilitates placing the diagonal

first in each row of the sorted matrix.

As in the MA27G sort, another reason for transferring row indices to
IW and using this work array for the subsequent sort is that the user's
input data may be preserved. We point out, however, that this data is not
needed for any further reasons by MA27B or MA27C (and their auxiliary
routines). Thus, unless there are external reasons for preserving the
input information (for example, should iterative refinement be in use), we
expect the user to associate the input arrays IRN and ICN with parts of IW
(for details see the sgpecification in the appendix). We have taken care to

ensure that the code works correctly in this case.

We then perform an in-place sort in an identical fashion to MA27J only
this time reals as well as integers are moved. Thisg in-place sort does not
involve the diagonals which are placed directly in posgition immediately
afterwards since after the in-place sort the running pointers will point to
the beginning of each row. At the same time as placing the diagonals in
position, the column index (equal to the row index) is flagged negative.
This enables MA270 to avoid generating an inverse permutation array since
the only requirement for such a permutation is to identify the original
index of each row when 1t is assembled. The only complication in placing
the diagonals occurs if the initial number of entries is less than the
sorted number because of missing diagonale. In this case, the in-place
sort is performed without leaving room for the diagonals. The entries in
the sorted matrix are then moved by rows to leave space for the diagonals.

In this sort we need not concern ourselves with duplicate off-diagonal



entries. These will be summed automatically during the factorization MAZ270

and since we do not hold row lengths we are not troubled (as we were in the

MA27J sort) if there are more than n entries in a single row.

Finally the sorted matrix is moved to the end of the arrays in

preparation for the main factorization subroutine MAZ270.

4.3 MA270 : actual factorization

The numerical factorization subroutine, MA270, is very long. We would
have liked to subdivide MA270 but were unable to find a way to do this
without fear of substantial run—time overhead. The difficulty is that the
main loop, which spans almost the whole subroutine, performs one step of
the decomposition (that is all operations associated with one tree node),
and the number of steps can be quite large. Any subdivision therefore
risks a large number of subroutine calls with the overhead this would

involve.

At each major step, we first assemble the frontal matrix, then perform
any eliminations and finally place the remainder of the frontal matrix on

the stack. The movement of data is shown in Figures 4.2 and 4.3.

Fy P /
Previous : FronFal Free ;étéck origiﬂaf matrix
factors matrix space |’/ A /7

Figure 4.2 Assembly of frontal matrix

spacdg

Factors -/>2? Free st%ck original matrix

Figure 4.3 Placing remainder of front on stack
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For the assembly phase we use the information passed from MA2Z7A which
gives at each stage the number of stacked elements assembled (in NSTK)
(which may be zero) and the number of original matrix rows assembled (in
NELIM) which, in the definite case, is equal to the number of eliminations.
The original rows have been ordered by MA27N to pivot order and are stored
with a corresponding integer list of column indices with the first entry,
which will be the diagonal, flagged negative. At a typical stage, say the
kth, we need to assemble the original element matrices B(t) which have not
so far been assembled and which have an entry in any of the next NELIM(k)
rows. These correspond exactly to the non-zeros in the upper-triangular
parts of the rows of A and we will talk of "assembling the rows”. The
stacked elements are held as full upper—-triangular matrices stored by rows.
For each stacked element the integer information consists of the number of
columns (and rows) in the element followed by the column indices. Because
of our depth-first search (see Section 3.7), the NSTK(k) stacked elements
required will be at the top (left hand end in Figures 4.2 and 4.3) of the
stack and so identification of the elements required is particularly
simple. Although the columns in the stacked elements are in pivotal order,
the columns within each original row are not. Since we wish our assembled
frontal matrix to be in tentative pivot order, we do a sort at the same
time as the assembly. We effect this by doing the assembly in two stages,
the first calculates indexing information for the frontal matrix and the
second moves the reals themselves. An added advantage of splitting the
assembly in this way is that the storage required for the frontal matrix is
known at the end of the first stage (which only uses an auxiliary array)
and so we can make sure that there is sufficient space (by data compression
using MA27P, if necessary) before commencing the actual assembly. We call

this first stage the symbolic assembly.

We begin the symbolic assembly with the stacked elementg, if any,
gince their columns are ordered and the assembly does not involve any
repeated searching. During this symbolic assembly we hold the column
indices so far placed in the fronmt in a linked list (in array IW2). A scan
of this linked 1ist in phase with the list of column indices of the next
stacked element is satisfactory at each stage because both lists are in

tentative pivotal order. When performing the subsequent symbolic assembly
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of the original rows, we first check the IW2 entry to see if the column is
in the front and, if it is not, then scan the chain to place it in the
correct position. At the end of the symbolic assembly, we know the size of

the new frontal matrix and its column indices in pivotal order.

We first make sure there is sufficient space in our arrays to hold the
new frontal matrix and perform a very simple compress using MA2JP if
necessary. It is possible that there will still be insufficient space, in
which case an error return is provoked, but the amount of storage to
factorize a definite system was output from MA27A and our experience is
that the requirements for indefinite systems differ only slightly. We then
copy the integer and real information directly into place as indicated in
Figure 4.2. The only subtlety here is that the linked list entries are
converted into relative positions during the integer copy to facilitate the

move of the reals.

