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1. Introduction

The problem considered is the minimization of a function f (x) of n

variables x when the function has a form that allows the gradient £ and the

hessian G to be evaluated
o -P

i.e. gA = — i=1,2,...,n

92f
Gij ~ 9x.3x. i,j=1,2,...,n .

-*- J

The basic approach to such an optimization problem is to use Newton's

method which generates the iterates

x ( k + l ) = x ( k ) - [G(x ( k ) ) ] - 1 £ (x ( k ) ) . (1.1)

In one variable this reduces to Newton-Raphson iteration to find a zero

of g(x). More generally x is a stationary point of the quadratic

approximation

f(x) « f (x ( k ) ) + (x-x(k)) g(x (k)) + ^(x-x (k))TG(x-x (k)) o (1.2)

-

There are two major difficulties when using this iteration, one

occurs because x may lie outside the region where the quadratic

(k+l) (k)approximation is accurate, in which case it may be that f (x ) ^ f (x ).

The other occurs when G is not positive definite in which case, even

though the quadratic approximation is accurate, the move to a stationary

point may be in a direction in which f increases.

To counteract these difficulties it is necessary to generate-a downhill

Tdirection _s (i.e. £ _s < 0), whereupon taking a sufficiently small step in

this direction ensures that the value of the objective function is reduced

at each iteration.

In section 2 various published strategies are described, together with

their drawbacks. Subsequently the paper is devoted to the derivation of an
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algorithm that overcomes many of the objections to other methods. Some

numerical evidence is presented to demonstrate the success of the algorithm0

2. Algorithms

Five algorithms presently available are those due to Goldfeld,

Quandt and Trotter (1966), Greenstadt (1967), Fiaccio and McCormick (1968),

Matthews and Davies (1971), and Gill and Murray (1972). As the algorithm

described in this paper is a development of that due to Goldfeld etal , ,

particular attention is given to that algorithm.

In the GQT algorithm a multiple of the identity matrix is added to G,

the multiple being chosen to satisfy the conditions

i) (G+XI) is positive definite

ii) I I & I L - IKG+XI)"1 g\\-< d . (2.1)

Where d, a restriction on the step size, is updated after each iteration

with the intention that the next step will be restricted to a region in

which the quadratic approximation is expected to be applicable. The

method generates the iterates

8 =

= x ( k ) - 6 . (2.2)

(k+1) (k)If at any time f (x ) - f (x ) is less than a small multiple p of the

reduction predicted by the quadratic approximation (1.2), d is reduced,

( k+1 )
x is discarded and the iteration repeated. A value of p used in

practice is 0.0001. (It should be noted that G,£ and _8 are all functions

(k)
of x but the superscript is omitted).

The optimal value of X is the smallest non-negative number that is

consistent with conditions (201). Therefore the following method for

calculating X is suitable when the eigenvalues and eigenvectors of G are

known. Denoting the eigenvalues by (j.1 , |j_, .. . ,|_i ( f i - 4 n . if i ,£ j) , and^ n J- j

the eigenvectors by e. »^2»* • •»— n' we nave
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n
(G+XI)~1 = V — -ir- e. eT , (2.3)~ -

n eT

6 = V -~ e. (2.4)— / ja.+X —i

1=1

and T

1=1

A useful estimate of X Is

T
.

X = max f max f —4-— - H- »' °

and it can be shown tbat X is never an over-estimate of X. The estimateo

can be refined by applying Newton-Raphson iteration to the equation

This method is satisfactory except when simultaneously (i is negative and

Te^ is zero, corresponding to zero gradient and negative curvature in

the direction ^1 . In this case a consequence of (2.6) is that (G+X I) may

be singular, however 6(X ) can be calculated by ignoring the first— o

component of _6. If now | j_5(X ) | | > d the normal refinement can take place,

otherwise a satisfactory solution is to take a step of norm d in the direction

of e..—1

The ranaining problem, that of updating d, is daalt with extensively

in section 80

A study of equation (2.4) shows that an attribute of the method is that

the step _6 is biased towards directions in which the gradient is large, but

as well as this the addition of X weights the step in favour of the



directions with negative curvature. In fact Goldfeld et al.(1966) prove

that the step -MX) minimizes the quadratic

Q(x+§) = f (x) + J5 g + ^6 G_6 (2.8)

subject to the restriction 1.6 [ ^ |_6(X) | .

