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Introduction

The first data analysis workshop for liquids and disordered materials was held at The
Cosener’s House in May 1989. At that time there was no Windows or laptops or Java, and
all the data analysis at ISIS was done on Digital Equipment Corporation (DEC, later to
become Compaq, eventually bought out by Hewlett-Packard in 2002) central computers
using a data analysis environment called Genie II. At that time the ISIS data analysis suite
for analysis of time-of-flight diffraction data from liquid and amorphous samples (ATLAS)
was set up to run within Genie II, using a series of scripts, with standalone executables
to perform specific functions such as calculating attenuation and multiple scattering coef-
ficients, or focussing the detectors into groups.

Towards the end of the 1990’s it became apparent that Genie II was not compatible
with other operating systems like Unix or Windows, so a new version, Open Genie was
invented. Unfortunately scripts written in the old version of Genie were not easily com-
patible with those in the new, so translating the scripts was going to be a lot of work. This
prompted two reactions, namely (a) ATLAS did not really do the data analysis correctly,
i.e. it binned the raw data into groups of detectors, then proceeded to correct them for
background, attenuation, etc., and (b) an environment was needed that would work on
multiple platforms and was not subject to future whims of the providers of computing
resources for it to work or not.

So the decision was made to move over to a standalone computing environment that
would perform the analysis correctly and over which we, the providers, could have total
control of what the analysis actually did. Since Fortran is universally available on many
computing platforms, and since many of the earlier routines were written in Fortran, this
seemed a natural computing language to write the data analysis package in. The program
was called Gudrun because it is (to me) an interesting German name but the similarity
with its translation by some to “good-run” was not lost on the author either!

Gudrun is a standalone program that will analyse diffraction data, detector by detector,
all the way from raw neutron counts to final differential scattering cross section, combine
the detectors in groups of detectors, finally merging all into a single spectrum, and will
even perform the Fourier transform of these data if you ask it to. Obviously it has become
increasingly complicated over the years and the demand for some sort of description of
what the program actually does has been growing steadily.

The input file to Gudrun is of course rather long and difficult to understand, so some
years ago I started playing around with the idea of a graphical user interface (GUI) to

1
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help prepare this input file. This is called GudrunGUI. It is written in Java and it allows
the user to both input all the necessary data they need to run Gudrun, to run both the
PURGE routine and Gudrun itself, and to plot the outcomes. Probably the Java program
that runs the GUI is now more complicated than Gudrun itself! But it does seem to have
helped a lot of people to run Gudrun and to hopefully make it easier to get an accurate
analysis of their diffraction data, something that was traditionally restricted to individual
specialists.

Much more recently, an x-ray version of Gudrun was produced, GudrunX. This is
currently aimed primarily at analysing data from a laboratory x-ray source, but can readily
be applied to synchrotron radiation if the data are in the correct format. GudrunX runs
entirely within Java and so if the number of detecting elements were to increase to the
level found in neutron experiments a standalone Fortran (or other language) version of
GudrunX might have to be prepared.

This manual attempts to describe what the various routines do, with some explanation
why they do it. It is not however a detailed description of all the subroutines. That will
have to be left to another time. . . In order to understand the steps involved in analysing
diffraction data, and so make intelligent decisions when choosing which parameters to
use, it is unfortunately necessary to understand something about how neutrons and x-rays
interact with matter, what the diffracted signals might contain, and how diffractometers
work. So included in this manual is an outline of the diffraction experiment (Chapter 1)
and a summary of the theory of structure in disordered systems (Chapter 2). Feel free
to ignore these sections if you are already familiar with the topics, but they can be used
for reference if necessary. Chapter 3 describes the processes that Gudrun and GudrunX
perform, and Chapter 4 will, when complete, show how to run the programs and what to
expect.

Please note that the term “diffraction” is used widely throughout this manual, even
though strictly speaking for liquids there is no elastic scattering. This is because the rou-
tines described here assume there is no energy analysis on the scattered neutron or x-ray
beam and the output differential cross sections and radial distribution or pair distribution
functions are calculated as if the scattering had been measured in the static approxima-
tion, i.e. negligible energy transfer. Hence the term “scattering” is reserved primarily for
experiments where energy analysis is performed on the incident or scattered neutron or
x-ray beams.

The question of authorship of a manual such as this is difficult, since without the input
from a huge number of people, especially in this case the users of ISIS, none of it would
have happened. However I do have to thank in particular members of the ISIS Disordered
Materials Group, Silvia Imberti, Emma Barney, Alex Hannon and Daniel Bowron for
their enormous efforts in studying and testing the routines and making sure they do what
they claim to be doing. I am particularly indebted to Silvia and Emma for preparing
a list of slides on how to run the programs - these will form the basis for Chapter 4.
Other people to be thanked include Sylvia McLain, for creating an earlier version of this
manual, Piers Buchanan for some of the early testing of Gudrun, and Thomas Proffen for
numerous suggestions, many of which have now been incorporated in the latest version. I
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am indebted to Michel Koch for a comprehensive proof-reading of the present document.
(Probably there are others who should be mentioned, so please let me know!)

Originally ATLAS had multiple authors because the routines could be adopted and
edited by anyone who cared to do so, and this did indeed happen. In principle the same
is true of Gudrun, but in practice it has not happened to any significant extent, mostly
because editing somebody else’s program can be a nightmare: as it is even I am wary of
making too many big changes in one go for fear of generating rubbish. Although I make
no warranty that the routines do what they are supposed to do, I do feel it would not be
fair to list as authors people who would probably not be keen to try to fix the program if
something is not working correctly.

Finally I would very much like to hear any suggestions for how things could be presented
differently, and ideas for additional features, either in the program itself or in this manual.



Chapter 1

X-ray and neutron diffraction

1.1 The diffraction experiment

There are at seven principle components to a diffraction experiment:-

1. A source of radiation;

2. An incident beam monochromator and collimator ;

3. The sample being investigated;

4. A scattered beam collimator;

5. Radiation detector(s);

6. Data acquisition electronics to count the events seen in the detector;

7. Data analysis software, to convert the “raw” counts to useful differential cross section
data.

This manual is mostly about the last of these items, data analysis, but in order to
understand the way it works it is necessary to understand the elements of the diffraction
experiment and the ways they differ for different types of incident radiation. The elements
of the experiment are summarised in Fig. 1.1.

A beam of monochromatic radiation, wavelength λ impinges on the sample from the
left, is scattered by that sample into scattering angle 2θ and then detected by the detector.

The data are measured versus the variable Q =
4π sin θ

λ
.1 The wavelength is normally

selected either by means of a monochromator in the incident beam, or, in the case of time-
of-flight neutron scattering, by measuring the time taken to travel by the neutron from

1X-ray crystallographers often use the alternative unit s =
2 sin θ

λ
. Equally sometimes Q is written as

k. For the purposes of this manual we will use the Q notation, defined as above.

4
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Figure 1.1: Primary layout of a neutron or x-ray diffractometer

source to detector, or, in the case of energy dispersive x-ray scattering, by detecting the
energy of the scattered x-ray.

It is Q which determines the length scale that is probed by the diffraction experiment,
with small Q corresponding to large distances and largeQ corresponding to small distances.
Any combination of θ and λ that gives the required Q values should in principle give
equivalent data, although, as will be seen later, use of large scattering angles and long
wavelengths with neutrons can in certain circumstances give rise to unwanted “recoil”
effects that should be avoided if possible.

The simplicity of the underlying diffraction experiment belies many of the subtleties
that are associated with it:-

1. Unless the sample is crystalline, the underlying diffraction signal from a liquid or
amorphous material is intrinsically weak and contains only diffuse scattering features.

2. It is impossible to make a truly monchromatic beam, because if you ever did so,
there would be no incident radiation flux with which to detect your already weak
diffraction pattern! This means the diffraction pattern can only be measured with a
finite resolution function. This problem is particularly serious with neutron sources,
which often have intrinsically much lower fluxes than x-ray sources. There is a
highly non-linear relationship between the width of the allowed wavelengths which
get through the collimator and the final radiation flux on the sample. In other
words, a change in resolution by a factor of 2 might affect the flux by a factor of 8,
for example. See Caglioti et al. [1958].

3. Samples normally have to be contained in one or more containers (sample holder,
thermal radiation shields, pressure cell, etc.
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4. Inevitably some of the radiation reaching the detector has not come from the sample.
This is called background scattering which has to be removed from the detected
radiation counts.

5. Because the signal from the sample is intrinsically weak, you are very dependent
on the detector and its electronics not introducing any spurious structure into the
observed data. This structure might be caused by spurious background counts which
vary with time and position, or it might be caused by residual instabilities in the
electronics themselves.

6. For a sample to scatter a measurable amount of radiation it also therefore has to
attenuate that scattering to some extent, so that corrections for attenuation have to
be made to both the scattering from the sample and from any surrounding containers.

7. Equally, if the sample scatters sufficiently to give a measurable signal, then some
of that signal will come from multiple scattering events, namely those where the
radiation is scattered twice or more before it leaves the sample. Since they mix
up different scattering angles (and wavelengths if the scattering is inelastic) such
events do not contribute a useful signal to the scattering pattern. Roughly speaking,
if a sample scatters x% of the incident beam, then, depending on the amount of
radiation capture in the sample, the multiple scattering will be around x% of the
primary scattering. Radiation capture occurs when the radiation is captured by an
atom of the sample instead of being scattered by it.

8. In addition for light atoms nuclear recoil for neutrons and electron recoil for x-rays
in the scattering process lead to distortions to the diffraction pattern that need to
be corrected for.

9. There may be other side effects to be taken account of. For example some materials
may fluoresce in the x-ray beam, giving an additional sample dependent background.
For neutrons a few elements have very high neutron capture cross sections, and many
have nuclear resonances (mostly heavier elements and at higher neutron energies).

10. Stability is another important requirement of the diffraction experiment from liquids
and glasses. Stability in the incident beam, stability in the sample itself and in the
sample positioning, and stability in the detector electronics. This is because both x-
ray and neutron measurements tend to occupy several hours of beam for each sample,
so that if different samples are to be compared reliably, the parameters associated
with the diffractometer itself should not drift in the course of a measurement. In this
the observed diffraction pattern differences do indeed arise from the two samples,
and not from some systematic effect of the instrument on which they were measured.

11. Finally, in order to calculate useful quantities from the data related to the structure
of the material in the sample, it is essential to put the scattered data onto to some
sort of absolute scattering cross section scale. This is typically measured in the units
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of scattering cross-sectional area per atom per steradian (for neutrons) or electrons2

per atom per steradian (for x-rays).

Although neutron and x-ray diffraction are closely analogous in all these aspects, there
are some fundamental differences in the way the data have to be treated, so in the next
two sections we look at each technique in turn, and highlight the salient distinct features
of the data analysis process.

1.2 Neutron diffraction

Neutrons are scattered by the atomic nucleus. The only exception to this rule occurs
if the atom has a residual magnetic moment, in which case the magnetic moment of the
neutron will interact with the atomic magnetic moment, giving extra scattering in addition
to the nuclear scattering. In order to see diffraction effects related to the arrangement of
the atoms it is necessary to use neutron wavelengths comparable to the typical spacing
between atoms, 10−10m. This wavelength is roughly 104 times larger than the nuclear
dimensions, so, provided the neutron energy is well away from any nuclear resonances,
the scattering is called “s-wave”, which means there is no angular momentum transfer in
the scattering process. (If the neutron energy is near a nuclear resonance of one of the
atomic components in a material, then nuclear physics takes over and for the most part
the information obtained by scattering neutrons is not useful. Fortunately this mostly
happens only with heavier nuclei and at higher neutron energies.) To a neutron therefore
an atom normally appears as an extremely small blip in space, mathematically effectively
a δ-function.

For this reason neutrons give us arguably the most direct insight into the position and
motion of atoms, both as individual particles, the self scattering, and as pairs of atoms, the
distinct scattering: the neutron probes directly the site-site correlation functions between
atomic centres. However because the atomic nucleus is so small, the neutron-nucleus
interaction is weak, so neutrons are mostly very penetrating, and a lot of effort is required
to make neutron sources which are bright enough to perform useful diffraction and other
types of neutron scattering experiments.

1.2.1 Neutron sources

There are two primary ways in which neutrons can be produced for a diffraction experi-
ment - either by a nuclear reactor or by the neutron spallation process. Nuclear reactors
produce neutrons through neutron-induced nuclear fission. In the process a nuclei, typi-
cally uranium or plutonium, captures a neutron and subsequently splits, or fissions, into
two daughter nuclei, releasing at least two high-energy (∼ 2MeV) neutrons and a large
amount of kinetic energy, typically 200 MeV for each fission event. These neutrons are too
energetic to sustain the nuclear reaction, so the uranium fuel is typically surrounded by
a moderator made up of some hydrogenous material (often water or heavy water) to slow
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them down and so enable the chain reaction to continue. Hydrogen is used for this because
its mass is almost the same as the neutron, leading to maximum neutron energy loss on
collision. Neutron absorbing control rods can be readily inserted into the reactor to shut
down the chain reaction when necessary.

In a spallation neutron source production of neutrons is achieved by accelerating bunches
of protons in a linear accelerator (LINAC) or synchrotron (or both as at ISIS) to sufficiently
high energies (∼ 800MeV at ISIS, but up to 3GeV at the SNS (USA) and JPARC (Japan))
so that when they collide with a heavy metal target nucleus they produce highly excited
nuclear states. These states decay, either immediately or after a delay, by throwing off nu-
clear particles such as neutrons, γ-rays and neutrinos. The maximum energy of neutrons
produced in this way corresponds to the energy of the impinging proton beam, and hence
the neutrons from a spallation source are much more energetic than those at a reactor
neutron source. If the target is uranium, up to 30 neutrons per proton can be produced.
Other non-fissioning targets such as tantalum or tungsten produce about half the number
of neutrons produced by uranium. However there is a significant delayed neutron back-
ground with uranium which can be awkward to account for in the diffraction data and
significantly offsets the increased neutron flux. Hence most spallation sources today use
targets made of tantalum or tungsten, or, in the case of the newer high power sources,
liquid mercury (SNS, J-PARC). To enhance the flux of neutrons, the target is surrounded
by a reflector made of beryllium to reflect the fleeing neutrons back into the target area
and so increase the neutron flux seen on the neutron beam lines.

The main benefit of a spallation source compared to a reactor source is that it is
intrinsically safe: it can be switched off at the touch of a button and there is no nuclear
fuel produced (the plutonium produced in a nuclear reactor is both highly radioactive and
extremely toxic). More important scientifically, if the proton beam is pulsed into short
pulses (∼ 400ns wide at ISIS), then all the neutrons set out from the target at effectively
the same time, so the energy can be measured from the time of flight to the detector. Hence
there is no need for a monochromator stage at a pulsed neutron source, which means many
more of the neutrons produced by the facility go into measuring useful data. As we go
through the sections other advantages and disadvantages of reactors versus pulsed neutron
sources will be highlighted.

1.2.2 Neutron moderation

As already described, neutron moderation, that is the process of slowing the neutrons
down, is an essential part of a nuclear reactor since without it the chain reaction could
not be sustained. It is also important from the point of view of the diffraction experiment
since the de Broglie wavelength of a neutron is given by

λ =
h

mnv
(1.1)

where h is Planck’s constant, mn is the mass of the neutron and v is its group velocity.
It is important that this wavelength corresponds reasonably closely to the typical spacing
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between atoms (typically a few Å, where 1Å= 10−10m). In fact for liquids and amorphous
materials we need values of Q which extend to large values (∼ 50Å−1), so generally wave-
lengths < 1Å are utilised. On the other hand for small angle scattering which concentrates
on obtaining very small Q values, much longer wavelengths up to ∼ 20Å might be used.

To help gauge the values of wavelength (λ, expressed in Å), energy (E, expressed in

meV), wave vector (k =
2π

λ
, expressed in Å−1), time-of-flight (TOF = 1/v, expressed

in µs/m), and temperature (T , expressed in K), it is helpful to write down the relevant
conversion factors:

λ [Å] = 0.395603× 10−2TOF (TOFin [µs/m]) (1.2)

TOF [µs/m] = 252.778λ (λ in [Å]) (1.3)

E [meV] =
81.8042

λ2
(λ in [Å]) (1.4)

= 2.07212k2 (k in [Å−1] (1.5)

= 0.0861734T (T in [K]) (1.6)

Hence a room temperature of 300K corresponds to a kinetic energy of 25.85meV. Neutrons
of such energies are therefore called thermal neutrons and will have a wavelength of∼ 1.78Å
and TOF ∼ 450µs/m, corresponding to a velocity of 2222 m/s. Because the water in a
reactor is (hopefully!) close to room temperature and the neutrons are heavily moderated,
the spectrum of neutrons coming from a reactor looks rather similar to a standard Maxwell
thermal distribution. (Note that the term “time of flight”, TOF, is used interchangeably
to refer to either the actual time taken by the neutron to fly from target to detector, or,
as here, the inverse velocity, normally expressed in µs/m.)

For a spallation source, there is no chain reaction to be kept going, but the neutrons
emitted are much too energetic to be useful for diffraction from atoms, so they too have to
be slowed down by the use of a moderator. The moderator is again made up of a material
with a high hydrogen content, but the spectrum of neutrons can be tailored to a significant
extent by the choice of moderator and its temperature. A water moderator produces are
relatively “hot” spectrum of neutrons whereas a liquid hydrogen moderator produces a
much lower energy spectrum (longer wavelengths).

The same effect can be achieved at a reactor neutron source. By inserting “hot” and
“cold” sources - essentially separate moderators at correspondingly higher or lower temper-
atures - in the reactor moderating region, the wavelength spread in the neutron beamline
can be tailored to suit particular types of experiment. Neutron cold sources have proven to
be particularly effective and productive in this regard, and it would be difficult to imagine
neutron scattering as a technique today without these devices.

In principle, maximum neutron production would be achieved at a pulsed source by
making the moderator thick, as in the reactor case, but to do so would also make the
neutron pulse unacceptably broad in time, leading to significant loss of resolution. Hence
spallation source moderators are a compromise between the conflicting demands for a
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Spectrum constant Methane Water
J [1010n/sr 100cm2 µA s] 5.7 14.7
T [eV] 0.011 0.033
Φ0 [1010n/sr eV 100cm2 µA s] 2.7 3.5
A 0.92 0.90

W1 [
√
eV] 1.7 4.0

W2 7.0 10.6

Table 1.1: Values of the spectral constants for the ISIS Target 1 methane and ambient
water moderators

narrow pulse width and maximum possible neutron flux. Because the spallation source is
under-moderated, the pulsed neutron spectrum consists of two parts, a slowing down part,
or epithermal spectrum, and a Mawellian thermal distribution:

Φ(E) = Φmax(E) + ∆(E)Φepi(E) (1.7)

where

Φmax(E) = J
E

T 2
exp

{

−E

T

}

(1.8)

Φepi(E) =
Φ0

EA
, (1.9)

the joining function, ∆(E), is given by

∆(E) =

[

1 + exp

{

W1√
E

−W2

}]−1

(1.10)

and J , T , Φ0, A, W1 and W2 are fitting constants to be determined by fitting to a set of
data. Typical values for these constants are shown in Table 1.1 and Fig. 1.2 shows plots
of these functions.