We can now choose pivots in the frontal matrix and perform the
eliminations. The maximum number of pivots will be the number of tentative
eliminations plus the number of variables in stacked elements which were
not previously eliminated because of stability considerations. Since we
assembled in tentative pivot order, these rows and columns will come first.
If the user has indicated that the matrix is definite (by setting U { 0.0,
see Section 2.2 of the specification sheet) we do no stability tests but
perform the eliminations as long as the pivot is non-zero and has not
changed sign. A zero pivot (when the matrix has been declared definite)
raises an error condition as does a change in sign when U is set to zero.
When U is set negative, changes in sign are flagged and a warning is

printed but the decomposition continues.

The frontal matrixz, at an intermediate stage, has the form shown in
Figure 4.4. When U > 0 we test the next potential pivot for stability in
the following manner. We first search the whole of the potential pivot row
determining the largest entry in the potential pivot columns (shaded in
Figure 4.4) and the largest entry in the rest (unshaded in Figure 4.4).
Searches of this kind (and swops) are complicated by the fact that we store

only the upper triangle of the frontal matrix and so, except for the first
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Rows already pivoted upon

potential pivots //‘
from these rows ™
and columns

Figure 4.4 Frontal matrix during pivoting and elimination

uneliminated row, we must perform the search in two parts, by colummns for

the lower triangle and by rows for the upper triangle. The diagonal entry

(ajj, say) is then tested against the largest in all the row (a

j° say) to
see if the inequality
> v fan | 4.1
aJJ|> 25 | (4.1)
holds. If so then a,, is used as pivot. TIf not, and entry a, 1is the

largest entry in the first part of row j (shaded region in Figure 4.4), we
then test the 2x2 pivot

a .. .
i3 “ie

(4.2)
¢ u



for stability. To do this test, we first check the inequality

< lajkilU (4.3)
-

and, if thisg is satisfied we scan row to find the largest entry, acm say,

and accept the 2x2 pivot (4.2) if it satisfies the inequality

-1
a,. a.
il e

< Jaggl/v (4.4)
aj( a“

o

The stability test implied by the inequalities (4.3) and (4.4) is exactly
that recommended by Duff et al (1979), who noted that with U in the range

(0,3] it is always possible to find a 1lxl or a 2x2 pivot.

If both the 1x1 and 2x2 pivot from row j fail the stability test, then
our search for a pivot continues from the next potential pivot row. 1If we
are successful in choosing a pivot we symmetrically permute it to the front
of the uneliminated region (shaded in Figure 4.4) before performing the
elimination operation themselves. We then look similarly for further

pivots, cyecling from the first row unsearched last time.

After the eliminations on the frontal matrix are complete, the rows
from which pivots have been chosen will be at the beginning of the frontal
matrix (see Figure 4.3) and s can be left in place as the mnext block pivot
row in the factors. The remainder of the frontal matrix must be placed on
the stack. A data compress may be needed to create room for its associated
integer list. The illustration of data movement in Figure 4.3 is expanded
in Figure 4.5 where the integer storage for each block pivot row is

explicitly shown. The only added complication in this integer storage is
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~ NFRONT -1
T‘ Block pivot

NPIV row. Left in situ.
&

Column indices. For each 2x2
» |lp | pivot the first index is negated

Integer list

t'N‘FRONT : number of columns in block
NPIV : number of rows.

Put on stack.

/

Figure 4.5 Disposition of frontal matrix

that, if NPIV is 1, it is omitted and the list of column indices is
preceded only by the number of rows (negated to indicate that NPIV is 1).
It is important, when comparing MA27 to other codes, to realise that this
is all the integer information that needs to be preserved between calls to
MA27B and subsequent calls to MA27C. There are no pointer arrays or

permutation vectors required.

Once the frontal matrix has been disposed of as shown in Figure 4.5,

we are ready to continue with further assemblies.

Notice that any null rows or columns or any 2ero block will
effectively be swept to the end of the factored form and will not ever need
to be stored. The total number of pivots (NTOTPV) will, in this case, be
less than n, the order of the system, but the decomposition will be valid

for the nonsingular submatrix of order NTOTFV.



4.4 MA27P : compress data structure during factorization

The subroutine, MA27P, for compressing the data structure during

factorization is even simpler than that used by the analyse routines.

As we discussed in Section 4.3, the only compress necessary is to move
the data in the stacked elements to overwrite original rows which have

already been treated. We illustrate this in Figure 4.6.

Factors Frontal |Free Stackeva,ﬁgr}gral rows

matrix space |element Iréﬁté’ Untreated

move ata.

Figure 4.6 Illustration of compression during factorization

Since we do not use any pointers in the data structure the relative
position of the data within the array in Figure 4.6 is unimportant. Thus a
simple move {(in reverse order to avoid potential overwriting) is all that

is required.

The data structures for reals and integers (and when compresses are
required on them) are quite independent. We choose to implement compresses

for both types in the one subroutine although the code for each 1s quite

separate.