In an alternative method due to Greenstadt a positive semi-definite

approximation to G is found by replacing each eigenvalue by its modulus.

Thus n

Z T
|X. e.e
i -1-1

A search direction s_ = -[G*] £ is calculated and x is at the

(k)
minimum of f along the line x + cxs. The method breaks down if any eigen-

value is zero, and the method is unable to distinguish between positive

and negative curvature so that no progress can be made away from a saddle

point. The point is demonstrated in the example below. Minimize

f (x) == xj - x* + \ (2.9)

starting from (1,0). The initial search direction is

2 0 "1

A linear search terminates at the point (0,0), and the next search

direction is

The method due to Fiaccio and McCormick avoids the eigenproblem, and that

of negative curvature, by using the factorization

T
G = LDL

-5-



where L is lower triangular with unit diagonal and S is diagonal. If G is

positive definite the search direction is s_ = -G g. If, however, D

contains negative elements or zeros the alternative (and satisfactory)

strategy of identifying a direction of negative curvature is adopted.

When G is not positive definite the factorization may be unstable, and the

effect of instability on the algorithm has not been investigated. Moreover

T
there are matrices for which an LDL factorization does not exist. Again

the point is demonstrated by an example, namely to minimize

f(x) = (X* - 3)2 + xj + (Xl- 34) X2

starting from (0,0). It will be seen that at this point the hessian

is

0 1G =
1 0

T
for which no factorization of the form LDL can be found.

Matthews and Davies overcome the factorization problem above by

attempting the factorization

G = LU „

With L unit lower triangular and U upper triangular. To ensure that the

factorization can be completed the diagonal elements of U are modified

as they are used as pivots. If U . . is negative it is replaced by

| U . . | , and if it is zero it is replaced by unity. Consequently the factors

L* and U* of an unknown positive definite matrix G* are generated. G* is

then used to generate the search direction

Unfortunately this factorization is potentially unstable, and in

addition, as with the Greenstadt algorithm, no progress can be made away from
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a saddle point. In fact for the example (2.9) the behaviour of the

algorithms is identical,,

Recently Gill and Murray (and Gill, Murray and Picken (1972)) have

published an algorithm in the style of that of Matthews and Davies. The

essential difference is that pivots are increased in size by an amount

that is sufficient to ensure a stable factorization. Eventually the

factorization T

G + E = LDL

is found where(G+E) is"sufficiently positive definite". If |gj | ^ 0 the

search direction is (G+E) £, otherwise D,E and L are used to generate

a direction of negative curvature0

The method is sound, but rather different in approach to that

of Goldfeld et a!0 The tendency of the Gill and Murray algorithm is to

replace negative curvature by positive curvature and so weight the step

in favour of directions of small absolute curvature.

3. A new algorithm

Excepting the GQT algorithm simple problems have been found which

cannot be solved by the above algorithms. The remainder of the paper is

devoted to an attempt to modify the technique used by GQT so that the

need for the eigensolution of the hessian is eliminatedo

The problem is to solve for X the equation

||(G+XI) -1S |2 = d (3.1)

subject to (G+XI) being positive definite; taking into account any

special cases that arisee

Section 4 is devoted to the development of an iterative scheme for the

refinement of \h is applicable if (G+XI) is positive definite. Section

5 deals with the possibility that (G+XI) may be indefinite, and in

section 6 an upper bound for A. is derived. In section 7, this work Is put
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together to yield a comprehensive strategy for the determination of X which

experience shows to require an average of only two matrix factorizations.

Section 8 covers the adjustment of the step size d, whilst in section 9

some numerical results are presentedo

40 An iterative scheme for X

Initially, any special difficulties are neglected, and an iterative

scheme for the refinement of X is developed. It is assumed that a value

of X has been found such that (G+XI) is positive definite but
i

|(G+XI) g|| r d0 The scheme consists of identifying the derivative,

with respect to X of | |j>(X) [ | • fitting a rational function with

constant numerator and linear denominator to |_6(X) | | and its gradient,

and determining the change SX that makes the rational function equal to d.