1.2.3 Neutron collimation and monochromation

For most of the experiments covered by this manual the requirement is to measure the
diffraction pattern over a wide range of Q. This is achieved normally by using a range of
neutron wavelengths, but in all cases, both reactor and time-of-flight, short wavelengths are
required, which means, as a general rule neutron guides are of limited usefulness. Neutrons
are therefore generally collimated by making small holes of the appropriate shape and size
in large blocks of shielding material and lining these holes up so that a narrow beam is
directed onto the sample. Shielding materials typically include concrete (including borax
impregnated concrete), steel, borated wax, lead shot (to reduce γ transmission), boron
carbide, B4C, in various forms, and cadmium and gadolinium. The latter two materials
have very high capture cross sections for neutrons, but are only effective below, ∼ 300meV -
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Figure 1.2: Neutron spectra from the ISIS methane moderator. The top graph (a) shows
the flux as a function of energy, the bottom graph (b) shows the flux as a function of time
of flight, based on 12m total flight path. To convert to time of flight the spectrum as a
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Figure 1.3: Illustration of Bragg’s law for crystal diffraction. A reflection will occur if
nλ = 2d sin θ.

Cu face d-spacing [Å] λ [Å]
200 1.807 0.70
220 1.278 0.50
331 0.829 0.35

Table 1.2: Planes of Cu single crystal used to monochromate the neutron beam at D4C.

above this energy they are effectively transparent to neutrons - and so are good at mopping
up stray neutrons once they have been slowed down sufficiently. Hence Cd and Gd are
more commonly found at reactor sources where the overall neutron energies are lower.
Modern diffractometers allow the beam dimensions at the sample to be adjusted to suit
different sample environments. Because the neutron shielding must be able to deal with
a very wide range of neutron energies, the biological shields around the nuclear reactor
or spallation target and associated beam lines are generally very massive and made up of
composites of the above materials.

As already explained, there is no need to monochromate the beam at a pulsed source
since the neutron wavelength can be obtained via time-of-flight measurements. At a reactor
source the incident beam must be collimated and this is normally achieved by reflecting
off a specific Bragg plane from a single crystal, Fig. 1.3. At the Institut Laue Langevin
(ILL) in Grenoble, France this is typically achieved using a Cu single crystal and Table
1.2 lists the crystal planes and resulting wavelengths that can be obtained on the D4C
diffractometer.

Crystalline powder experiments generally need high resolution in order to discriminate
effectively between adjacent Bragg reflections and also to determine the sample contri-
bution to the shape of individual reflections. However, because Bragg reflections are so
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sharp count rate is rarely a severe constraint, unless special effects are being determined,
such as the change in structure as a function of time. In contrast, with liquids and amor-
phous materials the structure factor consists of a few broad peaks which merge together
continuously. Detailed analysis of these requires absolute measurements. In many cases,
particularly those that involve measuring changes in structure as a function of pressure,
temperature or isotope, count rate can be of paramount importance because of the intrin-
sic weakness of the signal. Increases in resolution can only be entertained if a count rate
appropriate to the resolution is available.

1.2.4 Samples and containment

As already explained, in the majority of cases the sample is held in a container of some
form. If the temperature is to be different from ambient then usually a furnace is required
to go above room temperature, and to go down in temperature a cryostat, closed cycle re-
frigerator (CCR), or even a dilution fridge is required for the lowest temperatures. Helium
cryostats can typically achieve temperatures of around 4.2 K or a bit lower when pumped.
In addition if the pressure of the sample is to go above ambient then the thickness and
material of the container become important and certainly far from ideal from the point of
view of analysing the diffraction data.

For accurate structure factor measurements the mounting and containment of the sam-
ple can be crucial since the diffractometer is sensitive to small positioning offsets on the
order of 1mm. This sensitivity arises from the small variations in final flight path and
scattering angle which can occur from one sample to another if each sample is not placed
in exactly the same position as its predecessor. One solution to this difficulty which is
applicable if the sample will not be under pressure is to use a flat plate sample can with
an area larger than the beam area. This largely avoids the positioning problems. However
the use of a flat-plate can is not always practical and is dependent on the position of the
detectors. Also, generally cylindrical cans must be used for pressure or furnace experi-
ments and so it is essential to ensure that if cylindrical cans are used sample positioning
is accurate to at least 0.1mm.

Ideally the container should be made of a purely incoherent scattering material such as
vanadium or a material which has a small coherent cross-section such as titanium-zirconium
alloy: this material takes advantage of the opposite phase of scattered neutrons by Ti and
Zr. These materials are needed otherwise the Bragg reflections from the container can
be hard to subtract completely. This problem arises because the front and back of the
sample container correspond to slightly different scattering angles at the detector. Thus
when the container is measured empty and then filled with sample, the neutron attenuation
by the sample causes the Bragg peaks from the front of the container to be attenuated
preferentially compared to those from the rear, causing an apparent shift in the position
of the peaks as seen in the detector. Unfortunately the ideal of an incoherent container
may be hard to meet if a particularly corrosive sample requires a special material for
containment.

Another feature of the sample geometry is to be able to calculate the attenuation
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corrections accurately. The current programs only do this for cylindrical and flat plate
sample shapes: they should be fairly accurate so long as the sample geometry can be
approximated to one of these geometries to good accuracy. However if the sample geometry
cannot be approximated accurately, then the calculated corrections will be correspondingly
less reliable, with the result that the output of the data analysis program will be more
ambiguous. Hence the basic message must be that the sample geometry should be kept as
simple as is practically possible. Of course it is to be hoped that programs appropriate to
more complex geometries can be developed, particularly where the containment material
is not an incoherent scatterer, but in spite of lots of talk about doing this, it has so far not
been achieved to any practical extent.

1.2.5 Neutron detector

Neutron detection is typically achieved via capture by a 3He nucleus. The nuclear reaction
involved is denoted by 3He(n,p)3H, which means

3He + n −→ p +3 H (1.11)

The proton is accelerated towards a charged wire, creating an avalanche that is detected
electronically. Placing sensor electronics at each end of the wire, one can determine the
position along the wire where the event occurred, expressed as the ratio of amount of
charge deposited at each end of the wire. 3He gas is normally stored on a tube or other
suitable container at sufficient pressure to give essentially a “black” detector for thermal
neutrons. This process is extremely insensitive to other types of radiation that may be
present such as γ particles.

At ISIS much use is made of the alternative reaction 6Li(n,3H)4He. In this case the
charged particles are detected by embedding 6Li in a plastic scintillator containing ZnS.
Photomultipliers are used to detect the scintillation events. In principle 6Li is much more
readily available, but the associated electronics are generally more complex than for 3He,
so the associated detector cost is still quite high. In addition 6Li is more γ sensitive than
3He, so for some applications requiring very low backgrounds it is not so suitable. A
very marked advantage of the 6Li-scintillator combination is that it is very versatile for
producing a range of detector shapes and sizes, and so is therefore very useful in large area
detectors. It can also be made roughly twice as efficient as 3He for high energy neutrons,
which is helpful when epithermal neutrons need to be detected effectively.

1.3 X-ray diffraction

Unlike neutrons, x-rays are scattered by the atomic electrons, which are necessarily quite
diffuse and extend well beyond the nucleus, sometimes out as far as neighbouring atoms.
Indeed when a covalent bond is formed the associated valence electrons are shared between
the two atoms that are bonded. It follows that the x-ray diffraction pattern probes the
electron distribution around each atom and betweeen atoms, but if it is assumed that the
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electrons are placed symmetrically with respect to the nucleus of each atom, the so-called
“independent atom approximation”, then x-ray scattering probes the positions and motions
of the atoms as does neutron scattering, but the correlations are convoluted with the
(broad) electron density distribution. This has the unfortunate side effect that the intensity
of scattering of materials by x-rays falls rapidly with increasing Q, making determination
of the high-Q part of the diffraction pattern much more difficult with x-rays than with
neutrons. If, moreover the electrons are not centred on the atomic nucleus, then the
simple convolution described above no longer works, although in the majority of cases
since x-rays are scattered mostly by the core electrons, this lack of centro-symmetry is not
a major source of error.

However it does mean that an x-ray is a strongly interacting radiation which is readily
absorbed and scattered by atoms. Hence x-ray sample sizes are generally ∼ 10 times
smaller than those for neutrons and the types of materials needed to contain samples for
x-ray diffraction are quite different to the ones used for neutron diffaction.

Note that because the interactions of x-rays with matter is generally more complex than
those of thermal neutrons and depend significantly on the manner in which the x-rays are
produced and detected, the account given here is representative of what might happen in
an x-ray scattering experiment rather than an accurate account of what actually happens
in particular cases.

1.3.1 X-ray sources

X-ray sources fall into two categories, namely the laboratory “x-ray tube”, in which a beam
of electrons impinges on a metal target at high energy producing a beam of x-rays, and
the synchrotron source, in which a circulating beam of relativistic electrons radiates x-rays
in a cone close to the plane of the electron orbit as synchrotron radiation. Either source
requires a degree of monochromation of the incident beam as does the fixed wavelength
neutron diffractometer, unless an energy sensitive detector is available.

For the x-ray tube some degree of monochromation is achieved quite naturally. This
is because the incident electrons can knock an electron out from one of the lower energy
levels of the constituent atoms of the target. The atom responds by allowing a higher
energy electron drop into the vacated energy level, causing the release of an x-ray photon:
because the electron is transferred between two well defined energy levels, the energy of
the emitted photon is known quite precisely, giving rise to a partly monochromatic beam.
Of course several transitions are possible, so there are in fact several spikes in the emitted
x-ray intensity pattern corresponding to these different energy levels. The lowest energy
levels are designated “K-α, K-β, L-α, L-β, and so on, corresponding to electron transitions
between the corresponding orbitals in the atom.

In addition to the sharp spikes in intensity at specific energies, there is a general
“bremsstrahlung” radiation coming from electrons being decelerated in the material over
a range of energies. This creates a “white” beam of x-rays and if a monochromator is not
being used the effect of this white beam scattering by the sample has to be corrected for.

For synchrotron radiation, the range of energies and wavelengths is extremely broad
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and the intensities are very high, so that use of a monochromator is mandatory in order not
to instantly vapourise the sample material and to be able to make sense of the scattered
data. The x-ray beam from a synchrotron is also horizontally polarised, meaning that the
electric field vector is in the plane of the electron orbit.

The useful relationships between x-ray energy, wavelength and wavevector are based

on E =
hc

λ
= ~ck where c is the velocity of light:

E [keV] =
12.3984

λ
(λ in [Å]) (1.12)

= 1.97327k (k in [Å−1]) (1.13)

λ [Å] =
12.3984

E
(E in [keV]) (1.14)

Hence an x-ray tube operating at say 30keV will produce x-rays with wavelengths down
to 0.413Å. Molybdenum is a common material for the x-ray tube anode. This has K-α
lines at 17.479372 and 17.37429keV which corresponds to wavelengths 0.7093 and 0.7136
Å respectively. At a synchrotron a broad range of x-ray energies is generated up to of
order ∼ 100keV or more, depending on the operating energy of the synchrotron. Hence
for both laboratory and synchrotron x-ray sources the energy is already appropriate for
doing diffraction from atomic structures, so there is no need for the equivalent of the
neutron moderator, although devices like wigglers and undulators can enhance the intensity
dramatically in particular energy regions.

1.3.2 X-ray collimation and monochromatisation

In the simplest cases x-ray collimation is achieved by the use of absorbing slits as with
neutrons, though these tend be of size ∼ 1mm or less, compared to the 10-30mm wide slits
used in neutron scattering. However more sophisticated x-ray optical devices are possible
in some circumstances.

X-ray monochromatisation and focussing is achieved using single crystals or diffraction
gratings and mirrors (only for soft x-rays), but once again the size required for such devices
is mostly far smaller than would be used in a typical neutron experiment because the
ultimate beam size required is much lower.

1.3.3 Samples and containment

As with neutrons most materials to be investigated with x-rays require containment of
some form or the other. Unless very high x-ray energies are involved, it is essential that
the thickness of this containment is kept to an minimum. The normal rule of thumb is
that the sample thickness, t, should be equal to the inverse of the attenuation coefficient:
t = 1

µ
, although this can be difficult to realise when heavy elements are present. Thin silica

capilliaries, with wall thicknesses of order 10µm are good for the purpose of containing
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samples as they are also generally inert to most corrosive materials. Generally speaking
the scattering from a silica capilliary is small compared to that from the sample it con-
tains. If a thin film window for a sample container is required then mica, silicon nitrite or
polycarbonate film is useful as they contains only low atomic weight elements and can be
stretched to make a smooth, thin, and flat surface.

1.3.4 X-ray detectors

Compared to neutrons, the methods for detecting x-rays are far more numerous, so only
a very cursory overview will be given here. Sodium iodide crystals, which produce light
scintillations detectable by a photomultiplier tube when struck by an x-ray, are a common
form of x-ray detector. Semiconductor detectors work by collecting the electron-hole pairs
that form when an x-ray interacts. Yet others work with a sheet of scintillator, behind
which is placed a charge coupled device (CCD) or other photon detector. Such devices
allow a large solid angle detector to be built. Image plate detectors use a phosphor screen
which is read out (offline or online) using a laser and photomultiplier. Gas mixture (Ar/Xe)
detectors with charge division or delay line electronics are still in use on some synchrotron
beamlines and on laboratory x-ray sources. Pixel area detectors (PAD) are also becoming
increasingly popular.

Two important qualities of the x-ray detector to be used for liquid and amorphous ma-
terials diffraction are its linearity and its uniformity. Linearity means that if the intensity
of scattered photons in one part of the spectrum is double that in another, the response of
the detector mirrors that intensity change accurately. Hence detectors which count pho-
tons are generally more suitable for this purpose than current measuring devices, whose
linearity can be difficult to assess. Uniformity means that if a detector is a multidetector
and so has many detecting elements, each of those elements gives the same response when
subject to the same irradiation. Once again this can be difficult to ensure for large area
detectors, so such devices require very careful calibration before they can be used on a real
material. Alternatively, only that part of the diffraction pattern that has been sampled by
all elements of the detector is used in the subsequent data analysis.

1.4 Diffractometer resolution

The resolution of a pulsed neutron diffractometer is quite different in form to that from a
fixed incident wavelength diffractometer with a monochromating crystal. The latter case
was dealt comprehensively by Caglioti et al. [1958].

Theoretically, the Bragg diffraction peak from a crystalline material placed in the ra-
diation beam would be infinitely narrow. This ideal situation can never be realised in
practice because invariably neither the scattering angle, nor the incident wavelength are
precisely defined, leading to a spread in values of both. Indeed for neutrons the crystal
mosaic spread of a monochromating crystal is often made larger if possible to enhance
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the flux of radiation scattered by the crystal. 2 This causes the beam on the sample to
have an intrinsic divergence (spread in angles) and spread in wavelengths. However for the
monochromating crystal this spread in angles and spread in wavelengths are correlated,
since all radiation particles reflected by the crystal must satisfy Bragg’s law, Fig. 1.3.

For the pulsed neutron diffractometer on the other hand, the neutrons emerge more
or less at random from the moderator face with a range of energies that mostly do not
correlate with the position in the moderator. Hence the divergence of the incident beam in
a pulsed neutron diffractometer is to a good approximation independent of the wavelength
spread. (This rule might not apply quite so rigorously if a neutron guide is present.) In
that case the change in Q with change in scattering angle and wavelength is given by

∆Q =

(

∂Q

∂θ

)

∆θ +

(

∂Q

∂λ

)

∆λ

= Q

(

cot θ∆θ − ∆λ

λ

)

(1.15)

so that because the two types of varation are uncorrelated:

〈

(∆Q)2
〉

= Q2

(

cot2 θ
〈

(∆θ)2
〉

+
〈(∆λ)2〉

λ2

)

. (1.16)

Equation 1.16 shows that the resolution of the diffractometer has two components, one
that arises from the angular spread of the neutron beam, and one that arises from the
intrinsic wavelength spread of the neutron pulse. The angular spread arises from the finite
size of the neutron moderator (or the allowed angular divergence of the incident beam
collimator or guide, whichever is the smaller), the finite size of the sample, and the finite
size of the detector (again modified by any collimation that may be in the scattered beam.
Clearly this “geometrical” contribution to the resolution will diverge at low scattering
angles (2θ → 0). To avoid this low angle divergence one should ideally place the sample
far from the moderator and the detector far from the sample, conditions that will also
cause the detected count rate to fall dramatically. Hence the placing of the low angle
detectors in a diffractometer has to be a compromise between acceptable count rate and
acceptable resolution. The choice in a particular circumstance can really only be gauged
by ray-tracing to find the best combination.

On the other hand at large scattering angles the geometrical contribution to the res-
olution becomes very small (cot θ → 0) so the resolution is dominated by the wavelength
spread in the incident beam. So this wavelength spread represents the limiting resolution
of the diffractometer. Generally it can be reduced by making the moderator narrower (but

this also results in loss of flux) or by increasing the time-flight. (Note that
∆λ

λ
=

∆t

t
,

where ∆t represents the time spent in the moderator and t represents the time taken to

2This does not happen at synchrotron sources because the flux of x-rays is usually so large, that the
monochromating crystal can have negligible mosaic, giving rise to superb resolution at these facilities.



CHAPTER 1. X-RAY AND NEUTRON DIFFRACTION 19

travel from the moderator to the detector, and since ∆t is fixed by the size of the mod-

erator, the ratio
∆t

t
can be made smaller by increasing the flight path to the detector.)

However increasing the time-of-flight will also result in a loss of intensity unless a neutron
guide is employed.

Note that for any given scattering angle the ratio
〈(∆Q)2〉

Q2
is (approximately) a constant

for the time-of-flight diffractometer. It is not exactly constant because the time width of
the pulses varies somewhat with the energy of the neutron.

