
Empirical Potential Structure
Refinement - EPSRshell: a user's guide.
Version 18 - May 2011

AK Soper

July 2011

 Technical Report
RAL-TR-2011-012

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

EPSRshell User Manual 27/3/2010 i

Empirical Potential Structure Refinement

- EPSRshell

A User’s Guide
Version 18 – May 2011

by

Alan K Soper

with contributions from Daniel Bowron, Helen Thompson, Fabio Bruni, Maria Antonietta Ricci,

Sylvia McLain, Stefan Klotz, Thierry Straessle, Silvia Imberti, Rowan Hargreaves, plus many

others. Without the support and advice from these colleagues much of what follows would never

have happened.

-15 -10 -5 0 5 10 15-15
-10

-5
 0

 5
 10

 15
-15
-10
-5
 0
 5

 10
 15

z [Å]

x [Å]
y [Å]

z [Å]

EPSRshell User Manual 27/3/2010 ii

EPSRshell User Manual 27/3/2010 iii

Contents

1. Overview: modelling the structure of a liquid or glass.

2. Empirical Potential Structure Refinement.

2.1. Fundamentals
2.2. Defining the reference interatomic potential.
2.3. Defining the empirical potential.
2.4. The uniform atom distribution.
2.5. Running the simulation.
2.6. Refining the empirical potential – introducing the data.

3. EPSRshell.

3.1. Introduction – EPSRshell menus.
3.2. File naming conventions.
3.3. The Main menu.
3.4. Script operation.
3.5. The setup menus.
3.6. The plot menu.
3.7. Plotting the box of atoms – plotato.

4. Preparing for an EPSR simulation.

4.1. Building the .ATO file – single atom molecules – makeato.
4.2. Making a molecule – makeato.
4.3. Making a molecule, role of the template file – makemole.
4.4. Making a .mol file from Ghemical
4.5. Running fmole to generate molecular coordinates.
4.6. Calculating intra-molecular atomic distances - bonds.
4.7. Modifying, mixing, growing, randomising the .ato file – changeato, mixato,

growcluster, introtcluster.
4.8. Running fcluster to generate an initial configuration of molecules.
4.9. Building complex molecules and structures – dockato.

5. Operating the EPSR simulation program.

5.1. Setting up the neutron .wts files – epsrwts.
5.2. Setting up the X-ray .wts files – epsrwtsx.
5.3. Setting up the .inp and .pcof files.
5.4. Running the simulation.
5.5. Output files and data format
5.6. Reviewing the output.

6. Auxiliary routines.

6.1. Input and output data formats and running.
6.2. partials – calculate site-site radial distribution functions. (obsolete)
6.3. coord – calculate coordination numbers and coordination number distributions about

specific sites.
6.4. triangles – calculate bond angle distribution functions.
6.5. torangles – calculate torsional angle distribution functions.
6.6. clusters – calculate cluster size distribution functions.
6.7. chains – calculate chain length distribution functions.
6.8. rings – calculate ring length distribution functions.

EPSRshell User Manual 27/3/2010 iv

6.9. voids – calculate void distributions and the void radial distribution function.
6.10. fluctuations – calculate distributions of number fluctuations.
6.11. writexyz – writes a file of atomic coordinates in xyz format
6.12. Building your own analysis routine.

7. Spherical harmonic expansion of many-body correlation functions.

7.1. Introduction – the spatial density function and orientational correlation function
7.2. sharm – calculates the spherical harmonic coefficients for the spatial density function

and orientational pair correlation function
7.3. sdf – spatial density functions for non-molecular systems.
7.4. plot2d and plot3d – plotting the results from 7.2 and 7.3.

8. Some examples and exercises

8.1. Single component Lennard-Jonesium.
8.2. Two component charged Lennard-Jonesium – NaCl.
8.3. Amorphous silica
8.4. Water.
8.5. Other examples

9. Appendices

9.1. Files you need to run EPSRshell

EPSRshell User Manual 27/3/2010 1

1. Overview: modelling the structure of a
liquid or glass.
Modelling is at the core of all human activity. Sometimes a model is called a “theory”, which
makes it sound more important and fundamental, but in fact all theories are really nothing more
than sophisticated (or not so sophisticated) models. When it comes to interpreting experimental
data whether or not you setup a model to understand it is not really an option. Even the simplest
interpretation of a set of data involves a degree of modelling of some form or the other, even if it
is only in the mind of the person performing the analysis.

In fact modelling is something we do subconsciously all the time. The image on the back of our
retinas is upside down and must be inverted. Our brain continuously interprets the light, sound,
smell, taste, and feel of the world around us to produce a three-dimensional snapshot of our
surroundings. It uses that perceptual model to determine what action if any we need to take. The
snapshot is updated on the timescale of order 0.1s so if things happen much slower than this we
will not see them moving or else perceive things to be moving very slowly – like a snail for
example – whereas if they happen much faster the motion is blurred or may not be visible at all.

Our perceptual model of the world around us can be very accurate in the elements which it is
testing, but inaccurate about elements it cannot see or hear or feel or smell. When the roof
collapsed at Charles de Gaulle airport in 2004 the people inside the building were taken by
surprise – they had no inkling the building would collapse because the internal state of the roof
supports was beyond the scope of their perceptual model. Yet the elements of structural failure
which led to the collapse must have been present long before the collapse actually happened. You
are not aware of the bullet coming towards you because it is travelling too fast to be incorporated
into your perceptual model, yet the dandelion seed which floats by in the breeze is travelling
sufficiently slowly for your perceptual model to be continually updated so you are fully aware of
its current position relative to yourself and the other objects around you. Therefore be quite clear
that modelling is not some sort of “added value” that is used to generate pretty pictures. On the
contrary it is something that goes on all the time we are alive and is essential to our very existence.

In a similar vein quantum mechanics is can be regarded as a mathematical model that is used to
described the behaviour of atomic particles. It turns out to be a very accurate model of course, but
it is still only a model. It is very unlikely that an electron is actually solving Schrödinger’s
equation as is moves around an atom!

When we try to visualise the structure of a liquid or glass we are faced with a conundrum: there is
little in our macroscopic environment which is really quite like a liquid at the atomic scale. Our
brain is desperate for a “picture” which it can recognise, but whereas a crystal structure has atoms
placed in specific positions within a well defined unit cell (quite analogous to the furniture placed
in a room for example), the liquid evades such a simple visualisation. The room in a liquid is
infinitely large, there is nowhere to hang your coat, and everything is continually on the move!
Indeed it is hard to think of any analogous situation in the world around us which is quite like the
structure of a liquid or disordered solid at the atomic level.

Perhaps one example of a macroscopic (2-dimensional) liquid is a crowded shopping centre or
street – people milling about, going in all directions, at different speeds, occasionally stopping to
talk to acquaintances.

What do we mean by “structure” in such circumstances? Notice that in general people do not
actually collide with one another in the crowded shopping mall. Even on a crowded subway train
it is rare for people to be in actual contact. Our senses prevent us approaching another person very
closely, unless of course they allow us to do so! It is as if an invisible force – in this case the

EPSRshell User Manual 27/3/2010 2

instinct not to collide with other people (strangers especially) – which prevents most collisions.
Instead if people attempt to approach one another too closely, this invisible force comes into play,
and one or other or both deflect from their original collision path. Thus even though you are free
to go anywhere in the street, you cannot go where another person is standing or walking!

Liquids and glasses involve analogous but unimaginably small, atomic scale, movements on
unbelievably small timescales, perhaps 10-9 – 10-15 seconds. There is no structure as such in the
crystallographic sense because the atoms are continually moving from one place to another. (The
glass is distinct from the liquid in that the atoms have no overall movement – they are essentially a
liquid in which the atoms have stopped diffusing away from their initial position, but can still
perform some local oscillatory movements. The principle in a glass is the same however – as we
move around the glass we will find no structures which repeat themselves indefinitely into the
distance. The macroscopic analogue would a crowded shopping mall in which everyone has
stopped dead in their tracks, but can still shuffle, wave their arms, and talk to each other.)

There is however a residual local structure in these situations that arises from the fact that no two
atoms can occupy the same space, as with people in the crowded shopping mall. Each atom is
surrounded by its own space, creating local arrangements of atoms which are continually changing
as the atoms and molecules diffuse around. For molecules this local arrangement is often
dependent on the relative orientation of the two molecules as well.

However the ‘structure’ here does not refer to the kind of structure found in a crystal where all the
atoms or molecules are laid out in a rather regular and specific manner. Instead it is described by a
statistical quantity (technically the ‘pair correlation function’) that is determined from the
probability per unit volume that a particular position around a central atom or molecule is
occupied by another atom or molecule. Hence in a simple atomic system like liquid argon or liquid
helium, the pair correlation function will consist of alternating shells of high and low density as a
function of distance from any particular atom, arising from the short range forces between atoms.

In a liquid made from molecules, the pattern is more complex, since it will depend on the distance,
the direction we look from our central molecule, and the orientation of the neighbouring
molecules. Even in systems where there are no molecules, such as network glasses and molten
salts, the local structure can be strongly directional, since it will depend on whether we look
towards an atom of the same kind as the one we are on, or whether we look towards an atom of a
different kind.

The diffraction experiment, whether it is X-ray, electron or neutron, gives us an experimental
glimpse at this local structure.

The information supplied is however far from being in a form which we can immediately
visualise. Typically the information consists of a Fourier transform of a weighted average of the
density of different atom types about other atom types as a function of distance and direction.
Only in the very simplest cases, such as the inert gases, can this information be interpreted directly
in terms of the pair correlation function.

Even in the simplest cases our direct visualisation still runs into difficulties. We typically might
measure a coordination number for one particular atom type around another, based on our
measurements. A coordination number of 5 might be reported for example, but does this mean all
atoms are surrounded by exactly 5 atoms, or does it mean that on average each atom is surrounded
by 5 atoms? Some could be surrounded by 3 or 4 atoms, while others could be surrounded by 6 or
7, while still others might be surrounded by even more perhaps. We like to think the former
because it gives us a simpler visual picture, but the truth is more likely to be the latter.
Unfortunately we have no way of telling from the diffraction experiment on its own which view is
correct, unless we have additional information to incorporate into our structural model.

EPSRshell User Manual 27/3/2010 3

Empirical Potential Structure Refinement (EPSR) was developed as a tool to do precisely that,
namely to incorporate additional or prior information into a structural model of the system being
investigated. The process of taking even simple ideas on atomic forces – consider the hard sphere
fluid for example – and calculating what they would be like when imposed on a three dimensional
arrangement of atoms is a problem of extreme complexity which can only be solved
approximately at best – see J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,
(Academic Press). Computer simulation is also an approximate method, but it does largely
overcome many of the weaknesses of the theory in being able to account to significant extent for
the many-body interactions which take place in a condensed fluid. Hence computer simulation is
by far the best way of generating models of liquids, especially as most of the systems which are
studied are very far from “simple”, and the corresponding theory is weak or non-existent in these
cases.

EPSR is one method out of a few other methods that attempt to find distributions of atoms which
are consistent with experiment. With EPSR you state your prejudice at the beginning via the
reference potential, the assumed molecular shapes, the effective charges on atoms, the assumed
minimum approach distances, and so on, and then let the computer sift through all the possible
arrangements of atoms and molecules which are simultaneously consistent with both your starting
prejudice and your diffraction data, to the extent that this is possible. If it doesn’t work it can only
mean one of two things: either your starting assumptions are wrong, or the data are wrong, since
we know there must be some arrangement of atoms which make up a particular material. The point
is that if you can find physical arrangements of atoms which are consistent with your prior
knowledge at the beginning of the experiment and with your measurements, there really isn’t any
more that can be done to extract structural information from an experiment on a glass or liquid,
except perhaps try to find out if there are other distinct arrangements of atom which meet all those
requirements.

EPSR is a Monte Carlo method which evolved from Reverse Monte Carlo (RMC), which also
attempts to build a structural model of a glass or liquid, and which in turn evolved from earlier
attempts to use Monte Carlo methods to evaluate disordered materials structure on the basis of
diffraction experiments. As a general rule, since they are based on the Boltzmann-like
distributions of statistical mechanics, Monte Carlo methods tend to produce the most disordered
solutions to a problem which are compatible with a set of specified constraints. They should
therefore also produce the most probable solution.

There is no guarantee however they will produce the correct solution, but as is argued in statistical
mechanics textbooks, for systems consisting of a large numbers of atoms the likelihood of any
particular solution being vastly different from the most probable one is small. In this sense the
differences between RMC and EPSR are technical rather than fundamental: ultimately I suspect it
could be shown that the two methods are formally equivalent.

For the purposes of modelling molecular materials, these technical differences are however
important and may explain why RMC is more appropriate in some instances and EPSR is more
appropriate in others. As a general rule, RMC uses hard sphere constraints on atom distances to
prevent atomic overlap, and square well constraints to define molecules. It is then hoped that the
diffraction data will overcome any deficiencies in these assumptions, and so give realistic near-
neighbour distributions. It does this by moving atoms at random and then accepting or rejecting
each move on the basis of the fit to the diffraction data, using the standard Metropolis Monte Carlo
sampling procedure.

EPSR does things slightly differently: molecules in EPSR are defined by means of harmonic force
constants between as many pairs of atoms as are required to define the molecule. In addition
intermolecular distances, and any intramolecular distances which do not have harmonic forces
defined, are controlled by a Lennard-Jones potential, to represent the short range repulsive and
longer range attractive (dispersion) forces, together with a pseudo-Coulomb potential where

EPSRshell User Manual 27/3/2010 4

appropriate. The diffraction data are introduced via yet another potential energy function, the
empirical potential (EP), the contributions to this empirical potential being obtained from the
difference between measured and simulated diffraction data. EPSR can therefore be thought of as
a method for perturbing the interatomic potential model used in most other forms of computer
simulation of liquids. (See the books by Allen and Tildesley [3], and Frenkel and Smit [4])

The bounding potentials on molecules and between atoms are more restrictive in EPSR than in
RMC. EPSR makes specific assumptions about particular bond lengths and widths in molecules,
and the repulsive potential at short distances is not infinitely hard as in RMC. If ions or effective
charges are present then these are incorporated via a pseudo-Coulomb potential (“pseudo” because
in the current version of EPSR it is truncated rather than treated correctly at large distances). In the
exercise on amorphous silica you have the opportunity to experiment with this simple interatomic
potential: if you get the parameters correct you will discover that a simple potential consisting of
Lennard-Jones parameters plus charges can do a remarkably good job at generating the local
structure of silica – even the intermediate range order appears to be captured to some extent. This
could not be achieved by standard RMC, because the charge ordering that occurs in this model of
silica is crucial to generating its local order.

Of course one could always imagine dreaming up more sophisticated starting potential functions
for EPSR to get the simulation to approach the data even closer at the outset. But the combination
of Lennard-Jones plus charges is sufficiently simple that it captures neatly the main elements of
the forces we expect to see between atoms in a functional form with only 3 or 4 adjustable
parameters for each atom. Anything more complicated and you very quickly loose control of the
number of adjustable parameters. Of course you are bound to be able to find cases where it doesn’t
work, in the sense that it cannot find a solution, but practical experience has shown that these
cases are very few and far between. If a fit to a set of diffraction data cannot be found, it almost
invariably means there is either something wrong with the supplied data or there is something
wrong with the reference potential with which EPSR starts.

Of course whether the solution that is found is the correct solution is a different question which is
much harder to answer, and we do not even begin to tackle that question in this manual.

Many of the routines described in this manual have been developed over the past 13 years by a
process of trial and error. The most recent manifestation, EPSRshell was written as a response to
our first EPSR workshop in 2002, when it became apparent that a broad range of people would be
likely to use EPSR, ranging from the computer literate to those with only minimal working
knowledge of programming and operating systems. EPSRshell is written with the latter group of
people particularly in mind: it is designed to ensure that sensible default parameters are
incorporated where ever practical, so that the number of decisions the user needs to make is kept
to a reasonable limit, and to be compileable under a variety of operating systems. It is weakly
analogous to Bourne Again Shell (BASH) under UNIX, hence the name EPSRshell: basically it
runs its own very limited operating system, from which all the main EPSR commands and
operations can be performed. It is entirely Fortran coded, and makes use of some “standard”
features of the g77/g95 Fortran compilers which may be slightly different in form in other
compilers.

The main EPSR routines can be compiled under the g77 or g95 Fortran compilers. Hence it runs
perfectly satisfactorily on LINUX for example, although a LINUX version of the current software
has not been tested recently. An exception to this occurs for those routines which call the
PGPLOT library: under Microsoft Windows these are compiled using Compaq Visual Fortran.
Setting this up for a Unix based system has been done in the past, but is not actively supported at
present.

Other graphical plotting is done via calls to GNUplot, PGPlot, and recently .ato files, the files that
contain the atomic coordinates in EPSR, can be plotted with Jmol. It is assumed these are available

EPSRshell User Manual 27/3/2010 5

under the operating system in which EPSRshell is run. There is of course no warranty that any of
the routines work correctly, so they have to be used at your own risk! The main elements of the
method are described in Sections 2 – 7, with some examples of things you could try to gain
experience in Section 8. Section 9 gives some useful file information.

EPSRshell User Manual 27/3/2010 6

EPSRshell User Manual 27/3/2010 7

2. Introduction to EPSR.

Empirical Potential Structure Refinement (EPSR) [1] evolved early in 1996 when attempting to do
Reverse Monte Carlo (RMC) [2] simulations on systems which contained molecules. It is not the
purpose of this manual to go into the basics of computer simulation, since some excellent books
on this exist. See for example Allen and Tildesley [3] or Frenkel and Smit[4]. Most of the EPSR
computer simulation code was derived from what is written in Allen and Tildesley’s book. Here
we will simply outline those parts of EPSR which are different from what is said in these
“official” guides. Equally we will not go into any of the details of the neutron scattering equations
since these are available in many places, such as the “ATLAS” manual.

 2.1 Fundamentals

In essence EPSR is a standard Monte Carlo simulation of the system being studied. There are
typically up to four types of atom move within EPSR, these being whole molecule translations,
whole molecule rotations, rotation of specific molecular sidechains where appropriate, and
individual atomic moves within molecules. Obviously if a “molecule” has only one atom only the
first of these moves is needed. A move consists of a random (small) change in the (x,y,z)
coordinates of the atom or molecule, or else a rotation of the molecule by a random amount about
a randomly chosen axis. For internal sidechain rotations the axis of rotation is defined in the input
files, but the amount of rotation is still random. Other types of atom move could be contemplated
(such as molecular inversion through a plane of symmetry) but have so far not been implemented.

The acceptance of a move is based on the usual Metropolis condition, namely if the change in the
potential energy of the system as a result of the move, ∆U = Uafter-Ubefore is less than zero the
move is always accepted, and if it is greater than zero, the move is accepted with probability






 ∆
−

kT

U
exp . This simple procedure ensures the system proceeds along a Markov chain and over a

period of time visits a large volume of the available phase space.

The potential energy in EPSR consists of two primary terms, the reference potential energy, URef,
and the empirical potential (EP) energy, UEp. URef takes on a standard form and the parameters
may be available from the literature. This potential is used throughout the EPSR simulation, but is
used on its own at the outset to form the molecules (if present) and to get the simulation box into a
likely region of phase space for the system being studied (i.e. sensible molecular geometries, no
atomic overlap, etc.). UEp on the other hand does not take any standard form and, once the
simulation with the reference potential alone has come to equilibrium, is used to guide the atomic
and molecular moves in directions that give the closest representation of the diffraction data.

The total potential of the system is represented as U = URef+UEp. Each of these terms can be split
into terms related to the separation of individual atoms and molecules, with atoms of different type
having different interaction potentials. Thus for example the potential energy between atoms of
type α and type β separated by distance r would be given by

() ()() ()()rUrUrU
EpRef

αβαβαβ += (2.1.1)

with the total potential energy of the system given by

() () ()∑∑
≠

=
i ij

ijji rUU αα2

1
 (2.1.2)

where rij is the separation of atoms (i,j), and α(i) represents the “type” (i.e. whether it is hydrogen,
carbon, oxygen, etc.) of atom i. The summation in (2.1.2) proceeds over all atom pairs in the
system, and the factor of ½ is needed to prevent double counting of atom pairs.

EPSRshell User Manual 27/3/2010 8

In EPSR there is no correction for long range effects on the potential energy. This is partly
because the EP itself cannot be calculated for r > ~rmax (rmax is defined in Section 2.4), and partly
because making the necessary longer range corrections can be time consuming, without giving any
real benefit in terms of modifying the local arrangement of atoms. Energy and pressure are
calculated in EPSR as well as structural quantities and these can be a useful guide in some cases as
to whether the results are sensible, but in general their values should not be taken too seriously. If
the pressure is extremely positive it usually means that there is significant atomic overlap
somewhere in the system so is likely to imply one or more parameters have not been set correctly.

Instead of a proper long range correction the non-Coulomb part of the reference potentials are
truncated smoothly by a suitable function, which at the time of writing is of the form

maxpt

maxptminpt

minptmaxpt

minpt

minpt

rr

rrr
rr

rr

rr

rT

>

<<




























−

−
+

<

=

0

cos15.0

1

)(π (2.1.3)

where rminpt is the point where the truncation function drops below 1.0, and rmaxpt is the point
where it drops to 0. Typically one might use rminpt = 9Å and rmaxpt = 12Å.

Within the program the interatomic potentials are stored as a look-up table that is interpolated at
specific r values. This speeds up the process of calculating the energy and pressure.

For the Coulomb potentials the reaction field method of truncating the Coulomb potential due to
Hummer et. al. [5], the so-called “charged clouds” interaction, is used:-

() ()rr
r

r

r

r

r

r
rT maxpt

maxptmaxptmaxpt

C −Θ













++













−=

2

2
4

5
2

5
8

11 (2.1.4)

with ()rrmaxpt −Θ the Heaviside function.

 2.2 Defining the reference potential.

The starting point of the EPSR simulation is to build an ensemble of molecules whose internal
structure reproduces that which can be obtained from the diffraction experiment. Essentially each
intra-molecular distance is characterised by an average distance, dαβ, and a width, wαβ, and the
intramolecular structure is established by assuming the atoms in each molecule interact via a
harmonic potential. The total intramolecular energy of the system is represented by

()
∑ ∑

≠

−
=

i

intra
w

dr
CU ii

ααβ αβ

αββα

2

2

2
 (2.2.1)

where

ii
r βα is the actual separation of the atoms α,β in molecule i, and

αβαβαβ µdw =2 (2.2.2),

EPSRshell User Manual 27/3/2010 9

with ()βα

βα
αβµ

MM

MM

+
= the reduced mass of the atom pair αβ, and Mα the mass of atom α

in atomic mass units. C is a constant determined by comparing the simulated structure factors with
the measurements at large Q. A typical value of C/2 which seems to give good results is
65/(Åamu½), assumed independent of temperature. The use of an effective broadening function,
wαβ, such as defined in (2.2.2) avoids the need to specify and refine individual Debye-Waller
factors for each intramolecular distance. Although this is obviously an approximation, assigning
individual Debye-Waller factors probably cannot be done unambiguously for a liquid if there are
several intramolecular distances to refine. The chosen simplified form does however introduce a
degree of realism into the broadening function, namely the width is related to the effective mass of
the atom pair involved, as well as the bond strength (~1/dα

�) as it would be in the real molecule.

As discussed in Section 1 the intermolecular reference potential is based on a Lennard-Jones12-6
potential plus effective Coulomb charges where appropriate:-

()
ijij

n

ij

ij
r

qq

rr
rU

0

6

4
4

πε

σσ
ε βααβαβ

αβαβ +



























−














= (2.2.3).

with n set to 12. (In the past different values of n>6 have been experimented with without much
improvement over this basic function. Use of a purely exponential repulsive force can lead to
problems in Monte Carlo unless an extra core potential parameter is introduced since the Coulomb
attraction between atoms of unlike charge becomes infinitely attractive at r = 0, which would
cause atomic overlap if it were not for the divergence of the Lennard-Jones potential at small r. At
least the Lennard-Jones form of (2.2.3) includes the dispersion forces correctly.) Here α,β
represent the types of atoms i,j respectively, and if there are Nα different types of atom in the
system, there will be Nα(Nα+1)/2 pairs of such interactions. Where the types of the two atoms are
different, the well depth parameter, εαβ, (in EPSR measured in kJ/mole) and the range parameter
σαβ, (in EPSR measured in Å) are given by the usual Lorentz-Berthelot mixing rules [3] in terms
of their values for the individual atoms:-

() ()βααββααβ σσσεεε +==
2
1

;2

1

 . (2.2.4)

Note that further provision to restrict the approach of individual pairs of atoms to one another is
provided when setting the empirical potential.

 2.3 Defining the empirical potential.

A fundamental principle behind setting up the empirical potential is that it must represent only true
differences between the simulation and diffraction data: it ideally should not contain any artefacts
associated with the statistical noise, systematic errors and truncation effects of the diffraction data.
If it did contain these artefacts then it is likely they would be carried over into the estimated
distribution functions of the system.

In practice this is a very difficult goal to achieve and a variety of methods for generating the
empirical potential (EP) have been tried over the years. The one that appears to be most successful
so far is in the form of a series of power exponential functions:-

()() ()∑=
i

rni

EP
rpCkTrU

i
σ, (2.3.1)

EPSRshell User Manual 27/3/2010 10

where

()
() 





−









+
=

σσπρσ
σ

rr

n
rp

n

n exp
!24

1
, 3 (2.3.2)

the Ci are real, but can be positive or negative, and σr is a width function to be set by the user. The
total atomic number density of the simulated system is ρ. You may note that ()σ,rpn has a first

moment of (n+3)σ and a second moment of (n+3)σ2, which means it peaks near r ~ nσ for large n
with a width that gets gradually larger with increasing n. It is therefore a very natural function to
represent an intermolecular potential, which tends to vary rapidly with r at shorter distances and
becomes more slowly varying at longer distances. Obviously as n becomes very large this function
approaches a Gaussian centred on r= nσ.

These facts are used to generate the values of i in (2.3.1). Essentially a set of radius values, ri, are
selected by the user to correspond with the likely range of the empirical potential and the values of
ni corresponding to these radii are given by

3−=
r

i

i

r
n

σ
 (2.3.3)

The function ()σ,rpn has an exact 3-dimensional Fourier transform to Q-space:-

() () ()

()()() () () ()






 −
+

++
=

⋅=

+

∫

α
σ

σ
α

σ

πρσ

n
Q

Q
n

Qn

dirpQP

n

nn

sin
1

cos2
12

1

exp4,

22

4
22

rrQ

 (2.3.4)

where ()σα Qarctan= . Therefore in EPSR, the coefficients Ci are estimated directly from the
diffraction data by fitting a series of the form

() ()∑=
i

QniEP QPCQU
i

σ, (2.3.5)

to the data in Q-space (actually the difference between data and simulation – see Section 2.6), and
then the coefficients so generated are used to produce the Empirical Potential via equation (2.3.1).
The values of ni in (2.3.5) are generated by an analogous formula to (2.3.3). This eliminates the
need to perform a direct Fourier inversion of the diffraction data and largely eliminates many of
the problems associated with noise in the data and truncation ripples.

In an exact world σQ in (2.3.5) would be identical with σr used in (2.3.1). In fact it is possible to
induce further smoothing on the empirical potential by using σr = fσQ in (2.3.1), with f=4 in the
current EPSR program. This means the values of ni in (2.3.5) will not be the same as those used in
(2.3.1), so the program does not use an exact reconstruction of the data to generate the potential. In
practice the best results are obtained with σQ typically an order of magnitude smaller than the
spacing between the ri values, so the primary effect of using f > 1 is to broaden the reconstructed
function (2.3.1) compared to what it might otherwise have been and so make an even smoother
empirical potential – the change in width produces very little discernible distortion of the resulting
function. (Note that the width parameters (σr, σQ) being described here have nothing to do with the
Lennard-Jones parameters σα

� of the previous section. (σr, σQ) are simply width parameters which
are the same for all atom pairs.) Typically use of σQ=0.003Å in (2.3.5) is found to give
satisfactory results, with σr=0.012Å in (2.3.1) for the reconstruction. Note also that the functional

EPSRshell User Manual 27/3/2010 11

form (2.3.1) is such that gradients (forces) and higher derivatives of the potential have an
analytical expression.