6(X) = (G+XI)'^ (4.1)

M S O O | I 2 = [/(G+Xir^]4 (4.2)

••• ir I | 5 ( X ) | L = (-2 /(G+XI)~3£ ) . (4.3)
2 | ] 6 ( X ) | | 2

Thus by solving the two systems of equations (with the same coefficient

matrix)

(G+XI)6 = _g (4.4)

and
(G+XI)Y = 6 (4.5)

we have

I I.£(M Mo - (£ §) 2 (4.6)

It would be straightforward to solve equation (3.1) by Newton-Raphson

iteration, but as .6 is a linear combination of the eigenvectors of G, the

T
coefficients being . e g / d + X ) , it seems more reasonable to use the
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approximation

I MX) L = rr,' (4.8)

Then

|r I | 5 (X) | I = —'=~ . (4.9)
(b+X)2

Equating terms leads to the expression -

It now remains to find 6X such that

i.e.

5\ - d(b+X)
d

a_
8X

cT,_ _

- 1 ] — - (4.12)
6 y

This provides the basis of an iterative scheme to find X by repeatedly

solving systems of linear equations. Convergence of the scheme is not

guaranteed so it is necessary to use it in conjunction with a bracket on the

root.

An additional complication is that the matrix (G+XI) may not be

positive definite. It is necessary to identify such cases and to be able

to determine an improved value for X.
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5. The_p_rocgdure when (G+XI) may be indefinite

Usually the matrix G is positive definite and the iteration described

in section 3 can be used from the initial estimate X=0. Otherwise it is

necessary to find a value for X such that (G+XI) is positive definite. In

addition sometimes it happens that an iterate is produced for which (G+XI)

is not positive definitec

To allow for an indefinite matrix in an efficient manner an attempt

is made to solve the system

(G+XI) 6 = £ (5.1)

by first obtaining the factorization

(G+XI) = LDLT . (5.2)

If at any stage a negative diagonal element is generated the purpose of

the calculation changes to that of finding a value (J. such that (G+Xl+jjl)

is positive definite0

Interchanges are made to ensure that the largest diagonal element is

chosen as pivot, but for the purposes of analysis it can be assumed that no

interchanges are necessary.

It is apparent that if G has a negative diagonal element it cannot be

positive definite, so a lower bound on X is set as

max

Thus the possibility that (G+XI) has some negative diagonal elememts is

eliminated.

The factorization starts in the usual way by finding d. and £. (the

first column of L) such that
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(G+XI) = (£ t ,0 , . . . ,0) d (f^O,...^) + G

" ( '-.„ )
(5.3)

where the first row and columns of G. are zero, and where the first

component of £. .is unity. It follows that

d1 =G11+X

T = G. /d. i/1. (5.4)
il il

Then

(5.5)

Notably the diagonal elements of G are

(5.6)

If any of these elements are negative this stage of the factorization

is abandoned and a value K found such that

(5.7)

K I is added to (G+XI) so that the matrix being factorized is now

(G+kl+K I). Thus the matrix G from the new factorization has all its

diagonal elements greater than or equal to zero.

The only possible cause of trouble is that all the diagonal elements

of G are zero (implying that the pivot is zero), but tests on the signs

of (G ).. are accomplished without dividing by the pivot, so even in

this case the factorization proceeds without difficulty.

After the elimination of the first row and column of G, the

factorization continues in a similar manner eliminating the second row and

column of G , except that if it is necessary to add a constant K^ to the



diagonal elements of G it is not added to (G ) 0

Ultimately the process yields the factorization

(G+XI+A) = LDLT (5.8)

where A is a diagonal matrix whose elements are

i

A = > K . (5.9)
/..._/ J

Now the K. have been chosen to keep the elements of D non-negative, so

that (G+XI+A) is positive semi-definite. Thus if (j. is set to A ,

(G+Xl+|-iI) is positive semi-definite.

An additional feature is that if A^O, then at least one diagonal

element of D is zero. So (G+XI+A) is singular and a zero eigenvector

T
T| can be found by solving L TI=Y, where y- is equal to unity if D. . is zero,
«•"" i— w» J- -L JL

I:

and to zero otherwise. The vector r\s stored for use when the correct

value for X cannot easily be found, as will be described in section 6.

This factorization is insufficient on two counts. One is that if

(G+AI) is singular with no negative eigenvalues, u- is zero and it is

not obvious how to proceed. The other is the problem of determining a

zero numerically0

Both of these are overcome by supposing that a diagonal element is

negative only if its modulus is less than -e.. - -e|G. .+X|, where e is a

measure of the relative accuracy of the machine. The modification would

allow a pivot to be negative, and to avoid this any pivot less than e is set to e ,

or if e. is zero the pivot is set to e. In setting the pivot to e the

implicit assumption is made that the diagonal elements of G are of order

unity. Ideally some measure of the scale in the problem should be

incorporated, for example the pivot could be set to e||G||. This

extension is not followed as it would require additional computation, and

-12-



only defers the difficulty as it may be that ||G|| = 0.