For the case of a diffractometer with a monochromator, the simple argument given
above no longer applies. In general there will be three collimators in a fixed wavelength
diffractometer. One to focus the white radiation beam onto the monochromating crystal,
one to focus the beam from the crystal onto the sample, and one to collimate the beam
towards the detector. Each of these collimation stages limits the angular spread of the
beam. The resulting general expression for the full width at half maximum of the resolution
function, 〈∆Q〉1/2, Caglioti et al. [1958], is given in terms of the angular spreads of each
collimation stage, α1, α2, and α3, the mosaic spread of the monochromating crystal, β, and

the parameter a =
tan θ

tan θB
, where 2θB is the Bragg scattering angle of the monochromator:

〈∆Q〉1/2 =
[

U − V a+Wa2

X

]
1
2

, (1.17)

where

U = α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 + 4β2(α2

2 + α2
3),

V = 4α2
2(α

2
1 + 2β2),

W = 4(α2
1α

2
2 + α2

1β
2 + α2

2β
2), (1.18)

and

X = α2
1 + α2

2 + 4β2. (1.19)

Fig. 1.4 gives an example of this resolution function, expressed as the ratio 〈∆Q〉1/2 /Q,

for a diffractometer where α1 = α2 = α3 = β = 0.5◦, λ = 0.7Å, and 2θB = 22.3366◦ (see
Table 1.2). It will be seen that the resolution width is large at small angles as expected,
goes through a minimum at a scattering angle of about 40◦, then rises gradually with
increasing scattering angle. Hence the best resolution on a fixed wavelength diffractome-
ter is not at the largest scattering angles, unlike the case of the time-of-flight neutron
diffractometer. Instead the precise scattering angle of the best resolution will depend on
the individual angular spreads of each collimation section and the monochromating crystal
divergence. Note however that this expression includes only horizontal angular spread and
does not include the effect of vertical divergence. Nor does it include the effect of a dou-
ble crystal monochromator which have become very common on many neutron and x-ray
diffractometers.
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Figure 1.4: FWHM of resolution function (〈∆Q〉1/2 /Q) as a function of scattering angle

for α1 = α2 = α3 = β = 0.5◦, λ = 0.7Å, and 2θB = 22.3366◦. Note that this plot does
not refer to any actual diffractometer, but is plotted simply to show how the resolution of
a fixed wavelength diffractometer varies with scattering angle, 2θ. The resolution of any
particular diffractometer will depend on the appropriate values of the above parameters.



Chapter 2

Overview of diffraction theory

2.1 Distribution functions

2.1.1 Radial distribution function, pair correlation function, and

higher correlation functions

To characterise the structure of a disordered material, the simplest function that can be
conceived is the radial distribution function (RDF), also sometimes called the pair distri-
bution function (PDF) or pair correlation function (PCF). Formally there is a distinction
between the radial distribution function, g(r), and the pair correlation function, g(r), in
that

g(r) = 〈g(r)〉Ω (2.1)

where the average is over the directions of r.
So what exactly is g(r) or g(r)? Sometimes g(r) is described as the probability of two

atoms being separated by the displacement r, but strictly g(r) is not a probability. We
suppose the number density at some position in the material is r is n(r). The position of
atom j is given by Rj in which case the local number density can be expressed as

n(r) =
∑

i

δ(r−Ri) (2.2)

If we roam around the material at the atomic level and it is crystalline we will see a regular
fluctuation in the density caused by the repeated structure of the unit cell. However if it is a
liquid or a glass there is no such regular order and all we will see is the random distribution
of the atoms, except that there can be no atomic overlaps (unless the pressure is enormously
high). This means that the centre of each atom is surrounded by a void caused by the
repulsive interaction that takes over when atoms get too close to one another. Beyond
that we would struggle to see very much because the arrangement of atoms would vary so
much from place to place.

21
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In order to learn more about how the atoms are arranged in the material we have to
perform an autocorrelation on this density distribution:

G(r) =
1

N

∫

drn(r′)n(r′ + r) =
1

N

∑

ij

δ(r+Rj −Ri) (2.3)

where the last equality arises from substituting (2.2) into the middle term. It will be
apparent that the terms with j = i can be separated from those where j 6= i. Hence we
write

G(r) = δ(r) +
1

N

∑

i 6=j

δ(r+Rj −Ri)

= δ(r) + ρg(r) (2.4)

where ρ is the average atomic number density (typically expressed in units of atoms per
Å3). It can be seen therefore that G(R) divides into two parts, a ”self” part involving
correlations of an atom with itself, and a ”distinct” part involving correlations between
distinct atoms.

(2.4) acts as the formal definition for g(r). In effect you are sitting on an atom and
counting all the atoms that you find at a given displacement, r, from that atom, converting
that number to a local density. This local density is then averaged over all the atoms in the
system and compared with the density of atoms in the system as a whole. Therefore g(r)
is a convenient way of keeping track of how the local number density varies with respect
to an atom on average and with respect to the average number density.

The properties of the Dirac δ-function are such that
∫

δ(r)dr = 1.0 (2.5)

which means that δ(r) is a density. This term arises from the fact that every atom must
correlate with itself at r = 0. It doesn’t tell us anything about how the atoms are dis-
tributed in the material, but it does have an important bearing on the radiation scattering
properties of the material.

Sometimes g(r) is written as g2(r1, r2) to emphasize that it is the correlation be-
tween two atoms at positions r1 and r2 respectively, with r = r2 − r1. It is possible
to define a hierarchy of such correlation functions, which are related to one another,
Hansen and MacDonald [1986], Cusack [1987]. Thus g3(r1, r2, r3) is the correlation be-
tween three atoms at the positions r1, r2 and r3, with

g2(r1, r2) =
1

N − 2
ρ

∫

g3(r1, r2, r3)dr3 (2.6)

and N is the number of atoms in the system.
As pointed out by Cusack [1987], equation 2.6 alerts us to the possible dangers in what

we are about to do. In particular several or a range of g3(r1, r2, r3) functions might give
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rise to the same g2(r1, r2) function. If the only information we have to go on is based on
g2(r1, r2) we might come away with an incorrect picture of the local order in the system
being investigated. More will be said about this important point in later chapters as much
of the controversy about structure in liquids and glasses arises from the attempt to interpret
g2(r1, r2) in terms of many body correlations.

For isotropic atomic liquids far away from any boundaries, the directional dependence
of r can be ignored since on average the correlation function will look the same whichever
direction we look, so that g(r) ≡ g(r), that is the pair correlation function and the radial
distribution function become the same thing. For molecular systems this is not true in
general, since the pair correlation function around a molecule may well look different
depending on which direction away from the molecule at the origin we look, irrespective
of whether the molecule is near a surface or in the bulk material.

What does G(r) look like? Figure 2.1 gives 1- and 2- dimensional representations of this
function for liquid nickel (Schenk et al. [2002]). We note that at the core, for r < ∼ 2Å,
the distribution function goes to zero, due to the impossibility of two different nickel
atoms occupying the same space. Beyond this a series of ripples emanate out, rather like
ripples on a pond when a stone is dropped in it. These ripples arise as a result of the
sharp “repulsive” interaction at short distances caused by the atom at the origin, which
prevents other atoms overlapping it. This repulsive interaction sets up a reaction in the
local distribution of atoms, which also cannot overlap each other. Bear in mind however
that unlike the ripples on a pond, the density fluctuations here occur in a sphere in 3-
dimensions. The graphs in Fig 2.1 are essentially 1- and 2-dimensional sections through
that sphere.

The δ(r) in G(r) is shown in Fig 2.1 (bottom) as the small white dot at the centre of the
plot. Also, at large enough r, there are no correlations between atoms so G(r) = ρ , that
is it becomes a uniform distribution. Hence we can rewrite the pair correlation function
as:

G(r) = δ(r) + ρ(1 + h(r)) (2.7)

where h(r) ≡ g(r)− 1 is sometimes called the total correlation function. Therefore h(r) is
well behaved at both r = 0 and r = ∞, going to -1 and 0 at these limits respectively. It
is h(r) that contains the structural information about a liquid or glass that we seek and it
specifically does not include the correlation of the atoms with themselves.

2.1.2 Multicomponent systems.

One generalisation of the functions of the previous sections is needed. As defined g(r) is
the pair correlation function for all the atoms of the system. If there is more than one
atom type (oxygen, silicon, carbon, germanium, etc.) present then it is useful to split the
pair correlation function into several terms, one for each pair of atom types. This was
first suggested by Faber and Ziman [1965] and we shall use definitions analogous to theirs
throughout. Hence gαβ(r) would be the pair correlation function between atoms of type α
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Figure 2.1: Radial distribution function, g(r), for supercooled liquid nickel shown in 1-
dimensional (top) and 2-dimensional (bottom) representations. Derived from data shown
in Schenk et al. [2002], Lee et al. [2004]
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and β. If there are J distinct atom types in the system, then the number of distinct pair
correlation functions is J(J + 1)/2.

It doesn’t matter which order α and β are specified since by definition

gαβ(r) ≡ gβα(−r) (2.8)

from which follows

gαβ(r) ≡ gβα(r) (2.9)

In terms of these site-site correlation functions the full autocorrelation function of the
system would be defined as:

G(r) =
∑

α

cαδ(r) + ρ
∑

α,β≥α

(2− δαβ)cαcβgαβ(r) (2.10)

where cα = ρα/ρ and ρα is the number density of atoms of type α. The Kronecker δαβ is
needed in (2.10) to avoid double counting pairs of atoms of the same type. The atomic
fractions are needed to take account of the different percentages of the different types of
atom present.

Once again it is standard to write

gαβ(r) = 1 + hαβ(r) (2.11)

with hαβ(r) the site-site total pair correlation function between atoms of type α and β.

2.1.3 Coordination numbers

Based on the pair correlation function or radial distribution function, it is possible to
calculate the number of atoms that coordinate a given atom at the origin. This is called
the coordination number, N(rmin, rmax), and is defined relative to some specified distance
range, rmin to rmax, after integrating over all the directions of r:

N(rmin, rmax) = ρ

∫ rmax

rmin

g(r)dr = 4πρ

∫ rmax

rmin

r2g(r)dr (2.12)

In Fig. 2.1 the number density of the supercooled liquid Ni was 0.0843 atoms/Å3, so
that integrating over the first peak in g(r) gives a coordination number N(1.0, 3.7) ≈ 13.2
atoms.

Coordination numbers in a multicomponent system are defined in an exactly analogous
manner to Eq. 2.12. The number of β-type atoms around an α-type atom at the origin
would be given by:

Nαβ(rmin, rmax) = 4πρβ

∫ rmax

rmin

r2gαβ(r)dr

= 4πcβρ

∫ rmax

rmin

r2gαβ(r)dr (2.13)
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Note however that unlike gαβ(r), in general Nαβ(r1, r2) 6= Nβα(r1, r2) because of the differ-
ent prefactors outside the integral in each of these functions. In fact based on Eq. 2.13 and
the equality Eq. 2.8 it is clear that cαNαβ(r1, r2) = cβNβα(r1, r2), so that if one of these
numbers is known, the other can be derived directly from the ratio of atomic fractions:

Nβα(r1, r2) =
cβ
cα

Nαβ(r1, r2) (2.14)

2.1.4 Fluctuations

An intrinsic quality of a disordered material is that its density is not everywhere constant,
but varies from place. Measured over the size of a typical sample of the material, e.g.
10−2m, these fluctuations in density are very small, but measured over dimensions compa-
rable to with the dimensions of atoms, i.e. 10−9m, the fluctuations can become extremely
large, varying by factors of 2 or 3 or even more. In addition for a liquid, these fluctuations
have a temporal quality, caused by both the intrinsic disorder in the material and the fact
that the atoms and molecules in the liquid are diffusing from place to place in a series of
random - Brownian - motions.

It is easy to forget just how fast this diffusion really is. Looking out over a calm lake
at sunset, we might say the water is “still”. Yet in reality, the individual water molecules
are far from still. The self diffusion constant for water is ≈ 2 × 10−5cm2s−1. This means
after one second a water molecule has diffused ≈ 45µm. If we assume a water molecule
has a diameter of 0.3nm, this implies on average a water molecule will diffuse ≈ 150,000
molecular diameters in one second! By any macroscopic scale this is a huge distance. Of
course one might argue that the timescale for a water molecule is much shorter than our
own, which is correct. But the point is that on a macroscopic timescale of seconds, the
water molecules are moving around over huge distances relative to their size.

The magnitude of these density fluctuations is captured precisely in the theory of liq-
uids. If N(V ) is the number of atoms found in a particular volume V , then it can be shown
for a monatomic system that

lim
V→∞

〈(N(V )− 〈N(V )〉)2〉
〈N(V )〉 = ρkBTχT

= 1 + 4πρ

∫ ∞

0

r2 (g(r)− 1) dr (2.15)

where kB is Boltzmann’s constant, χT is the isothermal compressibility and the angle
brackets represent ensemble averages. This equation shows that there is an integral link
between the structure and the thermodynamics. This value is also called the “zero limit”,
S(0), since it represents the value of the structure factor at Q = 0 - see equation (2.19 in
the next section.

For multicomponent systems the situation is more complicated since not only are there
density fluctuations but also there will now be concentration fluctuations. These concen-
tration fluctuations are represented in the thermodynamics via the so-called Kirkwood-Buff
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integrals:

Gαβ = 4π

∫

r2 (gαβ(r)− 1) dr

= V

(〈NαNβ〉 − 〈Nα〉〈Nβ〉
〈Nα〉〈Nβ〉

− δαβ
〈Nα〉

)

(2.16)

A useful reference in this regard is Ben-Naim [2006], where more details of the application
of these integrals can be found. An alternative representation of concentration fluctuations
for two-component systems in terms of number-number, concentration-concentration, and
number-concentration structure factors is given by the Bhatia-Thornton representation,
see Cusack [1987]. The concentration-concentration structure factors have been further
generalised to multi-component systems, Gazzillo [1994].

2.2 Radiation diffraction theory

2.2.1 The differential scattering cross section and structure fac-
tor.

Figure 1.1 showed the schematic layout of a diffraction experiment. After corrections for
attenuation, multiple scattering, recoil scattering, detector efficiency, polarization, and so
on, the quantity measured in a radiation diffraction experiment is called the differential

scattering cross-section,

(

dσ

dΩ

)

(λ, 2θ). The primary purpose of the present account is to

learn how we extract this quantity from the raw diffraction data.
Fig. 2.2 shows a typical structure factor (after all corrections) for crystalline and liquid

nickel. It is from data such as this that the radial distribution functions shown in Fig. 2.1
must be derived.

The scattered radiation amplitude from an array ofN point atoms at positionsR1 · · ·RN

is given by A(Q) =
∑

j bjexp(iQ ·Rj), where bj is the scattering length or form factor for
atom j. For neutron scattering b is simply a number which however depends on the spin
and isotope state of the nucleus. For x-rays or electrons, or when scattering from magnetic
materials with neutrons, the scattering length is called “the atomic form factor”, which is
Q dependent, and which is usually given the symbol f(Q). 1 Hence the scattered intensity
per unit atom, otherwise called the structure factor, is:

F (Q) =
1

N
|A(Q)|2

=
1

N

∑

jk

bjbkexp[iQ · (Rj −Rk)] (2.17)

1Strictly speaking the atomic form factor is the scattering length of the atom divided by the scattering
length of a single electron, and so is a dimensionless number. X-ray differential cross sections are therefore
normally quoted in the units of electrons2 per atom per steradian, since the value of f0(Q) = Z, i.e. the
atomic number of the atom.
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Figure 2.2: Comparison of diffraction pattern from crystalline nickel (left) with that from
supercooled liquid nickel (right), Schenk et al. [2002]. Both datasets are on the same scale.
Note the much weaker amplitude of the peaks in the liquid compared to the crystal.

Here Q represents the change in wave vector between incident (ki) and scattered (kf)

radiation beams. Thus Q = ki − kf and the modulus |Q| = Q = 4π
sin θ

λ
, where 2θ is the

scattering angle and λ is the radiation wavelength. Note that, as in the definition of the
autocorrelation function (2.4), the sum in (2.17) can be divided into two parts, namely
terms for which j = k, the so-called ‘self’ terms, and terms for which j 6= k, the distinct
or interference terms. Hence the scattering experiment is in effect counting the atoms as a
function of displacement from an atom at the origin. The main distinction between (2.17)
and (2.4) is that now each term is weighted by the product of the scattering lengths of the
two atoms at the end of the vector (Rj −Rk).

Using (2.10) the discrete sum in (2.17) can be replaced by integrals, with the each term
being weighted by the corresponding product of scattering lengths and collecting together
terms which involve the same pair of atom types:

F (Q) =
∑

α

cαb
2
α +

∑

αβ≥α

(2− δαβ)cαcβbαbβSαβ(Q) (2.18)

with the partial structure factors defined by

Sαβ(Q) = ρ

∫

gαβ(r) exp(iQ · r)dr (2.19)
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which becomes

Sαβ(Q) = 〈Sαβ(Q)〉Ω
= 4πρ

∫

r2gαβ(r)
sinQr

Qr
dr (2.20)

for an isotropic system.
The average in (2.20) is over the orientations of r with respect to Q, and the second

equality is allowed on the understanding that g(r) is isotropic with respect to these ori-
entations. In short, the diffraction pattern is a 3-dimensional Fourier transform of the
pair correlation function, weighted by the scattering lengths or form factors for each pair
of atoms. If, as in molecular liquids, the pair correlation function is a function of the
orientation of r then this orientational information is obscured in the scattering process,
Gray and Gubbins [1984]. This is not however to say there is no orientational information
in the diffraction data from molecular liquids, as will be shown later.

The Fourier transform of a constant in r-space is a δ-function in Q

∫

exp(iQ · r)dr = δ(Q). (2.21)

Hence, using (2.11), the partial structure factors become

Sαβ(Q) = ρδ(Q) +Hαβ(Q) (2.22)

where

Hαβ(Q) = ρ

∫

hαβ(r) exp(iQ · r)dr (2.23)

or

Hαβ(Q) = 4πρ

∫ ∞

0

r2hαβ(r)
sinQr

Qr
dr (2.24)

Including these definitions in (2.20 leads to the final expression:

F (Q) = 〈F (Q)〉Ω
=

∑

α

cαb
2
α +

∑

αβ≥α

(2− δαβ) cαcβbαbβ [δ(Q) +Hαβ(Q)] (2.25)

It will be seen that the δ(r) in (2.4) or (2.10) has become a constant independent of Q
in F (Q) while the constant level of 1.0 in g(r) or gαβ(r) has become a δ(Q) function in
reciprocal (Q) space. Hence the self correlation of atoms gives rise to a scattering level
determined only by the product of scattering lengths or form factors for each atom type,
while the distinct correlations (correlations between different atoms), as represented by the
total correlation function, hαβ(r), give rise to oscillations about this constant level.
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Traditional practice is that the δ(Q) function in (2.25) is not shown, since it can never
be observed. Nonetheless its presence should not be ignored because it plays a fundamental
role in the theory of small angle scattering Glatter and Kratky [1982].