2.4 The uniform atom distribution.

For an infinite system the radial distribution function)(rg is defined as the ratio of the local
density of atoms at a distance r from an atom at the origin,)(rρ , to the average density of atoms

in the whole system, ρ , i.e.
()
ρ

ρ r
rg =)(. For the computer simulation box the atoms do not

proceed to infinity, but are defined within a box (of dimension say D assuming it is a cubic box),
although they can of course move freely through the sides of the box. The infinite extent of the
system is then modelled by repeating this box indefinitely throughout space. Such an infinitely
repeating lattice of boxes would give rise to Bragg peaks in the calculated diffraction pattern, but
the “minimum image convention” [3] states that provided we restrict ourselves to looking at
distances less than a distance Dr 5.0max = , then we will only “see” the local environment of
individual atoms and not be aware of the longer range periodicity. Thus effectively a sphere of this
radius rmax is drawn around each atom when calculating ()rg . This works quite well provided D is
chosen large enough that the local density fluctuations induced by an atom or molecule in the box
have effectively damped out for maxrr ≤ .

Nonetheless it is sometimes useful to look at the distribution of atoms beyond this sphere,
effectively including all the atoms within the box, because the distribution of atoms outside the
minimum image sphere often gives a strong clue as to the state of the simulation. If a significant
density deficit or excess is observed as we go outside the minimum image sphere, it means the
atoms cannot be evenly distributed throughout the box and may not therefore be in equilibrium.
However to calculate ()rg beyond maxr the average density of atoms itself becomes a function of
distance from the central atom, since only the region inside the box can be included. The
maximum distance that can be calculated is into the corner of the box, which for a cubic box is

2
3D

r = . Provided one is careful only to count each atom in the box once when estimating ()rg

there is nothing inconsistent with the minimum image convention by doing this.

What happens of course is that as you approach the corners of the box the numbers of atoms
involved become small, so that the statistics at large r are poor. Thus in EPSR, while ()rg is

calculated into the corner of the box, atoms beyond a distance maxrr = are not used either for
estimating the structure factor of the simulated box, or for calculating the potential energy of the
simulation. (Note that rmax will not in general be the same as the range of the potential rmaxpt and
will normally be significantly larger than rmaxpt.)

Probably there are exact formulae for calculating this “uniform atom” distribution, but EPSR
cheats here by throwing a large number of particles at random into the box, and calculating the
distance dependence of the resulting uniform distribution, ()rUρ . Figure 1 shows an example of
this uniform atom distribution for a simulation of silica which used a cubic box of size of
27.9988Å, atomic number density 0.06834atoms/Å3, and step size 0.03Å, to be described in the
Examples, Section 7.3. It can be seen how the distribution rises quadratically until the edge of the
box is reached (13.9994Å), then decays abruptly beyond this as a smaller and smaller volume is
sampled into the corners of the box, eventually disappearing at r = √3 × 13.9994 = 24.2477Å. This
uniform atom distribution is recalculated at regular intervals as the simulation is run to ensure that
any statistical quality of this distribution does not unduly affect the estimated radial distribution
functions of the simulation.

EPSRshell User Manual 27/3/2010 12

 2.5 Running the simulation

As described above there are four different kinds of moves within the EPSR simulation, namely
individual atom moves where atoms are moved relative to one another within the molecule, whole
molecule rotations and translations, plus other intramolecular moves, such as rotations of
particular headgroups. Currently there are no moves which involve change of symmetry.

For individual atom moves only the change in the intramolecular potential energy, intraU∆ , is used
to accept or reject a move. Thus the probability of acceptance of an intramolecular move within
the Monte Carlo scheme is based on the value of []intraU∆−exp . There is no thermal factor in this
sampling, in order to simulate the zero-point disorder, which is temperature independent to first
approximation. In the event that the assumed molecular geometry does not fully concur with what
the diffraction data imply, it is possible to refine the assumed intramolecular distances to reduce
any misfit to a minimum.

For whole molecule moves, and for other intramolecular moves, the usual Boltzmann thermal
factor is used outside the intermolecular potential energies. In principle whole molecule moves
should not involve the relative movement of atoms within the molecule. However round-off errors
can accumulate over a number of such moves, so the intramolecular potential is included when
calculating the total energy change. Thus the probability of acceptance of a whole molecule move,
or an internal headgroup rotation move is based on the value of

() 
















∆+∆+∆− EpRef

B

Intra UU
Tk

U
1

exp , where for whole molecule moves intraU∆ would normally

make only a small contribution to the total energy difference before and after the move.

Individual atom moves amount to disordering the molecules without reference to the surrounding
molecules so they result in a net disordering of the intermolecular order in the system. Therefore
to prevent this disorder from accumulating there are typically 100 or 200 whole molecule moves
for each individual atom move. In this way the zero point disorder of the molecules is simulated,
while maintaining the intermolecular order in equilibrium. EPSR is therefore a rigid molecule
simulation, with however every molecule slightly different from the next, and over the course of a
simulation the precise geometry of these molecules will change slightly many times, although the
average molecular geometry remains unchanged.

Figure 1: Uniform atom distribution for SiO2

0

1

2

3

4

5

6

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0

Distance from centre of box [Å]

4 π
ρ

u
(r

)r
2

∆
r

EPSRshell User Manual 27/3/2010 13

Once the simulation with the reference potential alone has equilibrated, i.e. the calculated
distribution functions and structure factors become stationary and no longer change as the
simulation proceeds, the empirical potential is introduced. This is calculated by taking the
difference in Q space between diffraction data, D(Q), and the simulated structure factor, F(Q), and
fitting a function of the form (2.3.5) to this difference to give the set of coefficients Ci. (The
current EPSR code uses a second Monte Carlo loop to estimate these coefficients – this may not
be the most efficient way to do it, but it is at least straightforward to program and does not involve
any proprietary routines which would be difficult to distribute. In practice estimating the EP
coefficients is not a time consuming part of the calculation.) These coefficients are then used in
(2.3.1) to generate the empirical potential.

If isotope substitution has been performed then it is likely there will be several datasets to fit, so
that an empirical potential will be need to be generated for each of the site-site distributions in the
system. This is fine if, as in the case of say water or ammonia or a single component material such
as liquid sodium, it is possible to obtain all the specific site-site distributions separately.

Very often however it is desired to fit the total diffraction pattern, without separating it into partial
structure factors. Or more often, even with isotope substitution, there are not enough substitutions
possible to give all the partial structure factors of the system. Many materials currently being
investigated with neutrons and X-rays will fall into this category. Therefore a different procedure
is needed to set up the empirical potential for different pairs of atom types in these cases. The
present version (since 2006) uses a somewhat different procedure here compared to previous
versions so it is described in detail below.

2.6 Refining the Empirical Potential – introducing the data.

If there are J distinct atomic components in the system being studied then there are N = J(J+1)/2
distinct site-site partial structure factors (PSF) and radial distribution functions (RDF) to be
determined. We will assume that we have measured M diffraction datasets, Di(Q), each with a
different isotopic composition, or one may be an X-ray diffraction dataset on the same material.
The fit to the ith dataset of a particular experiment can be represented by a weighted sum over all
the pairs of atom types of the relevant simulated partial structure factors ()QSαβ :

() ()∑
=

=
Nj

jiji QSwQF
,1

 (2.6.1),

where j represents one of the atomic pairs of components (�,
�

) and the weights, ijw , are

determined from the respective product of atomic fractions and neutron scattering lengths or X-ray
form factors for that particular sample. For un-normalised data () βαβααβδ bbccwij −= 2 . The b

values will in general be different for different datasets and for X-rays will have their own Q
dependence1. In order to generate a perturbation to each of the site-site potential functions we will
need an inversion to the matrix wij. If there are enough isotopes or X-ray datasets to completely
separate all the partial structure factors, then this is no problem in principle, but, as explained
above, such a luxury is rarely available in practice, and in any case, even if it were, there would
remain questions about how reliable are particular datasets, especially when one or more of the
PSFs make only a weak contribution to the total diffraction pattern. The question is therefore how
to invert the matrix, ijw , in general? For most systems of experimental interest the matrix of

coefficients is ill-determined, making direct inversion unreliable.

In order to cover all of the situations likely to be encountered in real experiments, we assign a
confidence factor (called the ‘feedback’ factor in the program), f, to the data, where 0 ≤ f < 1, and
form the modified weights:

1 See Section 5.2 for description of how EPSR deals with the Q dependence of the X-ray form factor.

EPSRshell User Manual 27/3/2010 14

Mifww ijij ≤≤=′ 1for , (2.6.2).

In addition to these we form an additional, diagonal array of weights:

() () ()NMiMfw jMiij +≤<−=′
− for ;1 ,δ (2.6.3).

Effectively this additional set of weights is equivalent to saying we accept the data with
confidence f, and the simulation with confidence (1-f). This leads to an overdetermined matrix in
every case (N columns × (M+N) rows), provided 0 < f < 1.

We then seek the inverse of this matrix, 1−
jiw , such that the (M+N) × (M+N) matrix formed from











−′= ∑

=

′
−

′′

Nj

iiijijii wwP
,1

1 δ has a minimum norm, giving the least squares solution for 1−
jiw in the case

of an overdetermined set of linear equations as here. This problem can be solved by standard
techniques (EPSR again uses an iterative Monte Carlo loop to achieve the inversion to avoid the
need to use proprietary software. Although slower than more refined techniques the Monte Carlo
method is very robust at finding solutions.) Note that if the data are incomplete it is imperative that
f < 1, otherwise the procedure will loop indefinitely without finding any solutions. The solution
can be checked from the requirement that the matrix ∑

+=

−
′′ ′=

NMi

ijijjj wwP
,1

1 must be unitary.2 Since the

matrix ijw′ is always well determined from (2.6.1) and (2.6.2) there should never be a problem

with singularities.

Thus the complete algorithm for calculating the EP can now be written down. At the beginning of
the mth iteration of the algorithm each distinct pair of atoms, j, will have a set of coefficients, ()j

mkC , ,

which are used to form the empirical potential for that atom pair. Following (2.3.1) the EP at the
beginning of the mth iteration for any particular pair of atoms, j, is determined from

()() () ()∑=
k

rn

j

mk

j

m rpCkTrU
k

σ,, (2.6.4)

(At the outset, with m = 0, the coefficients ()j

mkC , are set to zero.) After the mth iteration the

differences between data and fit, () ()()QFQD ii − , are calculated, and represented by a sum of the

form (2.3.5). This gives rise to a set of difference coefficients, ()i

kC , one for each supplied dataset,
which change as the simulation proceeds – ideally they should go to zero when the simulation
approaches the data closely. These difference coefficients are then accumulated in the potential
coefficients:-

() () ()∑
=

−
+ +=

Mi

i

kji

j

mk

j

mk CwCC
,1

1
,1, (2.6.5).

The revised values, ()j

mkC 1, + , are now used in (2.6.4) to form a new version of the EP and the

simulation is run again. This whole cycle is repeated a large number of times until one of two
conditions is reached. Either the difference coefficients, ()i

kC , become insignificantly small so that
the empirical potential does not change any more, or else the modulus of the empirical potential
energy, defined by ()() ()∑

=

=
Nj

j

j

m drrrgrUU
,1

24πρ reaches some predefined limit. The latter tends

to happen when there are systematic errors in the data which cannot be fit by any potential energy
function. In that case the EP would increase in amplitude indefinitely if it were not capped, and
might introduce artefacts into the calculated distribution functions. Thus in the EPSR approach

2 This matrix is printed out at the end of the matrix inversion calculation to demonstrate that the inversion proceeded
correctly.

EPSRshell User Manual 27/3/2010 15

there is still scope for subjectivity on the part of the experimenter: they normally will need to set a
cap for the empirical potential energy modulus if systematic error is present. Indeed the need to set
a cap on the empirical potential is a likely sign of appreciable systematic error in the data.

Obtaining an inverse to our matrix of weight coefficients means we can in the spirit of the above
also write down our best estimate of the partial structure factors based on our relative confidence
in the data and the simulation:

() () () ()∑ ∑
= ++=

−
−− −+=

Mi NMMi

Mijiijij QSfwQfDwQT
,1 ,1

11 1 (2.6.6).

These estimated partial structure factors can then be compared with the simulated partial structure
factors.

It will be seen from (2.6.5) that the empirical potential is cumulative: unlike RMC where the
object is to minimize chi-square, the empirical potential develops amplitude and structure as the
simulation proceeds thereby bearing a memory of what shape it needs to satisfy in order to fit the
data.

There is also scope within the input files to provide a n=0 coefficient in (2.6.4) which will give
rise to a short range repulsive force: this is useful for ensuring unphysical overlap of atoms not
otherwise constrained by the reference potential does not occur. This repulsive force is not
determined from the diffraction data, but is instead determined by setting a minimum distance for
each site-site radial distribution function. Any penetration below this minimum distance causes the
corresponding n=0 coefficient to increase in amplitude, which in turns increases the repulsive
potential between this pair until the offending intensity in g(r) is removed. If no intensity is found
below this minimum distance then the n=0 coefficient is gradually decreased towards zero so that
it does not otherwise interfere with the rest of the EP. This repulsive potential is treated as part of
the reference potential, so will appear even if the EP is switched off. Its effect can be controlled by
specifying the minimum allowed distance between individual atom pairs in the EPSR input file.

Once the EP has stopped changing, or the absolute energy of the EP has reached its specified limit,
the simulation can be used to extract ensemble averages of required quantities. Some of the more
common distributions that can be calculated are described in Sections 5 and 6. Our next task
however is to look at how to run the simulation and associated routines from EPSRshell.

1 A K Soper, Chem. Phys. 202, 295-306 (1996); A K Soper, Chem. Phys., 258, 121-137 (2000); A K Soper, Mol.

Phys., 99, 1503-1516 (2001); F Bruni, M A Ricci, and A K Soper, in Conference Proceedings Vol 76, Francesco

Paolo Ricci: His Legacy and Future Perspectives of Neutron Scattering, M Nardone and M A Ricci (Eds.) (Società
Italiana di Fisica, Bologna, 2001); A K Soper, Phys. Rev. B, 72, 104204 (2005), A K Soper, Phys. Rev. B, 72, 104204
(2005)
2 D A Keen and R L McGreevy, Nature, 344, 423-425 (1990)
3 M P Allen and D J Tildesley, “Computer Simulation of Liquids”, (Oxford University Press, 1987)
4 D Frenkel and B Smit, “Understanding Molecular Simulation: From Algorithms to Applications”, (Academic Press,
1996)
5 G. Hummer, D. M. Soumpasis, and M. Neumann, J. Phys.: Condens. Matter 6, A141-A144 (1994).

EPSRshell User Manual 27/3/2010 16

EPSRshell User Manual 27/3/2010 17

3. EPSRshell
3.1 Introduction – EPSRshell menus

As explained in the introduction EPSRshell is an attempt to provide an operating environment in
which to setup, run, modify, run auxiliary routines, and display the results from an EPSR
simulation. It works from a series of menus, and the list of commands and variables available
within each menu is normally available by typing “help <CR>” or “? <CR>”. (In this manual
pressing “Enter” will be represented by “<CR>”.) Hopefully the operation of this scheme,
although it seems complicated when written down, will rapidly become familiar: there is some
very limited help information provided in the program, but the aim is that the need to refer to this
manual frequently for instructions should diminish with experience.

EPSRshell runs in the folder from where it is started. This will be referred to the “home folder”.
The home folder must contain the file “system_commands.txt”, which contains the definitions of
the system commands appropriate to the operating system in which the program is running. If this
file does not exist then the program will start but not run correctly. See Section 9 for a full list and
description of files needed to run EPSRshell.

EPSRshell can access and modify data stored in another folder. This will be referred to as the
“working folder”. At the present time this has to be on the same disk as the home folder, but
otherwise can be anywhere on that disk that is accessible. All files in either the working folder or
the home folder that are to be accessed by EPSRshell should not be set to “read-only”. The
working folder will ideally contain a file, “plot_defaults.txt” which contains the current list of
plotting types and their values appropriate to the data contained in this folder (see Section 3.6).
This file does not need to exist at the start, but it is a good idea to copy one from another folder if
it does not exist, since creating one from scratch could be a bit tedious. If the file does not exist in
the current working folder when the first plot request is issued a set of predefined plotting defaults
are automatically set by the program and these are used to create the initial version of
“plot_defaults.txt” in this folder. The plot options can always be modified and added to as
described in Section 3.6.

Each command line for EPSRshell is read in as a character string, which is normally parsed into 1
or more words. 1 to 5 spaces can be used to separate words or values in the command string. Only
spaces are used to delineate words: any other symbol will be treated as part of the variable value.
More than 5 spaces and the program will ignore the rest of the line. When commands are input
from the input file of a particular program (not a script file) the maximum number of spaces
between words is 11 instead of 5: this is so that a formatted write can be used when writing the
file, making it easier for the user to read and edit the file directly if they want to.

There is no obvious distinction between commands and variables in the menus other than by what
they do when pressed. Commands will generally do something if pressed, whereas variables
simply set that particular variable if a value is specified. Most of the menus except the Main menu
use a common symbol processing routine so they all have a similar look and feel. Apart from the
menu in which the program starts (the Main menu) one can step through the list of commands or
variables simply by pressing “Enter”. Or else if you want to skip forwards or backwards several
commands or variables you can type the name of the command or variable, optionally followed by
a value to change to if that command or variable is expecting a value. Useful commands for
moving around the menu include:-

<CR> Pressing “Enter” on its own signals that you accept the present value
of the current variable or command. The program then lists the next
variable or command in the sequence.

EPSRshell User Manual 27/3/2010 18

<value><CR> Sets the new value of the current variable. Each variable or
command is preceded by a brief description (except in the Main
menu, where you have to type “?” to get the list). Note that some
variables may require two or more values – these have to be entered
with spaces between. If any are missing then the program which uses
that variable will likely develop a problem and could potentially
crash when running. If it does so, it will immediately revert back to
the shell EPSRshell and you can try to find out why it happened.
After changing a value the program lists the new value again, so that
you can either accept it (by pressing <CR>) or rejecting it (by
pressing “n”).

n<CR> (No) Signals you do NOT accept the present or new value of the
current variable or command and wish to revert to the old value.
Obviously this will only work if a value has been changed.

u<CR> (Up) enables you to proceed backwards line by line through the list
of commands or variables.

<command or variable name> <optional value><CR> jump to the specified command or
variable, changing its value only if a new value is specified.
(Remember at least 1 space is needed between the command or
variable and its value.) An exception to this rule occurs within the
plot menu. Here the command “p <CR>” on its own will re-plot the
most recently plotted graph.

save<CR> will save the current set of commands or variables to a file. If this
involves overwriting an existing file, you will be prompted whether
you want to do this or not, and if not, asked for the new name of the
file to save to. Again the plot menu is the exception here: the list of
plot commands and variables is always stored in a file called
“plot_defaults.txt” in the working folder which you are currently
accessing. The main menu has no “save” command.

e<CR> (Exit) exits the current menu, saving anything that has changed since
the menu was entered. If this involves overwriting an existing file,
you will be prompted whether you want to do this or not, and if not,
asked for the new name of the file to save to. Pressing “e” in the
main menu will exit from EPSRshell and return you to whatever
system you called EPSRshell from.

q<CR> (Quit) quits the current menu WITHOUT saving any changes that
are made. Quitting like this does not give you the option of saving,
so use with caution. “q” does not work from the Main menu.

IMPORTANT NOTE: EPSRshell input is case sensitive. All the commands and variable
names are in lower case so if you use upper case (e.g. by accident) it is likely the shell will not
recognise the command or variable. Some file extensions use mixed upper and lower case,
but as these are set by the program and cannot be altered this should not cause any problem.
The only time when the case is not important is when specifying filenames, since the
Windows system ignores case when looking for files. On LINUX of course it is essential to
use the correct upper and lower case on filenames.

3.2 File naming conventions

As a general rule the input and output files for EPSR and its auxiliary routines will have a double
extension of the form <filename>.<program>.<filetype>. The file is referred to within EPSRshell

EPSRshell User Manual 27/3/2010 19

by its <filename>, with the <program> and <filetype> extensions set by the context in which the
file is being used. There are some exceptions to this rule. The atom file is always referred to with
extension .ato, with no program extension, as are the .pcof (potential coefficients file), .wts
(neutron and x-ray weights files), and the diffraction data files. The latter can have any extension.
Other files that do not have a program extension are associated with the makemole routine (see
later), namely .mol and .atm files

Other than these four file types, the current program extensions are:-

.EPSR EPSR input and output files

.PARTIALS partials input and output files

.TRI triangles input and output files

.TOR torangles input and output files

.COORD coord input and output files

.CHAINS chains input and output files

.RINGS rings input and output files

.CLUSTERS clusters input and output files

.VOIDS voids input and output files

.SHARM sharm input and output files

.SDF sdf input and output files

.PLOT2D plot2d input files

.PLOT3D plot3d input files

The allowed filetypes are:-

.f01 EPSR – simulated PSF

.s01 EPSR – simulated intra-molecular PSF

.q01 EPSR – estimated partial structure factors “data”

.d01 EPSR – difference PSF “data” minus simulated PSF

.u01 EPSR – simulated diffraction data F(Q)

.t01 EPSR – supplied diffraction data D(Q)

.v01 EPSR – difference D(Q) - F(Q)

.g01 EPSR and PARTIALS – simulated site-site g(r)s

.r01 EPSR – Fourier transform of PSF “data”

.y01 EPSR – simulated intra-molecular site-site g(r)s

.x01 EPSR – simulated f(r) (FT of F(Q))

.w01 EPSR – f(r) (FT of D(Q))

.o01 EPSR – site-site reference potentials, including Morse and Gaussian
terms

.p01 EPSR – site-site empirical potentials, including exponential repulsive
terms

.z01 EPSR – running coordination number for each site-site RDF. This is
calculated assuming the first atom of the pair is at the origin.

EPSRshell User Manual 27/3/2010 20

.inp,inpa EPSR input files. The .inpa file is used only to store some
accumulators and the current EP difference coefficients and does not
need to be modified by the user.

.erg EPSR – list energy, pressure, R-factor, and absolute energy at each
iteration of the simulation.

.terg EPSR – shows the mean energies associated with each atom type
pair, separated into contributions from the reference potential,
empirical potential, and total potential.

.uni EPSR – uniform atom distribution.

.out EPSR – list of diagnostic values from the simulation.

.dat input files to all the auxiliary routines, except plot2d and plot3d

.txt input files for plot2d and plot3d.

.h01, .h02, etc., output files for SHARM and SDF coefficients

.n01 output files for CLUSTERS, CHAINS, COORD, RINGS distribution
functions

.c01 output files for TRIANGLES and TORANGLES angle distributions

Note that normally up to 100 different distribution functions are allowed in each of these files (this
gives 201 columns, assuming 1 column for the x values, and 2 or more columns for the
distributions plus their standard deviations. Thus if more than 100 values are required, the
extension number is incremented, 02, 03, etc. Currently this mainly occurs with the SHARM
coefficients, but could happen with the PARTIALS (.g01) files if the number of distinct atom
components goes above 13 (= 91 atom pairs).

IMPORTANT NOTE ON SPACES: There is no obvious problem in EPSR with having a space
in a filename or folder name. Windows requires the entire filename which has spaces in it to be
enclosed in double quotes “” for it to be able to recognise it. These quotes must include the file
path name if present. However the quotes are only needed for calls to the Windows operating
system – they are not needed for the Fortran OPEN statement which opens files for reading -
OPEN will not recognise the quotes and give an error message. Whether or not these quotes are
included in system calls is determined by the value of “system_quotes” in system_commands.txt
(see Section 3.1). As far as is known all the routines work correctly with spaces in filenames and
folder names, but not every routine has necessarily been tested explicitly. If it is found that a
routine does not work correctly, delete the ‘”’ in system_commands.txt and start EPSRshell again.
However it will no longer be able to process files and folders with spaces in their names.
Generally speaking it is probably best to play safe and use names without spaces – instead use
underscore (_) to delineate words in filenames.

Note that to be sure that the editor defined by “system_edit” works correctly, the executable
should appear somewhere in the system path.3 If it does not the “ed” command in EPSR may not
work correctly.

3.3 The Main Menu

This is the menu that EPSRshell comes up in when first started. It is also the menu from which the
simulation is run, and from which most of the commands to other menus are executed. The Main
menu is different from the other menus in that it does not prompt for commands but is expecting

3 If, under Windows, that editor is “WORDPAD” it may need to be copied from its current location to somewhere in
the system PATH. For example it could be placed in the same folder as the EPSRshell executable. See Section 9.3 for
how to do this for Windows.

EPSRshell User Manual 27/3/2010 21

commands to be typed without prompting. It is always possible to get a list of commands by
typing “help” or “?”The Main menu commands can be divided into two kinds: those that will
normally be used as one-offs, and those that might be used repeatedly as part of an EPSR cycle.
The “setup” command is used to setup the EPSR and auxiliary routine input files. Note that any
command that is run from a script file must be given the required arguments, otherwise the script
will stop and wait for input from the console at each cycle. See Section 3.4 for details about script
operation.

A list of the “one-offs” includes:-

system <system command> - invokes the specified command for the system in which the program
is operating, e.g. “system cmd” would invoke the command prompt
under Microsoft Windows. Note that this will run in the home folder,
NOT in the current working folder, which may be different from the
home folder.

pwd shows the current working folder.

cd <folder name> sets the working folder to that specified. Note that no checking is
done to test whether this folder actually exists, so the program will
carry on as if the folder does exist, even if it doesn’t! You will soon
find out that it does not exist when none of the EPSR commands
work properly.

Typing “cd” on its own shows the current working folder.

Typing “cd home” or “cd .” will set the current working folder to the
home folder.

To change from the present working folder to another working folder
directly, use the command “cd .\<new working folder>”. It is
important to use the “.\” here to signify that the new working folder
is a subfolder of the current home folder. Leaving out the “.\” is
O.K. but it means the program will expect to find the new working
folder as a subfolder of the current working folder.

Typing “cd \<new working folder>” will set the working folder to be
in the top folder of the current drive. Currently it is not possible to
access working folders in drives different from that of the home
folder.

Note: The bulk of this manual is written from the point of view of
the Windows user. In Linux for example, the path separator character
is / instead of \ for Windows, so this needs to be remebmered for
Linux users.

Type “cd ..” to move one folder up the current folder tree. Thus to
get the top of the folder tree type “cd ..” several times.

ls <file list> lists the specified files in the current working folder.

md <folder name> creates a new folder

ed <filename>,edit <filename> invokes the editor specified by the “system_edit” variable in
“system_commands.txt”. Note that if Wordpad is the default editor

EPSRshell User Manual 27/3/2010 22

and the specified filename does not exist, then Wordpad will not start
correctly. If a file does not exist simply type “ed” or “edit” on its
own.

del <filename> deletes the specified file in the working folder

ss <filename> starts the specified script file (see Section 3.4). If a previous script
file was paused (rather than ended) then typing “ss” on its own will
restart that script file.

ps pauses the currently operating script. This will have to be done in
another window running EPSRshell. To restart the script simply type
“ss” in the original window.

es ends the current operating script so that it can only be restarted by
typing “ss <file name>.

plot reads the current “plot_defaults.txt” file, and then enters the plot
menu, allowing to plot specified data sets.

makeato makes a .ato file using a series of values input from the console. This
useful for single atom molecules or molecules with only a few
atoms. See Sections 4.1-4.2.

makemole reads a .mol template file and creates the corresponding .ato file and
.atm files. See Section 4.3

fmole sets up the atomic coordinates according to a set of bonds defined by
makeato or makemole. See Section

bonds calculates all the pair separations within a molecule – if more than
one molecule of a given type is present in the .ato file, the average
values of all these interatomic distances and there standard
deviations are shown.

mixato takes the first molecule out of each specified .ato file and forms a
mixture containing the specified number of molecules of each type.
This routine can be used to make a .ato file bigger or smaller, but
note that since it uses only one molecule (the first) from each file it
will be necessary to run fmole, followed by introtcluster and fcluster
after the mixture is set up to generate distinct molecules..

changeato allows all the main parameters in the .ato file to be altered – it works
like a standard EPSRshell menu.

introtcluster performs a random translation and rotation of every molecule in the
box.

epsrwts sets up the .wts file which gives the relative or absolute neutron
weight factors of individual PSFs in the input neutron diffraction
patterns.

epsrwtsx sets up the .wts file which gives the relative or absolute X-ray weight
of individual PSFs in the input X-ray diffraction patterns.

setup <program> <filename> invokes the setup menu for the specified program and reads in the
input file if specified. If no program is specified a list of the possible
options is given, from which one must be chosen. If no file name is
specified you will be prompted for one, or the program will search
the working folder for input files relevant to the requested program.