5. Solution of a set of equations

After the analysis and numerical factorization of the coefficient
matrix by MA27A and MA27B respectively, we now use the factors which can be
written

PAP = U'DU (5.1)
to solve the system

Ax=D (5.2)

The soiution to (5.2) using the decomposition (5.1) is effected in two

steps. The first (forward substitution) solves the system
vy = PD | (5.3)
and the second (back substitution) solves the system

D U (Px) =y (5.4)

Because the original column indices are held in the integer information for
the factors the permutations represented by the matrix P in (5.3) and (5.4)
will be performed implicitly when accessing components of b or storing

components of x. Thus we do not need any storage for P and so do not refer

again to the permutations in this section.

The driver subroutine called by the user for the solve entry is MAZ7C

and the call tree for this phase of the computation is shown in Figure 5.1.

- 3 -



MA27C

solve

driver
MA27Q MAZ2T7R
forward back
substitution sibstitution

Figure 5.1 Call tree from MA27C

5.1 MA27C : driver subroutine for solution of equations

The driver subroutine MA27C is very simple. As for the other drivers,
it provides two levels of optional diagnostic printing on entry and exit.
Tt checks for the degenerate case that A is a zero matrix and, in this
case, sets the solution to the zero vector. Otherwise it calls MA27Q for
forward substitution and MA27R for back substitution. These subroutines

have no error returns or diagnostic printing.

5.2 MA27Q : forward substitution

Subroutine MA27Q uses the factors produced by MA270 to effect the

forward substitution. That is, MA27Q solves the system

where the solution, ¥y, overwrites b held in array RHS. The subroutine
performs the solution a block pivot row at a time, the number of passes

through the main loop (NBLK) being equal to the number of block pivots.

For each block pivot. (stored in A and IW), we first dete;mine whether
it is computationally better to use direct or indirect addressing in the
jnnermost loop. For direct addressing we first load an auxiliary vector
(W) with the components of RHS which correspond to columns in the block
pivot row. Computations for each row of the block pivot row are then

performed on W using direct addressing. Finally, W is copied back to the
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appropriate components of RHS. When using indirect addressing, operations
in the inner loop are performed on array entries of RHS itself, the
indirect addressing being required to identify the appropriate entries in
RHS. Since direct addressing requires the load and unload of W only once
for the whole block pivot, the choice of whether direct or indirect
addressing is faster will depend both on the number of rows in the block
pivot (NPIV) as well as the number of columns (LIELL). This choice will
also be machine dependent. For example, a computer like the CRAY~1 will
execute loops involving only direct addressing much faster than if indirect
addressing is present. The IBM 3033 is also faster when all addressing is
direct but less markedly so than the CRAY-1. We report on experiments on

these two computers in Duff and Reid (1982).

To avoid machine dependence in the main body of the code, we hold
information in the array IFRLVL of common block MA27F to determine whether
direct or indirect addressing is faster. This can be reset by the user to
match the characteristics of the machine being used. Our experience is
that the break-even points depend both on the number of eliminations in the
block and on its number of columns. We therefore hold in IFRLVL(i), the
minimum number of columns required in the block pivot for direct addressing
to be better when the number of block pivot rows is equal to i, 1 =
1,2,...10. If there are more than 10 block pivot rows, we use IFRLVL(10)
in our test. In the main Harwell code for use on the IBM the default
values for TFRLVL(i), i = 1,2,...10 have been set, in a block data
subprogram, to:

32639, 32639, 32639, 32639, 14, 9, &, 8, 9, 10
where 32639 is the value of IOVFLO and means that indirect addressing 1is

always used when NPIV ¢ 4.

For each block pivot we thus first test to see whether direct or
indirect addressing in the innermost loop is preferable. The code for each
form of addressing is quite independent. In each case we first determine
(by looking for negative flags in IW) whether the current pivot is 1xl or
2%x? and then use an innermost loop appropriate to the pivot size. Since
our experience is that block pivots often have only one row, we avoid an

added loop when using indirect addressing by performing the operations for



only one pivot at each pass through the main loop. A simple check (on
NPIV) at the beginning of the main loop determines whether we fetch the
next block pivot row or continue processing the present one. Because we
wish to load and unload W only once when using direct addressing, there is

a loop on the nmumber of pivots in the bleck in this case.

When we scan A and IW to identify and use each block pivot row in
turn, we set an auxiliary pointer array (IW2) to point to the first entry
in IW corresponding to each block pivot row and record the position of the
last entry in the factors held in A (in the scalar LATOP). We do this to
facilitate MA27R which requires access to block pivot rows in reverse

order.

5.3 MA27R : back substitution

Subroutine MAZ7R uses the matrix factors in A and IW to solve the

sy stem

where the solution x overwrites the output y from MA27Q in array RHE. As
in MA27Q, the subroutine performs the solution a block pivot row at a time

this time using the factors in reverse corder.

Again we first choose whether direct or indirect addressing in the
innermost loop is better by comparing the number of columns in the block
pivot with an entry in IFRLVL appropriate to the number of rows in the
block pivot. Because the innermost loop is a scalar product rather than an
addition of a multiple of one vector to another, we cannot use the same
IFRLVL values as we used for the tests in MA27Q. We store appropriate
values in TFRLVL(i), i = 11,12,...20 and, if there are NPIV rows in the

block pivot, we perform the test against entry 10 + min(10,NPIV) of IFRLVL.
The default values for IFRLVL{i), i = 11,12,...20 for the IBM are
32639, 32639, 32639, 32639, 24, 11, 9, 8, 9, 10.
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As in MA27Q, we use separate innmermost loops for ixl or 2x2 pivots

and, when using indirect addressing, loop only on the main loop if there is

more than one row in the block pivot. At any stage, we know the position

of the last non-zero in the current block pivot row (APO5-1) and can access

the appropriate indexing information directly from the array IWZ set by

MA27Q.