With neutron scattering there is a subtlety to the expression for the differential cross
section (2.25) in that the neutron scattering length is dependent on the spin and isotope
state of the atomic nuclei. This means the expression for F (Q) has to be averaged over
the spin and isotope states of the atomic nuclei. Assuming the spin and isotope states are
uncorrelated with the positions of the atoms, then the general expression for the structure
factor becomes:

Fn(Q) =
∑

α

cα
〈

b2α
〉

+
∑

αβ≥α

(2− δαβ) cαcβ 〈bα〉 〈bβ〉 [δ(Q) +Hαβ(Q)] (2.26)

where the angle brackets represent the spin and isotope averages. Since this averaging is
done inside the product of scattering lengths for the self terms, but outside the product for
the distinct terms, in general the weighting term on the self terms will be different from the
that on the corresponding distinct terms. The difference 〈b2〉 − 〈b〉2 is sometimes referred
to as the ”incoherent” scattering, although this terminology is not generally useful. More
importantly there are some instances where the nuclear spins do correlate with nuclear
position - molecular hydrogen at low temperature is a case in point, in which case the
simple expression (2.26) becomes more complex ?.

The form (2.25) contains a hidden approximation, sometimes called the “static” ap-
proximation. The point is that in real experiments, the radiation will either lose energy
to the scattering system or gain energy from the scattering system. This is called “inelas-
tic” scattering. The approximation we make is that the change in energy of the incident
radiation in scattering from the sample is small compared to its incident energy. This
approximation has been discussed extensively for both x-rays and neutrons by numerous
authors, see for example Compton [1923], Placzek [1952], Powles [1979], Egelstaff [1987],
Egelstaff and Soper [1980], Howe et al. [1989]. It will be discussed a little more in section
2.3, where we describe briefly what can be done to alleviate the problems caused by inelas-
ticity in the scattering process. For the time being we assume the “static” approximation
holds, i.e. we will ignore inelasticity effects, though we should always be aware that these
may be present in our data.

For x-rays, there is no spin or isotope dependence of the atomic form factors, so the
x-ray structure factor is written as:-

Fx(Q) =
∑

α

cαf
2
α(Q)

+
∑

αβ≥α

(2− δαβ) cαcβfα(Q)fβ(Q) [δ(Q) +Hαβ(Q)] (2.27)
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2.2.2 Sum rules and the role of the self scattering in data nor-

malisation

Although it is usually treated as a background which has to be subtracted from the diffrac-
tion data, the self scattering actually provides an important constraint on the distinct scat-
tering. The point is that from (2.17) the structure factor must always be ≥ 0, whatever
values the scattering lengths or atomic form factors adopt, and irrespective of whether or
not there is incoherent scattering. From (2.25) this means that

∑

α

cαb
2
α +

∑

α,β≥α

(2− δαβ)cαcβbαbβHαβ(Q) ≥ 0, Q > 0 (2.28)

or
∑

α,β≥α

(2− δαβ)cαcβbαbβHαβ(Q) ≥ −
∑

α

cαb
2
α, Q > 0 (2.29)

There is a further sum rule that can be derived, namely following 2.17 we write

Fαα(Q) =
1

Nα

∣

∣

∣

∣

∣

∑

jα

exp[iQ ·Rjα]

∣

∣

∣

∣

∣

2

≥ 0 (2.30)

where the sum is only over α-type atoms, of which there are Nα. Comparing this with 2.18
and using (2.22) it follows that

Hαα(Q) ≥ − 1

cα
, Q > 0 (2.31)

There appears to be no equivalent sum rule on the individual cross terms, Hαβ(Q), but
combining 2.31 with 2.29 it is seen that

∑

α,β>α

2cαcβbαbβHαβ(Q) ≥ −
∑

α

cαb
2
α −

∑

α

c2αb
2
αHαα(Q), Q > 0 (2.32)

For the neutron differential cross section Eq. 2.26 it should be noted that the positivity
of the differential cross section must apply irrespective of whether there is incoherent
neutron scattering or not. Hence we write

∑

α,β≥α

(2− δαβ)cαcβ 〈bα〉 〈bβ〉Hαβ(Q) ≥

−
∑

α

cα 〈bα〉2 , Q > 0 (2.33)

while for x-rays the rule is
∑

α,β≥α

(2− δαβ)cαcβfα(Q)fβ(Q)Hαβ(Q) ≥

−
∑

α

cαf
2
α(Q) , Q > 0 (2.34)
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In other words the distinct or interference scattering will oscillate about a baseline set
by the coherent self scattering for both neutrons and x-rays. Therefore it makes sense to
generate a normalised distinct structure factor relative to this baseline, namely

F (n)
norm(Q) =

(

(

dσ

dΩ

)(n)

(λ, 2θ)−
(

dσ

dΩ

)(n)

self

(λ, 2θ)

)

/
∑

α

cα 〈bα〉2 (2.35)

for neutrons, and

F (x)
norm(Q) =

(

(

dσ

dΩ

)(x)

(λ, 2θ)−
(

dσ

dΩ

)(x)

self

(λ, 2θ)

)

/
∑

α

cαf
2
α(Q) (2.36)

for x-rays, where

(

dσ

dΩ

)(n)

self

(λ, 2θ) =
∑

α cα 〈b2α〉 and

(

dσ

dΩ

)(x)

self

(λ, 2θ) =
∑

α cαf
2
α(Q).

Note that the inequalities (2.33) and (2.34) must hold, whatever values of the scattering
lengths or form factors are used. With these definitions, it is seen that Fnorm(Q) ≥ −1 and
the distinct scattering oscillates around zero for all Q, as expected for a distinct structure
factor, 2.22, for both neutrons and x-rays. This is not particularly important for neutrons
in the static approximation, since the neutron differential cross section will in any case
oscillate about a constant. For x-rays however it is important due to the pronounced Q
dependence of the form factors.

Traditionally, X-ray diffraction data are not normalised as per 2.36 but as

F (x)
norm(Q) =

(

(

dσ

dΩ

)(x)

(λ, 2θ)−
(

dσ

dΩ

)(x)

self

(λ, 2θ)

)

(
∑

α cαfα(Q))2
(2.37)

With this latter definition however it is not possible to ensure that F
(x)
norm(Q) ≥ −1, nor

that the distinct scattering oscillates about F
(x)
norm(Q) = 0 for all Q. Hence (2.36) is the

preferred normalisation for x-ray diffraction data. Figure 2.3 shows the consequence on
the baseline of the distinct structure factor of using this traditional x-ray normalisation
compared to that proposed in (2.36) for SiO2.

2.2.3 Isotope substitution and other methods

It has been seen in section 2.2.1 that for neutron scattering, the differential scattering cross
section depends on the isotope state of the scattering nucleus. This fact has been widely
exploited in studies of multicomponent systems, particularly binary systems, to attempt to
extract the individual partial structure factors, Enderby et al. [1966], Edwards et al. [1975],
Biggin and Enderby [1981]. In essence the idea is to measure the diffraction pattern from
several otherwise identical samples which contain different amounts of isotopes for one or
more of the components. Each diffraction pattern will emphasise different partial structure
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Figure 2.3: Baseline, B(Q) =
∑

α cαf2
α(Q)

(
∑

α cαfα(Q))
2 as a function of Q about which the normalised

x-ray distinct structure factor for SiO2 oscillates if the x-ray diffraction data are normalised
according to (2.37) instead of (2.36). In this case α = Si and O, and cSi =

1
3
and cO = 2

3
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factors, depending on the precise values of the neutron scattering lengths for each isotope.
Then, by inverting the matrix of neutron scattering weights, one can in principle obtain the
partial structure factors by summing the diffraction cross sections after multiplying them
by the appropriate set of inversion factors. However, due the weak weighting of some of
the partial structure factors this has to be done with some care, otherwise small systematic
errors in the data can become blown up into large errors in the extracted partial structure
factors. This effect has been studied in detail and various remedial approaches adopted,
Edwards et al. [1975], Soper [2005, 2007]

Other ways to get information on partial structure factors out of the data include
combined use of x-ray and neutron diffraction, about which more will be said in later
chapters, or even in one case the joint use of neutron, x-ray and electron diffraction data,
Palinkas et al. [1977]. Extended x-ray absorption fine structure (EXAFS) is of course a very
widely used technique to extract information about correlations around a particular atomic
site, but this topic is so well developed that it requires a separate treatment in its own right,
Rehr and Albers [2000], Filipponi et al. [1995], Filipponi and DiCicco [1995]. Anomalous
x-ray diffraction can be used in some cases, Price and Saboungi [2002], Ramos et al. [2005],
where an absorption edge occurs at a sufficiently high x-ray energy.

2.3 Inelasticity effects

2.3.1 Neutron diffraction

As mentioned above the theory given in the preceding sections contains a fundamental
assumption, namely that the neutron being scattered by the sample is so energetic that the
gain or loss of energy that occurs as a result of the scattering event is immaterial compared
to its starting energy. This is an ideal which unfortunately can never be realised in practice,
particularly for light atoms like hydrogen where the exchange of energy is potentially large
due to the comparable masses of the scattering nucleus and of the neutron. Further details
of this interaction have been discussed fairly extensively in a recent review, Soper [2009].
The original analysis was due to Placzek [1952] which involved a Taylor expansion of the
dynamic structure factor about its elastic value. This expansion however did not work for
light atoms, and to this day there has been no fully successful method of removing these
inelasticity effects.

The double differential scattering cross section for scattering into unit solid angle and

per unit energy transfer was shown by Van Hove [1954] to be equal to b2
kf
ki
S(Q, ǫ), where

S(Q, ǫ) is the dynamic scattering law, ǫ is change in neutron energy after the scattering
process, and b is the scattering length of the atom. Generalised to a multicomponent
system, each of the static structure factors of equation (2.26) has its dynamic counterpart,
dependent on (Q, ǫ), and with separate self and interference terms, Sα(Q, ǫ), Hαβ(Q, ǫ)
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respectively, with the sum rules
∫ ∞

−∞, const.Q

Sα(Q, ǫ)dǫ = 1.0 (2.38)

∫ ∞

−∞, const.Q

Hαβ(Q, ǫ)dǫ = Hαβ(Q) (2.39)

Hence the full double differential scattering cross section for a multicomponent system is

written as
d2σ

dΩdǫ
=

kf
ki
Fn(Q, ǫ) where

Fn(Q, ǫ) =
∑

α

cα
〈

b2α
〉

Sα(Q, ǫ)

+
∑

αβ≥α

(2− δαβ) cαcβ 〈bα〉 〈bβ〉Hαβ(Q, ǫ). (2.40)

The essence of Placzek’s work was to show that inelasticity affects primarily the self
scattering, leaving the distinct scattering only weakly affected. He came to this conclusion
by deriving the first moment of each of these dynamic structure factors:

∫ ∞

−∞, const.Q

ǫSα(Q, ǫ)dǫ =
~
2Q2

2Mα
= ER,α (2.41)

∫ ∞

−∞, const.Q

ǫHαβ(Q, ǫ)dǫ = 0.0, (2.42)

where Mα is the mass of the scattering atom and ER,α is referred to as the “recoil energy”
of atom α. These equations show that whereas for the self scattering the energy transfer
is finite and indeed increases parabolically with Q, the distinct scattering energy transfer
always averages to zero, whatever the value of Q. This does not mean that distinct scat-
tering is zero for finite energy transfer, but does mean there will be positive and negative
contributions to the distinct scattering with increasing energy transfer, giving a net energy
transfer of zero.

The conclusion that inelasticity affects primarily the self scattering seems to be borne
out by the analysis of Soper [2009], even when light hydrogen is present in the scattering
sample. This means that inelasticity contributes a Q-dependent self-scattering background
to the differential scattering cross section, but it does not have a major impact on the
distinct scattering which is being investigated. For cases where the Placzek expansion
method does not work, experimenters typically use some sort of ad hoc polynomial method
to remove this inelastic scattering, Fischer et al. [2006] or other method, Soper [2009]. Such
a background subtraction procedure runs the risk of introducing systematic effects which
have nothing to do with the structure of the material, and so the process of subtracting
the self background has to be done with due caution.
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2.3.2 Theory of time-of-flight diffraction

If ki is the incident neutron wavevector and kf is the scattered neutron wavevector, then
conservation of momentum and energy in the nuclear collision require that the momentum
transfer, ~Q, and energy transfer, ǫ, are given by

Q2 = k2
i + k2

f − 2kikf cos 2θ (2.43)

ǫ =
~
2

2m

(

k2
i − k2

f

)

(2.44)

where m is the mass of the neutron. For a fixed wavelength diffraction experiment ki is
defined by the incident beam monochromator, but for a time-of-flight (TOF) experiment
the incident and final wavevectors are determined from the requirement that all neutrons
that arrive at the detector in a given time channel have the same time-of-flight from the
source. This constraint is satisfied by the condition

1 +R

ke
=

1

ki
+

R

kf
(2.45)

where R is the ratio of scattered to incident flight paths and ke is the wavevector at zero
energy transfer, i.e. ki = kf . Therefore ke is determined from the total time-of-flight for a
particular channel, and we define the elastic momentum transfer as

Qe = 2ke sin

(

θ

2

)

(2.46)

Diffraction data from glasses and liquids are normally reported as a function of this elastic
Q value, but it should be remembered they actually contain contributions from a range of
Q values and energy transfers. It also should be noted that the fixed wavelength condition
is recovered when R=0, i.e. zero scattered flight path, since then it takes no time for
the neutrons to travel to the detector, so the time-of-flight fixes the incident wavevector,
ki = ke.

Fig. 2.4 shows the trajectory in (Q, ǫ) space sampled by a time-of-flight neutron diffrac-
tion experiment on the SANDALS diffractometer at Isis at a scattering angle of 30.71◦ over
a range of Qe values. Also shown is the recoil energy of a proton, equation (2.41). The
latter represents approximately the centroid of the scattering kernal for the self scattering
of a proton, irrespective of whether it is bound to a molecule or not. It can be seen that a
very wide range of Q and ǫ is sampled under all time-of-flight conditions. In particular the
experiment explores energy transfers which go into 10s of eV which is well above any likely
molecular vibration energies and enters the region of electronic excitations and molecu-
lar dissociation. At high Qe the trajectories approach the ideal constant Q trajectory in
the region of the recoil energy, but at low Qe the trajectories become highly curved near
Q = Qe. Hence one might expect that inelasticity corrections are larger at low Qe in the
TOF experiment, as indeed is observed.
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Figure 2.4: Constant time-of-flight trajectories sampled in a time-of-flight neutron diffrac-
tion experiment on the SANDALS diffractometer at ISIS at a scattering angle of 30.71◦.
The flight path ratio R is 0.134 in this case. Trajectories are shown for 50 values of Qe in
the range 0 - 50 Å−1 in steps of 1Å−1. The dashed line shows the recoil energy of a proton:
this is the centroid of the self scattering kernel for a hydrogen atom. The upper and lower
limits on the energy transfer for any given Q value are set by the kinematic equations, 2.43
and 2.44, and the scattering angle of the detector: as the scattering angle is made smaller,
these lines become further apart, and the (Q, ǫ) trajectories become more parallel to the
ǫ-axis, implying that the ideal experiment would measure the diffraction pattern at low
scattering angles and high incident neutron energy, conditions that are difficult to realise
in practice. Negative energy transfers are mostly not sampled due to the detailed balance
factor in the dynamic scattering law.



CHAPTER 2. OVERVIEW OF DIFFRACTION THEORY 38

The diffraction scattering cross section obtained in a TOF experiment is therefore an
integral of the double differential scatering cross section along paths of constant TOF, such
as are shown in Fig. 2.4. Because both the incident and final wavevectors vary along this
path, and because the incident flux of neutrons depends on the incident wavevector, while
the detection efficiency depends on the final wavevector, the integral to be evaluated is
non-trivial (see for example Powles 1993 or Egelstaff 1987):

dσ

dΩ
=

∫

const.TOF

Φ(ki)

Φ(ke)

(

∂ki
∂ke

)

ǫ

Ed(kf)

Ed(ke)

kf
ki
Fn(Q, ǫ)dǫ (2.47)

It is assumed here that the raw data have been divided by the incident neutron flux, Φ(ki),

and detector efficiency, Ed(kf), at the elastic wavevector, ke. The Jacobian

(

∂ki
∂ke

)

ǫ

is

required to allow for the uneven sampling of the incident spectrum for different values of
ǫ along a path of constant TOF. It is straightforward to show, using equations 2.44 and
2.45, that

(

∂ki
∂ke

)

ǫ

=
k2
i

k2
e

1 +R
[

1 +R
(

ki
kf

)3
] (2.48)

It will be noted that the expression (2.48) has the role of a “sampling factor” since it is
close to unity for kf ≈ ki, but drops to zero for kf ≪ ki. The hardness of this cut-off
depends on the value of R: when R = 0 the sampling factor becomes a step function at
kf = 0.

Although the integral (2.47) can be awkward to integrate, depending on the nature of
the dynamic scattering law, there is no difficulty in principle with doing this since all the
other terms in the kernel are either well known or can be estimated sufficiently accurately
to give confidence in the final diffraction cross section. The only quantity that is not well
defined is the dynamic scattering law itself, Fn(Q, ǫ), since this is generally an unknown at
the outset.

A number of approximate methods exist, based on a Taylor expansion about Q = Qe

(see for example Placzek 1952, Powles 1973), to estimate the effect of inelasticity on the
diffraction pattern without detailed knowledge of the dynamic scattering law. These are
generally useful when the mass of the scattering atom is much larger than the mass of the
neutron, but they do not work for light atoms like hydrogen and deuterium. Hence for
light atoms there is no choice but to perform the integral (2.47) numerically using a model
scattering law, combined with estimates of the incident neutron spectrum and detector
efficiency function. Fig. 2.5 shows the estimated time-of-flight differential scattering cross
section for H2O as a function of Qe for a range of scattering angles, using the harmonic
oscillator model of the dynamic scattering law described in Soper [2009]. Also shown is
the actual scattering data measured on SANDALS at the same scattering angles.
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Figure 2.5: Estimated time-of-flight differential scattering cross sections for H2O using the
two models, (a) and (b), described in Soper [2009] (dashed lines). Also shown is the actual
data as measured on SANDALS (pluses).
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2.3.3 Inelasticity corrections at a reactor (fixed wavelength) neu-

tron source

When the incident wavelength is fixed by a monochromator, as in a reactor neutron source
experiment, then the elastic and incident wavevectors become the same, ke = ki, and
the final wavevector ranges over all values, kf ≥ 0. Theoretically these conditions can
be obtained by setting the flight path ratio R = 0 in the TOF equation (2.45) and the
Jacobian (2.48). Hence the revised integral (2.47) becomes:

dσ

dΩ
=

∫

const.θ

Ed(kf)

Ed(ki)

kf
ki
Fn(Q, ǫ)dǫ (2.49)

Fig. 2.6 shows the (Q, ǫ) trajectories which are sampled in the fixed incident wavelength
experiment. Note that at small Qe the trajectories sample the full width of Fn(Q, ǫ), while
at high Qe, only part of the scattering is sampled. Hence at large Qe (large scattering
angles) the scattering falls markedly for light atoms. Figure (2.7) shows the consequence
of running the same harmonic oscillator model calculation as for Fig. 2.5(a) under the
conditions of fixed incident wavelength, together with the scattering data for H2Omeasured
on D4C (pluses). Not only does this set of parameters appear to produce an excellent fit
to the data, it is seen that the fit can be controlled quite sensitively by the choice of
vibrational energies.