EPSRshell User Manual 27/3/2010 23

This menu allows you to modify values to be used in either EPSR
itself or one of the auxiliary programs, including the plot2d and
plot3d routines. Note that at present the working folder cannot be
changed from within the setup menu, so it is necessary to set the
working folder BEFORE entering setup. See Section 3.5 for more
details about the setup menus.

plot2d, plot3d runs the plot2d or plot3d plotting programs. The input files for these
will have previously needed to be set up using the “setup” command.

plotato does a simple plot of a .ato file, using either GNUplot (option 1),
PGPLOT (option 2) or Jmol (option 3). This is useful for checking
that a molecule has been set up correctly. For PGPLOT the result is
in pgplot.gif or pgplot.ps, depending whether the system command
system_pgout in “system_commands.txt” has been set to /gif or /cps.
For the other routines, the plot is shown graphically on the screen.

Commands that can be run either as one-offs or repeatedly in a script file include:-

epsr runs the EPSR simulation from a specified filename.

partials calculate the site-site RDFs. Note that these are calculated in EPSR
and so there is normally no need to run a separate calculation of the
RDFs.

triangles calculates the distribution of included angles for triplets of atoms
which satisfy the specified distance constraints.

torangles calculates the internal rotation angle along a specified bond in
specified molecule in the .ato file.

chains calculates the distribution of chains among molecules and atoms
which satisfy specific distance constraints, using the “shortest path”
criterion to estimate the chain length between two atoms.

rings calculates the distribution of rings among molecules and atoms
which satisfy specific distance constraints, using the “shortest path”
criterion.

clusters calculates the distribution of cluster sizes involving molecules which
are at specified distances

voids calculates the distribution of voids and the void radial distribution
function for spaces between atoms defined by a specified distance
from any particular atom.

fluctuations calculates the distribution of number fluctuations in a series of boxes
of size defined by the user.

coord calculates the average coordination number and coordination number
distribution for specified atom pairs over a specified distance range.

writexyz writes an xyz file for a specified .ato file. Result can be appended to
an existing file or separate, sequentially numbered files can be
written for each dump.

sharm runs the spherical harmonic reconstruction program for molecules.

sdf a version of sharm in which individual groups of atoms can be used
to define molecules. Hence it is useful for looking at local order in
network glasses.

EPSRshell User Manual 27/3/2010 24

<anything else> The shell will attempt to run the program <anything else> in the
binaries folder. Hence the user can run their own program at this
point. If it does not exist an appropriate message is printed, and the
program is returned to the shell. In addition for 2010 it is now
possible to write your own routines to process the ato file and
incorporate them into the setup menu.

3.4 Script operation

A typical EPSR script file, here called “runepsr.txt”, might look something like the following:-

cd .\water
epsr h2o298tot
rings h2o298tot
#epsr h2o298tot_large
#sharm h2o298tot_newshm
#epsr h2o298tot_new_large
cd .\mw73
epsr mw73
clusters newcls

The first line changes the working folder away from the home folder to that specified. The
subsequent commands perform the specified operations. The # indicates a comment line which
will be ignored by EPSRshell. The script file is invoked with the command “ss runepsr.txt”. This
starts it running and the list of commands in the script file are executed in turn, with the exception
of lines containing a #. When it has executed all the commands, the script file is rewound and the
sequence of commands is repeated again. If you wish to prevent this you simply insert a “ps” or
“es” as the last line of the script file. Note that the script file always runs in the home directory.
Note also that you can only run one script file at a time in a given home folder. The script can of
course access several working directories as it runs.

A script can have several “states”. The current state of a script for the present home folder is
stored in a file called “runflag.txt” in the home folder. The allowed states of a script are
“interactive”, “running”, “pausing” and “notrunning”. There may be more than one instance of
EPSRshell running in a particular home folder, but only one of these instances can run the script.

A script status of “interactive” means none of these instances of EPSRshell is running a script at
this time.

A script status of “running” means that one of these instances of EPSRshell is running a script
and the “runflag.txt” file will say which script file is executing.

A script status of “pausing” signals to the instance of EPSRshell which is running the script that it
should pause at the earliest opportunity. Note that it does this as soon as it has finished executing
the current command – it does not wait until all the commands in the script are finished.

A script status of “notrunning” signals that the script shown in “runflag.txt” is still active but is
not actually running at present. If EPSRshell is started in this home folder it will start the script
running again automatically if this status is set. Note that it starts from the top of the script file
when this happens – it does not carry on from where it left off when it was paused.

If a script is running in one instance of EPSRshell all other instances will run automatically in
“interactive” mode. However any one of these other instances can pause or end the script at any
time. Note that if a script is already paused then pausing it in another instance of EPSRshell will
have no effect, but it can still be ended by typing “es”.

EPSRshell User Manual 27/3/2010 25

When a script is paused (script status is “notrunning”) it can be restarted by typing “ss” or else it
will start automatically if a new instance of EPSRshell is started in the same home directory where
the script file is stored.

It is possible to include a comment in the script file, provided it occurs on a line which has a #
somewhere in it, or on the same line as a command provided there are at least 6 or more spaces
between the end of the command and the beginning of the comment.

Sometimes it is necessary to run EPSR for one or more iterations, then exit to the system to
perform a separate operation, such as run some other program on the current .ato file, then run it
again on a repetitive basis. To do this you need to have an “e” or “bye” as the last line of the script
file. See the following example, called “runepsrlw.txt”:-

cd .\aminoacids\MyJunk
epsr myjunk#
epsr pureh2o
e

In this case, when the script file is started with the usual command “ss runepsrlw.txt” it will run
the script in the usual way, i.e. change the working folder to “aminoacids\MyJunk”, ignore the
next line because it has a # in it, then run EPSR on the file pureh2o. When it gets to the “e” it will
do two things. Firstly, because this version of EPSR is actually running the script, it will pause the
script and put it into a state of “notrunning”. Secondly it will exit the script and put the shell into
interactive mode. Thus when EPSRshell is restarted in this folder it will automatically resume this
script until reaches the “e” again, when will again pause the script, and exit.

Beware of writing a script file that does nothing, then has an “e” in it at the end. This will start and
stop very quickly and be difficult to get rid of. If this happens delete the “runflag.txt” file, which
will automatically put EPSRshell into “interactive” mode when it restarts.

3.5 Setup menus

Any of the commands that can be run iteratively, plus the plotting commands plot2d and plot3d,
require a number of variables to be setup. For EPSR the number is at least 43 if there is only one
dataset, and more than this if there is more than one dataset. Creating and editing these input files
is achieved via the “setup” command. To avoid the need of having to worry about so many values,
almost all the variables are given sensible default values on startup, so that only the crucial ones
need to be specified. These are usually shown as “<undefined>” if they cannot be set from the
default values. These are most of the time filenames that need to be specified for the particular
case in question. If a variable is “<undefined>” and you don’t know what to type, a simple
solution is to type “search” for the value: this enters the search menu where you have the
opportunity to either pick a file of the relevant extension from a list of those in the working folder
or else type the filename yourself.

To enter setup, you type “setup <program> <input filename>”, where the two arguments are
optional. If the program name is not given you will be shown a list of the options and asked to
choose one. If the filename is not typed then you will automatically enter the search menu to find a
suitable file of the appropriate extension to setup. If the filename you specify does not exist, then
setup continues assuming that filename and using the default values for all variables that need to
be defined. On exiting it will save these values, or any new values that have been specified within
setup, to the new filename. If this involves overwriting an existing file you will be prompted
whether you want to do this or not, and if not be allowed to specify a new filename. Note that
when exiting from the EPSR setup the current atom coordinates and EP coefficients are written to
the specified .ato and .pcof files respectively. Hence if these filenames have changed in the course
of editing new .ato and .pcof files will be generated, but there is no check here about overwriting
an existing file, so be cautious!

EPSRshell User Manual 27/3/2010 26

At the end of the EPSR setup there is list of atom pairs and their minimum separations. These are
calculated on the basis of the supplied Lennard-Jones values, using “roverlap” and “rminfac”.
However they can be altered by typing in new values if it is felt the values for particular pairs are
not appropriate. Note that this must be AFTER the initial simulation with “ireset” set to 1,
otherwise the minimum distances will revert to their default values.

Currently the list of programs which require setup to be run to either create or edit the input file is:

epsr
partials
clusters
coord
chains
rings
triangles
torangles
sharm
plot2d
plot3d
voids

Note that it is always possible to create the required input files directly by editing, as was done
under the old EPSR regime, but this can be dangerous unless you know exactly what you are
doing as it is easy to introduce errors in this way. In general unless an error is catastrophic the
program will plough on and not make you aware that something could potentially be wrong (e.g.
the reference potential has been truncated at much too short a distance). Of course this can happen
even when editing using setup, but at least the shell reduces the chance of it happening.

Note that it is almost never necessary to specify file extensions when typing files within setup as
these will almost invariably be set by the appropriate program. This is in spite of some comments
in the program to the contrary. The only real exception to this rule is when using the system
command (outside of setup). In that case it will necessary to specify the full filename, including
the folder path if the working folder is different from the home folder (and any quotes “” that are
needed if the file or folder names have spaces in them.

3.6 The plot menu

The plot menu is really only a minor variation on the setup menu. Here however one of the
variables, “p”, is actually a command: it directs the program to take the existing or specified plot
type and plot the data with the parameters defined for that type. Also the “l” variable is also a
command: it produces a list of the current plot types.

Plot types are defined by means of the file “plot_defaults.txt”. If this file does not exist in the
working, then only a single plot type will be set up with arbitrary values set for the variables. A
list of the variables that are needed for each plot type can be obtained by typing “help” or “?” in
the usual way. You can increase the number of plot types by increasing the value of npt. This will
generate extra plot types but give them only the default values, so that you will need to enter each
new plot type in turn and change any of the values that need to be changed. Currently within any
plot type you can plot up to 2 different file extensions. These currently have to have the same
filename, but can have different extensions as specified by the “ext” variable. The only variable
that cannot be changed from within the plot menu is the “type” variable, which gives each plot
type a brief description to remind you what it plots. This is so that the text cannot be inadvertently
changed by a typing mistake when paging through the menu. To change the “type” variable you
need to first save the current plot types by typing “e” and then editing the appropriate line(s) in the
“plot_defaults.txt” directly using the “ed” command in the Main menu. Here is an example of the
plot_defaults.txt file to show you what it looks like:

EPSRshell User Manual 27/3/2010 27

plot_defaults Title of this file
l Lists available plot types
f hda06kbar File name to pl ot
b 1 - 10 Block numbers to p lot (e.g. 1 2 - 5 9 - 6)
p 16 Plot using the current or specified plot type
npt 21 Number of types of plo t

pt 1

type 1 - EPSR S(Q) f it Type of plot
ext .EPSR.f01 File extension(s) used to search for plot
files
bspace 2 Spacing betwe en blocks in plot file
boffset 2 Column number(s) for fi rst block(s) in plot file(s)
xmin 0 Minimum value on x-axis
xmax 20 Maximum value on x- axis
ymin -3 Minimum value on x- axis
ymax 3 Maximum value on y- axis
ydel 3 Spacing between plots
yfact 1.0 1.0 Factor(s) outside y values
xf 0.75 Fractional x coordin ate of labels
yf 0.25 Fractional y coordin ate of labels
title <undefined> Title of plot
xlabel Q [1/Å] x- axis label
ylabel S(Q) y- axis label
logx n log scale x (yes or no)
logy n log scale y (yes or no)
xcolumn 1 column number for x val ues [normally 1 or 0]

pt 2

type 2 - EPSR S(Q) fit and difference Type of plot
ext .EPSR.f01 .EPSR.d01 File extension(s) used to search
for plot files
bspace 2 Spacing between blocks in plot file
boffset 2 2 Column number(s) for fi rst block(s) in plot file(s)
xmin 0 Minimum value on x- axis
xmax 20 Maximum value on x- axis
ymin -3 Minimum value on x- axis
ymax 3 Maximum value on y- axis
ydel 3 Spacing between plots
yfact 1.0 1.0 Factor(s) outside y values
xf 0.75 Fractional x coordin ate of labels
yf 0.25 Fractional y coordin ate of labels
title <undefined> Title of plot
xlabel Q [1/Å] x- axis label
ylabel S(Q) y- axis label
logx n log scale x (yes or no)
logy n log scale y (y es or no)
xcolumn 1 column number for x val ues [normally 1 or 0]

And so on.

Note that when setting the block numbers to plot, the blocks can be specified in any order
(including backwards) and they will be plotted in that order. If a hyphen is used between two
numbers (always ensuring there are spaces between the hyphen and the numbers, otherwise the
routine will think you mean minus numbers) then all the block numbers between the two bounding
values will be plotted. If any specified block numbers are outside the range contained in the
specified data file, they will be ignored. If none of the specified blocks exist in the file being
plotted, a message to that effect is put out on the console and nothing happens.

EPSRshell User Manual 27/3/2010 28

If the title of the plot is “<undefined>” as above, then the plot program will generate a title
consisting of the working folder and filename.

Typing “p” invokes a plot of the current plot type, which can be set by typing “pt n” where n is the
number of the plot type. Or else typing “p n” will automatically set the plottype to “n” and then
plot that plot type.

Obviously there is some capability to modify the plot from within the plot menu (e.g. x and y
ranges, spacing between plots, etc.). However typing “p” actually creates a GNUplot (.gnu) script
file in the working folder, and then starts GNUplot with this script file. The filename for this file is
generated from the word “plot”, the current plot type and the name of the file being plotted, with
extension .gnu, e.g. “plot04h2o298tot.gnu”. If the plotting options currently available from within
the shell are not satisfactory it is always possible to edit this file, making use of the full range of
the GNUplot capabilities, and then re-run it directly from GNUplot.

Running GNUplot from within the EPSRshell plot menu makes use of the piping operator < to
force GNUplot to read the data from the “.gnu” file instead of from the console. Once it has
plotted the data however you can always click on the plot screen and alter various options, such as
line styles, and so on. If you right click you can even open the GNUplot console to make other
changes. (In LINUX you need to revert to the shell, where the GNUplot command prompt is
displayed, and type the command at the GNUplot prompt. With the current version of GNUplot
(version 4) you have the further option of zooming in on particular regions of the plot, using the
right click mouse button. This facility can be switched off and on by typing “m” (for mouse). Note
that the way the program currently is set up you have to close the GNUplot window(s) before you
can continue working in EPSRshell. This is to prevent EPSRshell generating a large number of
GNUplot windows. If you want to review or compare particular plots then open GNUplot (directly
from the binary, outside of EPSRshell), go to the folder where the .gnu files are stored, then type
“call ‘<filename>.gnu’” in the GNUplot window. This will bring that particular plot back to view.

Note the variable “boffset” in the above examples. This controls which actual columns of data will
be plotted. In the cases where there are two datasets being plotted, boffset can have two different
values so that for example column 2 of dataset 1 is plotted against column 3 of dataset 2. This can
be useful when plotting the running coordination number for example.

3.7 Plotting the box of atoms – plotato

As the molecules being generated become more complicated it is becoming increasingly important
to ensure the molecular structures that have been generated by EPSR are correct or at least fulfil
known structural constraints, such as bond distances, bond angles, dihedral angles and stereo
symmetry. plotato is used to plot the box of atoms. Once the name of the .ato file to plot has been
identified, the user has three options, whether to use GNUplot, PGPLOT or Jmol to plot the .ato
file, or part of it.

The GNUplot option uses the same routines and methods used by plot, but instead invokes the
GNUplot “splot” command which is an attempt to do surface plots within GNUplot. It makes no
use of the surface plotting capability however, but simply draws circles of different sizes and
colours to represent atoms and lines to represent bonds. The image can be easily rotated to assist
with viewing, and there is even an option within this option to plot two boxes at slightly different
viewing angles, so that a stereo view can be generated. The result is not perfect – for example the
different atoms are plotted as different plots, so that the later atoms plotted always overlay the
earlier ones, irrespective whether they are closer or further away from the observer. However it
gives a quick and easy representation of the box of atoms – one can see very quickly whether
particular bond constraints have been satisfied.

EPSRshell User Manual 27/3/2010 29

The PGPLOT option uses the sphere and cylinder methods within the PGXtal set of routines to
draw atoms and bonds as specified. There is also the option to draw the sides of the box, which
can be helpful in some cases.

The Jmol option invokes the Java routine Jmol.jar to plot the .ato file.

The GNUplot and Jmol programs produce a graphical output, while the PGPLOT program
produces an output determined by the system_pgout variable set by system_commands.txt. Note
that due to the limitations of the PGPLOT library that was used to compile the Windows version
of the programs, only the /GIF, /PS, and /CPS options are available at present with PGPLOT.

plotato is invoked by typing “plotato <filename>” within EPSRshell, where the filename is the
name of a .ato file. If <filename> is not specified then the program enters the search menu to find
suitable .ato files in the current working directory.

Initially you are asked whether you want to plot all of the molecules in the box (1) or a subset
based on a particular molecule at the origin (2). If the latter you are also asked which molecule
you want at the origin and how far away you want to plot the surrounding atoms. If you type zero
for this distance you are shown only the molecule specified.

It then will list the different atom types (see Section 4.1 below for a discussion of the distinction
between atom ‘classes’ and ‘types’) found in the .ato file and ask you the number of types and
which particular types you want plotted.

Once these are specified with the Jmol option set (option 3) the program writes a file to the
working folder called <.atofilename>.xyz, which is then used as input to Jmol. Jmol is called with
the command defined by the system_jmol variable from system_commands.txt. Jmol makes its
own decisions about atom colours and bonds, but no doubt these can be changed once the
Graphical User Interface (GUI) is displayed.

For the GNUplot and PGPLOT options plotato will initially try to open a file called
‘gnuatoms.txt’ in the home folder where it will attempt to read information on the size and colour
of each atom class. Below is an example of ‘gnuatoms.txt’:-

 1. 0.0500000007 20.
 O 8 2.00000 1 12 1.000 0.000 0. 000
 H 6 1.40000 8 15 1.000 1.000 1. 000
 N 8 1.00000 3 15 0.000 0.000 1. 000
 C 8 1.95000 8 8 0.400 0.400 0. 400
 S 8 1.40000 5 14 1.000 1.000 0. 000
 Cl 8 1.20000 2 10 0.000 1.000 0. 000
 Si 8 1.00000 5 14 1.000 1.000 0. 000

If this file does not exist, or an atom class in your .ato file is not found in this file, you will be
prompted for the values needed, and these will then be saved to the same file, so that you don’t
have to keep typing the values again every time you run the program. If you want to change the
size or colour of an atom which already exists in “gnuatoms.txt”, you will need to edit this file
directly.

In the first line of this file the first of the three numbers controls the rounding on the lengths of the
three Cartesian axes. Thus “1.0” signals to round the length of each axis up to the nearest Å. The
second number controls the size of the offset of the xy plane of the plot from the bottom of the z
axis – this needed to help avoid axis labels clashing, but it is not perfect depending upon the
orientation of a particular plot. It is expressed as a fraction of the length of each of the three axes,
which are set equal in length. The third number is an overall scaling factor on the size of all the
plotted atoms – it is useful to help make the plot look realistic. The actual scale factor used
depends on the length of the axes as well as the value of this number.

For each of the subsequent lines the sequence is the same:-

EPSRshell User Manual 27/3/2010 30

The first symbol gives the atomic symbol which defines the class of each atom, e.g. hydrogen,
carbon, oxygen, etc. using standard chemical symbols for each element. Note that this is distinct
from the atom types which can vary depending on the location of the atom within a molecule.
Thus there can be several different atomic types, e.g. versions of carbon, all belonging to the same
atom class (carbon in this case).

The second number gives the GNUplot symbol to plot. This will depend on which terminal
window is being plotted in but for the Windows terminal, 8 should correspond to a solid circle,
while 7 corresponds to a hollow circle. This number is ignored by PGPLOT.

The third number is the character size, represented as a fraction of the current character size. On
actual plotting the actual character size plotted will be modified by the overall scale factor given
on line 1. This number is ignored by PGPLOT.

The fourth number signals the character colour used by GNUplot. These can be set from the
GNUplot graphical window by right clicking in the window (type “m” first to inhibit the
automatic rotation or scaling option) and going to “line styles”. When finished these need to be
saved by repeating the right mouse click in the graphical window, then click on “update
wgnuplot.ini”. The above values correspond to line 1 = red, line 2 = green, line 3 = blue, line 4 =
lighter grey, line 5 = yellow, and line 6 = dark grey, but obviously you can set your own colours if
you wish to do so. This number is ignored by PGPLOT.

The fifth number was used to specify colour for ATOMS input files and is no longer needed.

The last three numbers are the red, green, blue colour indices used to define the colour of the atom
sphere used by PGPLOT.

Having got the atoms sorted out, plotato will then ask you to specify bond lengths between
specified pairs of atom classes. Again these will initially be read in from a file, ‘gnubonds.txt’ in
the home folder. Below is an example of this file:

 1.00000 0.00000 0.00000 0.10000 0.1000 0 0.10000 0.01000
 C C 1.00000 2.00000 0.10000
 C N 1.00000 2.00000 0.10000
 C O 1.00000 2.00000 0.10000
 O H 0.50000 2.40000 0.10000
 C H 0.50000 1.50000 0.10000
 N O 1.00000 2.00000 0.10000
 N H 0.50000 1.50000 0.10000

The first line of numbers is used only by PGPLOT. The first three numbers give the RGB values
for the bond colour (red in the above instance), the next three give the RGB values for the lines
used to show the box edges, and the last number gives the radius of the line used to show the box
edges.

Hopefully the subsequent numbers are reasonably obvious: the first two letters signal the atom
classes to be used to form the bond (the order is not important), the next two numbers represent
the smallest and largest separations allowed for these two atom types to appear bonded, and the
last number, used only by PGPLOT, defines the radius of the bond in Å. GNUplot simply draws a
line to represent bonds.

You have the option of changing or adding to any of these bonds by typing in the relevant
numbers. If you type “0 0 0 0 0” the program ends bond input and writes out the new gnubonds.txt
with the new (or revised) bonds.

plotato then asks you for the elevation (x) and rotation (y) of the desired plot. Note that these
values have different effects in GNUplot compared to PGPLOT, so you will need to experiment a
few times to get the desired effect.

EPSRshell User Manual 27/3/2010 31

plotato then plots the box of atoms, and returns to the shell (after you have closed the GNUplot
graph window for the GNUplot option).

Alternatively, if with the GNUplot option, instead of 0 0 0 0 0, you type “ste 0 0 0 0”, it will ask
you one more question, to specify the viewing direction for each plot in terms of spherical polar
coordinates, and plot two boxes of atoms next to each other. If the viewing angles are close to one
another, these can be viewed stereoscopically to give you a quasi-3D view of the box. Note that
the best stereo image is obtained by making the � values close to (but not equal to) 90°, and then
making the � values 3 – 5° apart, depending on how good your eyes are focussing.

EPSRshell User Manual 27/3/2010 32

4. Preparing for an EPSR simulation.
To run the EPSR simulation program 4 main input files are required, plus of course files
containing the diffraction data to be fitted. These have extensions .inp, which basically contains
the information about what data is to be fitted, and how it relates to the simulation, .pcof which
primarily contains information on the coefficients of the empirical potential plus some details of
the simulation which the user will not normally need to modify unless there is a specific reason to
do so, .wts, which tells EPSR the weightings on each partial structure factor for each dataset, and
.ato, which contains the atomic coordinates of all the atoms and molecules in the box, plus their
Lennard-Jones and Coulomb charge (where appropriate) parameters. There is also a .inpa file
generated to store intermediate values of various parameters, but this should not be modified by
the user.

Since the .ato file is the most complicated of these files to set up, the next Sections describe how it
can be generated for a particular system.

4.1 Building the .ato file – single atoms and molecules.

Simplest way to make the initial .ato file is to run makeato. By asking some hopefully fairly
obvious questions, this program will allow you to build a box containing 1 atom or 1 molecule
with all the necessary parameters set. Subsequently mixato can be used to make the box larger
(with more atoms and molecules) or to make mixtures of atoms or molecules.

Alternatively you can build your .ato file by hand, but this can be tricky since the format of the
file is important. Probably the easiest method, if you wish to do this is to edit an existing .ato file
containing 1 molecule, and then expand this with mixato once the changes are complete.

However if the molecule is at all complicated, then it is STRONGLY recommended you use
makemole (Section 4.3) to build the molecules if at all possible. This sets up a template molecule
which can then be used to alter the molecules in your .ato file in a consistent manner.

The basic structure of the .ato file is as follows:-

Line 1: (free format) Number of molecules, Box dimension (Å), Temperature (K)

Line 2: (free format) Tol (not currently used), Step size for intramolecular translations, Step size
for headgroup rotations, Step size for whole molecule rotations, Step size for whole molecule
translations, and vibrational weighting (i.e. coefficient C/2 in equation (2.2.1). Typically C/2=65.).
Setting any of the step sizes to zero will inhibit trial moves of that type.

Line 3: (free format) Number of atoms in the first molecule, x,y,z coordinates of the centre of
mass of this molecule, phix,phiy,phiz coordinates (not really used in present program), and the
molecule number. This last number is given for information purposes only and is not read on
input, so that .ato files generated under previous versions of EPSR will still run correctly.

Then for each atom in the molecule:-

Line 4: (format(1x,A3) (up to)three character label for this atom, preceded by a space, and
followed by a number which signals the relative number of this atom within the molecule. As with
the molecule number this number is not read on input, but it is helpful when checking whether the
bonds have been setup correctly.

Line 5: (free format) x,y,z coordinates of this atom relative to the centre of mass.

Line 6: (free format) number of other atoms in the same molecule this atom is bound to (with a
harmonic potential such as (2.2.1)), followed by their atom numbers and the corresponding bond
distance given in pairs. If the number of bonds is zero (unbonded atom) then this line should start
with a 0 and contain nothing else. Normally this would only occur for a molecule containing only

EPSRshell User Manual 27/3/2010 33

1 atom. If an atom is left unbonded to any other atoms in the molecule it will drift around all over
the simulation box, unrelated to its parent molecule.

Lines 4,5 and 6 are then repeated for each subsequent atom in the molecule.

Line 7: (free format) number of rotational groups in this molecule – if zero then you need simply a
0.

Line 8: (format(1x,A3) – only present if line 7 is not zero) 1 space and the word (in upper case)
ROT. This is to specify an intramolecular headgroup or side chain rotation. Currently no other
moves are recognized.

Line 9: (free format) Two atom numbers to be used to form the axis about which the headgroup
will be rotated.

Line 10: (free format) The number of atoms in the headgroup to be rotated and their atom
numbers. Obviously this list must not contain either of the atoms used to define the axis of
rotation, otherwise the program may give unpredictable results.