If (j, is non-zero this amendment has no effect, otherwise -X is close

to the smallest eigenvalue of G and the system of equations solved is

(G+XI+E) £ = g

where E contains the small terms added to (G+XI) to make it non-singular.

If now | | _ 6 | 12 > d the iterative refinement (4.2) can be used, whereas

smaller values of |_6| L imply that the correct value is X is known.

6. An upper bound on X

A useful technique when using an iterative method to find a root of

a single non linear equation is to bracket the root and then ensure that

the iterates lie within the bracket but not arbitrarily close to either

end point. In this way for any required accuracy the finite termination

of the iterates can be guaranteedo

In section 5 it was shown that a value (_i can be found such that

(G+XI+|j.l) is positive semi-definite. This is now used to find a value

X such that
max

|5(X ) | 2 , < d . (6.1)

Because (G+XI+jjI) is positive semi-definite, the eigenvalues of (G+Xl+|_tI+£jl)

are bounded below by g, and those of the inverse matrix are bounded above

by?"1

gl I 2

_1
2, £

$ d provided £ >, | |g| | 2/d „

It follows that we can obtain inequality (6.1) by setting
<

|g|I2/d . (6.2)
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7. Hie determination of X

Here it is shown how the ideas of the previous sections are put

together to form a coherent scheme for the rapid determination of a suitable

value for X.

The successful operation of the minimization routine requires that

where possible the value X=0 is chosen, and so unless G has some negative

elements on the diagonal, zero is the first value of X that is tried.

TThe LDL factorization of G is attempted, and if G is positive

definite the step b=G ^ is generated and | |6J ] „ compared with d.

| |_6 | | < d allows a Newton step to be taken, otherwise £=G _5 is determined,

and hence (as described in sections 4 and 6) we find an improved value of

X and an upper bound > . Also a lower bound, X . =0 is known.
max mm

Subsequently the Iterative scheme of section 4 is applied with the restriction

that no iterate may lie within (X -X . )/10 of either end pointcmax min

If G is not positive definite a value u is found such that (G+(J.I) is

positive semi-definite. The iteration starts from X=u with the bracket

X . =0, X =u + | | g j | /d. A complication in this case is that an
mxn max 2.

iterate X may be generated such that (G+XI) is not positive definite.

Here, as happens when X=0, a value |_i is found such that (G+XI+jjI) is

positive semi-definite and X+ja is taken as the next iterate, with the

restriction (X+u) x ^(X +X . ).
max nun

Should G have a negative diagonal element the initial value of X is

max(-G. .), and the subsequent iterations are as above.

To avoid the excessive refinement of _6 the iteration terminates when

_5 satisfies 0.9d < I I . & I L £ 1°1d. There remains the problem that the

interval of suitable values for X may be small or even non-existent. The

cause of sutih difficulty is that fi. (the smallest eigenvalue) is not

Tpositive and £ e_. (the componei

eigenvector) is small or zero.

T
positive and £ e_. (the component of the gradient in the direction of its

-14-



Such problems are countered by storing a vector TI . , which is

(G+X . I) £ when (G+X . I) is positive definite, and otherwise it is an

eigenvector associated with a zero eigenvalue of (G+X . I+A). If the
rain

difference between X . and X becomes less than one tenth of X themm max max
Tstep 8=a ri is taken, where a is chosen so that 6 =d and 6 g .< 0.— _min — 2 — **

In this way the step chosen is usually in a downhill direction, and

when it is not it can cause a reduction in f (x) due to negative curvature<

8. The alteration of d

After each iteration an assessment is made of the success of using a

step of norm d. The aim being to amend d so that the step taken is

restricted to a region in which the quadratic approximation

f(x+6) K f(x) + STg. + \TG6 (8.1)

is adequate for reducing the objective function.

Making the assumption that for some K

f (x-6) = f(x) - 6T£ + % 6TG8 + K |6 |3 (8.2)

6 3

pred - ared | (8.3)

(pred and ared are the predicted reduction and the actual reduction of

the function) .