2.3.4 Choice of model for the dynamic scattering law

There are very few analytic forms for the dynamic scattering law that can be inserted into
equations (2.47) and (2.49) to give a rapid solution of the respective integrals. Fortunately
for heavier atoms, a simple form of the dynamic scattering law, or the use of the Placzek
expansion in terms of the moments of the scattering law, will give adequate results. The
simplest possible form for the scattering law is that of a free atom of kinetic energy kBT -
this is called the“ideal gas” scattering law:

S(ideal)
α (Q, ǫ) =

√

Mα

2πkBT~2Q2
exp






−

(

~2Q2

2Mα
− ǫ
)2

4~2Q2

2Mα
kBT






. (2.50)

This formula satisfies all the known constraints on the dynamic scattering law, namely
the zeroth, first and second moments, and detailed balance. (Detailed balance is the
quantum mechanical requirement that

Sα(Q,−ǫ) = exp

(

− ǫ

kBT

)

Sα(Q, ǫ).) (2.51)

It should be emphasized that for any formula for the dynamic scattering law to be useful it
must satisfy at least these four constraints, which is the reason why there are so few analytic
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Figure 2.6: Constant scattering angle trajectories sampled in a fixed incident wavelength
neutron diffraction experiment, assuming the incident neutron energy is 1eV. Trajectories
are shown for 29 values of Qe in the range 0 - 30 Å−1 in steps of 1Å−1. The dashed line
shows the recoil energy of a proton: this is the centroid of the self scattering kernal for a
hydrogen atom. It will be noted that at low Qe (low scattering angle) the trajectories fully
cover all energy transfers around the proton recoil energy line, but at high Qe only part
of the proton scattering is sampled. Obviously the effect of inelasticity becomes much less
pronounced as Mα ≫ m. The region for ǫ < 0 is not shown since the scattering law only
makes weak contributions in this region due to detailed balance. In other words, except at
very low energy transfers (ǫ ≤ kBT ), most of the inelasticity arises from the neutron losing
energy rather than gaining energy.
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Figure 2.7: Predicted self differential scattering cross section for H2O (solid line) using
masses and vibrational energies described in Soper [2009]. Also shown are the cases where
the rotational excitation energies are varied ±20meV (dashed lines). The pluses show the
data for heavy water as measured on D4C
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forms which are useful. The only other form that is amenable to analytic solution is that
of the harmonic oscillator, Soper [2009], but this already is much slower for evaluating
integrals such as (2.47) and (2.49) because of the need to sum over many vibrational levels.

2.3.5 X-ray diffraction

For x-rays, inelastic scattering also affects primarily the self scattering. In this case, since
x-rays are scattered by the electrons, the problem arises from electrons recoiling under
the impact of the incident x-ray. This is a much better understood problem, having been
originally studied by Compton [1923], and then subsequently revisited, Breit [1926], Dirac
[1926], Klein and Nishina [1929]. The Compton scattering can be calculated for each atom
within the independent atom approximation (Hubbell et al. [1975]). However the actual
impact on the diffraction data is not quite so clear cut, since both the Compton scattering
level and accompanying Breit-Dirac correction factor are affected by the energy response
of the detector, and this is not always known precisely.

Equivalent to equations (2.43) and (2.44) one has equivalent equations for the photon:

Q2 = k2
i + k2

f − 2kikf cos 2θ (2.52)

ǫ = ~c (ki − kf) (2.53)

As Compton originally showed (Compton [1923]), the recoiling electron is likely to be
relativistic, so the recoil energy of the electron, ER,e is given by

ER,e = mec
2

(

√

1 +
~
2Q2

m2
ec

2
− 1

)

(2.54)

≈ ~
2Q2

2me

for ~Q ≪ mec (2.55)

The (Q, ǫ) trajectories corresponding to these equations are shown in Fig. 2.8. Note the
more than 3 orders of magnitude difference in energy scale compared to the corresponding
neutron case, Fig. 2.6. Also notice how, even on this greatly expanded energy scale, the
trajectories are nearly at constant Q, so the problems with loss of intensity caused by
inadequate sampling of (Q, ǫ) space which bedevil neutron experiments on light atoms, as
shown in Figs. 2.6 and 2.7 will never happen with x-ray diffraction. Accordingly the static
approximations, equations (2.38) and (2.39), which apply to the atomic motion will be
obtained very accurately with x-rays.

In x-ray terminology such atomic scattering is called “coherent” because it involves all
the electrons scattering the x-ray photon as a whole: the electron cloud remains in its
ground state throughout the scattering process. The relatively small (. 1eV) changes in
energy associated with the atomic motions are unmeasurable unless extraordinary efforts
are made to analyse the energy of the scattered beam. However inelasticity does occur
with x-ray scattering in the form of exciting electrons from their ground state orbitals.
This is called “incoherent” scattering because it involves individual electrons but is more
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Figure 2.8: Trajectories in Q, ǫ space over which the fixed incident wavelength x-ray diffrac-
tion experiment integrates the dynamic structure factor (solid lines). For this plot the
incident x-ray energy was set to 29.5989 keV, corresponding to an x-ray wavelength of
0.4189Å. The trajectories are shown for increasing scattering angles in steps of 10◦, start-
ing from 0◦ (left) and finishing on 180◦ (right). The dashed line shows the electron recoil
energy, (2.54) and compares it with the classical recoil energy, (2.55), (crosses). Note that
in spite of the incident energy, the recoiling electron is only just relativistic, even at the
highest Q values, where the relativistic correction amounts to about 10eV in a total energy
transfer of ∼ 3000eV.
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analogous to the self scattering of neutrons by individual nuclei. It was famously studied
by Compton, (Compton [1923]), who formulated the scattering from a free stationary
electron and demonstrated the fundamentally quantum (and relativistic) nature of the x-
ray scattering process at high incident energies. It was studied by many others, for example,
Breit [1926], Dirac [1926], Klein and Nishina [1929] and it is generally accepted that the
Klein-Nishina formulation for the incoherent differential cross section of a stationary free
electron for an unpolarised incident x-ray beam is the correct one, Read and Lauritsen
[1934]:

(

dσ

dΩ

)

KN

=
1

2
r2eP (α, θ)2

[

P (α, θ) + P (α, θ)−1 − 1 + cos2 2θ
]

(2.56)

where re is the classical electron radius, 0.281794×10−14m, α =
Ei

mec2
, which is the incident

photon energy in units of the electron rest mass energy, and

P (α, θ) =
1

(

1 + 2α sin2 θ
) . (2.57)

Note that the scattering angle in these equations is 2θ as before.
At the relatively low (< 100keV incident x-ray energies that are used in x-ray diffraction

the electrons are of course bound to the atoms, so cannot be regarded as free, particularly
at small Q. As a result the inelastic (incoherent) scattering is actually zero at Q = 0 and
grows with increasing Q eventually reaching a plateau where all Z electrons on the atom
are scattering incoherently. As a result the Klein-Nishina formula needs to be corrected
for the initial states of the electrons so it is normal to write:

(

dσ

dΩ

)

incoh

=

(

dσ

dΩ

)

KN

S(x, Z) (2.58)

where x = Q/4π and S(x, Z) is an incoherent form factor which needs to be estimated.
The calculation of this form factor, of which there is one for each element, can be

achieved in at least two ways. The standard method, Hubbell et al. [1975], involves a
summation over the ground state electron wave functions, typically using the self-consistent
Hartree-Fock method. Alternatively it is possible to use the impulse approximation and
use the Compton profile (electron momentum distribution), Ribberfors [1983] to achieve
the same result to good accuracy. We will not delve into these methods further here, but
simply note that S(x, Z) can be expressed as a series, Balyuzi [1975]:

S(x, Z) = Z −
5
∑

i=1

ai exp
(

−bix
2
)

, (2.59)

which is useful when it is needed to calculate the Compton scattering at arbitrary values
of Q. Note that at large Q (=large x) S(x, Z) −→ Z, but the actual scattering will fall
below this limit due to the electron recoil term in the Klein-Nishina formula. It should
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also be borne in mind, that although these expressions may seem comparatively complete
compared to the neutron case, in fact they do not include the effect of variable detector
efficiency with x-ray energy in the calculation. Hence for anything other than a “black”
x-ray detector (meaning that it counts all photons with equal efficiency irrespective of their
energy) the results will not be accurate. In practice it is quite hard to build such a detector.

It is worth noting here that corresponding to equations (2.58) and (2.59), the coherent
scattering from a single atom is expressed, Hubbell et al. [1975] as

(

dσ

dΩ

)

coh

=

(

dσ

dΩ

)

Th

F (x, Z)2 (2.60)

where F (x, Z) is the “atomic form factor”, f(Q), referred to in section 2.2.1, and for an
unpolarised beam the differential Thomson scattering cross section is given by

(

dσ

dΩ

)

Th

=
1

2
r2e
[

1 + cos2 2θ
]

. (2.61)

The atomic form factors can also be expanded as a series, Waasmaier and Kirfel [1995]:

F (x, Z) = c+

5
∑

i=1

ai exp
(

−bix
2
)

. (2.62)

Fig. 2.9 shows the coherent, incoherent, and total
(

dσ
dΩ

)

tot
=
(

dσ
dΩ

)

coh
+
(

dσ
dΩ

)

incoh
x-ray

differential scattering cross sections for a free oxygen atom under the same conditions as
shown in Fig.2.8.

Compton scattering is zero at Q = 0, and grows with increasing Q. Meanwhile the
x-ray form factors which control the amplitude of the distinct scattering rapidly diminish
with increasing Q. This means at high Q the x-ray diffraction data are dominated by the
Compton scattering which forms a background that has to be subtracted in order to get to
the structurally important distinct scattering. This introduces a systematic uncertainty to
extracted coherent x-ray data that gets progressively worse the higher the value of Q. Once
again, as with the neutron inelastic scattering, unless the data can be measured incredibly
accurately, the distinct scattering can only be extracted with significant uncertainties. As
will be seen later, the normalisation of x-ray data onto absolute cross section scale relies
on knowing the high Q data to good accuracy.



CHAPTER 2. OVERVIEW OF DIFFRACTION THEORY 47

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30

dσ
/d

Ω
 [e

2 ]

Q [Å−1]

Figure 2.9: X-ray coherent (dashed) and incoherent (circles) differential scattering cross
section for a single oxygen atom, as calculated from equations (2.60) and (2.58). Also
shown is the sum of these two terms,

(

dσ
dΩ

)

tot
(solid line). Note that the total scattering

goes to Z2 = 64 at Q = 0 Å−1 but is below the limit Z = 8 at Q = 30Å−1 due to the
electron recoil.



Chapter 3

Steps in Diffraction Data Analysis

3.1 Factors which affect the measured radiation counts

The previous section has shown how the diffraction cross section splits into self and distinct
terms, corresponding to radiation scattering by the same atoms and by different atoms
respectively, the latter giving rise to the interference pattern which contains the structural
information which we seek. Moreover the single atom scattering is subject to inelastic
effects which arise from nuclear (neutrons) or electron (x-rays) recoil. The question arises
how do we get this differential cross section from the number of radiation counts that are
actually measured in a detector?

To help understand the data analysis process, and to assist in diagnosing problems,
Gudrun will, on request, output the results of each stage of the analysis, from beginning to
end, into a series of files with specific file extensions. To help identify the various filenames
the function names used in this account are the same as these extension names, with the
warning that here they are shown CAPITALISED whereas in practice the file extensions
are lowercase. (Note: the raw intensities such as CNTb(λ, 2θ), CNTs+c(λ, 2θ), etc., are
output in the Gudrun program as files with extension .cnt. With GudrunX they appear in
the same folder where the raw data are stored with extensions .XRDtxt.) The following
presentation is an attempt to demonstrate where the various stages of the data analysis
derive from. The basic method follows that originally described by Paalman and Pings
[1962] and subsequently elaborated in the ATLAS manual.

If 〈Φ(λ, t)〉t =

∫ ∆t

0
Φ(λ, t)dt

∆t
is the average number of particles of radiation per unit

area per unit time per unit wavelength which impinge on an assembly of N atoms, and
CNT(λ, 2θ) is the number of particles scattered by that assembly in the same time interval
∆t in the wavelength range λ, λ+∆λ into a solid angle ∆Ω(2θ) in the direction 2θ relative
to the incident beam direction, then the differential scattering cross section per atom is
simply

dσ

dΩ
(λ, 2θ) =

CNT(λ, 2θ)

N〈Φ(λ, t)〉t∆λ∆Ω(2θ)∆t
, (3.1)

48
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assuming the assembly of atoms is small enough that the effects of self attenuation and
multiple scattering can be ignored. In principle we measure CNT(λ, 2θ), so if we know N ,
〈Φ(λ, t)〉t, ∆λ, ∆Ω(2θ), and ∆t we can get the differential cross section from the data.

Unfortunately the task is non-trivial because neutron and x-ray beams are not precisely
defined quantities, neutron sources in particular are not overly stable, and neutron and x-
ray detectors do not count every particle that enters them, especially at higher particle
energies, so there is in practice significant uncertainty in deriving the differential cross
section in this direct manner.

Writing for a particular sample, s, Σs(λ, 2θ) =
dσs

dΩ
(λ, 2θ), the number of counts in the

detector can be expressed as

CNTs(λ, 2θ) = NsΣs(λ, 2θ)〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆t. (3.2)

As previously Ed(λ) is the detector efficiency at wavelength λ.
In general it is necessary to relax the requirement that the sample is small since in

the majority of cases the count rate from a small sample will be too low to give useful
information in a realistic time scale. When this happens then self attenuation becomes an
issue, as does multiple scattering. The self attenuation appears as a factor, As,s < 1.0,
outside the once scattered intensity, while the multiple scattering, Ms adds to the once
scattered intensity:

CNTs(λ, 2θ) = (As,sNsΣs(λ, 2θ) +Ms) 〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆t (3.3)

where s, s means “scattering in the sample, attenuation in the sample”. Both As,s and
Ms will dependent on λ and 2θ in general, but this dependency is not shown here. Of
course the multiple scattering will be affected by attenuation in the sample, just like the
once-scattered intensity, but because multiple scattering is an unwanted term which needs
to be subtracted it is calculated to include the attenuation by the sample. On the other
hand since we need to access the once scattered intensity, the attenuation factor for this
single scattering has to be calculated as a separate quantity.

Please note that in this manual and in the Gudrun software, the term “attenuation”
is used rather than the term “absorption”. This is because “absorption” is sometimes
used to refer specifically to the process where an atom or nucleus captures a quantum of
radiation rather than scatters it. “Attenuation” here refers to all processes, both scattering
and capture, by which a beam of radiation loses intensity as it passes through a material.
“Capture” will refer specifically to processes where the radiation is captured by an atom or
nucleus. The distinction is important for calculating multiple scattering and attenuation
corrections. For example if a material has a large capture cross section, it will probably
have attenuation factors ≪ 1.0 but negligible multiple scattering. On the other hand if a
material has a large attenuation cross section, and small capture cross section, both the
attenuation factor will be ≪ 1.0 and the multiple scattering contribution could be large.

No detection system is perfect and the measured count rate will be subject to some
intrinsic background counts which, like the sample, we will represent as a cross section,
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B(λ, 2θ). These background counts will appear irrespective of whether there is a sample
in place or not. Such stray counts may be intrinsic detector quiet counts, or they might
be radiation counts that reach the detector without being scattered by the sample. Hence
the measured counts when there is no sample in position are given by:

CNTb(λ, 2θ) = B(λ, 2θ)〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆tb. (3.4)

and the sample counts, with background included, will now be:

CNTs(λ, 2θ) = (As,sNsΣs(λ, 2θ) +Ms +B(λ, 2θ))〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆ts. (3.5)

Commonly of course many samples will need to be contained in something - call this
the container - which will have its own scattering pattern. In that case the attenuation
factor for the sample, As,s becomes As,sc, where s, sc means “scattering in the sample,
attenuation in the sample and container”, and that for the container will be Ac,sc, with a
similar meaning. The multiple scattering will include both sample and container multiple
scattering, Msc. Now the measured number of counts becomes:

CNTs+c(λ, 2θ) = (As,scNsΣs(λ, θ) + Ac,scNcΣc(λ, θ) +Msc +B(λ, 2θ))

〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆tsc (3.6)

Note that in general different times are taken for the different measurements, ∆tscb,
etc.

Continuing this sequence, occasionally a sample will have more than one container,
such as a radiation shield or secondary containment for example. Hopefully it should now
be obvious what that means for the detected count rate in terms of the scattering cross
sections of the individual components:

CNTs+c+f(λ, 2θ) = (As,scfNsΣs(λ, θ) + Ac,scfNcΣc(λ, 2θ) + Af,scfNfΣf(λ, θ)

+Mscf +B(λ, 2θ))〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆tscf (3.7)

where f refers to this secondary containment (such as a furnace or cryostat for example).
The effect of adding containers on the measured count rate can be continued indefinitely

in principle depending on how many “containers” a particular sample has. As alluded to
above, the word “container” does not necessarily refer to an actual container of the sample,
but might refer to any material that surrounds the sample that either the transmitted or
scattered beams have to proceed through. Currently Gudrun and GudrunX permit up to
three containers plus the sample.

3.2 What measurements do you need?

The primary goal of the data analysis is to extract the sample cross section, Σs(λ, 2θ). The
following section lists the measurements that are needed to realise that goal.
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3.2.1 Sample background

of the x-ray scattering data This is an essential measurement that must be made in every
case, and it is not possible to run Gudrun or GudrunX without these data. The background
is normally measured with the radiation beam on but with nothing in the scattering po-
sition. This may of course not capture all the background - there could for example be a
background which arises from the sample itself scattering into the surroundings and that
scattered radiation being reflected into the detector. This kind of sample dependent back-
ground is very difficult to remove from the data and should be avoided if at all possible
by instrument design - you typically need lots of shielding around the detector, but this
must not be placed near to the detector if it can also receive scattered radiation from
the sample. At low scattering angles it is possible to have background from the incident
beam collimator which is transmitted through the sample, and hence is affected by the
transmittance of the sample.