Lines 8, 9 and 10 are then repeated for each subsequent headgroup in this molecule.

This completes the input for the first molecule. Lines 3 – 10 are then repeated for each
subsequent molecule in the box. Is does not matter in what order they are entered although it is
conventional to group all molecules or atoms of the same type together.

At the end of the molecule input, the Lennard-Jones and atomic mass and Coulomb charge
parameters are specified. In reading the .ATO file the EPSR program will have used the atom
labels to define a set of atomic “types”, 1 type for each different atomic label. Thus M and H
might both refer to hydrogen atoms, but the reference potential parameters will still need to be
defined separately for each type. The program will be expecting reference potential parameters for
each atomic type – if one or more is missing it will print out an error message and may stop or
crash later on.

Thus for each atom type there are two lines required.

Line 11: (format (2(1x,A3), 1x,I)) The atom label – this must appear exactly as it appeared in Line
4 when specifying the atom within the molecule, i.e. it is case sensitive. This is followed by the
atomic symbol for this atom, exactly as it appears in the Periodic Table, and an integer, iexchange
(0,1) which determines whether this atom exchanges with other atoms in the box. iexchange is
automatically set to 0 if the atomic symbol is not H and will be checked and used by the epsrwts
program. If either of the latter two values have not be set (e.g. from the earlier versions of the
software) they will be automatically set to XXX and -1 respectively when read into EPSR to signal
that they may need to be set.

Line 12: (free format) Lennard-Jones well depth, ε, (kJ/mol), core diameter, σ (Å), atomic mass
(amu., note that hydrogen atoms are always given a mass of 2 amu, irrespective of whether they
are isotopically substituted or not), Coulomb charge (e), and a charge radius (which should be set
to 0 unless you intend to dock molecules – see Section 4.8).

Lines 11 and 12 are then repeated for each atom type present in the .ato file.

Line 13: (free format) Must contain two numbers. These are used in fmole to keep non-bonded
atoms as far apart as possible, but are not currently used by any other programs

Line 14: (free format) Does not need to be given, but after a simulation will contain a series of
integers which are used by the random number generator RAN1() so that the random number
sequence starts from the place where it left off at the end of the previous simulation.

Line 15: (free format) There follows a list of the molecule types that have been found in this file,
and if they were generated from a template file, the name of the corresponding .mol file. This is so

EPSRshell User Manual 27/3/2010 34

that if the corresponding .mol file is changed in some way the new bond lengths or rotational
groups will be incorporated into this .ato file. Also on this are two step sizes for these molecule
types, one for whole molecule rotations and one for whole molecule translations. This to ensure
that large molecule moves are accepted with the same frequency as small molecule moves, even
though the size of the move may be smaller in the former case. These values override those found
at the beginning of the .ato file.

IMPORTANT NOTE: When the .ato file is read each molecule is given a type, as listed on line 15
above. This molecule type is determined from the atom type of the first atom in each molecule.
Thus in mixtures of molecules it is important to ensure the first atom of each molecule has a
distinct atom type, otherwise the molecule will not be recognized as a different type and an error
will occur.

 4.2 Creating a molecule – makeato.

This program is run by simply typing “makeato” in the Main menu of EPSRshell (after setting the
working folder to where the .ato file is to be created). Note however that if the molecule is at all
complicated it is generally much better way to generate a molecule via the command “makemole”
– see Section 4.3. The input to makeato is hopefully self explanatory, however note that when you
type the name of the file at the outset, you need only to type the filename, not the extension, which
the program will automatically set to .ato. This program creates the .ato file for a single atom or
molecule – it is a good idea to sketch out the molecule on a piece of paper and assign atom types
and atom numbers. Here is an example of such a sketch for a methanol molecule. There are six
atoms in the molecule and four atomic types. Each atom has a label and a number. Relevant
intramolecular distances are defined:-

Figure 4.1

- there is a total of 5 such bonds to be defined. In addition not shown here are the bond angles,
which for the purposes of demonstration can be set to the tetrahedral angle, 109.47º - there are 7
such angles to be defined, those between atoms (1,2,6), (2,1,3), (2,1,4), (2,1,5), (3,1,4), (3,1,5),
and (4,1,5). makeato will use these input numbers and angles to define the distance between the
first and last of the triplet, e.g. between atoms 1 and 6 for triplet (1,2,6). Next it will ask for 2 atom
numbers to make a rotational group, atoms 1 and 2 in this case. Then it will ask you to type the
number of atoms in this rotational group and the corresponding atom numbers. makeato will also
ask for some parameters, like the temperature and atomic number density, and the Lennard-Jones
parameters.

At the end makeato asks you for the vibrational weighting. This is the value of C/2 in equation
(2.2.1).

4.3 Creating a molecule – makemole

This is a another way to build a molecule. Basically a template file is created with the editor – this
must have the file extension .mol. From this template file the program makemole determines the

O C

H

M

M

1.34 0.976 1.08
1

2

4

6 3

5

M

EPSRshell User Manual 27/3/2010 35

number of atoms, the atom types and the appropriate bonding pattern from the position of asterisks
in the .mol file.

The first line of the .mol file determines the size of the grid (number of spaces in each column) to
be used in the file, and the second line is a ruler line to help position atoms and bonds correctly.
Each line starts with a line number in the first (zeroth) column to help identify atom locations.

The easiest way to understand how the program works is to study some of the examples supplied
with the distribution of EPSRshell. Atoms are specified by a label and bonds by asterisks. To be
bonded any two atoms must have the same asterisk in an adjacent square. Here is an example of a
simple .mol file to get you started – it sets up the .ato file for a water molecule.

 4
|0 |1 |2 | 3 | 4 | 5 | 6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |
 1 OW
 2 * *
 3 HW HW
bond OW HW 0.97600
angle HW OW HW 104.50000
potential OW 0.65000 3.16600 16.00000 -0 .84760 O
potential HW 0.00000 0.00000 2.00000 0 .42380 H
temperature 0.300000E+03
density 0.100200E+00
ecoredcore 1.00000 3.00000

Thus the OW atom is bonded to two HW atoms, but there is no bond between the HW atoms. The
atom positions are referenced by a grid location (row number, column number), for example atom
OW is at position (1,7), the first HW atom is position (3,5), and so on.

There is one feature which will not be obvious from the example .mol files. This is the way the
program reads the data and decides whether each pair of atoms is bonded or not. Basically it reads
the data from top to bottom and from left to right. When it finds an atom (an element with at least
one letter in it) it looks at all the PREVIOUS adjacent squares to see if any contain a *. Thus in the
example above when the program comes across the atom OW at location (1,7) it will look ONLY
at location (1,6) for an adjacent *. It will not at that stage see the bonds to the HW atoms. When
the program gets to the first * at (2,6) it notes the fact that there is a * at this position, adds it to the
list of * positions, and will also note that this * has an atom OW at the adjacent position (1,7). It
will NOT however see the HW at (3,5) at this point. Next when the program gets to position (3,5)
it will find the star at the previous position (2,6) add it that *’s list of neighbours, and hence find it
is bonded to the OW at (1,7). This procedure is quite deliberate and was done so as to ensure that
atom bonds do not get doubly generated while keeping the reading algorithm as simple as
possible.

If for example the first HW had been placed differently like so:

 4
|0 |1 |2 | 3 | 4 | 5 | 6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |
 1 OW
 2 HW * *
 3 HW

then on reading the file, the atom HW now at (2,5) will not see the * at (2,6) and will not form
any bonds. When the program reads the * at (2,6) it will add OW and HW to its list of neighbours,
because they are both in previous and adjacent elements, but this is not sufficient to generate a
bond between the first HW and OW, since bonds are only created when an atom is found, not
when a * is found.

The following example creates a cyclohexane molecule:-

 4

EPSRshell User Manual 27/3/2010 36

| | | | | | | | | | | | | | | | | |
 1 M M
 2 * *
 3 C
 4 * *
 5 2M * C C * 2M
 6 * *
 7 2M * C C * 2M
 8 * *
 9 C
 10 *
 11 2M
bond C C 1.54000
bond C M 1.08000
angle M C M 109.47000
angle M C C 109.47000
angle C C C 109.47000
potential C 0.20000 3.70000 12.00000 0 .00000 C
potential M 0.00000 0.00000 2.00000 0 .00000 H
temperature 0.200000E+02
density 0.900000E-01
ecoredcore 1.00000 3.00000

Note the use of a number in front of a symbol to generate multiple bonds of a particular type.

There is one other useful feature which is used for complex molecules which cannot easily be
represented on a 2D sheet like this. These are the mapped atoms, specified by the word “map”
followed by a grid reference. The reference can be either absolute in the form (row number,
column number) or relative to the current grid point, + or – number of rows and columns. For the
relative reference there is no need to surround the numbers with (). Here is the .mol file for
creating a C60 molecule:-

 4
| |1 |2 | 3 | 4 | 5 | 6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18 |19
 1 C1 C2
 2 * * * *
 3 C3 C4 C3
 4 * * *
 5 C2 C3 C4 C3
 6 * * * * * * *
 7 C3 C4 C1 C2
 8 * * *
 9 C3 C4 C1 map-2+0
 10 * * * * * * *
 11 C2 C3 C4 map-6+0
 12 * * *
 13 map-2+0 C3 C4 C3
 14 * * * * * * *
 15 map-6+0 C4 C1 C2
 16 * * *
 17 C3 C4 C1 map-2+0
 18 * * * * * * *
 19 C2 C3 C4 map-6+0
 20 * * *
 21 map-2+0 C3 C4 C3
 22 * * * * * * *
 23 map-6+0 C4 C1 C2
 24 * * *
 25 C3 C4 C1 map-2+0
 26 * * * * * * *
 27 C2 C3 C4 map-6+0
 28 * * *
 29 map-2+0 C3 C4 C3

EPSRshell User Manual 27/3/2010 37

 30 * * * * * * *
 31 map-6+0 C4 C1 C2
 32 * * *
 33 C3 C4 C1 map-2+0
 34 * * * * * * *
 35 C2 C3 C4 map-6+0
 36 * * *
 37 map-2+0 C3 C4 map(3,15)
 38 * * * * * * *
 39 map-6+0 C4 C1 map(1,13)
 40 * * *
 41 map-34+0 C4 map(1,9)
 42 * * * *
 43 map(5,3) map(3,7)
bond C1 C1 1.50000
bond C3 C3 1.50000
bond C4 C4 1.50000
bond C1 C3 1.50000
bond C1 C4 1.50000
bond C3 C4 1.50000
bond C2 C3 1.50000
bond C2 C4 1.50000
bond C2 C2 1.50000
bond C3 C3 1.50000
angle C1 C3 C3 120.00000
angle C1 C4 C4 120.00000
angle C3 C1 C4 120.00000
angle C1 C1 C3 120.00000
angle C3 C4 C4 120.00000
angle C1 C3 C4 120.00000
angle C2 C3 C3 120.00000
angle C2 C4 C4 120.00000
angle C3 C2 C4 120.00000
angle C1 C1 C4 108.00000
angle C1 C4 C2 108.00000
angle C4 C2 C4 108.00000
angle C3 C3 C4 108.00000
angle C3 C4 C2 108.00000
angle C3 C3 C3 108.00000
changelabel C1 C
changelabel C2 C
changelabel C3 C
changelabel C4 C
potential C 0.65000 3.00000 12.00000 0 .00000 C
temperature 0.200000E+02
density 0.500000E-01
ecoredcore 1.00000 3.00000

For example the atom at position (9,13) is in fact the C2 atom at (7,13) while the atom at (43,7) is
in fact the C3 atom at (3,7).

The other parameters needed for the .ato file are set up using the variables as listed in these
examples. As for other commands each command is followed by a list of values separated by
some spaces, typically up to about 5 spaces are allowed – more than this and the subsequent
variables on a line may not get read. These lines could come anywhere after the first two lines in
the .mol file, but it is probably easiest to list them after all the atoms and bonds have been defined.
Note that in order for the program to work correctly it may be necessary to define a set of different
atom types in the .mol file, which are in fact to be the same atom type within the .ato file. The
command “changelabel” is useful for setting the atom labels and types back to what will be needed

EPSRshell User Manual 27/3/2010 38

for the .ato file. The last letter on the “potential” line is the atomic symbol for that atom and has to
be one of the recognised atomic symbols as listed in the Period Table.

The .ato template file is generated by typing “makemole <filename> where <filename> is the
name of the .mol file that has been created. This generates a .ato file and also a .atm file which
lists the atom numbers. This is useful for specifying extra bonds, rotational groups, and dihedral
angles.

Other makemole commands that are useful are:-

extra defines an extra bond distance between specified atom numbers. Format is “extra
<atom number 1> <atom number 2> <bond length>”. The relevant atom numbers
can be obtained by looking at the .atm file created after the first pass through with
makemole. This feature can be used to stabilise a molecule when the near
neighbour bond distances and angles are not sufficient by themselves.

rot defines a “ROT” group – headgroup or sidechain rotation. Format “rot <atom
number 1> <atom number 2>. The two atom numbers specify the axis of rotation.
makemole will sort out which atoms will need to be rotated. However the order of
the two atoms is important. makemole uses the second atom of the pair to
determine which atoms will be rotated, you should ensure the second atom has the
fewer atoms bonded to it than the first. It would be crazy for example to have a
methyl group attached to a long polymer molecule, and then rotate the polymer
about the common axis, instead of rotating the methyl group!

dihedral defines a dihedral angle within the molecule. Format is “dihedral <atom number 1>
<atom number 2> <atom number 3> <atom number 4> <dihedral angle>. Atoms 2
and 3 will form the axis of rotation. Atoms 1 and 4 are used to calculate and define
the dihedral angle. makemole converts these numbers and the bonds between each
pair of atoms to a distance between atoms 1 and 4. If any of the pairs 1-2, 2-3, 3-4
are not bonded, or either of the angles 1-2-3, 2-3-4 are not defined then nothing is
generated. Note that since the angle is being converted to a distance, there may be
some loss of information when the molecule is actually formed by fmole, so if this
is likely to happen it would be advisable to define two dihedral angles for particular
rotation axis involving different atoms 1 and 4.

qradius allows you to set the charge radius of a particular atom type. If not set by this
command the charge radius for an atom is set to zero. Format is “qradius <atom
type symbol> <charge radius for this type>

vibtemp allows you to set the vibrational weighting. This is the value of C/2 in equation
(2.2.1). A value around 65 seems to give realistic intramolecular atom distributions,
but you may need to change this for particular cases. However when initially setting
up a molecule it is a good idea to use a much larger number, e.g.1.0e5, so that the
molecule is forced close to its ideal conformation. It can always be relaxed once it
is clear the bonding constraints have been set up correctly. Format is “vibtemp
<vibrational weighting>. Note that increasing this weighting has the effect of
making the bondlength variance between molecules smaller.

The best way to generate a .mol file is to take an existing one and edit it – there is currently no
feature within EPSRshell which will help create this file. But since the format is reasonably
graphic it is hoped that this will no present a major obstacle to using it. It is also a good idea to set
a low density, e.g. 0.001 when setting up a molecule, particularly if it is quite big – this will help
to keep all the atoms of the molecule inside the simulation box! Note that the minimum image
convention is applied to the centre of mass coordinates of each molecule in EPSR, so that it is
perfectly possible for individual atoms on any given molecule to occur outside the box walls, even

EPSRshell User Manual 27/3/2010 39

though the centre of mass of the molecule is inside the box. (Of course when calculating
interatomic separations, the minimum image convention is always applied to atom pair distances.)

makemole is run simply by typing “makemole <filename> where the filename is the name of mol
file. If the file is not specified, makemole enters the search menu to look for files of the correct
type.

4.4 Making a .mol file from Ghemical

There is an easy way to make the .mol file for molecules that are not easily represented on a two-
dimensional matrix. This is by first “drawing” the molecule with Ghemical. Ghemical is free
software that can be downloaded for a range of platforms. You might need someone to show you
how to use it, but once you get the hang of it is really easy, and it allows you to refine the
molecular structure using both molecular mechanics and quantum mechanics. Specific bonds can
be defined as required. At the end of building the molecule, the file needs to be exported in the
native format of Ghemical – this comes out as a .gpr file. Save this file to the folder where you
want to run EPSR

This file is read from within EPSRshell using the command readgpr <filename>. This creates
another form of the .mol file which can be processed by makemole – makemole can distinguish
this form of the file from the previous form from the first line of the file. Now instead of the
graphical display of the bonding, there is a list of atom types, their coordinates, and the list of
atoms they are bonded to. The rest of this file is the same as the normal .mol file and can be edited
to change names and define angles, and so on. Here is an example:-

.gmol 1
 atom 0 1C 1.26355791 -0.618752599 -0.107942097 4 2 7 8 9
 atom 1 1C -1.08545911 0.797498465 0.420713395 4 2 4 5 6
 atom 2 1S -0.506399035 -0.803632438 -0.09700558 33 3 1 0 3
 atom 3 1O -0.923409045 -0.952634037 -1.55135632 1 2
 atom 4 1H -0.756135285 1.6170125 -0.240949363 1 1
 atom 5 1H -0.725312173 0.991383493 1.44679928 1 1
 atom 6 1H -2.19011569 0.771413565 0.429133296 1 1
 atom 7 1H 1.70142245 -1.57547176 -0.445550948 1 0
 atom 8 1H 1.61551464 0.186336115 -0.775645196 1 0
 atom 9 1H 1.60633504 -0.413153142 0.921803594 1 0
bond 1C 1S 1.77961
bond 1C 1H 1.10439
bond 1S 1O 1.52027
angle 1S 1C 1H 109.99667
angle 1H 1C 1H 108.91964
angle 1C 1S 1C 103.41133
angle 1C 1S 1O 106.09148
dihedral 7 0 2 1 -178.71449
dihedral 7 0 2 3 -67.28301
dihedral 8 0 2 1 -58.34621
dihedral 8 0 2 3 53.08527
dihedral 9 0 2 1 63.39165
dihedral 9 0 2 3 174.82314
dihedral 4 1 2 0 58.27011
dihedral 4 1 2 3 -53.15618
dihedral 5 1 2 0 -63.45853
dihedral 5 1 2 3 -174.88481
dihedral 6 1 2 0 178.64590
dihedral 6 1 2 3 67.21963
rot 0 2
rot 1 2
potential 1C 0.80000E+00 0.37000E+01 0.12011E+0 2 0.00000E+00 C
potential 1S 0.80000E+00 0.32000E+01 0.32066E+0 2 0.00000E+00 S
potential 1O 0.65000E+00 0.31000E+01 0.15999E+0 2 0.00000E+00 O
potential 1H 0.00000E+00 0.00000E+00 0.20000E+0 1 0.00000E+00 H

EPSRshell User Manual 27/3/2010 40

temperature 0.300000E+03
vibtemp 0.650000E+02
density 0.100000E-02
ecoredcore 1.00000 3.00000

Generally readgpr will generate everything down to and including the dihedral angles, and make
a guess at the potential parameters, but any of it can be modified as required by the user prior to
running makemole. Note that the atom numbering produced by the .gpr file is 1 less than the
atom numbering used in the rest of EPSR. This is corrected when makemole produces the .ato
file. However there is no corresponding .atm file when this version of makemole is invoked.

4.5 Running fmole to generate molecular coordinates.

Having specified the molecule, it now needs to be brought to equilibrium since makeato or
makemole will not have done anything to define the actual coordinates of the atoms – they will all
be set to zero. So far they will only have defined the bonding within the molecule and the
reference potential parameters. To run fmole you type “fmole <.ato filename> <ntimes>
<nupdates> in the Main menu. <ntimes> is the number of times you want it to run the simulation.
<nupdates> is the frequency you want to update the neighbour list. When running fmole on a
single molecule <nupdates> can be set to 0 since any atoms bonded to any other atom in a
molecule will automatically appear in the neighbour list. If any argument is not specified you will
be prompted for it.

Having made the molecule it is a good idea to check that it looks like what you might expect, that
there are no atoms in strange places. To do this, run plotato (Section 3.7) on the resulting .ato file
from the EPSRshell menu. This will generate a picture of the current molecule.

A new feature of fmole is that before it runs the molecular refinement, it first runs makemole on
any .mol files that are specified at the end of the .ato file. It then reads the bonding, rotational
groups and potential parameters from the .ato file generated by makemole and inserts them into
the appropriate molecules in the present .ato file. This allows the .mol file to maintain the
template for the molecules of a particular type in this file. For this reason it is a good policy NOT
to run fmole directly on the file produced by makemole, but to make a copy of it, with a different
name – you can for example use mixato (see Section 4.6) to create a “mixture” of just 1 molecule
from the template file and give it a new name on exit. Since makemole will have set all the
coordinates in the .ato file to zero, if fmole is run on that file, it will be continually generating a
new molecule from scratch. If fmole is run on a copy of the .ato file produced by makemole, the
bond and potential parameters will be updated in the copy but not the atomic coordinates.

Note that it is perfectly sensible to set up a .mol file even when there is only one atom in a
molecule: this means you have record of what potential parameters and symbols you are using for
that atom type and makes it easy to change those parameters using fmole.

 4.5 Calculating intra-molecular atomic distances - bonds.

Another check you can do is to see that the bonds you have specified have indeed been obtained
by fmole. To measure bond lengths you type “bonds <.ato file name>”, and a new file will be
produced called ‘<.ato file name>.bonds’ which lists the interatomic separations of each of the
different molecule types in the simulation box. If there is more than one molecule of each type in
the simulation box then the distances shown are the average values of the interatomic distances for
all the molecules of that type in the box. The matrix printed is triangular in that the upper triangle
shows the bond distances, while the lower triangle shows the r.m.s. deviation of those distances.
Below is a simple example of .bonds file:-

 1OW 2HW 3HW

EPSRshell User Manual 27/3/2010 41

 1OW 0.000 0.981 0.983
 2HW 0.075 0.000 1.546
 3HW 0.075 0.110 0.000

 4.6 Modifying, mixing, growing, randomising the .ato file – changeato, mixato, introtcluster.

As described in Section 4.4, one way to change the parameters for a .ato file is to edit the
appropriate .mol files and then run fmole. This procedure is not always possible, particularly if a
particular molecule type does not have a corresponding template .mol file associated with it. In
this case it is necessary to run changeato with the argument the filename of the .ato file that needs
to be changed. The program changeato will allow you to modify some parameters, like density,
temperature, potential parameters, bond length, add bonds, subtract bonds, but for changing the
bonds you will need to specify not only the types of the atom pairs you wish to modify, but also
their atom numbers. Therefore even if a molecule has 3 bonds which are identical and all of which
you wish to change, you will need to specify the change to each of these bonds separately.

Having made the molecule(s), you now need to make the box bigger to contain more molecules.
You can do this with mixato. This basically starts you from your single atom or molecule files,
and asks you how many .ato files you wish to mix and their filenames. It also asks you how many
of each molecule type you wish to use, and the final number density required. There is nothing to
stop you specifying only one .ato file in mixato, so you can use this to generate a box as large as
you want. mixato however will only use the FIRST molecule in each .ato file and produce
multiple carbon copies of that one molecule. Hence after running mixato it is essential that fmole
is run quite a few times (typically 1000 to 10000 times) to disorder the molecules.

Having made the simulation box the size you want it with mixato you need to randomize the
molecule positions and orientations, otherwise you are may have atom clumping. This can be
removed by using the program introtcluster. This randomises the positions and orientations of all
the molecules, and randomises the orientation of any rotational groups. This is a vital step if you
do not want to spend a huge amount of time bringing the box to equilibrium, and you want to
ensure you have started from a truly random distribution.

After introtcluster you need to run fmole again to disorder the molecules. IMPORTANT NOTE:
After mixato you must run introtcluster BEFORE running fmole, otherwise the program will
find all the molecules on top of each other and so likely overflow the neighbour list.

 4.7 Building complex molecules and structures – dockato.

The methods outlined so far will build boxes of atoms and molecules that are reasonably complex
but well contained in the sense that individual molecules do not have a large spatial extent. To use
these methods to build a long chain molecule or disordered network structure would be very
inefficient and might not lead to the correct structure being produced. dockato is a first attempt to
circumvent this problem by allowing you to dock two molecules together to form a new, single
and enlarged molecule. This process can go on in principle indefinitely – until you run out of array
space in practice. At the present time the dockato program is not particularly efficient so is not
really suitable for building very large structures. But it can build something like a peptide chain in
a matter of a few seconds, so it is potentially very useful.

To understand dockato you need to know something about so-called “Q” atoms in EPSR. Q-
atoms were originally incorporated into EPSR to emulate charged sites on molecules which
otherwise did not have any scattering properties. They are denoted by the first character of their
atomic type, which has to be either “Q” or “q”. Hence atomic labels for real atoms in the system
should not begin with either of these characters. They are not real atoms in the sense that although
they may have mass (for defining the force constants between them and other atoms in the
molecule), they do not contribute to the mass of the molecule, nor to the number density of the

EPSRshell User Manual 27/3/2010 42

system in question. They can have potential parameters, like Lennard-Jones values and Coulomb
charges, and so will contribute to the energy of the simulation, but they do not contribute to the
scattering pattern, and so can have no neutron or X-ray weights associated with them. However
they can and do have radial distribution functions associated with them which are listed alongside
all the other RDFs from the simulation. Because they cannot contribute to the scattering pattern
there can be no empirical potential associated with them.

The fact that Q-atoms are not real means that they can disappear without affecting the density of
the simulation box (provided that in doing so does not create a charge imbalance). Hence the idea
behind dockato is that wherever there is a docking site on a molecule it will have attached to it 1
or more Q-atoms. Then when two molecules are docked, 1 or more of these Q-atoms are removed
when they overlap the atom onto which they have been docked. The two molecules are then
merged to form a new single and enlarged molecule, with any overlapping sites removed.

To understand how this works consider a simple example – a chain of selenium atoms. The
starting point is a .mol file called ‘se_base.mol’:

 5
| |1 |2 |3 |4 |5 |6 |7 |8 |9 | 10 |11 |12 |13 |14 |15
 1 Se * 2QSe
bond Se QSe 1.50000
angle QSe Se QSe 120.00000
potential Se 0.65000E+00 0.14000E+01 0.60000E+0 2 -0.20000E+01 Se
potential QSe 0.00000E+00 0.00000E+00 0.16000E+0 2 0.10000E+01 O
qradius Se 0.20000E+00
qradius QSe 0.20000E+00
temperature 0.300000E+03
density 0.100000E-01
ecoredcore 1.00000 3.00000

This defines a selenium atom with two ‘QSe’ atoms attached, forming an internal angle of 120°.
Note that for dockato it is a good idea set a finite qradius – this will be used by dockato to
determine overlaps. If the charge radius is zero, the program may not recognise two atoms as
overlapping when they are very close in practice.

This produces molecules which look like this:-

Figure 4.2

-2-1.5-1-0.5 0 0.5 1 1.5 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
z [Å]

x [Å]

y [Å]

z [Å]

-2-1.5-1-0.5 0 0.5 1 1.5 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

z [Å]

x [Å]

y [Å]

z [Å]

1

2

3

Molecule 1

4
6

5

Molecule 2

EPSRshell User Manual 27/3/2010 43

The yellow atoms are Se (atoms 1 and 4) and the red atoms are QSe (atoms 2, 3, 5 and 6). The
object of the exercise is to bring atom 5 on top of atom 1 and atom 2 on top of atom 4. This
involves a translation of molecule 2 so that atom 5 overlaps atom 1, followed by a rotation of
molecule 2 about the overlapped atoms 1 and 5 so that atom 4 overlaps atom 2. At this point we
have formed a new bond Se – Se between atoms 1 and 4, so that atoms 2 and 5 are no longer
needed. This creates a new molecule with only 4 atoms in total, with atoms 2 and 5 removed:-

Figure 4.3

The docking is not quite finished however since there is a residual quantity undefined – the
dihedral angle defined by atoms 3 and 6 about the bond between atoms 1 and 4. Note that atoms 3
and 6 are both QSe atoms. In this example the dihedral angle was set to a random value between 0
and 360° but it could have been specified more precisely. dockato has the ability to set this angle
precisely or generate some random rotation over a specified range of angles, or to leave the angle
undefined, so that a rotational ‘ROT’ group is generated about this bond.