References

puff, I.S., Munksgaard, N., Nielsen, H.B. and Reid, J.K. (1979).
Direct solution of sets of linear equations whose matrix is sparse,

symmetric and indefinite. J. Inst. Maths. Applics. 23 pp 235-250.

Duff, I.5. and Reid, J.K. (1982). The multifrontal solution of

indefinite sparse symmetric linear systems. Harwell Report CSS122.

Gustavson, F.G. (1978). Two fast algorithms for sparse matrices :
multiplication and permuted transposition. ACM Trans. Math. Software

4 pp 250-269.

Ryder, B.G. (1974). The PFORT verifier. Software Practice and

Experience 4 pp 359-377.

~ 38 -



HABWIELIL

MA27A

SUBROUTINE LIBRARY SPECIFICATION

6th July 1982

1 SUMMARY

To solve a sparse symmetric system of linear equations.
(Given an mxn sparse SYmmetric matrix A = iaU! and an
n-vector b. this subroutine soives the system Ax=b. The
matrix A need not be definite.

The method used is a direct method based on a sparse
variant of Gaussian elimination and is discussed further by
Duff and Reid, AERE R.10533 (1982).

ATTRIBUTES —  Versions: MA27A, MA2IAD
Language: Fortran (standard available). Date: June 1982.
Size: 34,400 bytes; 2,920 cards. Origin: 1.S.Duff and
J.K.Reid, Harwell. Conditions on external use: (i), (ii), (iii)
and (iv).

2 HOW TO USE THE ROUTINE

2.1 Argument lists and calling scquences
‘There are three entries:

(a) MA27A/AD accepts the pattern of A and chooses
pivots for Gaussian elimination using & selection
criterion to preserve sparsity and subsequently
constructs  subsidiary  information for actual
factorization by MA27B/BD. The user may. input his
own pivot sequence in which case only the necessary
information for MA27B/BD will be generated.

(b) MA27B/BD factorizes a matrix A using the
information from a previous call to MA27A/AD. The
actusal pivot sequence used may differ slightly from that
produced by MA27A/AD if A is not definite.

(c) MA2IC/CD uses the factors generated by
MA27B/BD to solve a system of equations Ax=b.

A call to MA27C/CD must be preceded by a call to
MAZ27B/BD which in turn must be preceded by a call to
MA27A/AD. Since the information passed from one
subroutine to the next is not corrupted by the second, several
calls to MA27B/BD for matrices with the same sparsity
pattern but different values may follow a single call to
MAZ27A/AD, and similarly MA27C/CD can be used
repeatedly to solve for different right hand sides b.

To perform symbolic manipulations

The single precision version:
CALL MAZTA(N,NZ,IRN,ICN IW LIW,
* IKEEP,IW1 NSTEPS,IFLAG)

The double precision version:
CALL MA27AD(N NZ IRN,ICN.IW.LIW,
* IKEEP . IW1 NSTEPS, IFLAG,

N is an INTEGER variabie which must be set by the user
to the order r of the matrix A. It is not altered by the
subroutine. Restriction {IBM version): 1<n<32635.

NZ is an INTEGER variable which must be set by the user
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to the number of non-zeros being input. It is not altered
by the subroutine. Restriction: NZ 2 0.

IRN.ICK are INTEGER®2 (or INTEGER for Fortran 66
version) arrays of length NZ. The user must set them
so that each off-diagonal non-zero a; is represented by
IRN{k}=i and ICN(k)=j or by IRN{k)=;/ and
ICN(k)=i. These arrays will be unaltered by the
subroutine unless the user wishes to conserve storage
which can be done by equivalencing IRN(1) to TW(1}
and ICN(1) to IW(k), k > NZ.

IW is an INTEGER*2 (or INTEGER for Fortran 66
version} srray of length LIW. This is used as
workspace by the subroutine. Its length must be at
least 2*NZ+3*N+1 (or NZ+3*N+1 if the pivot order
is specified in IKEEP), but we recommend that it
should be at least 20% greater than this (sse NCMPA
in section 2.2).

LIW is an INTEGER variable. It must be set by the user to
the length of array IW and is not altered by the
subroutine.

IKEEP is an INTEGER®*2 (or INTEGER for Fortran 66
version) areay of length 3N. It need not be set by the
user and must be preserved between a call to
MAZ27A/AD and subsequent calls to MA27B/BD, If
the user wishes to input his own permutation, the
position of variable i in the pivot order should be
placed in IKEEP(), i=1,2,...,n and IFLAG should be
set to 1. Note that the given order may be replaced by
another that gives virtually identical numerical results.

IWl is an INTEGER array of length 2N. It is used as
workspace by the subroutine.

NSTEFS is an INTEGER variable. It need not be set by the
user on input and should be passed unchanged when
later calling MA27B/BD.

IFLAG is an INTEGER variable which the user must set to
zero if he wishes a suitable pivot order to be chosen
automatically or to 1 if he wishes the pivot order he has
set in IKEEP to be used. On exit from MA27A/AD, a
value of zero indicates that the subroutine has
performed successfully. For non-zero values, see
section 2.3.