3.2.2 Sample with no containers

Where a sample has no container we only need two measurements, namely the counts of
the background, CNTb(λ, 2θ)(λ, 2θ), and the counts of the sample, CNTs(λ, 2θ)(λ, 2θ).

3.2.3 Sample with one container

This will require three measurements, namely the sample background, CNTb(λ, 2θ)(λ, 2θ),
the container plus background, CNTc(λ, 2θ)(λ, 2θ), and finally the sample plus container,
CNTs+c(λ, 2θ)(λ, 2θ).

3.2.4 Sample with two containers

The second container will here be called the furnace, labelled f , but of course it does
not necessarily mean a furnace: it could be any sample environment equipment such as
radiation shields, secondary containment, and so on. A sample with two containers will
require four measurements, namely the background as before, CNTb(λ, 2θ), the furnace,
CNTf(λ, 2θ), the container plus furnace, CNTc+f(λ, 2θ), and the sample plus container
plus furnace, CNTs+c+f(λ, 2θ).

3.3 Purge bad detectors - time-of-flight diffraction

Most TOF diffractometers come with large arrays of detectors and it is highly unlikely that
every single one will be working perfectly. Hence it is necessary to have some relatively
automated way of removing detectors from the data analysis. This is called PURGE and
it must be performed prior to any data processing. It produces a list of bad detectors,
called spec.bad, which Gudrun reads: it does not use these bad detectors to prepare the
final differential cross sections. Currently this option is only available for TOF diffraction.
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PURGE works in the following way:-

1. A list is produced of the all the data files that will be required for a particular analysis.

2. Using the first file in the list for comparison, for each spectrum in each subsequent
file in turn the ratio of counts in each time channel to counts in the corresponding
spectrum and time channel in the first file is calculated. This ratio is averaged over
all time channels in the spectrum. Also calculated is the standard deviation on this
ratio, based on the values from the different time channels. The results are output in
files with extension .rat. There should be an entry in this file for every spectrum in
the input files. Any non-counting spectra, i.e. not a single count in any time channel,
are given a ratio of 0.

3. The ratios are normalised to the ratio in the incident beam monitor, so that variations
due to different run times are eliminated. Hence the ratio in the incident beam should
always be 1.0 after this normalisation.

4. There now begins an iterative loop. Initially some rather large tolerances (lower and
upper limits) on the allowed ratios are set. Currently these are 0.00001 and 100
respectively.

5. Working in detector groups (see Section 3.10.1 for a description of detector grouping)
each spectrum ratio is assessed against the lower and upper ratio limits for that group.
If below the lower limit, the spectrum is given a rating of -1, if above the upper limit it
is given a rating of +1. Either case would eliminate it from the subsequent processing.

6. From the second pass onwards, i.e. not on the first pass, the standard deviations on
the ratio are also assessed. A large standard deviation means a strongly counting
detector, while a very small standard deviation means a weakly counting detector.
Either case is suspicious and so if the standard deviation is below a specified lower
limit (see stages 8 and 9 below) this is signalled by a rating of -2 while if it is above
a specified upper limit this is signalled by a rating of +2. Either case will eliminate
it from the further analysis. The reason for this extra test is that a very weakly
counting or very noisy detector might have a perfectly good ratio, so the fact that it
is noisy or excessively quiet would not be picked up by the ratio alone.

7. For those detectors which survive the previous two steps, the average ratio for the
group is calculated, as is the minimum and maximum standard deviation for the
group, called ERRMIN and ERRMAX respectively.

8. If the ratio ERRMAX/ERRMIN is less than a specified input value (STDFAC) then
the upper and lower limits on the standard deviations are set to ERRMAX and
ERRMIN respectively. Otherwise the upper limit is set to 80% of ERRMAX and the
lower limit is set to 102% if ERRMIN.
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9. New upper and lower limits on the spectrum ratios are also set at this stage based
on the current average ratio for the group, and the spread of values about this
average. The aim is reduce this spread to a range given by the specified input value
RMSFAC. Obviously the smaller the value of RMSFAC the fewer spectra will survive
the selection criterion. Note that in the event that the ratio for the whole group is
low (below 0.2) then the limits for this group are left unchanged, since it means the
scattering is weak - probably a background run of some kind - so the routine will
only eliminate non-counting or very noisy detectors.

10. The sequence 5 to 9 is now repeated until no further detectors are eliminated, up to
a maximum of 10 times. The sequence is then repeated for each file, assuming the
results of the previous file at the outset, so that a bad detector found only in one file
will be assumed bad for all the files in the list.

11. At the end the list of bad detectors is written to the file spec.bad and new groups
file is written containing only those detectors which are deemed to have passed the
selection criteria.

3.4 Calculation of the attenuation and multiple scat-

tering factors

In order to calculate attenuation and multiple scattering factors, it is necessary to have a
available the total cross section for the materials of the sample and its containers.

3.4.1 Neutron and x-ray total cross sections

For the majority of elements the total cross section of a material has two terms, that due
to scattering σ(s)(λ) and that due to absorption (capture), σ(a)(λ):

σ(t)(λ) = σ(s)(λ) + σ(a)(λ) (3.8)

Strictly speaking the scattering cross section is the integral of the differential scattering
cross section over all scattering angles:

σ(s)(λ) =

∫

Ω

(

dσ

dΩ

)

(λ, 2θ)dΩ. (3.9)

and since it is the differential scattering cross section which is being sought to get the
structure, it would appear one needs the answer before one can correct the data! In practice,

integrating

(

dσ

dΩ

)

(λ, 2θ) over all Ω is difficult to do reliably since the measurements never

cover all 4πsr of Ω. Fortunately, provided the attenuation and multiple scattering cross
sections are not too large, it is generally sufficiently accurate (with some notable exceptions
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listed below) to use tabulated single atom values for the scattering cross section in place
of their exact values.

For x-rays the scattering and absorption (capture) cross sections of the elements are
listed in tables, (see http://www.esrf.fr/computing/scientific/dabax), from which
the values for particular elements and x-ray energies can be extracted by interpolation.

For neutrons the most recent tabulation was compiled by Sears [1992], but see also:
http://www.ncnr.nist.gov/resources/n-lengths. Occasionally revisions to some of
the values in this table have been made since it was published, but so far there does not
seem to be a more recent compilation.

To a reasonable approximation the neutron scattering cross section (at the energies
used to measure the structure) is independent of λ. Exceptions to this rule occur when
near a nuclear resonance and when a sample has strong Bragg scattering or significant
inelasticity effects, such as with H and D containing materials.

Generally speaking, going through a nuclear resonance involves a change in the neutron
scattering length, and is often combined with a strong emission of γ radiation from the
sample. Such radiation can be picked up by some neutron detecting systems, so rendering
the data useless. In addition the capture cross section in a resonance can be truly enormous,
which will also render the data non-analysable. Hence a good rule of thumb is to avoid
nuclear resonances if at all possible! Alternatively if is necessary to look at a material
with a strong resonance it may be more appropriate to perform the experiment at a fixed
wavelength source, so that the neutron wavelength can be tuned to be away from the
resonance. This is possible since they mostly occur at neutron energies > 1eV and so at a
fixed wavelength source a reasonable Q range should still be accessible.

When a sample has a strong Bragg reflections the issue here is that the direction of
these reflections depends on the wavelength. As the wavelength increases the Bragg peaks
move to larger scattering angles, until eventually they may not be observable at all. At
this point the scattering cross section of the material can drop dramatically due to the
absence of Bragg scattering. This happens most notably in the case of beryllium metal,
which has a very small capture cross section for neutrons, but strong coherent scattering
length. Below about 5meV neutron energy the beryllium becomes almost transparent to
incident neutrons, but above this energy it is a strong (scattering) attenuator. Hence its
use as a neutron filter and reflector.

Where nuclear recoil is significant - mostly light atoms like H and D - the scattering
cross section can be strongly energy dependent, so for these materials it is necessary to
either seek another table giving the correct energy dependence of the cross section, or
else, if the diffractometer has a monitor detector in the transmitted beam, measure the
transmission cross section directly. This is described in more detail in the next section.

Away from a resonance the neutron absorption (capture) cross section is a linear func-
tion of wavelength. The constant of proportionality, the tabulated neutron absorption cross
section, σ(a) is normally quoted for a neutron velocity of 2200m/s (corresponding to the
energy of a neutron at ambient temperature). This corresponds to a neutron wavelength
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of 1.7982Å, so at other wavelengths the capture cross section can be calculated from:

σ(a)(λ) = σ(a)(1.7982)

(

λ

1.7982

)

(3.10)

3.4.2 Measuring the neutron transmission cross section

Generally it is best to measure the neutron transmission cross section of a sample at the
same time that the scattering is being measured. This is because it can be difficult to
reproduce the exact conditions at a later time. If tof the x-ray scattering data he sample
is a flat plate of thickness L which is normal to the incident beam, the transmission of the
sample is given by

TRANS(λ) = exp (−MUT(λ)L) (3.11)

where MUT(λ) = ρσ(t)(λ). Therefore if we can measure TRANS(λ) and we know ρ, then
we can obtain σ(t)(λ) for the sample.

For non-flat plate samples such as cylinders the exercise is not quite so simple, since
now the transmission depends on which part of the sample the beam traverses. Referring
to Fig. 3.1, it is assumed N(x) is the number of neutrons incident on this sample per unit
width at position x. (N(x) is called the beam profile and can be measured by placing a
thin wire of vanadium in the beam and measuring the scattered counts as a function of
position across the beam.) In that case the transmission of this sample is given by

TRANS(λ) =

∫W

0
N(x) exp (−MUT(λ)L(x)) dx

∫W

0
N(x)dx

(3.12)

assuming x is measured from one edge of the beam, and W is the width of the beam. There
is no simple inversion to MUT(λ) as there was for (3.11), so it has to be solved iteratively,
but some efficiency can be gained by expanding the exponential:

TRANSs(λ) = 1−MUT(λ)M1 +MUT2(λ)M2 −MUT3(λ)M3 + · · · (3.13)

where

Mn =
1

n!

∫W

0
N(x)Ln(x)dx
∫W

0
N(x)dx

. (3.14)

The latter integrals depend only on the sample geometry and so need only be evaluated
once.

If the sample is held in a container, then the transmission of the sample will given by
a modification to (3.12):

TRANSs(λ) =

∫ W

0
N(x) exp (−(MUTs(λ)Ls(x) + MUTc(λ)Lc(x)) dx

∫W

0
N(x) exp (−MUTc(λ)Lc(x)) dx

(3.15)
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so in order to solve this for MUTs(λ) it will first be necessary to first measure (or assume
some form for) MUTc(λ). This can be achieved for example by measuring the transmission
of the container on its own. There is a, by now hopefully obvious generalisation of these
equations for the cases where the sample has more than one container. However the
procedure is the same in each case, namely determine the cross section of the outermost
container, then the next one in, and so on, until the sample cross section is obtained.

All that remains is to determine the respective values of TRANS(λ). If Et(λ) is the
transmission monitor efficiency, and assuming the transmission monitor samples the same
beam as that sampled by the incident monitor, then the ratio of monitor counts, transmis-
sion monitor over incident monitor is given by

RAWTRANSs(λ)

RAWMONs(λ)
= TRANSs(λ)

Et(λ)

Em(λ)
(3.16)

This determines the transmission, but is multiplied by the ratio of monitor efficiencies. In
addition, depending on the monitor type, there may be an intrinsic “quiet” count in the
monitor which should be subtracted prior to taking the ratio. Hence the input to Gudrun
allows the specification of this constant, represented as some fraction of the overall number
of counts in the monitor. To determine the monitor efficiency ratio it is necessary to
measure the transmission when there is no sample in the beam, namely

Et(λ)

Em(λ)
=

RAWTRANSb(λ)

RAWMONb(λ)
(3.17)

Hence the sample transmission is obtained from:

TRANSs(λ) =

(

RAWTRANSs(λ)

RAWMONs(λ)

)/(

RAWTRANSb(λ)

RAWMONb(λ)

)

. (3.18)

Analogous expressions will apply when the sample has one or more containers.
Gudrun therefore allows the user either to use the Sears tables to specify the total

cross section (TABLES option), or the transmission monitor (TRANSMISSION option),
or else the total cross section per atom can be entered via a specified filename. However
it is derived, the total cross section that is used in the program is output in the files with
extension .mut. Despite the name of this file, be aware that it is a cross section file with
the units of barns (=10−24cm2 per atom. Note that for the multiple scattering correction it
is necessary to have both the scattering cross section and the total cross section. In Gudrun
the latter is calculated from the measured or input total cross section by subtracting the
capture cross section according to (3.10)

3.4.3 Attenuation and multiple scattering corrections

The attenuation and multiple scattering corrections are calculated in Gudrun and GudrunX
according to Soper and Egelstaff [1980] for cylindrical samples and according to Soper
[1983], both of which papers are extensions of earlier work by Paalman and Pings [1962],
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Figure 3.1: Geometry of the transmission and scattering problem for an arbitrary shaped
sample. The neutron beam is incident from the top right and exits from the bottom left.
The x axis is at right angles to the beam direction and the coordinates of the beam edges
a1 and b1 are measured along this axis from the centre of the sample. The scattered beam
goes towards the detector at scattering angle 2θ, and the coordinates of the scattered beam
edges, a2 and b2, are also measured from the sample centre at right angles to the scattered
beam direction. In general the beam intensity, N(x) will be a function of x.
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Kendig and Pings [1965] and Blech and Averbach [1965] for cylinders, and Vineyard [1954]
for flat plate samples. For these calculations it is necessary to specify the beam size and
position (only for cylinders) and the sample geometry and composition. Note that for
both cylinders and flat plate geometries the multiple scattering is calculated using the
average scattering cross section of each component (sample, container, vanadium, etc.) for
a particular wavelength, and assuming the atoms in that component scatter isotropically
- the same in all directions. This is NOT the same as assuming the multiple scattering is
isotropic, which it certainly is not. More sophisticated corrections which involve both the
true differential scattering cross section and any inelasticity effects can be contemplated,
but so far have not been implemented in Gudrun or GudrunX.

3.5 Deadtime corrections

Most counting detectors have an intrinsic deadtime, τ , which is the minimum time between
events needed for the detector to be able to resolve the two events as separate events: events
coming closer together than this will only get counted as a single event.1 If the data rate
observed in the detector is R events per sec, the detector will be dead for a fraction of the
time given by ∼ Rτ , so the incident data rate, that is the data rate that would be observed
if the detector had zero deadtime will given by R/(1 − Rτ). This formula however really

only works if R .
1

2τ
, otherwise it can give rise to a dramatic increase in the corrected

count rate, which would almost certainly indicate a fault in the electronics, rather than
anything to do with actual deadtime. In Gudrun the various deadtime corrections, one for
each detector module, are listed in the files with extension .module. In GudrunX there is
currently no deadtime correction performed.

For time-of-flight neutron diffraction there is a subtlety about data rates that can get
a bit confusing. This is because the counts are themselves measured as a function of time-
of-flight, and the width of the time-of-flight bins is often a variable, increasing with longer
times of flight. As a result the data counts in each time bin are normally divided by the
time width of that bin, giving an intensity in the units (typically) of counts per µs. This
however is NOT the data rate in the detector since it will increment with each pulse of
neutrons! To get the data rate in the detector the number of counts per µs measured must
be divided by the number of pulses of neutrons received, so the data rate is actually the
number of counts per µs per neutron pulse.

The details of the deadtime correction depend a bit on the way the detectors are hooked
up to the data acquisition electronics (DAE). At ISIS several detectors are often ganged
into a single input of the DAE so that if that input introduces its own deadtime, due
to a high count rate for example, that deadtime will affect all the detectors going to the
input. In practice the deadtime of most DAE inputs is much faster than the deadtime
of individual detector elements, so it is the latter which normally produces a significant
deadtime correction, if any.

1 Equivalently integrating detectors can have saturation problems.



CHAPTER 3. STEPS IN DIFFRACTION DATA ANALYSIS 59

3.6 Normalise to the incident beam monitor

Before anything can be done with the different measured datasets they need to be corrected
for the different number of incident units of radiation they have each received, so that they
can be compared. This number is given by the integrated monitor count, 〈Φ(λ, t)〉t∆t),
typically monitored by a special monitor detector placed in the incident beam which counts
for exactly the same length of time that each sample is counted for. Deliberately this
monitor detector has low efficiency so as not to remove too much of the incident beam,
which also means it does not give 〈Φ(λ, t)〉t∆t) directly, but an efficiency corrected version
of this. For the sample, for example:

RAWMONs(λ) = 〈Φ(λ, t)〉tEm(λ)∆λ∆ts (3.19)

with similar expressions for the other datasets. Here Em(λ) is the monitor detector effi-
ciency.

Within Gudrun, for time-of-flight neutron diffraction, there is the further option, if the
source is stable enough, to average this monitor count over a specified wavelength range
to give

RAWMONs(λ) =

∫ λ2

λ1
〈Φ(λ, t)〉tEm(λ)dλ

(λ2 − λ1)
∆λ∆ts

= 〈〈Φ(λ, t)〉tEm(λ)〉λ∆λ∆ts (3.20)

so that the monitor count for each wavelength value is set to this average value. This has
the advantage of improving the statistics on the monitor, but of course relies on the fact
that the spectrum shape does not vary with time.

Typically for a standard laboratory x-ray source there is no incident beam monitor,
but because modern sources are normally very stable it is sufficient to set

RAWMONs(λ) = C∆λ∆ts (3.21)

independent of the incident x-ray flux, with C an undetermined constant which is taken
to be a characteristic of the source and the same for all samples and backgrounds. For
synchrotron x-ray sources there is typically a photodiode, with or without scintillator, in
the incident or transmitted beam to measure the radiation flux on the sample for each
measuring period.