If we now want to dock a third molecule onto this chain, we can do so in exactly the same way,
e.g. atom 8 on the new molecule overlaps atom 4 on the old, while atom 6 on the old molecule
overlaps atom 7 on the new, Fig. 4.4.

There is one subtlety that needs to be taken care
of however. When we dock the third molecule
we will again have to define the dihedral angle,
but in this case the dihedral angle will be
defined about the bond between atoms 4 and 7
by the atoms 8 and 1. These are QSe and Se
atoms respectively, unlike the first docking
where both dihedral atoms were QSe atoms. For
any subsequent dockings the atoms needed to
define the dihedral angle will always be QSe
and Se.

dockato uses atom types to determine docking
sites. Hence when setting up the docking
molecule files it is worth bearing this in mind so
that there is no possibility of confusion over
which sites are to be docked.

In the example given here the relevant command for the first docking would be:

dockato se_add QSe Se QSe 1 10 se_add Se QSe QSe 0 360 se_add_2

x [Å]
y [Å]

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

z [Å]

-2-1.5-1-0.5 0 0.5 1 1.5 2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

z [Å]

1

4

3

6

-2-1.5-1-0.5 0 0.5 1 1.5 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

z [Å]

x [Å]

y [Å]

z [Å]

7
8

Molecule 3

9

Figure 4.4

EPSRshell User Manual 27/3/2010 44

Here the name of the .ato file to be used for both docking and to be docked on to is ‘se_add.ato’

The first file name is the docking molecule, while the second is the docked molecule. We will
overlap atom QSe on the docking molecule with atom Se on the docked molecule, at the same
time rotating the docking molecule so that atom Se on the docking molecule overlaps atom QSe
on the docked molecule. Having done that we choose a random dihedral rotation between 0 and
360° about the new Se – Se bond, with the dihedral angle defined by atoms QSe on both the
docking and docked molecule. The output is to the file ‘se_add_2.ato’.

This defines all but 2 of the arguments to the command dockato. These are arguments 5 and 6.
Argument 5 is the number of dockings that are to take place. In this case just 1. Argument 6 is the
maximum distance these docked molecules can proceed from the starting molecule.

To summarise the arguments to the dockato command:

Argument 1: Name of the docking molecule .ato file.

Argument 2: Atom type in the docking molecule to be used for translating this molecule on to
the docked molecule.

Argument 3: Atom type in the docking molecule to be used for rotating this molecule on to the
docked molecule.

Argument 4 Atom type in the docking molecule to be used for defining the dihedral rotation of
this molecule about the new bond. If this type is specified as ‘0’ a ‘ROT’ group will
be generated about this bond, and no dihedral angle will be specified.

Argument 5 Number of dockings to be attempted. If any are unsuccessful a message saying this
will be printed at the end.

Argument 6 Maximum distance in Å to which docking is to proceed.

Argument 7 Name of the docked molecule .ato file.

Argument 8: Atom type on the docked molecule to be used for translating the docking molecule
on to this molecule.

Argument 9: Atom type in the docked molecule to be used for rotating the docking molecule on
to this molecule.

Argument 10 Atom type in the docked molecule to be used in combination with Argument 4 for
defining the dihedral rotation of the docking molecule about the new bond. If either
or both of these types is specified as ‘0’ a ‘ROT’ group will be generated about this
bond, and no dihedral angle will be specified.

Argument 11 Smallest dihedral angle allowed.

Argument 12 Largest dihedral angle allowed. The actual angle chosen will be randomly between
these two limits. Arguments 11 and 12 will be ignored if either or both of
arguments 4 and 10 are ‘0’.

Argument 13 Name of .ato file in which to save the new molecule.

If defined the dihedral angle is constrained by a new bond between the two atoms specified by
arguments 4 and 10 of the appropriate length.

The dockato command probably does not work perfectly at this stage, but it seems to work in
some simple instances. Here is the command that would be used if we added 10 ‘se_add.ato’
molecules to our new molecule ‘se_add_2.ato’, using a dihedral angle of 120° throughout:-

dockato se_add QSe Se QSe 10 20 se_add_2 Se QSe Se 120 120 se_add_12

And this is the result, ‘se_add_12.ato’:

EPSRshell User Manual 27/3/2010 45

Figure 4.5

If instead we had used a dihedral angle of 20° throughout, we would have obtained the following
result:

-6-4-2 0 2 4 6 -6 -4 -2 0 2 4 6

-6

-4

-2

 0

 2

 4

 6

z [Å]

x [Å]

y [Å]

z [Å]

EPSRshell User Manual 27/3/2010 46

Figure 4.6

i.e. a helix.

If we had set the dihedral angle to zero, then we would have obtained simply a hexagon containing
6 Se atoms, since the chain would have wrapped around on itself after 5 dockings, and any further
docking would have been impossible.

Although this is a very simple case, the principle is the same for more complex dockings.

When the molecules are merged to form the new molecule the atoms defined by arguments 2 and
9 of the dockato command are removed from the system. Hence it is important these are defined
as ‘Q-atoms’ if you do not want real atoms to be removed in the docking process. In addition if as
a result of the dihedral rotation the atom on the docking molecule defined by argument 4 overlaps
any atom on the docked molecule, it too is removed in the merging process. Hence one should try
to ensure this atom is also a ‘Q-atom’ if at all possible.

There is one other feature the user will need to be aware of. Once the docking has taken place, but
before the docking and docked molecules are actually merged, a test is done to see whether any of
the other atoms on the two molecules are also overlapping. If any of these other atoms are
overlapping, as determined by the mean value of the Lennard-Jones σ parameter (σα

� in equation
(2.2.4)), and they are not bonded to either of the atoms involved in the docking, namely atoms
defined by arguments 3 and 8 of the dockato command, then the docking is abandoned. If the
range of dihedral angles allows it, another dihedral angle will be chosen, up to 10 attempts before
the docking is abandoned completely.

The same program can be used to produce networks of atoms, by having atoms with 3 or more
ligands, but it currently is not very efficient and can take a while to form a network with say 50

x [Å]y [Å]
-3

-2

-1

 0

 1

 2

 3

z [Å]

-3-2-1 0 1 2 3-3-2-1 0 1 2 3

z [Å]

EPSRshell User Manual 27/3/2010 47

atoms. In its current form dockato is best for producing chains of molecules, where there are
relatively few options for docking sites.

Note that any template files that may be in the original docking molecule .ato file will be of no
use in the docked molecule file, so the template for this docked molecule is set to ‘XX’ to signify
that there is no template file for this molecule.

EPSRshell User Manual 27/3/2010 48

EPSRshell User Manual 27/3/2010 49

5. Operating the EPSR simulation program
Once we have a box of atoms or molecules, we can transfer the simulation to the EPSR program,
to see how our starting configuration is doing in terms of fitting to the diffraction data. In the past
there was an intermediate step using fcluster, but this is no longer done: the initial equilibration of
the simulation box is best done within EPSR itself.

The first step is to set up the .wts files – these tell EPSR how to compare the simulated
distributions with the diffraction data.

 5.1 Setting up the neutron .wts files - epsrwts

By far the safest and easiest way to do this is to run the program epsrwts. This delivers the .wts in
the correct format appropriate to EPSR. Since you need a .ato file to run EPSR, epsrwts can read
that .ato file and hence determine for itself the atomic fractions of all the components. Otherwise it
will ask you for the relevant information. epsrwts recognizes the chemical symbols and converts
these to a neutron scattering length using the Sears 1991 compilation of scattering lengths. Be
careful not to confuse the number of components – the number of atom types – in the sample with
the number of atom classes, as define by the atomic symbols. Thus the methanol molecule
discussed above has 4 atom types, namely C, O, M, and H, but only 3 atom classes, in the form of
C, O, and H.

Hydrogen has to be treated differently from other atoms in that it can exchange with other
hydrogen atoms in some cases and not others. Therefore if you specify “H” as a chemical symbol
you will be asked an additional question about whether it exchanges or not.

For total diffraction data that has not been normalised, the formula used by epsrwts to calculate
the weight for a particular correlation between atom type � and atom type

�
 is given simply by

βααβ bbw = (4.1.1)

where b� is the scattering length for component �. There is a set of weights for each pair of
scattering atoms in the system. (Therefore Q-atoms should not appear in the list of atoms to be
given weights.)

If the data have been normalised to the square of the mean scattering length, then these weights
also need to be normalised to the relevant weighted sum of coefficients:-

2









=

∑
α

αα

βα

αβ

bc

bb
w (4.1.2),

where c� is the atomic fraction of component �, and the sum is over all components.

In earlier versions of EPSR this weight also included a factor to convert from per atom to per
molecule if the data were normalised per atom. However from EPSR16 onwards all the internal
correlations within EPSR are calculated per atom, there is now a factor at the head of the .wts file
to indicate whether the data have been normalised per atom or per molecule. Therefore .wts files
produced by epsrwts cannot be used in the earlier versions of EPSR.

For first order difference data, the program asks you to specify which atom(s) were substituted,
and then calculates and outputs the change in the coefficients for those coefficients that are
affected by the substitution. These then need to be normalised to the corresponding weighted sum
of coefficients if the corresponding difference diffraction data were also normalised.

EPSRshell User Manual 27/3/2010 50

For second order difference data epsrwts proceeds in a similar way, only writing out those
coefficients which are relevant to the quantity calculated. However epsrwts always assumes the
second order difference data have been normalised.

Unfortunately epsrwts is a rather unwieldy program: if anything goes wrong while typing the
responses to the numerous questions, there is no alternative but to abandon it and start again.

5.2 Setting up the X-ray .wts files – epsrwtsx.

For X-rays the principle is the same as for neutrons, but the detail is different. The first and
foremost difference is that the scattering lengths are actually ‘electron form factors’ and they are Q
dependent. They are usually given the symbol fα(Q) for atom α.

This presents an immediate problem in that EPSR will strictly need to invert the weights matrix
for every Q value for which there are data (Section 2.6). Currently EPSR does invert the weights
matrix at selected Q values (in steps of ~2Å-1) – so it takes a bit longer initially to get set up, but in
fact it only can use one of them to perform the inversion. The point is that according to Section 2.6
the difference () ()()QFQD ii − is fit to the expression (2.3.5) in Q space. Then the coefficients that
come from that fit are used directly in (2.6.4) to produce the EP in r space, using the inversion
matrix in (2.6.5) – there is no numerical transform of the data as such – so with X-rays for which
value of Q should one choose the inversion matrix?

The correct way to proceed would be to invert the difference data at each Q value to the
corresponding partial structure factor using the correct inversion matrix, numerically Fourier
transform these Q space differences to r space, and then fit the potential function to each r space
function in turn. This would however defeat the whole point of Section 2.3, namely to try avoid all
the spurious structure that comes from numerical transforms of data. Alternatively we could fit the
coefficients to each PSF using (2.6.6), but this would make the procedure for generating the EP
very inefficient if there were a large number of PSFs, which there often are.

To solve this dilemma, EPSR currently uses the Q = 0 inversion of the weights matrix to solve
(2.6.5) for X-ray data. This is an approximation which is probably not too bad for most elements,
except possibly hydrogen, which can make a non-zero contribution to the weights at Q = 0, but
which becomes progressively less dominant as Q increases. Hence although EPSR calculates and
stores the inversion matrix at several Q values initially, it actually only ever uses the Q = 0
inversion.

Of course this difficulty only arises when estimating the empirical potential (EP), i.e when going
from Q space to r space. For calculating the estimated X-ray structure factor from the simulation,
the correct Q-dependent form factors are used.

A second issue is how should X-ray data be normalised? The total X-ray differential cross section,
without normalisation is given by:-

() () () () () ()∑∑∑
≥

−+=
α αβ

αββαβααβ
α

αα δ QHQfQfccQfcQF 22 (5.2.1)

where cα is the atomic fraction of atom type α, and Hα

�(Q) is the site-site partial structure factor
between sites α and � . Hα

�(Q) is defined here in terms of the site-site radial distribution functions:-

() ()()∫
∞

−=
0

2 sin
14 dr

Qr

Qr
rgrQH αβαβ πρ (5.2.2)

Virtually all X-ray analysis proceeds on the assumption that the normalisation to use is to generate
the function:-

EPSRshell User Manual 27/3/2010 51

()
() ()

() () ()

() ()

()
2

22

2

















−

=
−









−

=

∑

∑

∑∑

∑

≥

α
αα

α
αα

α αβ
βαβααβ

α
αα

δ
Qfc

QfcQF

QfQfcc

QfcQF

QH X (5.2.3).

However this ignores a fundamental aspect of (5.2.1) in that the first term on the right hand side of
(5.2.1), the single atom scattering, is the scattering level that would be seen if there were no other

atomic correlations in the system, i.e. if all the Hα
�(Q) functions were zero. It therefore represents

the Q dependent baseline about which the effects of structure oscillate. The second term in (5.2.1)
cannot therefore be more negative than this baseline term is positive, otherwise the scattering
would become negative, i.e.

() () () () ()∑∑∑ −≥−
≥ α

αα
α αβ

αββαβααβδ QfcQHQfQfcc
22 (5.2.4)

for all Q values. The single atom scattering, which is normally ignored in this context, therefore
places a fundamental limit which any estimates of the partial structure factors have to satisfy.

Before Fourier transforms can be performed on diffraction data we would like to remove the Q
dependence of the baseline, as much as this is possible in the situation. This is especially true for
EPSR since we ideally do not want to bias the EP in r space by some Q dependence from the form
factors. For neutrons this is not a problem, since the baseline is, at least in principle, already flat,
so it doesn’t really matter how you normalise the data, or even whether you normalise them at all
– in the end it is only a Q independent constant or factor, which can easily be taken account of. For
X-rays however the chosen normalisation is intrinsic to the process of putting the diffraction data
onto an absolute scale.

If a material consists only of elements close to one another in atomic number, use of (5.2.3) will
probably not be too serious as the Q dependence of the atomic form factors for the different
elements will be similar for the different elements. As a general rule however it is much safer to
normalise X-ray data to the single atom scattering:

()
() ()

()∑

∑ 







−

=′

α
αα

α
αα

Qfc

QfcQF

QH X 2

2

 (5.2.5).

This normalisation means the X-ray data are much more comparable to the neutron data, since we
can state categorically that with this definition:

()QH X
′ oscillates about zero (5.2.6),

and

() 1−≥′ QH X , for all Q values (5.2.7).

The rule (5.2.7) is certainly not true with the normalisation (5.2.3), which will introduce a shape to

EPSRshell User Manual 27/3/2010 52

the baseline, of the form ()
()

()
2

2









=

∑

∑

α
αα

α
αα

Qfc

Qfc

QB . The figure below shows an estimate of this

function for SiO2, based on the independent atom form factors:-

Figure 5.1

The next figure shows the same calculation for H2O, using so-called ‘modified’ X-ray form factors
(see later in this Section):

SiO2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

Q [Å-1]

B
(Q

)

EPSRshell User Manual 27/3/2010 53

Figure 5.2

Note that the overall shift in these curves is not an issue – Q independent shifts do not affect the
result in r space, and Q independent factors only give rise to corresponding factors in r space. It is
the variation with Q that is important.

It is clear therefore that use of the normalisation (5.2.3) introduces a significant Q variability, by
more than 20% to the baseline about which the structure factor oscillates. This extends over a wide
range of Q values. Such Q variation will generate spurious structure in r space.

Fortunately EPSR can deal with either normalisation: when running epsrwtsx you will be asked to
say how the data have been normalised, i.e. according to (5.2.3) or (5.2.5). If the former it is
generally found however that fitting the data is more difficult, and the Fourier transform of the
data will often behave unexpectedly at low r.

Another convenient feature of the normalisation (5.2.5) is that the outcome of the normalisation is
the same irrespective of whether the differential cross sections have been calculated per atom or
per molecule – the rules (5.2.6) and (5.2.7) will apply in either case. With the normalisation (5.2.3)
the outcomes will differ in magnitude between the per-atom and per-molecule definitions by the
ratio of the mean number of atoms per molecule. Perhaps in the future, all normalisations, whether
X-ray or neutron should be done according to (5.2.5)?

However EPSR can deal with either case, and the first question that is asked when running
epsrwtsx is whether the data have been normalised per atom or per molecule.

epsrtwts then steps through the atomic types and asks for a chemical symbol with which to
identify this atom. This is purely for the purpose of generating the electronic form factors and has
nothing to do with the atomic class as stored in the .ato file. This is so that each atom type can be
assigned its own form factor if necessary. Thus for example an atom labelled ‘U’ could be given
the form factor for a hydrogen atom, which would be a bit strange perhaps, but is perfectly logical
within EPSR!

Another reason for this is to enable the user to specify whether they want to use so-called
“modified” atom form factors, (MAFF). The idea here, originally espoused by T Head-Gordon and

H2O

0
0.5

1
1.5

2
2.5

3
3.5

0 5 10 15 20 25 30

Q [Å-1]

B
(Q

)

EPSRshell User Manual 27/3/2010 54

co-workers [6] and really only applicable when significant charge transfer occurs between two
atoms, is that at high Q the form factor is dominated by the core electrons, and so behaves as listed
in the independent atom form factor (IAFF) table, while at low Q the form factor is modified by
the shift of valence charge onto the more electronegative atom. The proposal is to set up a
modified form factor according to:

() () ()QfQ
f

q
Qf αα

α

α
α δ 








−−=′ 22 2/exp

)0(
1 (5.2.8)

where qα is the amount of charge that is effectively shifted onto this atom from the others. It can
have either a positive or negative sign. However note that in order to preserve overall charge
neutrality for the system we must ensure that the sum

0=∑ αα qc (5.2.9)

is rigorously satisfied.

IMPORTANT NOTE: currently epsrwtsx does NOT perform this check: it is left up to the user to
ensure the values for qα satisfy (5.2.9).

As an example, suppose in the case of water we allow 0.5e to shift off each hydrogen atom onto
the neighbouring oxygen atom, then qO = -1 and qH = +0.5.

NOTE that in epsrwtsx the ratio
)0(α

α

f

q
 is called ‘alpha’.

The value of the width variable, �α, is not well defined. For water it was determined by comparing
the MAFFS with those obtained for a free molecule calculation, and was set at 2.2Å-1.[5, 6]

An interesting possibility arises here that if charges are used in the EPSR reference potential, then
strictly these same charges should appear in the MAFFs used to simulate the X-ray diffraction
data. Thus one could imagine choosing the qα’s (and adjusting the Lennard-Jones parameters if
appropriate) to give the best fit to all the data without invoking the EP at all. This has been done
for water, and it gave surprisingly good results.

Finally epsrwtsx asks you whether the IAFFs or the MAFFs were used when the data were
normalised. This is independent of whether (5.2.3) or (5.2.5) were used for the normalisation.

The output is a file with name ‘<you specify>X-ray.wts’. The end of this filename is crucial as it
is the only way to signal to EPSR that this is an X-ray dataset. Any other ending for the filename
and the dataset and its associated .wts file will be treated as for a neutron dataset.

The independent atom form factors in EPSR are obtained from a file called ‘f0_WaasKirf.dat’
which MUST exist in the home directory for the program to run correctly. This list is based on the
5 coefficient compilation of the form factors due to D. Waasmaier and A. Kirfel, Acta. Cryst.,
A51, 416-413 (1995).

5.3 Setting up the .inp and .pcof files.

Once the .ato file has been built and the .wts file(s) have been made, you are in a position to set up
the simulation. This is done from the EPSR setup menu by typing, within EPSRshell,:-

setup epsr <filename>

The filename doesn’t need to exist before hand, and you do not need to specify the extensions:
EPSR will in any case strip off any extensions you supply and put on its own. If the filename

EPSRshell User Manual 27/3/2010 55

exists it will read all the data from that file, otherwise it will set up the values from the default
values. You can skip through these values by pressing “Enter” at each line, changing values as you
go along. Below is a typical .EPSR.inp file showing all the variables that are currently in use.

sio2.EPSR Title of this file
feedback 0.8 Confidence factor - should be < 1. [0.8]
potfac 0.0 1.0 to enable potential refinement, 0.0 to inhibit
ereq 5.0 Overall requested energy amplitude - overrules efilereq
sizefactor 1.0 Multiplyi ng factor for box dimension. [1.0]
nq 400 Number of Q values. [400]
qstep 0.05 Size of Q step [1/A]. [0.05]
ireset 0 Sets the Empirical Potential to zero
iinit 0 Sets accumulators to zero. Recalculates r and Q. [1]
ntimes 5 Number of MC cycles between potential refinements. [5]
niter 1 Number of potential refinements before exitting. [1]
nsumt -1 Number of iterations already accumulated. [- 1 with reset]
intra 100 Number of molecule moves between molecule shakes. [100]
inter 5 Number of iterations in running averages. [5]
rho 0.0683396161 Atomic number density - will be derived from .ato
file
cellst 0.03 Size of r step [A]. [0.03]
fwhm 0.0 Resolution width - Q independent term. [0.0]
fwhmq 0.02 Resolution width - Q dependent term. [0.02 for SLS]
nsmoop 1 1 means background subtraction is ON, 0 means OFF
fnameato sio2.ato Name of .ato file
fnamepcof sio2.pcof Name of potenti al coefficients file.
qmin 0.05 Minimum value of Q used for potential fits. [0.05]
ndata 1 Number of data files to be fit by EPSR

data 1

datafile sio2sq.doq Name of data file to be fit
wtsfile sio2tot.wts Name of weights file for this data set
nrtype 3 Data type - see User Manual for more details
rshmin 0.7 Minimum radius [A] - used for background subtraction
szeros 0.0 Zero limit - not used - automatically set to 0
tweak 1.0 Scaling factor for this data set. [1.0]
efilereq 1.0 Requested energy amplitude for this data set [1.0]
q

Many of these do not need to be altered, but some values will need to be specified, normally
fnameato (name of the .ato file), fnamepcof (name of the .pcof file), datafile and wtsfile before
the simulation can be run. If you are unsure of values to type for these variables you can type
“search” against the relevant variable and it will enter the search menu and list one by one all the
files in the working folder that correspond to the specified type. If the .pcof file does not exist at
the outset, then it will be created when the data are saved, but it is essential that a .ato has been
read in for this to happen correctly.

Currently you are allowed up to 30 datasets. To increase the number of datasets above the default
(1) you must alter the value of ndata first, and then go to each of the data entries in turn and set
the appropriate values of datafile and wtsfile. You do this by typing “data n” in the EPSR setup
menu, where n is the number of the data entry you want to go to – or else you can simply page
through all the data sets in turn by pressing “Enter”.

The full list of values which are needed for running the simulation are

feedback This represents the confidence factor in the data. It is worth running several
simulations with different values of this variable to see what the effect of different values of
feedback is – occasionally a better fit can be achieved by using a smaller value of feedback. Do
not be deceived into believing your data are very good and therefore set feedback as high as
possible. Generally a value of ~0.8 - 0.9 gives the best results: higher than this and you may make
the fit worse due to overemphasizing the systematic errors in your data.

EPSRshell User Manual 27/3/2010 56

potfac This controls whether the EP is refined or not. Initially set to 0 to allow you to see
how well the reference potential is doing on its own. Once you are convinced you have done all
you can with the reference potential, you set potfac to 1 to start the EP refinement. Occasionally
different values of potfac are needed. If the EP grows too quickly or energy is oscillating wildly
use a smaller value. If on the other hand it grows too slowly then use a value > 1.

ereq This controls how large the EP can get when it is refined. The value to use depends
very much on the particular system being looked at and can only be found by trial and error.
Typically you might want to aim for the contribution to the configurational energy of the
simulation from the EP being around 10-20% of the total, but this will vary individual cases. You
inspect the absolute value of the empirical energy by inspecting the .out file.

It is possible to override the value of ereq by setting it to zero. When this is done then the values
of efilereq for individual datasets take over. This allows you to give different weightings to
different datasets when refining the potential. In either case if efilereq is set to zero the EP will not
be refined against that dataset (although the program will continue to calculate the fit and radial
distribution functions corresponding to that data set).

sizefactor Normally set to 1.0, this controls the shrinkage factor for molecules in the
simulation box. If a simulation contains molecules with rings, such as benzene, then at the outset,
with a random distribution of molecules, it is possible for some molecules to overlap and for their
rings to become intertwined, which with the Lennard-Jones parameters will be impossible to break
apart. This usually appears as a very large repulsive energy which never goes away no matter how
long the simulation is run. To overcome this, the molecules can be shrunk by a factor, specified by
sizefactor, in the early stages of the simulation until any evidence of overlaps has disappeared.
Then it can be increased back gradually to it’s normal value of 1.0

nq Controls the number of Q values used in the simulation. It defaults to 400 and has
maximum value of 600.

qstep Controls the spacing between the simulated Q values. Defaults to 0.05Å-1.

ireset Value either 1 or 0. This (1) resets the empirical potential to zero, plus sets various
other accumulators to zero, sets nsumt to -1, and calculates the inverse of the weights matrix. It
must ALWAYS be done when starting a new simulation, and is set automatically whenever
parameters which define the potential are altered. It will also happen automatically if you change
the value of feedback, change the number of datasets to be fit, or number of Q or r values. It is a
good idea to reset the potential after the simulation has been run for a while to make sure that the
EP did not become overly biased by the starting configuration of atoms. If you get the same
overall structure after resetting the EP and letting it grow again, it probably means the structure is
reliable.

iinit Value either 1 or 0. This does a reset of all the accumulators, recalculates the
uniform atom distribution, the r and Q scales, and recalculates the inversion of the weights matrix.
It does not reset the empirical potential. It can be useful when you change one or more of the .wts
files, but do not wish to modify the current simulation.

ntimes Number of Monte Carlo (MC) cycles between potential refinements. Default: 5

niter Number of potential refinements before exiting. This is normally 1, since on exiting
all the current distributions are saved. Use of the script facility to perform repeated runs is better
than increasing the value of niter since it means if you wish to view the current simulation, then
all the distribution files will be up to date. The time spent starting and stopping EPSR is small
compared to the time actually spent simulating.

EPSRshell User Manual 27/3/2010 57

nsumt This controls the accumulation of distribution functions. If nsumt is 0 or positive
then it tells us how many configurations have been included in the current set of distribution
functions and partial structure factors. If nsumt is -1, then a running average of the most recent
configurations is maintained. The number of configurations in this running average is roughly
twice the value of inter. The smaller the value of inter, then the smaller is the number of
configurations included in the running average. This latter feature is used when a simulation has
not reached equilibrium or a fit is still being searched for, so that there is some statistical
averaging in the distribution functions that are output, but they will evolve as the configuration of
atoms and molecules changes.

intra Number of whole molecule moves and internal molecule rotations between
molecular shakes. Default 100.

inter Number of iterations in running averages. This is used when nsumt = -1.

rho The number density of the current .ato file. This is set by the program and cannot
be changed.

cellst Spacing in r space (Å). Default is 0.03.

fwhm Resolution width in Q space – Q independent term.

fwhmq Q dependent resolution width. Hence the resolution width for a given Q value is

 ∆(Q) = fwhm + Q * fwhmq

nsmoop 1 or 0. Controls whether or not background subtraction is performed prior to fitting
the EP. The background is determined from the requirement that below a certain distance in r
space, the Fourier transform of the data should adopt a specific value, determined from the
weights files. This distance is set by the value of rshmin for the corresponding dataset.

rshmin This is specified for each dataset and represents the minimum distance in r space
that this dataset is expected to contribute useful information. It defaults to 0.7Å, but can be set to
larger or smaller values than this. It is only used when the variable nsmoop is set to unity. If this is
so, as in the above example, the EPSR uses this minimum distance to determine, by direct Fourier
transform of the data, a background function in Q space to be subtracted from the data prior to
estimating the EP. Note that the output data is always the input data WITHOUT this background
function subtracted (but interpolated onto the Q scale of the simulation), irrespective of whether
nsmoop is set or not, so you can always see how the simulation is doing compared the original
data. Generally purists are not comfortable with the idea of subtracting a background from their
data, thinking it might bias the overall outcome. In fact this background subtraction is something
that is done in almost every data analysis scheme, and in the present instance it usually leads to a
better fit rather than worse, since it helps to eliminate residual systematic error from the data.
Therefore a recommendation is that nsmoop is left set (=1) which is the default setting.

fnameato The name of the .ato file corresponding to the current simulation. If one has not
been set or a new one is required, the current working directory can be searched by typing
“search<CR>”

fnamepcof The name of the file containing the Empirical Potential coefficients. The current
directory can be searched for this file if one is not specified. However it is also perfectly normal to
give this file a name, even ift it does not exist, so that when the current input file is written a new .
.pcof file is generated.

qmin The smallest value of Q to be used when setting up the Empirical Potential.