This allows the error in the quadratic approximation when taking a

step oo to be estimated as

a3 |K| I 6 | |3 = a3|pred-ared . (8.4)

In an attempt to ensure that the error in the quadratic approximation

does not dominate the predicted reduction, a value for a is sought such

that

-15-



a3|k| | | 6 M 3 = (Vv) pred(a8) (8.5)

where pred(a6) is the predicted reduction from a step, bounded by

| 1061 | , in the direction of _§ and y some constant not less than unity.

That is

p red (06) = ag1̂  - \S (a ̂  £T8/.6TG6)

(a > _gT6/8_TG6). (8.6)

Surprisingly the behaviour of the algorithm is insensitive to the

value of y (some results are given in Table 8.2). Further, the

implementation of such a scheme is no improvment over the simple set of

rules:

if | ™™ - 1 | < 0.025 d

if ared/pred >, 0075 d^k+1^ = 2 dw (8.7)

if 0.25 < ared/pred < 0.75 d^k+1)

In fact similar rules are recommended by Goldfeld, Quandt and Trotter.

If the actual reduction is less than one quarter of the predicted

reduction, the following idea similar to that used by Fletcher (1971) is

used to decrease d. Cubic interpolation to the function, gradient, and

(k) (k+1)
second derivative at x and to the function at x leads to the

(k)
prediction that the minimum with respect to a of f (x - a_8)is at

-6TG6 + I (6 G6) + 12 £T£>(pred-ared)

a - — . (8.8)
6(pred-ared)

To ensure a reasonable decrease, and yet avoid an excessive decrease, a is

set to the value (8.8) unless it is outside the interval 0.1<a<0.5 in which

case we use either a = 0.1 or a = 0.5, whichever is closer to the value

(8.8). Then d + is taken as ad.
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A point worth noting is that for a normal step when

we have
m nn rjl

Gb = b - X6 6.

T
Therefore the direct calculation of _§ G6 recpaired for the adjustment of d

can be avoided0

90 Numerical Results

The algorithm has been tried successfully on a number of problems,

including some that do not yield to the algorithms mentioned in section 2.

The results for one test function are given below.

To show that the algorithm is competitive with others, the result of

applying it to Wood's function (Colville, 1968)

f(x) = 100(x2-x2)2 + (1-x^2 + 90(x4-x3)2 + (1-X3)2

+ 100l[(x2-02 + U4-1)2] + 19.8(x2-0(x4-l)

i

is shown in Table 9.1. There the results of other authors are also given.

Table 9.2 demonstrates the effect of varying the method by which d

is updated0 Results are shown for three values of Y (Y is defined in

(8.5)) and for the more simple updating method. The table shows the total

number of iterations and function values recfuired to minimize Wood's

function from the nine different starting points used by Matthews and

Davies. To provide a setting for these results, the figures for the

Greenstadt algorithm and the Matthews and Davies algorithm are also shown0

100 Conclusions

The examples of section 2 demonstrate that the only satisfactory

algorithms for optimization with exact second derivatives are those of

Goldfeld et al. and Gill and Murray. The former, however, requires the

eigensolution of the Hessian at each iteration, and whilst this is of no
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Tab1 e^ 9 J_

A comparison of methods for minimizing Wood's function with the
starting point (-3,-1,-3,-l)

Goldfeld, Quandt and Trotter

Greens tadt

Fiaccio and McCormick

Matthews and Davies

Gill and Murray*

Proposed Method**

Function
Evaluations

47

61

Gradients

40

29

unknown

61

58

45

27

54

40

Iterations

40

29

24

27

36

40

* result using recommended value r\ 0.5

**requires 66 matrix factorizations.

Table 902

A comparison of the cumulative cost of minimizing
Wood's function from nine different starting points

Greenstadt

Matthews and Davies

Proposed Method:

y"1 = 1

Y~1 = 0.75
-1

Y - Oo5

Simple form

Function Evaluations

501

487

311

330

311

308

Iterations

199

189

276

273

274

270*

requires 445 matrix factorizations
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consequence on small problems it certainly is for large problems. The

drawback is amplified if, as is likely, the method is applied to functions

whose Hessian is sparse. This is because for a method that requires an

eigensolution, little saving can be made either in time or in storage,

whereas for a method relying on the solution of systems of equations,

considerable savings can be made in both of these areas.

A direct comparison with the Gill and Murray method is difficult

because one must weigh together function, gradient and hessian evaluations,

and matrix factorizations. The figures in Table 9.1 clearly demonstrate

that the proposed method is competitive with the alternatives, including

those that are less reliable0
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