The measured intensities for each sample and background must be normalised to the
corresponding value of RAWMON(λ) so that they can be compared. For the sample and
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assuming (3.19) is used for the monitor count the result is

NORMMONb(λ, 2θ) =
CNTb(λ, 2θ)

RAWMONb(λ)
= B(λ, 2θ)

Ed(λ)

Em(λ)
∆Ω(2θ)

NORMMONs(λ, 2θ) =
CNTs(λ, 2θ)

RAWMONs(λ)

= (As,sNsΣs(λ, 2θ) +Ms +B(λ, 2θ))
Ed(λ)

Em(λ)
∆Ω(2θ)

NORMMONs+c(λ, 2θ) =
CNTs+c(λ, 2θ)

RAWMONs+c(λ)

= (As,scNsΣs(λ, 2θ) + Ac,scNcΣc(λ, 2θ) +Msc

+B(λ, 2θ))
Ed(λ)

Em(λ)
∆Ω(2θ)

NORMMONs+c+f(λ, 2θ) =
CNTs+c+f(λ, 2θ)

RAWMONs+c+f(λ)

= (As,scfNsΣs(λ, 2θ) + Ac,scfNcΣc(λ, 2θ) + Af,scfNfΣf (λ, 2θ)

+Mscf +B(λ, 2θ))
Ed(λ)

Em(λ)
∆Ω(2θ)

(3.22)

and so on. These ratios get closer to the cross-sections we are seeking, but multiplied by

the value
Ed(λ)

Em(λ)
∆Ω, which is however not well known. Corresponding expressions will

apply to the other possible monitor normalisations, (3.20) and (3.21).

3.7 Subtract the background

Irrespective of how the monitor normalisation is accomplished and provided the same
method is used for all datasets, the background can now be subtracted directly:
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SUBBAKs(λ, 2θ) = NORMMONs(λ, 2θ)−NORMMONb(λ, 2θ)

= (As,sNsΣs(λ, 2θ) +Ms)
Ed(λ)

Em(λ)
∆Ω(2θ)

SUBBAKs+c(λ, 2θ) = NORMMONs+c(λ, 2θ)− NORMMONb(λ, 2θ)

= (As,scNsΣs(λ, 2θ) + Ac,scNcΣc(λ, 2θ) +Msc)
Ed(λ)

Em(λ)
∆Ω(2θ)

SUBBAKs+c+f(λ, 2θ) = NORMMONs+c+f(λ, 2θ)− NORMMONb(λ, 2θ)

= (As,scfNsΣs(λ, 2θ) + Ac,scfNcΣc(λ, 2θ) + Af,scfNfΣf (λ, 2θ)

+Mscf)
Ed(λ)

Em(λ)
∆Ω(2θ)

(3.23)

3.8 Put the data on an absolute scale

Whichever method, (3.19) - (3.21), is used to normalise the data, we are left with unknown
calibration constants, Cn(λ, 2θ) which are respectively:

C1(λ, 2θ) =
Ed(λ)

Em(λ)
∆Ω(2θ) for normalisation (3.19)

C2(λ, 2θ) =
〈Φ(λ, t)〉tEm(λ)

〈〈Φ(λ, t)〉tEm(λ)〉λ
∆Ω(2θ) for normalisation (3.20)

C3(λ, 2θ) =
〈Φ(λ, t)〉tEm(λ)

C
∆Ω(2θ) for normalisation (3.21) (3.24)

In order to be able to put the data on an absolute scale, the appropriate calibration
constant needs to be determined. The method employed for neutrons is quite different to
that for x-rays.

3.8.1 Data calibration for neutrons

For neutrons there is an almost ideal material for putting the diffraction data on an absolute
scale. This is vanadium, which for neutrons has a small coherent scattering length. This
means any distinct scattering from Bragg reflections is intrinsically very weak compared to
the single atom scattering. Vanadium is a solid metal with precisely known density that is
stable on its own so does not require a container and which can be formed into cylinders or
flate plates as required. Also the mass of the vanadium atom means that inelasticity effects
with this material will be small and so can be estimated using an approximate model (e.g.
Placzek-type) model for the inelasticity.

The basic idea behind calibration with vanadium is to run a parallel experiment to
that of the sample, using the same beamline conditions (apertures, detector positions,
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etc.). Because the differential cross section for vanadium is dominated by single atom scat-
tering it is mostly flat with Qe or 2θ but with a few weak Bragg peaks whose positions are
known. It also has well known attenuation and capture properties which means the atten-
uation and multiple scattering factors are readily calculable. Finally vanadium does not
require a container, so that it is possible to estimate Cn(λ, 2θ) directly from the vanadium
measurement.

To do this requires an extra measurement, namely one for the vanadium sample:

CNTv(λ, 2θ) = (Av,vNvΣv(λ, 2θ)+Mv+B(λ, 2θ))〈Φ(λ, t)〉tEd(λ)∆λ∆Ω(2θ)∆tv. (3.25)

These data are put through the same sequence of steps as the sample data, in particular
to be useful they must be subject to the same monitor normalisation (ensuring this is done
automatically by the program):

NORMMONv(λ, 2θ) =
CNTv(λ, 2θ)

RAWMONv(λ)

= (Av,vNvΣv(λ, 2θ) +Mv +B(λ, 2θ))Cn(λ, 2θ) (3.26)

SUBBAKv(λ, 2θ) = NORMMONv(λ, 2θ)−NORMMONb(λ, 2θ)

= (Av,vNvΣv(λ, 2θ) +Mv)Cn(λ, 2θ) (3.27)

Using the methods described in section 3.4 the term (Av,vNvΣv(λ, 2θ) +Mv) is estimated
by numerical simulation and divided into the vanadium data:

VANCOR(λ, 2θ) =
SUBBAKv(λ, 2θ)

(Av,vNvΣv(λ, 2θ) +Mv)est.
= (Cn(λ, 2θ))est. (3.28)

To improve statistics, these data are normally smoothed to reduce noise, with the degree
of smoothing set by a number in the input file to Gudrun. Hence the final data calibration
is in the array

SMOVAN(λ, 2θ) = smoothed version of VANCOR(λ, 2θ) = (Cn(λ, 2θ))est.. (3.29)

A certain amount of smoothing is acceptable since the ratio VANCOR(λ, 2θ) is expected to
be slowly varying with λ. Nonetheless if the smoothing is overdone it can lead to artifacts,
particularly at the ends of each spectrum.

IMPORTANT NOTE: For fixed wavelength data, such as from D4C, this smoothing
will have no effect, since Gudrun treats each scattering angle as a separate spectrum with
just one wavelength bin in it.

When setting up Σv(λ, 2θ) the positions, widths and heights of the Bragg peaks can
be specified in a file with extension .bragg. Alternatively the vanadium differential cross
section can be input from a file with extension .dcs or .mdcs.
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3.8.2 Data calibration for x-rays

Sadly for x-rays there is no equivalent to the incoherent neutron scattering from vanadium
to make an independent estimate of the data calibration. Putting x-ray diffraction data
onto an absolute scale is a perennial problem. The method adopted in GudrunX is that
developed by Krogh-Moe [1956] and Norman [1957] as it seems to work quite well in
practice.

Putting together the results from equation (2.27) and section 2.3.5, the total differential
scattering cross section for x-rays is:

(
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=

(

dσ

dΩ

)

Th

(λ, 2θ)Fx(Q) +

(

dσ

dΩ

)

KN

∑

α

cαS(x, Zα)

=
∑

α

cα

((

dσ

dΩ

)

Th

f 2
α(Q) +

(

dσ

dΩ

)

KN

S(x, Zα

)

+

(

dσ

dΩ

)

Th

(

∑

αβ≥α

(2− δαβ) cαcβfα(Q)fβ(Q)Hαβ(Q)

)

=

(

dσ

dΩ

)

self

+

(

dσ

dΩ

)

Th

(

∑

αβ≥α

(2− δαβ) cαcβfα(Q)fβ(Q)Hαβ(Q)

)

(3.30)

The underlying idea is that the Fourier inverse of equation (2.23) is given by

hαβ(r) =
1

2π2ρ

∫

Hαβ(Q) exp(iQ · r)dQ (3.31)

so that for r = 0

hαβ(0) =
1

2π2ρ

∫

Hαβ(Q)dQ

=
1

2π2ρ

∫ ∞

0

Q2Hαβ(Q)dQ (3.32)

Because gαβ(0) = 0 (no atomic overlap) then hαβ(0) = −1, i.e. it has a known value.
Suppose, using the procedures described in this chapter, we obtain Σx(λ, 2θ) within our

calibration factor, C3(λ, 2θ), namely SUBBAKx(λ, 2θ) = C3(λ, 2θ)Σx(λ, 2θ). Performing
the integrals (3.32) on these data (bearing in mind of course that Q is a function of θ) we
obtain

∫ Qmax
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


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αβ≥α (2− δαβ) cαcβ
∫ Qmax

Qmin
Q2fα(Q)fβ(Q)Hαβ(Q)dQ (3.33)
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The approximation that Krogh-Moe and Norman make is that

1

2π2ρ

∫ Qmax

Qmin

Q2fα(Q)fβ(Q)Hαβ(Q)dQ = −ZαZβ (3.34)

as per (3.32). Given that the electron cloud around each atom is diffuse, and especially
within the independent atom approximation, which states that the electron cloud is in-
dependent of the surrounding atoms, then there is no guarantee this condition is exact,
particularly since the integral can only be performed over a finite Q range. Hence within
GudrunX there is the opportunity to add an arbitrary constant to this value, so allowing
for possible electron overlap. The revised version of the Krogh-Moe and Norman condition
is

1

2π2ρ

∫ Qmax

Qmin

Q2fα(Q)fβ(Q)Hαβ(Q)dQ = −ZαZβ + δ (3.35)

where δ is set by the experimenter. Clearly it would make sense that δ ≥ 0 but there
is no check done to enforce this condition. Inserting (3.35) into (3.33) enables C to be
determined:
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(3.36)

Since all the terms on the right-hand side of (3.36) are calculable, then in principle C3(λ, 2θ)
can be determined. In practice, since corrections for attenuation, multiple scattering,
polarisation, bremsstrahlung scattering, and fluorescence (see later sections) have to be
performed on the data, the calibration constant is determined iteratively at the end of
each pass through the data. Five such iterations is generally enough to give a good value

of the calibration constant. (NOTE: GudrunX actually outputs the value of
1

C3(λ, 2θ)
. In

fact, since it is assumed to be the same for all scattering angles, C3(λ, 2θ) is independent
of θ and so is output as a single number.)

3.8.3 Apply data calibration (NORMALISATION in Gudrun
and GudrunX)

Having determined the appropriate data calibration constants, (3.24) the data are put on
an absolute scale of cross section by dividing by this calibration. For a sample without
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container for example, one has

NORMVANs(λ, 2θ) =
SUBBAKs(λ, 2θ)

Cn(λ, 2θ)

= As,sNsΣs(λ, 2θ) +Ms (3.37)

For a sample with container and for the container alone, one has

NORMVANs+c(λ, 2θ) =
SUBBAKs+c(λ, 2θ)

Cn(λ, 2θ)

= As,scNsΣs(λ, 2θ) + Ac,scNcΣc(λ, 2θ) +Msc (3.38)

NORMVANc(λ, 2θ) =
SUBBAKc(λ, 2θ)

Cn(λ, 2θ)

= Ac,cNsΣs(λ, 2θ) +Mc (3.39)

Analogous expressions can be written down for the cases where the sample has more than
one container.

3.9 Perform attenuation and multiple scattering cor-

rections

Having put the data on an absolute scale and assuming the multiple scattering and atten-
uation corrections have been estimated, it is now straightforward to remove the multiple
scattering:

MULCORs(λ, 2θ) = NORMVANs(λ, 2θ)−Ms

= As,sNsΣs(λ, 2θ)I (3.40)

MULCORs+c(λ, 2θ) = NORMVANs+c(λ, 2θ)−Msc

= As,scNsΣs(λ, 2θ) + Ac,scNcΣc(λ, 2θ) (3.41)

MULCORc(λ, 2θ) = NORMVANc(λ, 2θ)−Mc

= Ac,cNsΣs(λ, 2θ) + Ac,scNcΣc(λ, 2θ) (3.42)

Performing the attenuation correction is equally straightforward. For the sample with-
out container:

ABSCORs(λ, 2θ) = Σs(λ, 2θ) =
MULCORs(λ, 2θ)

NsAs,s
. (3.43)

For the sample with one container:

ABSCORs(λ, 2θ) = Σs(λ, 2θ) =
MULCORs+c(λ, 2θ)− Ac,sc

Ac,c
MULCORc(λ, 2θ)

NsAs,sc
(3.44)
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For the sample with two containers (s, c, f), then first one has to remove the scattering
from the outer container, f , in a manner analogous to (3.44):

ABSCORs+c(λ, 2θ) = MULCORs+c+f(λ, 2θ)−
Af,scf

Af,f

MULCORf (λ, 2θ)

ABSCORc(λ, 2θ) = MULCORc+f(λ, 2θ)−
Af,cf

Af,f

MULCORf(λ, 2θ) (3.45)

Then the scattering from the innermost container must be subtracted from the sample
plus container:

ABSCORs(λ, 2θ) = Σs(λ, 2θ) =
ABSCORs+c(λ, 2θ)− Ac,scf

Ac,cf
ABSCORc(λ, 2θ)

NsAs,scf
(3.46)

In the event that there are more than two containers, the sequence of first subtracting
the outermost container using the appropriate attenuation factors, then the next outermost,
is repeated until all the containers have been subtracted. The formulae for when there are
three containers are left as an exercise for the user!

The final step of (3.43), (3.44) and (3.46) includes the division by the number of atoms
in the beam, to give the total differential scattering cross section of the sample per atom
of the sample. Gudrun and GudrunX allow the user to choose this value in the event,
such as with powder samples, that the container is not fully packed with sample. In the
program it is called a “tweak factor” and can be thought of as the inverse of the packing
fraction. For example if the packing fraction is 0.5, the corresponding tweak factor would
be 2.0. The same packing fraction affects the calculation of the attenuation and multiple
scattering: the sample atomic density used for these calculations is equal to the specified
atomic density divided by the tweak factor. This only applies to the sample itself. If a
tweak factor other than 1.0 is used for any of the containers, then the density used in the
attenuation and multiple scattering corrections remains that specified in the input file. In
those cases the tweak factor is simply the number that the data are multiplied by in the
equations prior to subtracting from the corresponding sample-plus-container data.

When comparing the values of ABSCOR with MULCOR, bear in mind that for cylin-
drical geometry Ns is the actual number of atoms in the beam, whereas for flat plate
geometry Ns is the number of atoms per unit area. This is because the multiple scattering
and total scattering terms in the calibration (3.28) are calculated per unit area for flat
plate samples.

3.10 Post processing

Having finally ended up with the differential scattering cross section of the sample as a
function of λ and 2θ corrected for attenuation and multiple scattering, and placed on an
absolute scale of barns/atom/sr, the data are still not overly useful, since there are often
many hundreds, if not thousands of detectors. It is therefore necessary to combine the
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detectors together, initially in groups, finally, if required, into a single spectrum. The
latter step may not be useful if the data are sensitive to the intrinsic resolution of the
diffractometer, such as with Bragg scattering samples.

3.10.1 Procedures specific to Gudrun: combining detectors in
groups

Grouping of the detectors in Gudrun is achieved via a file with extension .grp. Normally
this will be supplied by the instrument scientist, though the user is entirely at liberty to
specify their own groups file. Typically one would group detectors at similar scattering
angles together, since these are likely to have similar resolution functions. Equally one
might keep separate detectors at the same scattering angle but in different parts of the
diffractometer. However the detectors are to be grouped, it is necessary to first specify the
common scale of units that the merged data are to be stored on. This might be wavevector
change, Q, or d-spacing = 2π/Q or simply time-of-flight (µs). Alternatively the detectors
can be grouped onto a common wavelength [Å] or energy [meV] scale.

To combine the multiple detectors onto a common scale it is also necessary to specify
how this combination will be achieved, i.e. will it simply be the arithmetic mean of the
results in each detector and angle, or should the average be weighted by the counting statis-
tics. Throughout the analysis Gudrun and GudrunX keep track of the standard deviation
of the cross section values, derived from the counting statistics of the raw data. Hence
in the weighted mean the data are multiplied by their corresponding standard deviations
before adding to the average, and when adding data to the average is finished, the result
is divided by the sum of the standard deviations. In the program this is called statistical
weighting on merge. Generally using this weighting gives a cleaner result than forming the
arithmetic mean, since the statistical weighting down-weights poorly counting detectors.

Before the data can be combined, they need to be put on the common units scale.
Converting (λ, 2θ values to the units requested for each detector is stored in the array
PREMERGE(λ, 2θ), while the array MERGE(λ, 2θ) contains the same data after rebinning
it onto the x-scale common to all groups. The merged data from individual groups are
output into the file with extension .dcs while the merged data where all the detectors are
combined into a single spectrum are stored in the file with extension .mdcs.

3.10.2 Procedures specific to GudrunX

In GudrunX it is currently assumed there is only one detector, so there is no provision
for detector grouping as such, but if, as for reactor neutron data, each detector angle is
regarded as a separate detector, then there is effectively one detector at each scattering
angle. These data are merged and rebinned on to a single x-scale, but note that the output
units are currently restricted to Q only.

There are three other factors which can affect the x-ray intensity and which require
correcting for prior to output of the final differential cross section.
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X-ray polarisation corrections

This has already been alluded to in the discussion of x-ray inelastic scattering, Section 2.3.5.
There, mention was made of the fact that both the Thomson, (2.61), and Klein-Nishina,
(2.56), scattering formulae apply to an unpolarised incident x-ray beam. The polarisation
correction arises because an x-ray, being a transverse wave, is scattered by that component
of its electric wave vector which is at right angles to its direction of travel. Hence an x-ray
scattered at 0◦ or 180◦ can be scattered whatever its polarisation because the right angle
condition is always satisfied, but for an x-ray scattered at 90◦ in the horizontal plane, only
the vertical component of its electric field vector can scatter, so the intensity drops to 1/2
of its zero angle value. This is what leads to the Thomson formula, (2.61).

As far as we know a laboratory x-ray source is unpolarised, so the Thomson formula
should work fine in that case, but with synchrotron x-ray sources, the radiation in the
plane of the orbit is horizontally polarised, so that if the detectors move in the vertical
plane, as is normally the case, there will be no discernible polarisation effect. At syn-
chrotron instruments the polarization of the beam (after mirrors and monochromators) is
often measured directly by looking at the scattering from a piece of Kapton, which would
normally be expected to be isotropic in an unpolarized beam.