Following this there is a section where some of the values for the .pcof file are set. Here is a
typical example of what this section might look like:-

EPSRshell User Manual 27/3/2010 58

roverlap 0.9000000 Minimum allowed intermolecular sepa ration between two
atoms
rminfac 0.6000000 Factor to set the minimum separati on between pairs.
[0.6]
rminpt 9.000000 Radius at which potential truncation gets to 0.5
rmaxpt 12.00000 Radius at which potential truncation goes to 0.0
rbroad 0.0000000 (NOT USED NOW)
expecf 0.3000000 Potential decay for short distanc e repulsive term.
[0.3]
rcharge 0.0000000 Calculates energy due to molecular polarisat ion. [0.0]
power 12.00000 Repulsive power in Lennard- Jones potential. [12]
ncoeffp 100 Number of coefficients used to define the EP. [100]
pdmax 12.00000 Maximum distance of Empirical Po tential (CANNOT BE
ALTERED – set by rmaxpt
pdstep 0.1200000 Spacing between coefficients in r. Se t by program
npitss 1000 Number of steps for refining the potential. [1000]
paccept 0.0005000000 Acceptance factor for potential refin ement. [0.0005]
psigma2 0.00090000 Width of Poisson curves. [0.003]

It also carries information about how the EP is generated, such as the value of σQ in equation
(2.3.5) (psigma2), the hardness of the Lennard-Jones core (power), the range of the potential
truncation functions (rminpt and rmaxpt) (equations(2.1.3) and (2.1.4)), and the hardness of the
interatomic exponential repulsive potentials (expecf) used to prevent atomic overlap.

Normally the user will only need to modify the values of rminpt, rmaxpt, and expecf. The actual

minimum distance for each atom pair is set to the largest of roverlap and , or the

distance, if any, specified for that pair at the end of the input file.

After this section, the parameters associated with each diffraction dataset are assigned.

ndata Number of datafiles to be read in

For each dataset the following values need to be setup.

datafile The name of the data file required. Typing “search” at this point will initiate a
search for datafiles of the specified extension. “*” can be used as a wildcard in searching for files.

wtsfile The name of the neutron (*.wts) or x-ray (*X-ray.wts) file associated with this
dataset. The extension is always .wts for these files, so if “search” is typed, it will list only .wts
files.

nrtype This specifies the type of the data file. Currently it can take one of five values. In
all cases it is expected the data file will consist of a simple column format with one entry per line.
A distinct file name is needed for each distinct data set.

1 Column format consisting of Q, S(Q) values in pairs

2 Column format consisting of Q, S(Q) and error bar values.

3 Old GENIE show data format, assuming the data are in histogram format.

4 Old GENIE show data format, assuming the data are in point format.

5 Gudrun output format, assuming data are in histogram format.

rshmin The minimum radius value for this dataset. This is used if background subtraction
is being performed (nsmoop = 1).

szeros The Q = 0 limit for this dataset. If set to zero its value will be ignored. This in
effect represents an extra datapoint (the compressibility limit) to be fit.

EPSRshell User Manual 27/3/2010 59

tweak Scaling factor for this dataset. Normally set to 1.0.

efilereq Weighting on this dataset when setting up the inversion of the weights matrix.
Normally 1, but can be increased or decreased to give this particular dataset more or less
emphasis. If set to 0, this dataset will not be included in the refinement, but the fit to this dataset is
still calculated.

There follow the actual minimum separations for each atom pair in the .ato file. (These of course
are inter-molecular atom-atom separations and for those atom pairs on the same molecule that are
not otherwise connected by the specified molecular bond distances.

Thus if the lines

Si-Si 0.9

Si-O 1.335

O-O 2.214

appeared at the end of the epsr setup menu, this would mean a minimum distance of 0.9 Å for Si-
Si pairs, 1.335Å for Si-O pairs , and 2.214Å for O-O pairs. They can be altered simply by typing
in new values after the prompt.

These minimum distances can play a powerful role in helping to avoid the empirical potential
from generating spurious structure at low from a dataset which is hard to fit. If atoms are found
below the specified minimum distance, then the corresponding coefficient will grow in magnitude
until the atoms are eliminated, thus overriding the EP. If no atoms are found below the minimum
distance the coefficients are gradually diminished in amplitude until they reach equilibrium. Once
set they can also replace to some extent the role played by the repulsive Lennard-Jones potential,
since by adjusting the value of expecf one can readily control the hardness of this repulsive
potential.

In addition to specifying minimum distances, it is possible to specify up to 5 Gaussians in the EP
for each atom pair. If one or more Gaussians are specified, then no changes are allowed to the EPS
for that particular atom pair until the Gaussians are removed. This is to prevent the EP from
overriding the effect of the Gaussian. Each Gaussian requires a position (P), width (W) and a
height (H), specified in that order on the same line as the minimum distance.

 5.4 Running the simulation

Under EPSRshell running the simulation is straightforward, providing all the necessary input files
have been setup. Simply typing “epsr <filename>” will put the simulation through one iteration. If
the filename is not specified then it enters the search menu to find a suitable .inp file. Or else the
simulation can be run repeatedly from a script file, as described above in Section 3.4.

 5.5 Output files and data formats

In the course of each loop of the run script, the program updates the .EPSR.inp, .ato and .pcof
files, as well as producing a .EPSR.out file which lists a summary of some of the information
produced by EPSR. It is a good idea to check this information from time to time. Typical
questions are: are the energy and pressure sensible? Does the fitting factor (chi-square) look
sensible and has it diminished since the beginning? Normally energies should be of the order of
some kJ/mole and negative (which indicates a bound system). Thus for water you might get ~-
40kJ/mole, while for silica you might get –4000kJ/mole, due to the very large electronic charges
in that system. Pressures are not so reliable due to the short range nature of the potentials, but even
there a pressure of 1000kbar should be treated with some suspicion! It may mean things are not
right in the simulation.

The program also produces a .EPSR.erg file which lists the energy, pressure, absolute energy (of
the empirical potential only) and chi-square as the simulation proceeds. This is rewound whenever

EPSRshell User Manual 27/3/2010 60

ireset = 1, otherwise new entries are added to the end of the file. It also produces a .EPSR.uni file
which lists the uniform atom distribution being used in the simulations.

The remaining files have a simple column format, with Q or r values on the leftmost column, and
then data and error in pairs of columns for each data file present. Section 2.3 listed the various
types of files produced. This column format makes them easy to read into spreadsheets and
plotting programs. Up to 201 columns are allowed in any one file, meaning that if each
distribution has a set of values and standard deviations, it will occupy 2 columns in the output file,
so up to 100 distributions are allowed in any given file. If more than 100 distributions are needed,
then a new version number of the file is generated, 01, 02, 03...etc. We do not support any
particular plotting format on the understanding that most users will want to select their own
preferences, but these files can be readily plotted by GNUplot, and entering the plot menu allows
you to generate suitable plotting files for displaying the data in GNUplot. Indeed the plot menu
has a p command which allows you to plot data on line. Almost all the output files can be plotted
using the plot menu. Equally the files can easily be read into Excel or Origin or other spreadsheet
to view in whatever manner you would prefer.

 5.6 Reviewing the output

This step is absolutely crucial! However you choose to look at the results, it is essential that you
review them, before proceeding to calculate other quantities based on the simulation box. This is
done within EPSRshell by means of the plot command described previously, or to view the box
atoms use plotato. Typing plot from within the shell causes the file plot_defaults.txt to be loaded
from the current working folder. To save time this file should be copied from another folder if it
does not exist since creating it from scratch is tedious. This file can be edited to generate different
kinds of plots, or new plot types can be added from within the menu by increasing the value of
npt. Typing “l” within the plot menu will produce a list of the currently available plot types.
Section 3.6 gives more details about plot commands.

6 G Hura, J M Sorensen, R M Glaeser, T Head-Gordon, J Chem Phys, 113, 9140 (2000); J M
Sorensen, G Hura, R M Glaeser, T Head-Gordon, J Chem Phys, 113, 9149 (2000).

EPSRshell User Manual 27/3/2010 61

6. Auxiliary routines
 6.1 Input and output data format and running.

Once the EPSR simulation is running satisfactorily, or even before that time, a number of other
quantities related to the structure of the system being studied can be calculated. Typically one
might calculate separately the site-site radial distribution functions (although with the current
version of EPSR these are already output by the simulation), bond angle distributions,
coordination numbers and their distribution, cluster sizes, ring and chain sizes, void distributions,
spatial density functions, and so on. Therefore a series of auxiliary functions are provided within
EPSRshell, and in principle new routines will be introduced into the shell to meet particular needs.

As explained in Section 5.4 above the output format has been set the same for all these routines so
that the data are readily available for a number of common plotting platforms. If a particular
platform cannot read these output files, then it would not be difficult to invent a routine to do the
conversion. As already stated the plot menu can be used to generate simple GNUplot plots of any
of the output files.

By the same token creating the input files for the auxiliary routines is entirely analogous to that
used for the EPSR input files. Simply one types “setup <program name> <filename> to enter the
setup menu for that program. And as with EPSR you are presented with a list variables which can
be altered as neccssary. There is no need for the specified file to exist, but if it does not exist it will
be created with the default values when setup menu is exited.

Note that performance of the variable nsumt in all the routines in this section is identical to that
described in Section 5.3, except that if nsumt = -1, one simply gets the relevant distribution
function from the current box – there is no running average in these cases.

 6.2 partials – calculate the site-site radial distribution functions.

This is invoked with the shell command “partials <filename>” where the filename can be set up
with the command “setup partials <filename>” in the usual way. A typical .PARTIALS.dat file
looks like this:

h2o298tot.PARTIALS Title of this file
fnameato h2o298tot.ato Name of .at o file
nz 600 Number of r values [m ax: 1000]
nsumt 54 Number of configuratio ns already accumulated
ndist 3 Number of site- site distributions
q
 1 OW OW
 2 OW HW
 3 HW HW

It is probably the simplest since it really only requires the name of the .ato file to run. It will
produce a site-site radial distribution function for each unique pair of atom types in the .ato file.
The RDFs are calculated out to half the box dimension.

 6.3 coord – calculates the coordination number and coordination number distribution between
specified atom pairs over a specified distance range.

This is invoked with the EPSRshell call “coord <filename>” where the filename is setup with the
command “setup coord <filename>. Here is an example of the .COORD.dat file that is generated
by this process – this lists all the variables in the COORD menu:-

EPSRshell User Manual 27/3/2010 62

h2o298tot.COORD Title of this file
fnameato h2o298tot.ato Name of .at o file
nsize 200 Maximum coordination number (max 200)
nsumt - 1 Number of configurations already ac cumulated
ndist 3 Number of coordination number distributions

distribution 1

atom1 OW Atom type 1 to define a coordination number
atom2 OW Atom type 2 to d efine a coordination number
rmin 1 Minimum distance for th is bond
rmax 3.4 Maximum distance for this bond

distribution 2

atom1 OW Atom type 1 to define a coordination number
atom2 HW Atom type 2 to define a coordination number
rmin 1 Minimum distance for th is bond
rmax 2.4 Maximum distance for this bond

distribution 3

atom1 HW Atom type 1 to define a coordinati on number
atom2 HW Atom type 2 to define a coordination number
rmin 1 Minimum dista nce for this bond
rmax 3.0 Maximum distance for this bond
q
 OW OW
 1.00000 3.40000 4.76333 1.08760
 OW HW
 1.00000 2.40000 1.78222 0.64920
 HW HW
 1.00000 3.00000 5.42389 1.28486

Note how at the end the procedure has written out the atom labels, the radius ranges, the
coordination numbers and their standard deviations for each of the specified pairs of atoms. The
corresponding .COORD.n01 file will contain the distribution of these coordination numbers and
also the dependence of the average atom separation on the coordination number, which can be
plotted using plot. Hence each distribution of a .COORD.n01 file has 4 columns instead of the
usual two.

 6.4 triangles – calculate the distribution of included angles between triplets of atoms

This program allows the calculation of the distribution of included angles of a triplet of atoms
separated by specified distances. Atoms are specified in triplets and the angle calculated is the
included angle formed by the middle atom of the triplet:-

EPSRshell User Manual 27/3/2010 63

In the case of this diagram the types of the three atoms would be given in the input file, and the
allowed range of distances 1-2 and 2-3 would be specified. Whenever a triplet is found that
satisfies the specified atom types and distances, cos θ is calculated via the cosine rule, and the
results histogrammed against θ, after dividing by the sin θ dependence that would occur for a
completely random distribution of angles.

Here is an example of the input file to the triangles program (called h2o298tot.TRI.dat):

h2o298tot.TRI Title of this file
fnameato h2o298tot.ato Name of .ato file
nsize 100 Number of cos(theta) bins [100]
nsumt -1 Number of configuratio ns already accumulated
ndist 1 Number of tri- angle distributions

triangles 1

atom1 OW Atom type 1 to define a triangle
atom 2 OW Atom type 2 to define a tr iangle
atom3 OW Atom type 3 to define a triangle
ltype 1 Single atom3 types [1], or multiple atom3 types
[2]?
rmin12 1 Minimum distance for at oms 1 and 2
rmax12 3.4 Maximum distance for atoms 1 and 2
rmin23 1 Minimum distance for at oms 2 and 3
rmax23 3.4 Maximum distance for atoms 2 and 3
q

If ltype is set to 2, then for atom3, instead of selecting just one of the atom3 atoms at the distance
atom2 to atom3 it finds all of them and forms the centroid of those atoms to determine the vector
going from 2 – 3. This can be useful when attempting the plot the distribution of angles of a dipole
moment if this does not lie along one of the bonds.

 6.5 torangles – calculate dihedral angle distributions.

A dihedral angle within a molecule (or ‘torsional angle’ – hence ‘torangle’) is defined in terms of
4 atoms, 2 to define the bond about which the angle will be measured, and 2 to define the two
planes whose relative angle is to be measured. Dihedral angles have already been discussed with
reference to the dockato program. Referring to Fig. 4.3, we see that the triangles formed by atoms
1 – 4 – 6 and atoms 1 – 4 – 3 form two different planes. The dihedral angle is the angle between
these planes, with the sign of the angle determined by using the right hand rule. In torangles this
angle is calculated by generating three vectors namely 1 – 4 (the rotation axis), 1 – 6, and 1 – 3.
The vector product of 1 – 4 with 1 – 6 gives a vector perpendicular to the plane of triangle 1 – 4 –
6, while the vector product of 1 – 4 with 1 – 3 gives a vector perpendicular to the plane of triangle
1 – 4 – 3. The scalar product of these two perpendicular vectors, when expressed as unit vectors,
gives the cosine of the angle between these vectors, which in turn defines the magnitude of the

3

1

2

θ

Figure 6.1

EPSRshell User Manual 27/3/2010 64

rotation in the range 0 and 180° between the two planes. The direction of the rotation is given by
forming the vector product of the first perpendicular vector with the second perpendicular vector,
which will give yet another vector either parallel or antiparallel to the rotation vector 1 – 4. If it is
parallel the sign of the rotation is positive, while if it is antiparallel the sign of the rotation is
negative. In the example given here it would be negative. However if we specified the order of the
vectors differently, namely 1 – 4 (the rotation axis), 1 – 3, and 1 – 6, then the direction of the
rotation would have been seen to be positive, since the rotation from the plane 1 – 4 – 3 to 1 – 4 –
6 involves a right handed rotation about the 1 – 4 axis.

A typical input file to torangles is given below:-

eth4wat6.TOR Title of this file
fnameato eth4wat6.ato Name of .ato file
nsize 180 Number of cos(theta) bins [180]
nsumt 198 Number of configurati ons already accumulated
ndist 2 Number of tri- angle distributions

torangles 1

atom1 CM Atom type to define wh ich molecule type
ltyp1 5 First atom number to de fine the axis
ltyp2 8 Sec ond atom number to define the axis
ltyp3 1 1 Two atom numbers for vector from atom 1
ltyp4 9 9 Two atom numbers for vector from atom 2

torangles 2

atom1 CM Atom type to define wh ich molecule type
ltyp1 1 First atom number to de fine the axis
ltyp2 5 Second atom number to d efine the axis
ltyp3 2 3 Two atom numbers for vector from atom 1
ltyp4 6 7 Two atom numbers for vector from at om 2
q

The first five lines are the same as for many other EPSR auxiliary routines. (Note that blank lines
are written out to aid visualisation but they are ignored by the reading routines.) There are two
distributions to be defined in this case, for the ethanol molecules in a simulation of ethanol and
water.

atom1 is used to signal to the program which molecules in the box the following numbers apply
to. Normally this would be the first atom in the molecule, which is the one used to identify the
type of each molecule.

The first distribution is for the dihedral angle about the middle C-O bond (atoms 5 and 8, defined
by ltyp1 and ltyp2) formed by the carbon atom (ltyp3, atom 1) at one end of the molecule and the
hydroxyl hydrogen atom (ltyp4, atom 9) at the other end of the molecule. The second distribution
is for dihedral angle about the C-C bond (atoms 1 and 5, defined by ltyp1 and ltyp2) using the
midpoint of two hydrogen atoms on the end methyl group (ltyp3, atoms 2 and 3) and the midpoint
of two hydrogen atoms on the middle methyl group (ltyp4, atoms 6 and 7) to define the angle
between the corresponding planes. (The atom numbers to use will not be obvious until you inspect
the relevant .ato or .atm files.). Thus the three vectors to be used to define the dihedral angle for
the first distribution will be 5 – 8 (rotation axis), 5 – 1, and 5 – 9, in that order. If the order of the
either the first two or last two sets of numbers was reversed, the sign of the dihedral angle
calculated would be reversed. For the second distribution, the vectors will be 1 – 5 (rotation axis),
1 – 2/3, and 1 – 6/7.

 6.6 clusters –calculate cluster size distributions.

EPSRshell User Manual 27/3/2010 65

For clusters command line to set up the input file .CLUSTERS.dat is as before: “setup clusters
<filename>”. This produces a file which looks like this:-

mw73.CLUSTERS Title of this file
fnameato mw73.ato Name of .ato fil e
nsize 1000 Maximum cluster size (max 1000)
nsumt - 1 Number of configurations already ac cumulated
ndist 3 Number of cluster distr ibutions

cluster 1

atom1 C Atom type 1 to define a bond
atom2 C Atom type 2 to define a bond
rmin 2 Minimum distance for th is bond
rmax 5.5 Maximum distance for this bond

cluster 2

atom1 O Atom type 1 to define a bond
atom2 H Atom type 2 to define a bond
rmin 1 Minimum distance for th is bond
rmax 2.5 Maximum distance for this bond

cluster 3

atom1 OW Atom type 1 to define a bond
atom2 HW Atom type 2 to define a bond
rmin 1 Minimum distance for this bond
rmax 2.5 Maximum distance for this bond
q

Cluster 1: fraction containing 2 or more molecule s 1.00000

Cluster 2: fraction containing 2 or more molecule s 0.79762

Cluster 3: fraction containing 2 or more molecule s 0.72222

This file sets up three cluster distributions for a mixture of methanol and water. The placing of a
molecule in a cluster is determined from the separation of specified pairs of atoms. Thus for
cluster 1 above the cluster is determined from the carbon atoms of the methanol molecules. Any
two methanol molecules whose carbon atoms are determined to be between 2 and 5.5Å apart are
said to be in the same cluster. All the molecules within the simulation bos which are also in the
same cluster are tallied, and used to generate a distribution of cluster size, where the size is the
number of molecules in the cluster. For cluster 2 it is still between methanol molecules, but now
the decision on clustering is based on the separation of the hydrogen atom on one methanol
molecule from the oxygen on another. Cluster 3 looks at the water cluster, using a criterion based
on the separation of the water hydrogen atom from water oxygen atom to determine if two
molecules are bonded.

The program can be run by typing “clusters <filename>”. Because cluster size distributions have a
power law dependence on size it is useful to use log-log scales when plotting these distributions.

As of 2010 it is possible to specify multiple atom types and distances to decide whether two
molecules are bonded or not. This would be useful in the above for example if you wanted to
include either C – C distances or O – H distances between neighbouring molecules to decide if
they were bonded or not. Thus the input would look like:

cluster 1

atom1 C O Atom type 1 to define a bond

EPSRshell User Manual 27/3/2010 66

atom2 C H Atom type 2 to define a bond
rmin 2 1 Minimum distance for t his bond
rmax 5.5 2.5 Maximum distance f or this bond

Note that it is imperative that the number of entries on each line are the same, otherwise the
program will give an error message and not run. This feature is useful if you have a complex
molecule that has several distinct possible bonding sites with different names. If those possible
sites are specified, then any one of the sets of values that are satisfied between two molecules, then
the molecules are regarded as bonded.

 6.7 chains – calculate chain length distributions.

Compared to clusters the chains program uses a more advanced criterion for deciding whether
two molecules are bonded or not. This time 3 atom types have to be specified, the first 2 being on
the same molecule, and there are 2 distance ranges (4 numbers) to be specified. In order to be
classified as “bonded” the 1st and 3rd atoms have to be within the 1st specified distance range AND
the 2nd and 3rd have to be within the 2nd specified distance range.

The program calculates 2 distributions for each chain defnition. The first is the distribution of
bond numbers, i.e. how many bonds are there per valid molecule (in mixtures some molecules for
example may not fit the criteria for bonding so cannot be included in the calculation). The second
is the chain length distribution. The chain length is calculated using the “shortest path” criterion
[7], which basically sorts through all the possible linked paths between two molecules, and counts
only the shortest path, i.e. the one with the least number of linkages between those two molecules.
Each chain must begin and end on a molecule with only one link to another molecule.

To set up the input file we type “setup chains <filename>” in the usual way, and the program can
be run with the command “chains <filename>. The .CHAINS.dat file looks like this:-

methanol.CHAINS Title of this file
fnameato methanol1.ato Name of .at o file
nsize 200 Maximu m chain length (max 200)
nsumt - 1 Number of configurations already ac cumulated
ndist 1 Number of chain length distributions

chain 1

atom1 O Atom type 1 for first a tom in first molecule
atom2 H Atom type 2 for second atom in first molecule
atom3 O Atom type 3 for atom in second molecule
rmin1 1 Minimum distance for at om1-atom3
rmax1 3.4 Maximum distance for atom1- atom3
rmin2 1 Minimum distance for at om2-atom3
rmax2 2.5 Maximum distance for atom2-atom3
q
 1 0.17900E+01 0.63511E+00 0.58000E+01 0.4822 9E+01

When it has finished the program produces at the last line the average number of bonds per
molecule and its standard deviation, and the average cluster length and its standard deviation, as
shown in this example for methanol. The corresponding distributions of these quantities are given
in the .n01 file produced when the program finishes, columns 2 and 4 respectively, for each set of
chain criteria specified. Log scales may sometimes be useful when plotting these distributions
because of the rapid decline of the chain distribution with chain length. Note that unlike clusters,
chains does not normalise the distributions to the total number of chains in the distribution.

EPSRshell User Manual 27/3/2010 67

As for clusters, it is now possible to have several sets of atoms to define a bond between
molecules. In the above example, if we wanted to include either O-H …O bonds or C-M…O
bonds (for example) we would write

chain 1

atom1 O C Atom type 1 for first atom in firs t molecule
atom2 H M Atom type 2 for second atom in first molecule
atom3 O O Atom type 3 for a tom in second molecule
rmin1 1 2 Minimum distance for a tom1- atom3
rmax1 3.4 4.5 Maximum distance f or atom1-atom3
rmin2 1 1 Minimum distance for a tom2- atom3
rmax2 2.5 3.5 Maximum distance f or atom2- atom3

 6.8 rings – calculate ring length distributions.

rings works in a manner entirely analogous to chains, and the input files are identical. Here is an
example from the ethanol-water simulation previously:

eth4wat6.RINGS Title of this file
fna meato eth4wat6.ato Name of .ato fi le
nsize 25 Maximum ring length (m ax 25)
nsumt -1 Number of configurations already accumulated
ndist 2 Number of ring distribu tions

ring 1

atom1 O Atom type 1 for first a tom in first molecule
atom2 H Atom type 2 for second atom in first molecule
atom3 O Atom type 3 for atom in second molecule
rmin13 1 Minimum distance for at om1-atom3
rmax13 3.5 Maximum distance for atom1- atom3
rmin23 1 Minimum distance for at om2-atom3
rmax23 2.5 Maximum distance for atom2- atom3

ring 2

atom1 OW Atom type 1 for first atom in first molecule
atom2 HW Atom type 2 for second atom in first molecule
atom3 OW Atom type 3 for atom i n second molecule
rmin13 1 Minimum distance for at om1-atom3
rmax13 3.5 Maximum distance for atom1- atom3
rmin23 1 Minimum distance for at om2-atom3
rmax23 2.5 Maximum distance for atom2- atom3
q
 1 0.28182E+00 0.55811E+00 0.00000E+00 0.0000 0E+00
 2 0.11673E+01 0.12494E+01 0.64068E+01 0.3664 4E+01

The only difference between the two routines is that a ring can only begin and end on a molecule
with two or more linkages. Again ring lengths are counted using the shortest path criterion – the
number of rings associated with a particular molecule could be huge, but there will be only a few
or one which satisfies the shortest path. At the end of running the program the input file lists the
average number of linkages per molecule (called bonds in the program – to be distinguished from
the intra-molecular distances also called bonds) for each distribution and the average length of
shortest path rings found for those linkages. In the above example the average length of ethanol-
ethanol rings found was zero, while the average length of water-water rings was 6.4 molecules per
ring. The distribution of these quantities as a function of number of neighbours and ring length
will be given in the corresponding .n01 file, columns 2 and 4 respectively, for each set of rings

EPSRshell User Manual 27/3/2010 68

criteria specified. rings does not normalise these distributions to the total number of linkages or
the total number of rings.

Once again as for clusters and chains it is possible to have more than one set of definitions for
bonds for a given ring definition. This is helpful when you have (say) a network glass with
network modifiers and you want to include both base atoms and dopant atoms in the definition of
a bond.

 6.9 voids – calculate void distributions and the void radial distribution function.

voids is a relatively recent addition to the EPSR suite and is still being understood and tested.
Basically the idea is to estimate how much unoccupied space there is in a simulation box, and then
calculate the radial distribution function of that unoccupied space. To do this it is necessary to
divide the box into pixels – currently a maximum of 100 along each Cartesian axis is allowed,
giving a total of 106 pixels in all. Each pixel is then assigned a status, occupied or empty,
depending on whether there are ANY atoms within the specified distance (radius) of it. The ratio
of number of unoccupied pixels to total number of pixels gives the fraction of unoccupied pixels
listed in the example .VOIDS.dat input file below.

For each unoccupied pixel a search is made of the 26 surrounding pixels (assuming they are placed
on a cubic grid). If any of these neighbouring pixels is also unoccupied, both pixels are assigned to
the same void number. Once all the unoccupied pixels have been tested this way, the whole
process is repeated, until the number of distinct voids detected does not change. This typically
takes a few iterations. From here the size of each void is calculated by adding up the number of
unoccupied pixels in each void.