To factorize a matrix

The single precision version:
CALL MA27B(N ,NZ.IRN.ICN A LA IW LIW,
* IKEEF ,NSTEPS .MAXFRT ,IW1,IFLAG)

The double precision version:
CALL MAZ7BD(N.NZ, IRN, ICN,A. LA IW LIW,
- IKEEP .NSTEPS .MAXFRT.IW1, IFLAG)

N is an INTEGER variable which must be set by the user
o the order n of the matrix A. It is not altered by the
subroutine. Restriction (IBM version): 1<n<32639.

NZ is an INTEGER variable which must be set by the user
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to the number of entries in the matrix A. It is not
altered by the subroutine. Restriction: NZ > 0.
IRN,ICN.,A. IRN and ICN arc INTEGER®*2 (or
INTEGER for Fortran 66 version) arrays of length
NZ and A is a REAL (or DOUBLE PRECISION Sfor
D version) array of length LA. These must be set by
the user to hold the non-zeros. A diagonal non-zero a;
is held as A(k)=a,, IRN(k)=ICN(k)=i and a pair of
off-diagonal non-zeros a;=a is held as A(k)zaU and
IRN(k )=i, ICN(k)=/ or vicc-versa. Multiple entries are
summed and any with IRN(k) or ICN(k) out of range
are ignored. On cxit array A will hold the non-zero
entries of the factors of the matrix A. These entries in
A must be preserved by the user between calls to this
subroutine and subsequent calls to MA27C/CD. IRN
and ICN will be unaitered by the subroutine unless the
user wishes to conserve storage by eguivalencing
IRN(1) to TW(1) and ICN(1) to IW(k), k > NZ.

LA is an INTEGER variable which must be set by the user
to the length of array A. It must be at least as great as
NRLNEC of common block MA27E/ED (see section
2.2), set by MA27A/AD. 1t is advisabie to allow 2
slightly greater value because the use of numerical
pivoting might incrcase storage requirements
marginally. It is not altered by the subroutine.

IF is an INTEGER®2 (or INTEGER for Fortran 66

version) array of length at least as great as NIRNEC
as output from MA27A/AD in common block
MA27E/ED (see section 2.2). A slightly greater value
is recommended because numerical pivoting may
increase storage requirements marginally. IW, which
need not be set by the user, is used-as workspace by
MA27B/BD and on exit holds integer indexing
information on the matrix factors. It must be preserved
by the user between calls to this subroutine and
MA27C/CD.

LIW is an INTEGER variable which must be set by the
user to the length of array IW. It is not altered by
MA27B/BD.

IKEEP is an INTEGER®*Z (or INTEGER jfor Fortran 66
version) array of length 3N which must be passed
unchanged since the last call to MA27A/AD. It is not
altered by MA27B/BD.

NSTEPS is an INTEGER variable which must be passed
unchanged since the last calt to MA27A/AD. It is not
altered by MA27B/BD.

MAXFRT is an INTEGER variable which need not be set by
the user and should be passed unchanged to
subsequent calls of MA27C/CD.

is an INTEGER array of length N. [t is used as

workspace by the subroutine.

IFLAG is an INTEGER variable. On exit from
MA2TA/AD, a value of zero indicates that the
subroutine has performed successfully. For non-zero
values, see section 2.3.

w1

To solve equations using the factors from MAZ27B/BD

The single precision version.
CALL MAZ7C(N A LA I® LIW, W MAXFRT,
* RES.IW1 NSTEPS)
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The double precision version:
CALL MA27CD(N,A. LA, IW LIW, W MAXFRT,
* RHS, IWl,NSTEPS}
N is an INTEGER variable which must be set by the user
to the order n of the matrix A. It is not altered by the
subroutine.

A is a REAL array (or DOUBLE PRECISION Jor D
version} of length LA which must be unchanged since
the last call 1o MA27B/BD. It is not altered by the
subroutine.

LA is an INTEGER variable which must be set by the user
to the length of array A. It is not altered by the
subroutine.

IW is an INTEGER®2 (or INTEGER for Fortran 66
version) array of length LIW which must be unchanged
since the last call to MA27B/BD. It is not altered by
the subroutine.

is an INTEGER variable which must be set by the
user to the length of array TW. It is not altered by the
subroutine.

W is a REAL array (or DOUBLE PRECISION Jor D
version) of length MAXFRT as output from
MA27B/BD (see section 2.2). This value will always be
less than n. W is used as workspace by MA27C/CD.

LIW

MAXFRT is an INTEGER variable which must be passed

unchanged since the last call to MA27B/BD. It is not
altered by MA27C/CD.

RHS is a REAL array (or DOUBLE PRECISION for D
version) of length n. On entry, RHS(i) must hold the it
component of the right hand side of the equations being
solved. On exit it will be equal to the corresponding
entry of the solution vector.

is an INTEGER array of length NSTEPS as output
from MA27A/AD. This value will be at most n. IW1 is
used as workspace by MAZ7C/CD.

NSTEPS is an INTEGER variable which must be passed
unchanged since the last call to MA27A/AD. It is not
altered by the subroutine.