For each void distribution, there are three outputs in the voids distribution file,
<filename>.VOIDS.n01. The first is simply the void size distribution function, similar to that
given by clusters, chains, or rings. The volume of the void in this case is expressed in units of the
size of the simulation box divided by the number of histogram points, nsize.

The second is the total void-void radial distribution function, which is calculated by looking at
each void pixel in turn and calculating the radial distribution of void pixels around it. The third is
the same as the second, except that it only includes pixels that are not in the same void. This third
distribution does not appear to be overly useful at this stage, since any given void can already have
a complex structure with multiple length scales, so it doesn’t make a lot of sense to separate the
two void distribution functions in this way.

The input file for this calculation looks like the following:-

pccp.VOIDS Title of this file
fnameato pccp.ato Name of .ato file
nsize 1000 No. of histogram poi nts (max 1000)
npix 100 No. of pixels for void calculation (max 201)
voidmax 300 NOT USED BY CURRENT P ROGRAM
nsumt - 1 Number of configurations already ac cumulated
ndist 3 Number of void distribu tions

void 1

radius 2.2 Average distance from atoms to define a void
exclude HW List of atom types to exclude (max 10)

void 2

EPSRshell User Manual 27/3/2010 69

radius 2.0 Average distance from atoms to define a void
exclude HW List of atom type s to exclude (max 10)

void 3

radius 1.8 Average distance from atoms to define a void
exclude HW List of atom types to exclude (max 10)
q

Distribution 1: fraction of unoccupied pixels = 0.09477

Distribution 2: fraction of unoccupied pixels = 0.18309

Distribution 3: fraction of unoccupied pixels = 0.28555

npix is the number of pixels along half the side of the simulation box and is limited to 100. The
program actually adjusts the precise number to give the optimum representation of the specified
sphere, i.e. so that the representation of the sphere by a set of cubes gives the correct volume as
close as is practical

voidmax is not used in the current version of the program

nsumt works in the usual way, i.e. it determines how many distributions are accumulated. Set to -
1 it only gives the current distribution.

radius sets the distance from any atom to test whether a pixel is occupied or not.

exclude allows you to exclude any atom types listed (separated by spaces if more than one). If you
don’t want to exclude any atoms, leave it blank or type XX so that it will never find this atom (it
doesn’t check to see whether the specified exists in the file or not).

The calculated total void radial distribution function which looks like this:-

EPSRshell User Manual 27/3/2010 70

The sharp down turn at high r arises because of the limit of half the box size being reached – there
is no correction for the uniform atom distribution in this routine at present.

It is not totally clear what this distribution represents at present. The sharp rise at low r can be
understood because at short distances any void pixel will likely see a much higher density of other
void pixels in its immediate vicinity than at longer distances. The subsequent structure clearly
indicates density fluctuations in the simulation box, but the fact that the position of these depends
on the chosen void radius makes it difficult to assign any definite meaning to these fluctuations.

 6.10 fluctuations – calculate the number fluctuations in boxes of specified size.

It is sometimes forgotten that disordered materials can have significant density fluctuations on the
atomic length scale. In a monatomic material the density fluctuations give rise to the
compressibility, which for condensed matter is quite small – this is the reason why the structure

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16 18 20

V
oi

d
di

st
rib

ut
io

n

Void size

C:\aks\EPSR18\run\waterxray\PCCP

Radius_1.800

Radius_2.000

Radius_2.200

EPSRshell User Manual 27/3/2010 71

factor normally becomes small at low Q. However these are the density fluctuations over the
macroscopic length scale, while on the scale of a few atoms the fluctuations can be quite large.
fluctuations allows you to calculate these number fluctuations for a series of box sizes of
specified dimensions. The input file looks like the following:

h2o22cnew.FLUCTUATIONS Title of this file
fnameato h2o22c.ato Name of .ato f ile
nsumt 782000 Number of samples already accumulated
nsamples 1000 Number of samples to take from this
configuration
ndist 5 Number of volume sizes

Size 1

rmax 10. Radius of volume to p robe
ntotal 33.3352013 Sum of N
nsqtota l 1117.47422 Sum of N^2

Size 2

rmax 12. Radius of volume to p robe
ntotal 57.5960041 Sum of N
nsqtotal 3326.84795 Sum of N^2

Size 3

rmax 14. Ra dius of volume to probe
ntotal 91.4685127 Sum of N
nsqtotal 8380.01318 Sum of N^2

Size 4

rmax 16. Radius of volume to p robe
ntotal 136.527722 Sum of N
nsqtotal 18658.0763 Sum of N^2

Size 5

rmax 18. Radius of volume to p robe
ntotal 194.403794 Sum of N
nsqtotal 37816.1337 Sum of N^2
q
 10. 33.3352013 1117.47422 0.187146753
 12. 57.5960041 3326.84795 0.165779829
 14. 91.4685127 8380.01318 0.147858053
 16. 136.527722 18658.0763 0.13372609
 18. 194.403794 37816.1337 0.119846761

The only numbers you need to worry about (apart from the name of the .ato file of course) are the
number of distributions, ndist, and the dimension of each box, rmax. Obviously set nsumt to zero
at the beginning. Note that despite the name, rmax, corresponds to the dimension of a cubic box to
be selected at random from within the simulation box. No check that this dimension is smaller
than the simulation box, however it should be typically not more than about ¾ the size of the
simulation box, otherwise the fluctuations will be meaningless, since obviously if you chose a
dimension the same size as the simulation box, then the fluctuations would go to zero.

At the end of the file, the program lists for each specified box the value of:

EPSRshell User Manual 27/3/2010 72

which of course would go to the isothermal compressibility limit in the limit of the
infinite box.

In addition the program will generate the distribution of these fluctuations for each specified box
size (this example was just one configuration – run it for longer to get the distributions smoother):-

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

F
lu

ct
ua

tio
ns

 d
is

tr
ib

ut
io

n

<N^2>-<N>^2

C:\aks\EPSR18\run\waterNIMROD\h2o15c

10.00000

13.00000

16.00000

19.00000

22.00000

EPSRshell User Manual 27/3/2010 73

 6.11 writexyz – writes a file of atomic coordinates in xyz format.

Sometimes it is useful to store the coordinates of individual atomic configurations. This can be
done with the writexyz command. The command requires as arguments the name of the .ato file
which is to be written out, and qualifier ‘append’ or ‘noappend’ which tells it whether to append
the coordinates to the list of configurations in a single file, or to write each configuration to a
separate file. The default is ‘append’ if this is not specified.

If ‘append’ is specified, then the name of the output file is ‘<ato-filename>append.xyz’. Each set
of coordinates will appear as a separate block of data with a blank line between each block. The
first entry in a block is the number of atoms in that block, and the second entry is the filename
from which the coordinates were derived, followed by the block number. Subsequent entries are
atomic symbol and (x,y,z) coordinates for each atom, one line per atom.

If ‘noappend’ is specified, then the files are numbered sequentially, ‘<ato-filename>00001.xyz’,
‘<ato-filename>00002.xyz’, etc., up to a maximum of 99999 files. After that an error will likely
occur and the filenames will all be called ‘<ato-filename>*****.xyz’. The counter for these files
is stored in a file called ‘<ato-filename>.nblock’. The format of these files is the same as the first
block of the append file.

After the command ‘writexyz <ato-filename> append/noappend’ it is necessary to say what you
actually want to write out for each block of data. The format here is the same as with plotato,
except that all the values can be entered in a single command line so that command can be entered
as part of a shell script. Firstly you choose whether you want to write out the entire box (1) or a
subset of the box, starting from a specified atom (2). In the latter case, you also need to specify the
molecule number which is to be at the centre of your box, and the distance from this molecule for
the box sides. Finally you have the option of selecting all the atom types that exist within the
specified box (0) or listing those types (expressed as numbers) which you want to exclude from
the box. Note however that for the molecule at the origin ALL the atoms in that molecule are
shown, irrespective of whether they have been excluded or not.

If specifying all these values on a single command line the ‘append’ or ‘noappend’ argument
MUST be given, otherwise an error will occur.

Some examples of how to use the command in a shell script are given below. The example .ato
file, abcd.ato, is supposed to be a mixture of Ab (type 1) and Cd (type 2) atoms.

a) writexyz abcd append 1 0

This will write all the atomic coordinates to a file called abcdappend.xyz. Each subsequent call to
this command will append the coordinates to the same file.

b) writexyz abcd noappend 1 0

This is the same as a), but the configuration is written to files called abcd00001.xyz,
abcd00002.xyz, etc., each time the call to writexyz is made.

c) writexyz abcd append 1 1

This is the same as a), except that only the Cd atoms will be written out (type 1 = Ab are
excluded).

d) writexyz abcd append 1 1 2

EPSRshell User Manual 27/3/2010 74

This is the same as a), except that no atoms will be written out, since there are only two types of
atom in this file, and both are excluded.

e) writexyz abcd noappend 2 300 10.0 0

This will write a separate xyz file each time it is called. The atoms printed will be relative to the
centre of mass of molecule 300 and within a range of ±10Å of this molecule along each coordinate
axis. All the atoms that satisfy this constraint will be listed.

f) writexyz abcd append 2 250 8.0 2

This will write an ‘append’ file containing only the Ab atoms which are within ±8Å along each
coordinate axis with molecule 250 at the origin (Cd atoms, type 2, are excluded).

 6.12 Building your own analysis routine.

It is now much easier to add your own routines to EPSRshell. Basically you need a file with the
name <program_name>.symbols which will define the symbols you wish to access through
setup. This file must exist in the area where you run EPSR from. In practice this could be quite
simple, such as specifying an .ato file and another file which would contain the input to your
program, or it could be more sophisticated as in the above examples. Using the setup menu means
you can easily define, save and change variables that you wish to access in your program, but of
course you may prefer to use your own input file. The symbols file might look like the following:-

extension .EXAMPLE.dat
prompt setup example>

symbol fnameato
symbol_default <undefined>
symbol_type c
symbol_text The ato file to process

symbol atom1
symbol_default XXX
symbol_type c
symbol_text Atom type 1

symbol atom2
symbol_default XXX
symbol_type c
symbol_text Atom type 2

symbol rmin
symbol_default 2.0
symbol_type r
symbol_text Minimum distance to be considered bound

symbol rmax
symbol_default 2.0
symbol_type r
symbol_text Maximum distance to be considered bound

This would apply to a program called example. The corresponding input file for this program
might be:-

benzene.EXAMPLE Title of this file
fnameato benzpure.ato The ato file to process
atom1 M Atom type 1
atom2 C Atom type 2

EPSRshell User Manual 27/3/2010 75

rmin 2.0 Minimum distance to b e considered bound
rmax 3 Maximum distance to be considered bound
q

In order for this to work, the program you write will need to be linked with the EPSR link libraries
(which of course will need to be compiled for your platform, but normally this is not difficult).
Doing this means you have full access to the EPSR methods for reading and writing the .ato file
and also accessing the atomic coordinates, and so on. Below is an extract of what this program
might look like:-

 program standalone
!!! !!!!!!!!!!!!!!!!!!!
c$$$ This is a toy example of an a program to anal yse the ato file from
c$$$ EPSR. This example shows how to read and writ e an input file (the
c$$$ test.EXAMPLE.dat file), what variables are av ailable when the ato
c$$$ file is read using the routines in EPSR.
c$$$
c$$$ This example calculates the fraction of "boun d" bromide ions in an
c$$$ ato containing surfactant molecules in soluti on with bromide
c$$$ counterions. An ion is considered bound if it is within a certain
c$$$ distance of the headgroup of the surfactant m olecule -- here the
c$$$ distance is calculated from the nitrogen atom in the headgroup.
c$$$
c$$$ Program structure:
c$$$
c$$$ 1. parse the command line arguments
c$$$
c$$$ 2. setup "symbols" for the example EXAMPLE.da t file
c$$$
c$$$ 3. read that file and get variables from the .dat file
c$$$
c$$$ 4. using the variables made available loop th rough the atoms in
c$$$ the ato file
c$$$
c$$$ 5. upon finding the bromide ion, calculate th e distance to the
c$$$ nitrogen atom (taking care of periodic bounda ry conditions), if
c$$$ there is at least one nitrogen within rmax of the bromide record
c$$$ it as bound
c$$$
c$$$ 6. calculate the fraction of bound bromide io ns and write this to
c$$$ the .dat file
c$$$
!!! !!!!!!!!!!!!!!!!!!!

c Get the command from the command line argumen ts
 call get_command_from_args()

c Run the command

 call run_example()

 stop
 end

!!! !!!!!!!!!!!!!!!!!!!
 subroutine run_example()
 include 'epsr_dimension.inc'
 include 'commands.inc'
 include 'directory_name.inc'
 include 'system_commands.inc'
 include 'symbols.inc'
 include 'molecom.inc'

EPSRshell User Manual 27/3/2010 76

 include 'clustercom.inc'
 character*20 text

 integer*4 iBr,iN,ierrout,it,nin,nout,ia1,ia2, im1,im2,
 $ j, br_count, br_bound(matom), isum, ssg_ ierr
 real*4 xdif,ydif,zdif,dsq12,da12,x1,y1,z1,x2, y2,z2,nbound,
 $ br_rmin,br_rmax
 character*3 atom1,atom2

 character*256 symbolsfname

 write(6,*) "Variables from get_command_from_a rgs():"
 write(6,*) "home_directory:", home_directory
 write(6,*) "directory_name:", directory_name

 ssg_ierr=0
 symbolsfname="example"
 call setup_symbols_generic(symbolsfname, ssg_ ierr)

 if (ssg_ierr.ne.0) then
 write(6, *) "Problem setting up symbols",
 $ " from .symbols file. Exiting example ."
 return
 endif

 write(6, *) "Used example.symbols to set up s ymbols"

c now setup the input file -- the .dat file...
 nin=11
 nout=6
 call setup_input_file(nin,nout,ierrout)

c if an error was encountered on setup, exit no w
 if(ierrout.ne.0) return

c read the input file (the .dat file)
 call read_input_file(nin,nout,ierrout)

c if an error was encountered on read, exit now
 if(ierrout.ne.0) return

c$$$ Get ato file name, the minimum and maximum cu toff distances to
c$$$ use from the symbols_value array which was re ad from the .dat
c$$$ file
c$$$
c$$$ the ato file name:
 iref = 1
 write(6,*) "atofname :", symbol_value(iref)
 iref = iref +1
100 format(a3)
 read(symbol_value(iref), 100) atom1
 iref = iref +1
 read(symbol_value(iref), 100) atom2
 iref = iref +1
 read(symbol_value(iref), *) br_rmin
 iref = iref +1
 read(symbol_value(iref), *) br_rmax
 write(6,*) "rmin :", br_rmin
 write(6,*) "rmax :", br_rmax

EPSRshell User Manual 27/3/2010 77

Your code goes here

Then finish up with:

c
c If any of the input variables have changed you ne ed to assign them to their
respective
c symbol_value before exitting, otherwise they will not be saved:

 icount=0
 text='atom1'
 call search_for_symbol(text,icount)
 iref=ireff(icount,1)
 write(symbol_value(iref),*) atom2
 iref=iref+1
 write(symbol_value(iref),*) atom1

 call save_files_others(11)

 close(11)

 return
 end

If you need advice on how to do this please do ask. The link libraries are distributed with the
EPSR binaries. Note that it is possible to have multiple values on a single line: there is a parsing
routine available for disentangling the separate values.

7 D S Franzblau, Phys Rev B, 44, p4925-4930 (1991)

EPSRshell User Manual 27/3/2010 78

7 Spherical harmonic representation of many
body correlation functions
 7.1 Introduction – the spatial density function and orientational correlation function

Once you get away from the cosy world of pair distribution functions, you run into two problems.
Firstly defining any function in 2 or 3 or more dimensions requires increasingly large numbers of
pixels, so there is a problem of how to store the functions. Secondly you need some method of
visualizing the output so that it is more than simply a huge array of numbers. The spherical
harmonic representation is an extremely compact method of storing many-body correlation
functions, with the added bonus that having calculated the coefficients you can go back and
interrogate the distribution in various ways without having to recalculate the atom positions all
over again. Fortunately once you have made the intellectual leap and started to think in 3D or
more, you discover a world rich in detail and subtlety that you would never have dreamed existed
before! Nature reveals its secrets reluctantly, but when it does so be prepared for a shock!

The following account is intended to try to help you make that leap. It is not easy to get your head
around these functions, but well worth the effort. The spatial density function (term originally due
to Svishchev and Kusalik [8] I believe) is perhaps the easiest concept to think about. Basically you
have an entity at the origin. This entity can be anything, e.g. a molecule, or group of atoms in a
particular conformation. It could be a single atom but this would not be interesting as you can only
have radial information around a single atom. The entity has to be sufficiently well defined that a
set of coordinate axes can be defined relative to it, so that typically it will need at least 2 atoms,
preferably at least 3. The question you want answered is how are other atoms or entities situated
with respect to this central entity? Maybe the Fig 7.1 can help you to see the problem:

EPSRshell User Manual 27/3/2010 79

Figure 7.1

Here we see a molecule at the origin of the coordinate system at some particular orientation, given
by the Euler angles 1 = (�1,θ1,χ1).

4 The question is how is the second entity, at orientation 2 =
(�2,θ2,χ2), distributed with respect to the first, i.e. what is the density of 2nd entities as a function of
r? This is called the “spatial density function” or SDF for short. Or we could equally ask the
question how is the orientation of the second entity distributed as a function of r for a given
((θ1,�1,χ1))? This second quantity is called the “orientational correlation function” or OCF.

The spherical harmonic expansion of these quantities can be written in the form

4 A description of Euler angles can be found in a number of textbooks. The definitions used here
are based on Theory of Molecular Fluids Volume 1 – Fundamentals, C G Gray and K E Gubbins,
Oxford University Press, 1984, which also gives an excellent account of the spherical harmonic
functions. The order of the rotations being used here to get to the final orientation is important.
The entity is first rotated by an amount � about the initial z-axis, then by an amount θ about the
new y-axis, finally by an amount χ about the revised z-axis that is generated by the second
rotation. All rotations are in the direction of a clockwise screw along the positive axis. They can
also be performed in reverse order but rotating about the (fixed) laboratory axes throughout.

z

y

x

x2

z2

y2

L

θL

(1,θ1,χ1)

r

(2,θ2,χ2)

EPSRshell User Manual 27/3/2010 80

)()()();();;(1

),,(1),,(

0
*

2
*

121212121

2121

2

22

1

11
21 21 21

ωωω

ωωωω
l

m

l

nm

l

nm
lll mmm nn

DDDmmmlllCrnnlllh

hg

∑ ∑ ∑+=

+= rr

 (7.1.1)

where);(2121 mmmlllC are the Clebsch-Gordan coefficients, which constrain the values

2121 lllll +≤≤− and m = m1+m2, and

() χφ θω inl

mn

iml

mn edeD −−=)((7.1.2)

are the generalized spherical harmonic functions, with

() () () () ()[]
() () ()

() () ()!!!!

2sin2cos1
!!!!

222

2

1

nmkkknlkml
nlnlmlmld k

nmkknmlk

l

mn
+−−−−+

−

−+−+=
∑ +−−−+

θθ

θ (7.1.3).

Note that the summation in (7.1.1) differs slightly from that in Gray and Gubbins (eq. 3.142) by a

factor of
() 2

1

4
12





 +

π

l
 due to the use of generalized spherical harmonics throughout. These

generalized spherical harmonics are of course orthogonal with respect to integrals over �, and in
particular we note the special case

mn

l

mnD δ=)000((7.1.4).

The coefficients of this series can be calculated from a simulated distribution function by inverting
(7.1.1), making use of the closure rules of the Clebsch-Gordan coefficients and the orthogonality
of the generalized spherical harmonics:-

()()

()
∫ ∫ ∫ ∑×

++
=

mmm

l

m

l

nm

l

nm DDDmmmlllChddd

ll
rnnlllh

21

2

22

1

11

*
02121212121

22

21
2121

)()()();(),,(

84

1212
);;(

ωωωωωωωω

ππ

r

 (7.1.5)

where, in the case of the simulation, the integrals are actually performed as averages over all
relevant pairs of molecules in the simulation box. (Note that another factor of ()12 +l from
integrating over � does not appear in this expression because it is cancelled by the sum over
products of Clebsch-Gordan coefficients when inverting 7.1.1).

This calculation of the coefficients is performed by the routines sharm and sdf. Note that when
the molecules are identical (e.g. water about water) then certain symmetry rules apply to the
coefficients);;(2121 rnnlllg , (see Gray and Gubbins) which means the number of terms to be
summed is reduced. Thus in the input files to these programs it is important to specify whether the
molecules are identical or not. Fortunately the EPSRshell setup command checks which
molecules have been specified and automatically detects whether they are identical or not.

EPSRshell User Manual 27/3/2010 81

In order to reconstruct the spatial density function or orientational correlation function from the
spherical harmonic coefficients the quantity to calculate is (7.1.1). This function is in general a
function of 9 variables, but 3 of these are not independent, since the spatial density function should
look the same relative to the molecule at the origin, whatever the orientation of that molecule.
Therefore an immediate simplification can be made to this function, without loss of generality, by
rotating the laboratory axes to coincide with the coordinate axes of the central molecule, thereby
setting ω1 = (000). This immediately invokes (7.1.4) so that m1 = n1. Writing ω2 ≡ ω1ωM, i.e.
rotation ω1 followed by rotation ωM, where ωM = (�M,θM,χM) is the relative orientation of entity 2
to entity 1, and ω = ω1ωL, where ωL = (�L,�L) is the position vector which describes where the
second molecule is relative to the one at the origin, a simplified version of 7.1.1 is formed, now a
function of only 6 coordinates:-

∑ ∑ ∑+=
lll mm nn

L

l

mM

l

nmML DDmmnlllCrnnlllhg
21 2 21

2

22
)()();();;(1),(0

*
21212121 ωωωr

 (7.1.6)

This result was written down here by inspection of (7.1.1) but in fact can be demonstrated quite
formally by making use of the properties of the D coefficients under rotations.

There are still too many dimensions here to plot – the maximum number that can be
accommodated is perhaps 3 dimensions at best, so some further simplification is necessary. One of
the most useful simplifications is to sum only the terms for which 0222 === nml . This removes
any dependence of the result on the orientation of the second entity, i.e. the function is plotted
after averaging over the orientations, ωM. In that case 1ll = and 1nm = from the properties of the
Clebsch-Gordan coefficients, so that this function simply maps out the distribution of 2nd entities,
averaged over the orientations of the latter, with respect to the entity at the origin. This is what
Kusalik and Svishchev[8] called the spatial density function.

Another possibility is to set 022 == nm , but allow l2 to adopt the values specified in the
coefficients. In this case we remove any dependence of the result on (�M,�M), but leave the
dependence of �M, so this would correspond to the distribution of dipole orientations if the z- axis
of the second entity were to lie parallel to its dipole moment axis. In this latter case it is necessary
to fix (�L�L), in order to be able to plot this orientational distribution in 3D. Such an orientational
plot would correspond to an orientational correlation function, and a number of such plots could
be envisaged. The point is that by choosing to fix the different values of l1, l2, n1, m2, and n2 one
can control which particular distribution functions are plotted. Note that when plotting orientations
of anything more complicated than linear molecules, it will always be necessary to average over
one degree of freedom of the molecule, since there are typically 3 orientational degrees of
freedom, plus the radial coordinate, making 4 in total, but we can sensibly plot only 3 of those
degrees of freedom.

 7.2 sharm – calculates the spherical harmonic coefficients for the spatial density function and
orientational pair correlation function

The input file for sharm is set up in the usual way, “setup sharm <filename>”. A typical input,
which lists all the variables is given below:-

h2o298tot.SHARM Title of this file
fnameato h2o298tot_s.ato Name of .ato file
nr 130 Number of radius valu es (max 200)
rmax 13 Maxi mum radius for spherical harmonic coefficients

EPSRshell User Manual 27/3/2010 82

nsumt 1 Number of configuration s already accumulated
ncoeffs 158 Number of coefficient s (program calculat es this)
l1values 0 1 2 3 4 L1 values (sepa rated by spaces)
l2values 0 1 2 3 4 L2 values (sepa rated by spaces)
lvalues 0 1 2 3 4 L values (separ ated by spaces)
n1step 2 Step in N1 values
n2step 2 Step in N2 values
atom-c OW Central molecule - list of centre atom types
axisc1 z 2 3 First axis defin ition for central molecule
axisc2 y 2 Second axis definitio n for central molecule
atom-s OW Second molecule - list of centre atom types
axiss1 z 2 3 First axis definiti on for second molecule
axiss2 y 2 Second axis definitio n for second molecule
q

When setting up this input file you need to be aware of a few things that may not be obvious. The
variables atom-c and atom-s are used to define the centres of the central and secondary molecules
respectively. The program expects a list of atom types in each case and this can be a single atom
atom type or it could be several, separated by spaces. The program takes the arithmetic mean of all
the positions of atoms of these types to define the centre of each molecule.

The molecular axes are defined via the axisc1 and axisc2 variables (for the central molecule) and
via the axiss1 and axiss2 variables (for the secondary molecule). Each variable consists of a letter
which defines which axis is being set up, and a set of atom numbers for the molecule in question
which will be used to define the specified axis. For the first axis (z in this example) the specified
axis is assumed to run from the centre of the molecule to the mid-point of the specified atoms.
(Several atoms can be specified.) For the second axis it may not be possible to assign a set of
atoms which lie along the specified axis, so instead a vector is drawn from the centre of the
molecule to the point defined by the set of specified atoms, and the second axis is assumed to lie in
the plane defined by the this vector and the first axis: its precise direction is determined from the
requirement that it must be orthogonal to the first axis. Hence in the above example atom 2 on the
water molecule is set to lie in the z-y plane of the molecule, which allows the y-axis to be set up as
orthogonal to the z-axis.

In sharm it is only necessary to define two of the Cartesian axes, since the third axes can always
be found from the first two. It does not particularly matter which order the axes are entered, but
you should be aware that currently sharm only estimates the REAL coefficients in equation
(7.1.1). This means the molecule as defined MUST have at least one plane of mirror symmetry
and at least one of the mirror symmetry planes must be coincident with the z-x plane. If such a
plane does not exist in the real molecule, then mirror symmetry about the z-x plane will be
imposed on the estimated distribution functions, and it likely they could be misleading.

Note that sharm will only actually calculate the coefficients every 5 times it is called. This is
because calculation of the coefficients can be time consuming if there are a lot of them, and one
needs to be sure that before adding to an existing accumulation of coefficients the simulation box
has moved to a completely new region of phase space before calculating them again. Hence the
number of accumulations of the coefficients is actually given by nsumt/5. nsumt is listed in the
sharm input file.

Note also that the option nsumt = -1 does not exist for sharm. The idea is that we would not want
to spend computer time calculating coefficients when a simulation has not reached equilibrium or
the EP is still being adjusted.

The program is run in the usual way “sharm <filename>”. The individual coefficients,
.SHARM.h01, etc., can be plotted from the plot menu, and the spatial density functions shown via
the plot2d and plot3d commands.

EPSRshell User Manual 27/3/2010 83

 7.3 sdf – spatial density function and orientational correlation function for an arbitrary system

As it stands sharm is written specifically for molecules. However a simple extension of the ideas
there can be used to generate a spherical harmonic representation of the triple body correlation
function or higher order correlation functions. The basic idea is that while sharm restricts you to
specifying atoms on the same molecule, there is no intrinsic reason why this has to be so. For
example we could use any pair of atoms within a specified distance range to define an origin and
z-axis and then look at the density of 3rd atoms of a specified type as a function of (r,�L). This
would give a 2-D map of the triple body correlation for a pair of atoms at the origin of the
specified separation.