Iwl

2.2 Common blocks used

There are three common blocks used by the MAZ27
routines. The first one, MA27D/DD, allows the user to
input parameters to control the solution process and
diagnostic printing and the second, MA27E/ED, provides
information on the decomposition. The third, MA27F/FD,
allows control of certain system dependent parameters and
is unlikely to be of concern to many users.

The first common block can be declared as:

The single precision version:
COMMON/MAZ27D/U ,LP ,MP ,LDIAG

The double precision version:
COMMON/MAZ7DD/U . LP MP ,LDIAG

where all the values are given default values by a block data
subprogram. None of these values s altered by the
subroutines.

U is a REAL (or DOUBLE PRECISION jor D version)
variable which is used by the subroutine to control
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numerical pivoting. Values greater than 0.5 are treated
as 0.5 and less than —0.5 as -0.5. Its default value is
0.1. If U is positive, numerical pivoting will be
performed. If U is non-positive, no pivoting will be
performed and the subroutine will fail if a zero pivot is
encountered. If U is non-positive and not all pivots are
of the same sign a flag (see section 2.3) will be set and
the factorization will continue if U is zero and will exit
immediately a sign change is detected if U is less than
zero.

If the system is definite, then setting U 10 zero will
decrease the factorization time while still providing a
stable decomposiuon. For problems requinng greater
than average numerical care a higher value than the
default would be advisable.

LP is an INTEGER variable used by the subroutines as
the output stream for error messages. If it is set to 2¢ero
these messages will be suppressed. The default value is
6.

MP is an INTEGER variable used by the subroutines as
the output stream for diagnostic printing and for
warning messages. If it is set to zero then messages are
suppressed. The default value is 6.

LDIAG is an INTEGER variable used by the subroutines to
control diagnostic printing. If LDIAG is equal to zero
(the defaukt), no diagnostic printing will be produced, a
value of 1 will print scalar parameters (both in
argument lists and in common blocks) and a few
entries of array parameters on entry and exit from each
subroutine while LDIAG equal to 2 will print all
parameter valucs on entry and exit.

The second common block is:

The single precision version.
COMMON /MA27E/OPS, IERROR ,NRLTOT ,NIRTOT,
*NRLNEC ,NIRNEC , NRLADU , NIRADU,NRLBDU,
*NIRBDU ,NCMPA ,NCMPEBR ,NCMPBI ,NTWO

The double precision version:
COMMON/MA27ED/OPS , IERROR ,NRLTOT ,NIRTOT,
*NRLNEC ,NIRNEC ,NRLADU ,NIRADU,NRLEDU,
*NIRBDU,NCMPA ,NCMPBR ,NCMPBI ,NTWO

OPS is a REAL (or DOUBLE PRECISION for D version)
variable. On output from MA27A/AD, OPS will be set
to the number of multiply-add pairs of operations
required by the factorization if no pivoting is
performed. Numerical pivoting in MA27B/BD may
increase the number of operations slightly.

IERROR is an INTEGER variable. In the case of an error
condition, extra information is placed here. For details,
see section 2.3.

NRLTOT ,NIRTOT are INTEGER variables. On exit from
MA27TA/AD, they give the total amount of REAL (or
DOUBLE PRECISION for the D version) and
INTEGER*2 (or INTEGER for Fortran 66 version)
words respectively required for a successful completion
of MA27B/BD without the need for data compression
provided no numerical pivoting is performed. The
actual amount required may be higher because of
numerical pivoting. but probably not by more than 3%.

NRLNEC ,NIRNEC are INTEGER variables. On exit from
MA27A/AD, they give the amount of REAL (or

h Jui
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DOUBLE PRECISION for the D version) and
INTEGER*2 (or INTEGER for Fortran 66 version)
words required respectively for successful completion
of MAZ27B/BD allowing data compression (see
NCMPBR), again provided no numerical pivoting is
performed. Numerical pivoting may cause a higher
value to be required, but probably not by more than
3%. If storage was conserved by equivalencing IW(I)
with IRN{1). NRLNEC and NIRNEC cannot be
calculated exactly but instead an upper bound will be
retuned. Experience has shown that this can
overestimate the exact values by 50% although the
tightness of the bound 15 very probiem dependent. For
example, a tight bound will generally be obtained if
there are many more non-zeros in the factors than in
the input matrix.

NRLADU ,NIRADU are INTEGER variables. On exit from
MA27A/AD, they give the number of REAL (or
'DOUBLE PRECISION for the D version) and
INTEGER®*2 (or INTEGER for Fortran 66 version)
words required to hold the matrix factors if no
numerical pivoting is performed by MA27B/BD. -
Numerical pivoting may change this slightly.

NRLBDU,NIRBDU are INTEGER variables. On exit from
MAZ27B/BD, they give the amount of REAL (or
DOUBLE PRECISION for the D version) and
INTEGER*? (or INTEGER for Fortran 66 version)
words actually used to hold the factorization.

NCMPA is an INTEGER variable. On exit from
MA27A/AD, NCMPA will hold the number of
compresses of the internat data structure performed by
MA27A/AD. If this is high (say > 10), the performance
of MA27A/AD may be improved by increasing the
length of array IW.

NCMPBR ,NCMPBI are INTEGER variables. On exit from
MAZ27B/BD, they will hold the number of compresses
of the real and integer data structure respectively
required by the factorization. If either of these is high
(say > 10), then the speed of the factorization may be
increased by allocating more space to the arrays A or
IW as appropriate.

NTWO is an INTEGER variable. On exit from MA27B/BD,
this gives the mumber of 2x2 pivots used during the
factorization.

Although the third common block is not of interest to the
general user, it is discussed more fully by Duff and Reid
(AERE R-10533, 1982). If the user is working in an
environment where all common blocks must be declared in
the calling program, a suitable declaration would be:

The single precision version:
COMMON/MARTF /IDUMMY (22)

The double precision version:
COMMON/MARTFD/IDUMMY {22

where

IDUMMY is an INTEGER array of length 22.

2.3 Error diagnostics

A successful return from MA27A/AD or MA2TB/BD is
indicated by a value of IFLAG equal to zero. There are no
error returns from MA27C/CD. Possible non-zero values
for IFLLAG arc given below. In each case an identifying
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message is cutput on unit LP (errors) or MP (warnings).

1 Value of N out of range. Either N < 1 or N> 32639
(IBM version only) (MA27A/AD and MA27B/BD
entries).

9 Value of NZ out of range. NZ < 0. (MA27A/AD and
MA27B/BD entries).

~3 Failure due to insufficient space allocated to array ITW
(MA27A/AD and MA27B/BD entries). [ERROR in
COMMON is set 1o a value that may suffice

_4 Failure due to insufficient space aliocated 1o arra} A
(MA27B/BD entry oniy). IERROR in COMMON v
se1 to a value that may suffice.

-5 Matrix is singular (MA27B/BD entry only). IERROR
in COMMON is set to the pivot step at which
singularity was detected.

—6 A change of sign of pivots has been detected when U
was negative. [ERROR in COMMON is set to the
pivot step at which the change was detected.
(MAZ27B/BD entry only).

A positive flag value is associated with a warning
message which will be output on unit MP.

+1 Index (in IRN or ICN) out of range. Action taken by
subroutine is to ignore any such entries and continué
(MA27A/AD and MA27B/BD entries). IERROR in
COMMON is set to the number of faulty entries.
Details of the first ten are printed on unit MP.

+2 Pivots have different signs when factorizing a
supposedly definite matrix (input value of U is Zero)
(MA27B/BD entry only). IERROR in COMMON is
set to the number of sign changes. Note that this
warning will overwrite an IFLAG=1 warming. Details
of the first ten are printed on unit MP.

+3 Matrix is rank deficient. In this case, a decomposition
will still have been produced which will enable the
subsequent  solution  of consistent  equations
{MA27B/BD entry only). [ERROR in COMMON wil)
be set to the rank of the matrix. Note that this Wwarning
will overwrite an IFLAG=1 or IFLAG=2 warning.

3 GENERAL INFORMATION

Use of common: The subroutines use common blocks
MA27TD/DD, MA27E/ED, MAZ27F/FD (see section
2.2).

Workspace:

MA2TA/AD:
IW (INTEGER*2 ) of length L1W
W1 { INTEGER } of length 2*N

4 MA2TA

MAZ27B/BD:
[W1 ( INTEGER ) of length N

MA27C/CD:
W ( REAL ({(or DOUBLE PRECISION for D
version) ) of length at most N
W1 ( INTEGER ) of length at most N

Other routines: All the subroutines called by the principal
subroutines are in the MA27 package. They are called
MA27G/GD.  MARYTH/HD MA271,/ID. MA27TJ/JD
MAZTK /KL MAZT L /LI MADTM/MD . MAZTN/KD
MAZ7G/0D MA27P/PD. MAZ7TQ/QL, MAZ7R/RD

Input/output: Error  warning and diagnoslic messages
only. Error messages on uni LP and warning and
diagnostic messages on unj MP. These have defauli
value 6. and printing of these messages is suppressed if
LP or MP is set to 0.

Restrictions:
NxzI,
N < 32639 (IBM version),
NZ > 0.

Portability: 1f all INTEGER*2 declarations are changed to
INTEGER, the resulting subroutines satisfy the
PFORT verifier, a portable Fortran closely
approximating the ANSI standard of 1966. In this case,
the restriction n<32639 (INTEGER*2 limit under
WATFIV) is removed.

4 METHOD
A version of sparse Gaussian elimination is used.

The MA27A/AD entry (with IFLAG=0) chooses pivots
from the diagonal using the minimum degree criterion
employing a generalized element model of the elimination
thus avoiding the need to store the filled-in pattern explicitly.
The elimination is represented as an assembly and
elimination tree with the order of elimination determined by
a depth first search of the tree.

The MA27B/BD entry factorizes the matrix by using the
assembly and  elimination ordering generated by
MA27A/AD. At each stage in the multifrontal approach
pivoting and elimination are performed on full submatrices
and, when diagonal 1x1 pivots would be numerically
unstable. 2x?2 diagonal blocks are used. Thus MA27B/BD
can be used 1o factor indefinite systerns and will perform
well on machines capable of vectorization.

The MA27C/CD entry uses the factors from MA27B/BD
to solve systems of equations either by loading the
appropriate parts of the vectors into an array of the current
front-size and using full matrix code or by indirect
addressing at each stage. whichever performs better.