A further extension of this idea is to define a “molecule” at the origin to be any geometry of atoms
which we may wish to construct, and plot the distribution of the same or other geometries of atoms
as a function of position or orientation, just as we did in sharm. For example in amorphous silica,
one could envisage our central “molecule” being a Si atom with two of the neighbouring O atoms
at a specified distance to define the z and y axes, in an analogous way to what was done for water
with sharm in the previous section. The spatial density of other SiO2 molecules could then be plot
in an entirely analogous way. The only real distinction is the extra task of defining which sets of
SiO2 triplets can be categorised as “molecules”. The routine to do this is called sdf.

Below is shown a typical input to the sdf routine. This can be set up in the usual way by typing

setup sdf <file name>:-

sio2_095.SDF Title of this file
fnameato sio2_095.ato Name of .ato file
nr 130 Number of radius valu es (max 200)
rmax 13 Maximum radius for sph erical harmonic coefficients
nsumt 1 Number of configuration s already accumulated
ncoeffs 16 Number of coefficients (program calculates this)
l1values 0 1 2 3 4 5 6 L1 values (separated by spaces)
l2values 0 L2 values (separated by spaces)
lvalues 0 1 2 3 4 5 6 L values (s eparated by spaces)
n1step 2 Step in N1 v alues
n2step 0 Step in N2 values
atom-c Si O O List of centre atom typ es. First will be origin.
pairdist- c 1.6 1.6 2.6 List of pair distances for centr e molecule.
fracdist-c 0.2 Acceptance half- width (fraction of pair distance).
axisc1 z 2 3 First axis definition for centre mo lecule.
axisc2 y 2 Second axis definition for centre molecule.
atom-s O List of second at om types. First will be origin.
pairdist- s 0 List of pair distances for secon d molecule.
fracdist-s 0.2 Acceptance half-width (fraction of pair distance).
axiss1 z First axis definition f or second molecule.
axiss2 y Second axis definition for second molecule.
q

This input file will calculate the distribution of O atoms about a central SiO2 molecule. The theory
behind sdf is identical to that of sharm. The only difference is the way the “molecules” are
specified. Hence the first few lines of the input file down to n2step are identical to sharm, with
exactly the same discussion about the meaning of values.

However for atom-c we now have a list of all the atoms that are to make up the central molecule.
Only the first of these atoms will form the origin of the coordinate system. The other will be used
to define the molecule. In the above case we have three atoms to define the molecule, a central Si
accompanied by 2 O atoms.

The distances needed to define the “molecule” are given in the next line, pairdist-c. This makes a
list of the expected pair distances in the “molecule”. They are given in the order atom1 – atom2,

EPSRshell User Manual 27/3/2010 84

atom1 – atom3, and finally atom2 – atom3. Hence they are given here as each O should be 1.6Å
from the central Si, with the two Os separated by a distance of 2.6Å.

Of course in the real box the chances of finding three atoms which satisfy these requirements
exactly is slim, so we allow some range of distances to be included. This is defined by the value of
fracdist-c, and is expressed as a fractional width of the respective bond distance, 0.2 in the present
instance. Hence according to this criterion, any Si-O distance in the range 1.6 ± 0.32Å would be
regarded as bonded. Equally any O-O distance in the range 2.6 ± 0.52Å would be regarded as
bonded.

Having thus defined the molecule, the following two lines define the axes as in sharm, in exactly
the same way. Hence in this example the molecular z axis will pass centrally between atoms 2 and
3, i.e. the two oxygen atoms, while the y-axis will lie in the plane defined the z axis and atom 2
(also oxygen).

The axes of the second molecule are defined in exactly the same way as the first. In this example
we are simply plotting the distribution of oxygen atoms around the SiO2 molecule, so there are no
axes to define.

All the comments about definition of axes, symmetry and the use of nsumt that were given for
sharm above apply equally to sdf at the present time.

The program is run in the usual way “sdf <filename>”. The individual coefficients, .SDF.h01, etc.,
can be plotted from the plot menu, and the spatial density functions shown via the plot2d and
plot3d commands.

 7.4 plot2d and plot3d– plotting the results from 7.2 and 7.3

As usual these programs are run from EPSRshell, and they require input files that need to be setup
using setup. As their names imply these two programs allow you to plot the results of the
spherical harmonic calculation in 2D or 3D respectively. The 2D plot is essentially a surface
contour, and is plotted as a simple contour map. They are based on the PGPLOT routines, together
with Devinder Sivia’s PGXTAL routines. The present implementation of calling these routines
from within EPSRshell seems to avoid many of the previous problems with getting them
operational. The output is normally to a .gif file called pgplot.gif, however if the system
command, system_pgout, read in from system_commands.txt, is set to /cps, then postscript output
is produced instead, pgplot.ps. There is no way of getting a screen plot using this implementation
of PGXTAL with pgplot on Windows.

On LINUX the story is different, since full implementation of PGPLOT is usually available for
LINUX. Hence the full range of PGPLOT output options should be available, including /XS which
should produce an x-screen with the plot on it.

To setup the input files you need to type “setup plot2d” or “setup plot3d”.

They can be run from the command prompt with the command “plot2d <filename> or “plot3d
<filename>” as usual. Here is an example of the plot3d input file, called ‘sio2_095.plot3d.txt’,
used to plot the coefficients generated in the example given in the previous section on sdf:-

sio2_095.SDF.h01
16 no. of coefficients - determined from coefficients file
1 = 0 for identical molecules, else 1 if d ifferent
1 0 sets first coefficient to zero - normally 1
4 number of smoothings on coefficient s
6 maxim um radius of plotting box
1 1 no. of plots along x- and y- axis [set at 1 1]
1.0 aspect ratio of plot [1.0]

EPSRshell User Manual 27/3/2010 85

1 6 minimum and maximum radius of plo t
0.2 fractional isosurface level (- ve for absolute)
1 0 use l1 and l2 (1 or 0)
1 0 use n1 and n2 (1 or 0)
0 use m (1 or 0)
1 vary (thetal, phil) (1), (thetam, phim) (2), (theta m, chim) (3)
0 0 0
3 number of spheres at centre of plot (max 25)
1.3 0.0 0 0 0.9 0.9 0.9 sphere radius, (r ,theta,phi), (r,g,b colour
indices)
1.0 1.6 54 90 1.0 0 0 sphere radius, (r,t heta,phi), (r,g,b colour
indices)
1.0 1.6 54 270 1 0 0 sphere radius, (r,th eta,phi), (r,g,b colour
indices)
1.5 2 1 axes character size, line wid th and colour (separated by
spaces)

0.1 -1.3 2 (x,y) coords. of title, an d character size (separated
by spaces)

0.8 0.8 1.0 red green blue fractions for background (separated by
spaces)
-1 ishade (1-8): 0 means no shading, - ve means inverted shading
1 1 0 red green blue fractions for ob ject (separated by spaces)
2 2 0 (x,y,z) coordinates for li ght source (separated by spaces)
1.0 fade factor (0 = no fading, 1=ful l fading)
2 transparency of object (0=0%,1=25%, 2=50%,3=75%)
1.0 0 .0 1.0 1.0 difuse, shine, polish and contrast
25 15 rotation and elevation of viewi ng point (deg.)
0 extra lines (0) - cannot be set
0 extra text (0) - cannot be set
.SDF.h01

Note the very last line which can be used to determine whether .SHARM or .SDF coefficients will
be searched for if ‘search’ is typed opposite the shcoeffs variable in setup.

To understand which l1,l2, l, n1 and n2 values to set you will need to understand a little about the
spherical harmonic representation of the orientational pair correlation function, as given in Section
7.1. For plot2d the corresponding input file, called ‘sio2_095.plot2d.txt’for the same coefficients
is slightly different:-

1 Background colour index [1]
sio2_095.SDF.h01
16 no. of SHARM coefficients - determined from coefficients file
1 = 0 for identical molecules, else 1 if different
1 0 sets first coefficient to zero - normall y 1
4 number of smoothings on coefficient s
16 x dimension of plotting square
16 y dim ension of plotting square
2.0 minimum radius of plot
3 Number of circles at centre of plot (max 25)
0.0 0 0 0.3
0.0 1.31 0.92 0.3
0.0 -1.31 0.92 0.3
1 1 no. of plots along x- and y- axis [set at 1 1]
1.0 aspect ratio of plot [1.0]
1 0 use l1 and l2 (1 or 0)
1 0 use n1 and n2 (1 or 0)
0 us e m2 (1 or 0)
1 vary thetal (1), phil (2), phim(3), thetam(4), chim(5)
90 0 0 0

EPSRshell User Manual 27/3/2010 86

1.5 2 0 axes character size, line wid th and colour (separated by
spaces)

0.1 -1.3 2 (x,y) coords. of title, an d character size (separated
by spaces)
3 phim, thetam, chim (degrees - separated by spaces)
1 5 range of intensites to be plotted (separated by spa ces)
1.0 Contrast factor [0.0 - 1.0]
N
0 extra lines (0) - cannot be set
0 extra text (0) - cannot be set
.SDF.h01

This is because you are now taking a slice out of the 3D plot and showing the variation in a
particular plane. Hence for the case where nvary = 1 as above, the plot has been chosen to show
the variation in z-y plane (phil = 90) of the central molecule. The corresponding outputs from
these two input files are shown in Figures 7.2 and 7.3.

The commands plot2d and plot3d are like some of the other EPSRshell routines, specifically plot,
plotato, in that the program that generates the plots is external to the shell itself. The above
‘.plot2d.txt’ and ‘.plot3d.txt’ files are input files for the routines defined by the variables
system_plot2d and system_plot3d which are read in from the ‘system_commands.txt’ when
EPSRshell starts up. Typically these variables are set to the executables named map2dplot.exe and
map3dplotquad.exe which are stored in the EPSR binaries folder. Hence either of these routines
can be run from outside the shell, using the plot2d and plot3d .txt files as input. Particularly for
map2dplot this gives you access to several other features of these programs that are not available
from within the shell.

In addition there is the opportunity to plot the 3D graphs without axes showing (see the “noaxes”
versions of the programs) and also if orientational correlation functions are being plotted, to rotate
the central molecule to the most probable orientation (see the “rot” versions of the map3d
program).

EPSRshell User Manual 27/3/2010 87

Figure 7.2 Result of running sdf on an EPSR simulation of amorphous silica, then plotting the
results via plot3d. The central “molecule” of SiO2 is shown as the spheres near the origin of the
coordinate system. The local, tetrahedral coordination is very visible in these plots. Perhaps not so
obvious is the fact that the second coordination shell also shows strong tetrahedral coordination.

EPSRshell User Manual 27/3/2010 88

Figure 7.2 Result of running sdf on an EPSR simulation of amorphous silica, then plotting the
results via plot2d. The central “molecule” of SiO2 is shown as the circles near the origin of the
coordinate system. Notice how we get better intensity information from the contour plot, but lose
its 3-dimensional aspect. A number of other 2D surface plot options are available with plot2d, not
all of which can be accessed from EPSRshell.

8 I M Svishchev and P G Kusalik, J Chem. Phys., 99, 3049 (1993)

EPSRshell User Manual 27/3/2010 89

EPSRshell User Manual 27/3/2010 90

8. Some examples and exercises
The following exercises are purely a suggestion so please feel free to substitute anything that you
would prefer to attempt. The idea was simply to allow the opportunity for the user to get the “feel”
of the programs before attempting any real data. The idea is that in each case you would set up the
.ato file, perhaps make a mixture, make the .ato bigger, run fmole and introtcluster, set up the
.wts, .inp and .pcof files and run EPSR, initially without structure refinement, but then with it.
Thanks to a summer student there are a few worked examples here to give a feel of how it runs
from the point of view of a non-expert.

 8.1 Single component Lennard-Jonesium.

Assume that the number density of the data supplied (single normalized structure factor) is 0.0334
atoms/Å3

After loading EPSR, and getting to/creating the working folder needed, enter makeato. This will
guide you through a series of inputs needed to create the atom or molecule you are creating. It will
ask you to enter values for the epsilon and sigma. If you don’t have these, an educated guess will
do. (Try a sigma of around 3, and epsilon of about 0.6, and a mass of 16.)

The program will now ask you for the coordinates of the atoms you have created, and their
positions in relation to each other. As you have only created one atom, enter the value as 0 for
everything that it asks for. The temperature comes next, and as before, this value is entirely up to
you. Note: Standard room temperature is 298K.

The next value to input is the atomic number density. The ecore and dcore are used in another
part of the program, that we will come onto later. For now, enter the values as 1 and 3
respectively, as shown in the brackets by each value on the command prompt.

Now you have created a single atom. To make this into a more realistic and accurate simulation,
you need to create more. The simple way to do this is to mix this file with itself a set number of
times. This effectively adds more atoms, to a set amount dictated by you. Using the command
mixato, you can specify how many atoms you want in the mixture. A suitable number is between
1000 and 500, depending on your processor speed.

These atoms are now arranged in the same point in space, and so you need to spread them out
randomly. Use the command introtcluster to space them out randomly. If you like, now is a
suitable time to create an image file showing the distribution clearly. To do this, use the command
plotato, and specify the options wanted. A suggested viewing angle is 30, 30.

EPSRshell User Manual 27/3/2010 91

The next step is to set up a .wts file. Make sure that you have the .doq file in the folder that you
are working in, and enter the command ‘epsrwts’. Simply follow the instructions to complete this.

Use the ‘setup epsr’ command. All of the values already in place are correct, and the only thing
needed for input is the undefined entries. These you will need to enter yourself. When it is all set
up, save and exit. This will have created a .inp and .pcof file.

Next, a .txt file needs to be set up in the folder where EPSRshell is running. Name it runepsr.txt,
and in it write the following lines:

cd .\[name of folder data is in]
epsr [name of .inp file]

Start the simulation now, by entering ‘ss runepsr.txt’ into the command prompt. This will run
EPSR. Open a new command prompt window, from the same folder as the one used for the first
command prompt. To edit the data, type ‘ps’ into the command prompt, and use ‘changeato’ to
change the values necessary. Typing ‘ss’ again in the window that was running the simulation will
restart it.

When you are happy with the data, you can see the results on a graph. To do this type ‘plot’, then
p (number) to specify the type of plot requested. (You will need to ensure you a copy of the file
‘plot_defaults.txt’ in your working folder before you can do this.) The graph below shows EPSR
F(Q) Fit and data in Q-space.

EPSRshell User Manual 27/3/2010 92

In real space the graph should look something like this:

 8.2 Two component charged Lennard-Jonesium – NaCl.

Aim: Using the synthetic data in the NACL folder perform an EPSR simulation on these data and
review the results.

 8.2.1 Using makeato to make two .ATO files, one called na.ato the other called cl.ato.
The number density is 0.032071 atoms/Å3, and Lennard-Jones parameters can be 0.514 kJ/mole
and 2.290Å for Na and 0.566 kJ/mole and 4.191Å for Cl. The respective atomic masses are 23 and
35.44, and you should assume the charges are zero.

 8.2.2 Using mixato, make a mixture of 500 Na atoms with 500 Cl atoms. Run
introtcluster to randomise the atoms, run fcluster to generate a starting configuration of atoms.

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30

F
(Q

)

Q [1/Å]

C:\EPSR\examples\jonathan\lj

ljsq

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

f(
r)

r [Å]

ljsq

EPSRshell User Manual 27/3/2010 93

(If your processor seems to run slowly, use only 250 atoms of each – it will not make a great deal
of difference to the results.)

 8.2.3 Using the .ato file you have created as input create the .wts file using the EPSRwts
program. (For this example pretend you have extracted the Na-Na, Na-Cl and Cl-Cl partial
structure factors by chlorine 35-37 isotope substitution, so have extracted each partial structure
factor separately. The mixture ratio for the 3rd sample required by EPSRwts can be 0.5.)

 8.2.4 Using the setup command set up the EPSR .inp and .pcof files, with the appropriate
.ato, .wts, and data files, and give them a suitable name, e.g. nacl.

 8.2.5 In the home folder where EPSRshell is running create a batch file runepsr.txt with
the following lines in it (this assumes the home folder is the examples folder from the CD:

cd .\NaCl
epsr nacl (or whatever name you gave the .inp file)

 8.2.6 Start the EPSR simulation by typing “ss runepsr.txt”. It’s a good idea to set the
priority for this routine to low if your operating system allows it so that the EPSR simulation does
not interfere too much with other things you may want to do on your computer.

 8.2.7 Meanwhile open another EPSRshell window in the SAME home folder where the
simulation is running. Once the simulation has gone through a few iterations, plot some of the
outputs to see what it looks like. If you decide you want to change something in the simulation,
then pause it by typing ‘ps’. Then use changeato to change parameters in the .ato file. Finally
restart the simulation by typing ‘ss’ in the window where the simulation was originally running.

 8.2.8 Once you are convinced that you cannot improve the fit by changing the parameters
of the reference potential on their own, then set the value of potfac to 1.0 so than the empirical
potential comes into sway. You can adjust the influence of the EP by adjusting the value of efacm
in the .inp file.

 8.2.9 Once you are happy with the fits, set the accumulator nsumt positive, and
accumulate some configurations. At the same time if you have time introduce some other
calculations into the EPSR loop, such as coord or triangles or partials.

 8.3 Amorphous silica

Although the amorphous silica refinement has been performed many times it is worth going
through the exercise of starting from scratch, as in the previous example, i.e. generate an .ato file,
run the simulation WITHOUT structure refinement and calculate the site-site radial distribution
functions. See how far you can get WITHOUT potential refinement. HINT: it’s a good idea to run
the simulation at a very high temperature, e.g. 10,000K until you are sure it is in equilibrium,
otherwise you may spend a long time equilibrating at 300K.

The number density of the neutron data supplied is 0.06834 atoms/Å3 and it HAS been normalized
to the sum of the neutron weights (this is nrtype 3). Equally the X-ray data from Mozzi and
Warren have been (re-)normalised to the single atom scattering.

8.4 Water.

Number density is 0.1002 atoms/Å3. Total neutron differential cross section files are supplied (not
normalized). These were run for pure H2O (sls18498.mdcs01), H2O:D2O 75:25
(sls18499.mdcs01), H2O:D2O 50:50 (sls18500.mdcs01), H2O:D2O 25:75 (sls18501.mdcs01), and
pure D2O (sls18502.mdcs01). These are all nrtype = 5 datasets (Gudrun histogram format). Also
included is an X-ray dataset obtained from [9]. These X-ray data have been normalised to the
single atom scattering. Here are the basic steps:-

EPSRshell User Manual 27/3/2010 94

8.4.1 Set up a water molecule. To do this you first create a ‘water_template.mol’ file.
Typical bond OH bond distance is ~0.98Å. Typical H-O-H angle is 104.5°. For the
potential parameters you can set σO = 3.2Å and εO = 0.65 kJ/mole. The Lennard-
Jones parameters for H can both be set to zero. (You might want to label the atoms
OW and HW to make it clear these atoms belong to a water molecule.) The charges
on the oxygen atom can be -1e and on each hydrogen atom +0.5e. Finally run
makemole to create the ‘water_template.ato’ file.

8.4.2 Running mixato create a new .ato file called ‘water.ato’, using as the input file
‘water_template.ato’. Put just 1 molecule in this new file. Now run fmole on
‘water.ato’ for a few hundred iterations until the intramolecular energy is small and
stable. View ‘water.ato’ with splotato or plotato – make sure it appears correctly.

8.4.3 Run mixato again, using ‘water.ato’ as the input file, and make a box containing
say 500 or 1000 of these water molecules. The output can be to the same ‘water.ato’
that you read the molecule from in the first place.

8.4.4 Run introtcluster on this expanded ‘water.ato’ file – this randomises the molecular
positions and orientations. Finally run fmole on this randomised box a large number
of times, e.g. 1000 times. This is to ensure that the molecules are all truly different
from one another. It will run faster if the neighbour list is updated less frequently,
but will not be so accurate and give strange energies.

8.4.5 Prepare the .wts files. For the neutron data bear in mind that the hydrogen atoms
will exchange with one another in the liquid. For the X-ray data you can try using
different values of qO and qH for the modified atomic form factors (MAFFs) as
discussed in Section 5.2 and then make sure these correspond to the partial charges
used in the reference potential.

8.4.6 Setup EPSR for this simulation, using as input the box of water molecules you have
created, the six diffraction datasets (or you could use a subset of these), and the
corresponding .wts files.

8.4.7 Run the simulation once. Then set any minimum distances you think may need to
be set. Ensure potfac is set to zero, then set the simulation running from a script
file.

8.4.8 Start another version of EPSRshell in the same home folder, go to the working
folder, make sure you have a ‘plot_defaults.txt’ file installed in this folder and try
plotting the results. Appendix 9.3 shows the typical list of plot types.

8.4.9 From time to time when the simulation is at equilibrium, pause it, change some of
the parameters, either of the reference potential (Lennard-Jones parameters) or the
minimum distance parameters. See how far you can get with fitting the data without
invoking the empirical potential.

8.4.10 Finally switch on the EP by setting potfac to 1. Start the simulation running.

8.4.11 Once equilibrium is reached, a number of other quantities can be calculated such as
triangles distribution, ring and chain distribution functions, and of course the
spherical harmonic coefficients. The results of the latter functions can be plotted
using plot2d or plot3d.

EPSRshell User Manual 27/3/2010 95

8.5 Other examples

There are a number of other examples in the examples folder, the parameters required to run them
are in a text file in the same directory containing the data files.

9 G Hura, D Russo, R M Glaeser, T Head-Gordon, M Krack, and M Parinello, Phys. Chem. Chem.

Phys. 5, 1981-1991 (2003)

EPSRshell User Manual 27/3/2010 96

9. Appendices
 9.1 Files you need to run EPSRshell

The executables for EPSR are normally stored in a special binary folder, \bin, which is itself
contained in the main EPSR folder. The current version is EPSR18, so the simplest option is to set
up an EPSR folder somewhere in your file system, and copy the entire EPSR18 folder from the
download source into that folder. Then set up an environment variable, EPSRroot, to refer to this
folder. The distribution includes a version of GNUplot for the Windows version in a separate
folder to the main executables, and Jmol.jar, to run the Jmol program, is stored with the other
binaries. In addition to get the PGPLOT routines to work, you need to refer correctly to the
PGPLOTlib libraries in Windows. For LINUX it will be necessary to have all the appropriate
PGPLOT and MOTIF libraries in place before the program can be run. A set of source files is
included with the distribution so that compilation (using the makeepsr scripts contained in the top
folder) should be straightforward. For LINUX the PGPGLOT routines are compiled using the
makefile in the source folder, but for Windows it is currently not possible to compile these
routines since the present distribution requires access to the Compaq Visual Fortran compiler.

In order to ensure all the definitions are correct, the simplest option is to put the following
EPSRsetup.bat file in your main EPSR18 folder:-

epsrsetup.bat:

if defined epsrpath set path=%epsrpath%
set epsrpath=%path%
title EPSRsetup
set EPSRroot=%CD%
set EPSRbin=%EPSRroot%\bin
set EPSRgnu=%EPSRbin%\gnuplot\bin
set PGPLOT_DIR=%EPSRbin%\PGPLOT\PGPLOTlib\
set PGPLOT_FONT=%EPSRbin%\PGPLOT\PGPLOT_LIB\grfont. dat
set path=%PGPLOT_DIR%;%epsrpath%

On LINUX an equivalent shell script is created in the top folder, epsrsetup.sh:

export EPSRbin=$(pwd)’/bin’

Under LINUX environment variables are treated differently from on Windows so the methods are
slightly different for the two operating systems. Thus under LINUX the EPSRroot environment
variable has to be set in the Bash startup script (typically .bashrc) if it is to be available to other
routines.

To run EPSRshell, you go to the folder where you want to run EPSRshell, and paste a copy of the
epsr.bat or epsr.sh files into that area and run the script in the appropriate way for each operating
system. These files respectively look like:-

set currentdir=%CD%
cd %EPSRroot% Here you need to type the name of th e folder where
EPSR18 is stored
call epsrsetup
cd %currentdir%
copy system_commands_windows.txt system_commands.tx t
title EPSR in %CD%
%EPSRbin%\epsrshell

(epsr.bat)

and

currentdir=$(pwd)
cd $EPSRroot

EPSRshell User Manual 27/3/2010 97

. $EPSRroot/epsrsetup.sh
cd $currentdir
cp system_commands_linux.txt system_commands.txt
$EPSRbin/epsrshell

(epsr.sh).

Both scripts assume the environment variable, EPSRroot, has been set to the top directory where
EPSR18 is stored before the scripts are run. This way ensures the correct environment variables
are in place to run the programs, but other methods may be appropriate in particular cases. Under
LINUX you set the environment variable by having the line

export EPSRroot=<top folder where EPSR18 is stored>

in the .bashrc that runs the command prompt. If you also have the line

alias epsr=’sh $EPSRroot/epsr.sh’

then it will start EPSRshell in the folder where you type “epsr”, always assuming of course that
the necessary files (see below) exist in that directory.

For the shell to start correctly, it is necessary the file “system_commands.txt” is available in the
directory where it is to run. Again there are different versions for Windows and Linux, so the
above examples copy the appropriate version for the operating system.

For Windows, the system_commands_windows.txt looks like the following:

system_ls dir/b
system_cd cd/d
system_md md
system_edit "c:\Program Files\Windows NT\Accessorie s\wordpad"
system_del del
system_termination \
system_join &&
system_gnu %EPSRgnu%\wgnuplot.exe
system_jmol java -jar %EPSRbin%\Jmol.jar
system_binaries %EPSRbin%
system_plot2d %EPSRbin%\map2dplot.exe
system_plot3d %EPSRbin%\map3dplotquadrot.exe
system_plotato %EPSRbin%\mypgplotato2006-11-13.exe
system_pgout /GIF
gnu_pointtype 8
gnu_pointsize 0.3

while for Linux it looks like:

system_ls ls -g
system_cd cd
system_md mkdir
system_edit gedit
system_del rm
system_termination /
system_join &&
system_gnu gnuplot
system_jmol java -jar $EPSRbin/Jmol.jar
system_binaries $EPSRbin
system_plot2d $EPSRbin/map2d
system_plot3d $EPSRbin/map3drot
system_plotato $EPSRbin/pgplotato
system_pgout /png
gnu_pointtype 6
gnu_pointsize 0.4

EPSRshell User Manual 27/3/2010 98

system_ls is the system command used to get a folder listing. It should be set up to produce a
single column of entries. If multiple columns are produced, the EPSRshell routines which access
file structure – search is the main one - will not work correctly.

system_cd is the system command to change directory.

system_md is the system command to make a directory.

system_edit is the system command to start an editor. You should ensure this editor is somewhere
in the path used by the system to search for executable programs, or else specify the full path with
the command.

system_del is the system command to delete a file.

system_termination is the character(s) used to signify the beginning or ending of folder names. In
Windows this is ‘\’. In UNIX it is ‘/’.

system_join is the character(s) used to join system commands together on one line.

system_gnu is the command to start GNUplot.

system_jmol is the command to start Jmol.

system_binaries is the folder where the binaries are stored. It is shown here as an environment
variable name, but can be set to any valid folder description.

system_plot2d is the path and filename for the plot2d executable.

system_plot3d is the path and filename for the plot3d executable.

system_plotato is the path and filename for the plotato executable.

system_pgout is the output file type to be used by the PGPLOT routines.

system_quotes is used by Windows to pass folder and file names containing spaces. For non-
Windows based systems it should be left blank.

gnu_pointtype is the character type used to plot points in GNUplot plots

gnu_pointsize is the size of the character used to plot points in GNUplot

NOTE: The above versions of these scripts and files are different in detail from those used with
EPSR17, and so earlier versions cannot be used with EPSR18.

Files for the home folder where EPSRshell is to be started:-

epsr.bat or .sh As above
system_commands.txt As above
f0_WaasKirf.dat Supplies information on the x-ray form factors
gnuatoms.txt
gnubonds.txt
plot_defaults.txt (as a backup)
runepsr.txt (this is the script file – it can have any name you choose)

Files for the working folder:-

plot_defaults.txt This can be copied from the home folder.

	RAL-TR-2011-012-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2011-012-report.pdf