A fuller account of this method is given by Duff and Reid
(AERE-R.10533, 1982).
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5 EXAMPLE OF USE

We illustrate the use of the package on the solution of the single set of equations

23 8
304 6 45
415 x = | 31
50 15
6 1 17

We have set LDIAG 1o 2 so that all the information passed to and from the package Is displaved in this small case.

Note that this example does not illustrate all the facilities.

Program

C SIMPLE EXAMPLE OF USE OF MAZ7 PACKAGE
INTEGER*2 IRN{1@; ICN{10) . IW(40).IKEEF{15)
INTEGER IW1l(1¢)

DOUBLE PRECISICN A{3@),W({5) RHS(5),U
COMMON /MA27DD/ U,LP,MP,LDIAG

loRe

STORE ARRAY LENGTHS
LIW=4@
LA=30

o Re!

ASK FOR FULL PRINTING FROM MAZ7 PACKAGE
LDIAG=2

SET IFLAG TO INDICATE PIVOT SEQUENCE IS TO BE FOUND EBY MAR7AD
IFLAG=0¢

Qo

lo R

READ MATRIX AND RIGHT-HAND SIDE
READ(5,10)N,NZ
16 FORMAT(2I2 F4.1)
READ(5,10) (ERN{I} ,ICN(I} A(I).I=1,NZ)
READ(5.20) (RHS{1},I=1.N)
20 FORMAT{5F4.1)
C
C ANALYZE SPARSITY PATTERN
CALL MAZ7AD(N,NZ,IRN, ICN,IW,LIW,IKEEP,IWl NSTEPS,IFLAG)
C
C FACTORIZE MATRIX
CALL MA27BD(N.NZ,6IRN,ICN,A LA IW,LIW,L IKEEP, 6 NSTEFS MAXFRT,
* IW1l,IFLAG)
C
C SOLVE THE EQUATIONS
CALL MA27CD(N.A,LA,IW,LIW, W MAXFRT RHS.IW1 NSTEFPS)
STOP
END

Data

DWW MN N ==

(SN RS I B A R
SR Bl o) BV N U I b4
Teooosos

E.
Output

ENTERING MA27AD WITH N NZ LI¥ IFLAC

7 4¢ o
i 1 2 2 3
2 4 5 5

o

MATRIX NOL-ZERCS

€
(&}
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LEAVING MA27AD WITH NSTEPS IFLAG 0FS IERROR NRLTOT NIRTOT

4 ] 4. 2 19 25
NRLNEC NIRNEC NRLADU NIRADU NCMPA
14 29 9 14 @
IKEEP(..,1l)= 5 4 3 2 1
IKEEFP{..2)= 1 1 1 2
IKEEP( . ,3}= @ ] 2 1
ENTERING MAZ7BD WITH N N2 LA LI® NSTEFS u
o T k18 4C 4 ¢ 1¢
MATRIX NON-ZERQS 0 2000D 01 1 1 0.3000C ]
¢ 40000 €L 3 Z ¢ 600er G-
¢ 100EL . 2 Z £ &oeol C.
¢. 12000 0. ] 5
IKEEP( . ,1)= o 4 3 2 1
IKEEP(. ,2)= 1 1 1 2
IKEEP{ . ,3}= (] ® p 1
LEAVING MA27BD WITH MAXFRT IFLAG NRLBDU NIRRDU NCMPBR NCMPEI
3 i 19 13 4] 0
BLOCK PIVQOT = 1 NROWS = 1 NCOLS = 2

COLUMN INDICES = 5 2
REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE
1.00000009D 00 —6.90000000D 00
BLOCK PIVOT = 2 NROWS =
COLUMN INDICES = -4 3 2
REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE
-4.00000000D-02 2.00000000D-01 -8.00000000D-01
0. 00000000D-P1 —0.00000000D-01
BLOCK FPIVOT = 3 NROWS =
COLUMN INDICES = 2 1
REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE
-2 . TTTTT7T8D-92 8.33333333D-02
4,44444444D-91

2 NCOLS = 3

2 NCOLS = 2

ENTERING MAR27CD WITH N LA LIW MAXFRT NSTEPS
3 30 40 3 4
BLOCK PIVOT = 1 NROWS = 1 NCOLS = 2

COLUMN INDICES = 5 2

REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE
1.00000000D 00 —6.00000000D 00

BLOCK PIVOT = 2 NROWS =

COLUMN INDICES = -4 3 2

REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE

—4.00000000D-02 2.0000000¢D-01 -8 .00000000D-01
2 0000000OD-01 —-0.00020000D-01

BLOCK PIVOT = 3 NROWS =

COLUMN INDICES = 2 1

REAL ENTRIES .. EACH ROW STARTS ON A NEW LINE

—p T7TTTTTeD-02  8.33333333D-02
4.44444444D-01

RHS 8.0000000D 00 4.500000¢D 01

2 NCOLS = 3

2 NCOLS = 2

3.1900000D 01

LEAVIRG MA27CD WITH

RHS 1.0000000D 00 2 000OQ00D 00 3. 000000¢D P06 4.00000000 00U
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NTWO IERROR
1

1.5¢00000D 01

CErY =
R S )

4

1.7¢p00e0D 21

5 poo000ED 09
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