GudrunX allows for the possibility that the incident beam may be polarised. This case
was dealt with in detail by Kahn et al. [1982] for the case of single crystal reflections by
a polarised incident beam. Specifically they showed that the polarisation correction for a
particular reflection is given by:

P (2θ) =
1

2

[

1 + cos2(2θ)− φ cos(2ρ) sin2(2θ)
]

(3.47)

where φ is a measure of the degree of polarisation of the incident beam:

φ =
E2

H − E2
V

E2
H + E2

V

, (3.48)

EH , EV are the horizontal and vertical components of the electric field vector, with hor-
izontal defined as the plane formed by the incident beam, the sample, and the detector,
and vertical perpendicular to this plane, and ρ is the azimuthal angle of the detecting
element out of the horizontal plane. φ = 0 means the horizontal and vertical components
of the incident polarisation are equal, corresponding to an unpolarised beam, while φ = −1
corresponds to incident polarisation at right angles to the scattering plane. If ρ = 0 and
φ = −1 then there will be no polarisation correction. If φ = +1 this corresponds to
incident polarisation in the horizontal plane, which means that for 2θ = 90◦ there will
no scattering. Clearly φ and ρ play equivalent roles in this formula, and in practice, for
unpolarised x-rays we should set both values to zero.

It is worth mentioning that currently in GudrunX the multiple scattering is given the
same polarisation factor as the once scattered x-rays. Given the above formula (3.47) this
assumption may not be accurate, since, particularly with tall thin cylinders, much of the
second scattering involves two scattering events both nearly at right angles. In practice,
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for x-rays at moderate energies the impact of multiple scattering is sufficiently small that
polarisation in the multiple scattering is unlikely to have a significant outcome on the data
analysis.

As shown in section 3.8.2 it is necessary to apply the correction for polarisation before
estimating the calibration factor for the data.

Bremsstrahlung scattering

In addition to the usual electron transition lines, Kα, Kβ, and so on, laboratory x-ray
tubes produce a general background radiation caused by the incident electrons being slowed
down in the anode material. This has a characteristic spectrum whose maximum energy
corresponds to the electron bombardment energy, Ee, McCall [1982]:

C

(

Ee

Ex
− 1

)α

Ex 6 Ee (3.49)

where C is a constant that depends on the atomic number of the target nucleus and α ≈ 1.
In practice this spectrum will be self attenuated by the target material, so assuming the
x-rays have to travel on average a distance, LT through the anode material before being
emmitted, the spectrum will be modified by a factor exp (−µT (Ex)LT ), where µT (Ex)
is the attenuation coefficient of the target material. Futhermore it is normal, in an at-
tempt to reduce unwanted counts reaching the detector, to place a suitable absorbing foil
that will stop the Kβ radiation. This will introduce its own transmittance factor on the
incident beam, exp (−µF (Ex)LF ), where µF (Ex) and LF are the attenuation coefficient
and thickness of the absorbing foil respectively. Finally it is expected that the detecting
system will impose its own cut-off in energy, determined by the discriminating system on

the detector. To represent this we use the function 1
/

(

1 + exp
(

E0−Ex

w

))

, where E0 is the

cut-off energy and w is the width of the cut-off. Hence the overall assumed expression for
the bremsstrahlung radiation is given by

IBr (Ex) = C exp (−µT (Ex)LT )

(

Ee

Ex
− 1

)α

exp (−µF (Ex)LF )
1

(

1 + exp
(

E0−Ex

w

)) (3.50)

For the purposes of data analysis the constant C is chosen so that
∫ Ee

0
IBr (Ex) dEx = 1.

Obviously if the diffractometer has a monchromator, the bremsstrahlung correction is
not necessary, but otherwise, because bremsstrahlung radiation produces a spread of x-ray
wavelengths it has the effect of producing a smeared out version of the structure factor
being sought. This smeared out version must be subtracted from the total differential
scattering cross section in order to get to the true differential cross section for the specified
x-ray wavelength. Fig. 3.2 shows an example of what the resulting incident bremsstrahlung
spectrum might look like.

To use this spectrum in the data analysis, it is necessary to convolute the spectrum
with the differential cross section, but as usual we don’t know the differential cross section!
So a process of achieving this iteratively is implemented. After all the corrections and in
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Figure 3.2: Example of the estimated bremsstrahlung spectrum for a silver (Ag) source
and assuming a Rh filter of thickness 0.05mm is used. The penetration depth in the Ag
anode is assumed to be 0.03mm, and the high energy detector cut-off, E0, was set at 36keV
with a spread (w) of 3keV. The sharp edge near Ex = 23keV is caused by the Rh Kα edge,
while the smaller edge near Ex = 25keV comes from the anode material. Use of the Rh
filter prevents most silver Kβ x-rays reaching the sample.
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the presence of bremsstrahlung radiation, the observed differential cross section, Σs(λ, 2θ)
will be given by

Σs(λ, 2θ) =

(

dσ

dΩ

)

x

(λ, 2θ) + FBr

(

dσ

dΩ

)

x

(λ, 2θ)
⊗

IBr (Ex) (3.51)

where FBr is a factor to be set by the user: if too much bremsstrahlung scattering is

subtracted, then

(

dσ

dΩ

)

x

(λ, 2θ) will go negative in some regions, which is unphysical.

Therefore FBr can be regarded as a fitting factor, but ideally it should be the same for all
samples.

Since we don’t know

(

dσ

dΩ

)

x

(λ, 2θ) at the outset it has to be found iteratively. Sup-

pose at the beginning of the nth iteration our current estimate for

(

dσ

dΩ

)

x

(λ, 2θ) is

(

dσ

dΩ

)(n−1)

x

(λ, 2θ). Using (3.51) the next estimate will be:

(

dσ

dΩ

)(n)

x

(λ, 2θ) =

Σs(λ, 2θ)− FBr

(

dσ

dΩ

)(n−1)

x

(λ, 2θ)
⊗

IBr (Ex)

1− FBr
. (3.52)

For the first iteration, n = 1, it is natural to set

(

dσ

dΩ

)(0)

x

(λ, 2θ) = Σs(λ, 2θ) to start the

sequence off. Provided FBr . 0.5 this iterative procedure seems to work satisfactorily.
Larger values of FBr and it may not converge.

Using the bremstrahlung spectrum shown in Fig. 3.2, Fig. 3.3 shows the extracted
(

dσ

dΩ

)

x

(λ, 2θ), the single atom scattering, and the convoluted bremstrahlung spectrum

for Si powder measured on a silver x-ray source. Fig. 3.4 shows the structure factors, after
dividing by the single atom scattering, (2.1), obtained with and without the bremsstrahlung
correction. It is seen that including the bremsstrahlung contribution makes a big difference
to the peak heights, and makes the peak profile cleaner and more symmetric. In addition
the background on the data is much flatter when the bremsstrahlung is subtracted. Ob-
viously by measuring or otherwise improving the bremsstrahlung spectrum used in these
calculations, these results can be improved still further.

X-ray fluorescence corrections

X-ray fluorescence occurs when an x-ray is absorbed, exciting an electron to a higher
orbital, but the electron then decays into a different orbital, emitting a different radiation
wavelength than that which caused the excitation. There is a (small) time delay in this
process and the emitted photon will know little about the incident photon that caused the
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Figure 3.3: Extracted x-ray differential scattering cross section (solid line) for Si powder
using Ag Kα radiation with a Rh filter. The dashed line shows the estimated single atom
scattering plus Compton scattering and the crosses show the convolution of the differential
cross section with the bremsstrahlung specrum from Fig. 3.2. The bremsstrahlung factor,
FBr, was set to 0.5 for this calculation.
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Figure 3.4: Comparison of extracted x-ray structure factors (differential cross section di-
vided by single atom scattering) for Si powder, assuming the bremsstrahlung factor is 0.5
(a), or 0.0 (b).

excitation in the first place. Fluorescence will be a problem whenever there is a fluorescing
electron transition near the energy of the incident x-ray. Fluorescence becomes obvious in
the data analysis by making it impossible to normalise to the single atom scattering plus
Compton scattering in a satisfactory manner.

In GudrunX it is assumed that an element, e, will fluoresce above a characteristic x-ray
energy or wavelength, called its fluorescence energy, E

(e)
f . There are probably few if any

cases of a single element fluorescing at more than one energy for a given incident spectrum
so only one fluorescence energy is allowed per element. This is because typically it is the K
edge in the absorption spectrum that fluoresces, while the L edge is at too low an energy
to cause observable fluorescence. However for the heavier elements it may be the L edge
that fluoresces, in which case the corresponding K edge is probably at too high an energy
to be excited by the incident x-ray spectrum.

It is assumed that the fluorescing x-ray is emitted isotropically in all directions with an
intensity proportional to the known photoelectron cross-section for a given incident wave-
length. However the observed fluorescence intensity will also be affected by the incident
x-ray spectrum - this is assumed to be the same as that used to calculate the bremsstrahlung
scattering, IBr (Ex), as in equation 3.52 - and attenuation in the sample, which in turn de-
pends on the incident x-ray energy, Ex, and the fluorescence energy. Hence it is necessary
to calculate the attenuation factor in the sample (plus any containers) for an incident x-ray
photon at a series of energies above the fluorescence energy with the emerging photon at
the fluorescence energy. These “inelastic” attenuation factors, A(Ex, E

(e)
f , 2θ), are there-
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fore distinct from the elastic attenuation factors that have been discussed hitherto, and
have to be calculated separately. The sample fluorescence will also depend on the incident
intensity at any given energy. If more than one element in the sample fluoresces, it is pos-
sible to assign different weights, we, to those elements when calculating the fluorescence
scattering. Finally, since it is impossible to assign an absolute scale to this fluorescence
scattering, the contribution of fluorescence is represented as a user-specified fraction, F , of
the sample (elastic) scattering integrated over all scattering angles.

To summarise, the fluorescence is calculated in GudrunX according to the formula:

FLUOR(2θ) = Cf

∑

e

we

∫

E
(e)
f

IBr (Ex)σ
(PE)
e (Ex)A(Ex, E

(e)
f , 2θ)dEx (3.53)

where the sum is over the elements in the sample, and σ
(PE)
e (Ex) is the photoelectron cross

section at energy Ex for element e. The normalising constant Cf is chosen so that the
∫

FLUOR(2θ)d2θ is a user-defined fraction of
∫

NORMMONs(λ, 2θ)d2θ, and the user has
to choose the appropriate fluorescence energy and weight for each element as needed.

This fluorscence scattering is subtracted from the observed x-ray scattering data as a
function of scattering angle prior to any processing in terms of normalisation, correction
for attenuation and multiple scattering, and background or container subtractions. Fig.
3.5 gives examples of what happens when the fluorescence correction is applied, (a), and
when it is not applied, (b).

3.10.3 Converting structure factor to pair distribution function
(PDF)

Very often the user would like to see what their data look like when transformed to r-
space. Both Gudrun and GudrunX provide facilities to perform a Fourier transform on the
extracted structure factors. The method adopted follows that of the top hat convolution
method described in Soper [2009]. Basically the idea is that due to the fact that the
data analysis may not have proceeded perfectly, the structure factor is on some kind of
Q dependent background. This needs to be removed prior to Fourier transform. The
background is generated by convolution of the data with the top hat function:

I ′ (Qe) =

∫

QT

I (|Qe −Q′
e|)T (Q′

e) dQ
′
e (3.54)

where the integral proceeds over all of reciprocal space for which the data exist, and the
top hat function T (Qe) is given by:

T (Qe) =
3

4πQ3
T

, |Qe| ≤ QT

= 0, |Qe| > QT (3.55)
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Figure 3.5: Comparison of extracted x-ray differential cross section for amorphous
Na2OTeO2 powder, assuming the fluorescence fraction is 0.75 (a), or 0.0 (b). The assumed
fluorescence energy of Te was assumed to be 31.2keV.

The effect of the convolution therefore is to smear I (Qe) only in the region near Qe.
The aim is to now make the Fourier transformation of the difference

D′ (Qe) = I (Qe)− I ′ (Qe) (3.56)

instead of Fourier transforming the intensity function itself, I (Qe), namely:

d (r) =
1

(2π)3 ρ

∫ Qmax

Qmin

D′ (Qe)) exp [iQe · r] dQe (3.57)

where Qmin, Qmax is the range of Qe values for which data are available. Making the use of
the fact that the Fourier transform of a convolution is the product of the respective Fourier
transforms, it is straightforward to show that

d (r) = [Gself (r) + hexp (r)] (1− t (QT r)) (3.58)

where

Gself (r) =
1

2π2ρr

∫ Qmax

Qmin

QeIself (Qe) sin (Qer) dQe (3.59)

hexp (r) =
1

2π2ρr

∫ Qmax

Qmin

QeIint (Qe) sin (Qer) dQe (3.60)



CHAPTER 3. STEPS IN DIFFRACTION DATA ANALYSIS 76

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30

1−
f(

x)

x 

1−f(x)

Figure 3.6: The convolution function 1− f(x) which is defined in equation (3.61).

and

t (x) =
3

x3
[sin x− x cos x] (3.61)

The function 1− f(x) is shown in Fig. 3.6. It is close to zero at low x, then rises close
to unity for x >∼ 4. In other words it will heavily suppress low frequency structure in Q-
space, but leave the higher frequency structure relatively intact. Precisely which frequency
is cut off depends on the value of QT . For x << 1 f(x) ≈ x2/10 so that for small enough
r and QT the structure in d (r) at a distance of say r = r0 will be 4 times more suppressed
than structure at r = 2r0 and so on.

Written in the form (3.58), it will be apparent that the convolution can easily be
reversed in r space because the result (3.57) simply needs to be divided by (1− f (QT r)).
By itself however this would achieve little since it would lead to the same function as would
be derived by direct Fourier transform of the data. Instead the technique is to introduce
constraint (2) at this point and assume that for some r < rmin we know g(r) precisely, i.e.
g(r) = g0(r) while for larger r g(r) is derived by inverting the convolution in (3.58):

dexp(r) = g0(r)− 1 , r < rmin

= d (r) / (1− f (QT r)) , r ≥ rmin (3.62)
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with the assumption that Gself (r) makes an insignificant contribution for r ≥ rmin. If it
does make a contribution in this region then the present method will not remove it, but it
will remove it for r < rmin.

The object is to obtain an interference function in Qe space which has minimal contri-
butions from the self scattering background and which satisfies our specified constraints.
In principle one could simply Fourier transform (3.62) back to Qe space to achieve this,
but if g(r) is structured to high r doing so might introduce further truncation effects. In
addition unless the reverse transform is done carefully, this procedure will lose the statis-
tical quality of the original data. A better plan is to generate an additional background
function, b(r), such that the function

dexp (r) = d (r)− b (r) (3.63)

This leads to

b (r) = d (r)− g0 (r) + 1, r < rmin (3.64)

= −d (r) f (QT r) / (1− f (QT r)) , r ≥ rmin (3.65)

Fourier transforming this to Qe leads to:

B (Qe) = 4πρ

∫

r2b (r)
sinQer

Qer
(3.66)

This extra background in Qe space is then subtracted from D′ (Qe) to yield an estimate of
the interference differential cross section:

I
(exp)
int (Qe) = I (Qe)− I ′ (Qe)−B (Qe) (3.67)

Because the function f (QT r) is short ranged in r the likelihood of truncation oscillations
being transferred to B (Qe) is small. By this method the statistical quality of the original
data is left intact, the specified constraints (1) and (2) are applied, and the effects of
truncation in both Qe and r-spaces are held to a minimum, even when the data have a
large self scattering component.

Setting the width of the top hat function, QT , can be tricky since if the data have a large
background component then it would be desirable to make QT small to follow the shape
of the background accurately. However when applied to (3.65) if the product QT rmin . 3
then the denominator is likely introduce a large spike at the cut-off, rmin. Therefore to

avoid this, a useful rule of thumb is to set QT >
3

rmin
.

Note that when data are binned logarithmically as can now be done in Gudrun the top-
hat method will not work since it relies on having equally spaced data value. In these cases
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(and even when the spacing is constant) it is now possible to simply subtract a constant
from the data, based on the average value over some specified Q-range. This is in effect
the same as setting QT = ∞. However the rest of the algorithm works as above, but the
convolution function, (3.61), is of course zero over all finite values of x.

3.10.4 A revised Lorch function

In his famous paper (Lorch [1969]), E. Lorch attempted to derive a function which would
suppress the traditional truncation oscillations that bedevil direct Fourier transform of
diffraction data. The success of his approach is marked by the almost universal adoption

of his truncation function,
sinQ∆

Q∆
, where ∆ =

π

Qmax
. (Note I have dropped an unnecessary

factor of 2 in the definition of ∆ compared to Lorch’s definition.) The derivation of this
function however contains an obvious flaw which can be shown simply by performing the
integral that he claimed to have performed. The equation concerned is not numbered, but
it occurs in section 3 of that paper, so I quote it verbatim below:

∫ r+∆

r−∆

4π r2{g(r)− g0} dr =
2

π

∫ r+∆

r−∆

∫ Qmax

0

Qi(Q) sinQr dQ rdr (3.68)

The idea here was to form the average of g(r)− g0 over the region r ±∆. Performing the
r integral in (3.68) directly as instructed, we obtain:

1

2∆

∫ r+∆

r−∆

Q sinQr rdr =
1

2Q∆

[

sinQr −Qr cosQr
]r+∆

r−∆

= cosQr

(

sinQ∆

Q∆
− cosQ∆

)

+Qr sinQr
sinQ∆

Q∆

(3.69)

from which it can be seen that the Lorch function is only retrieved when Q∆ ≪ π/2,
but this condition cannot be satisfied at Q = Qmax by definition! Moreover this function
certainly does not go to zero in that limit. So the function that has been used by researchers
all over the world for more than 40 years to perform Fourier transforms of diffraction data
was based on faulty mathematics!

Notice however the similarity between eq. (3.69) and the Fourier transform of the top
hat function in section 3.10.3, eq. (3.61). This suggests a simple revision to the Lorch
function in keeping with his original idea of averaging g(r) over a region of space. In
effect we will instead smear g(r) uniformly over the region |r±∆| by performing the same
convolution of the top hat function as previously in Q-space, but now in r-space. Writing

L′ (r,∆) =
3

4π∆3
, |r| ≤ ∆

= 0, |r| > ∆ (3.70)
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the convolution of the radial distribution function with the top hat function is

〈h (r)〉∆ =

∫

∆

L′ (r− r′,∆)h (r′) dr′. (3.71)

Introducing the Fourier transform

h(r) =
1

(2π)3ρ

∫

Q

h(Q) exp [iQ · r] dQ (3.72)

and the independent variable r′′ = r− r′ then

〈h (r)〉∆ =
1

(2π)3ρ

∫

Q

∫

∆

L′ (r′′,∆) exp [−iQ · r′′] dr′′h (Q) exp [iQ · r] dQ

=
1

(2π)3ρ

∫

Q

L′ (|Q| ,∆) h (Q) exp [iQ · r] dQ. (3.73)

where

L′(Q,∆) =
3

(Q∆)3
(sinQ∆−Q∆cosQ∆) . (3.74)

Hence L′(Q,∆) is the modified Lorch function, but note that it does not go to zero at
Q = Qmax. In fact the form (3.74) suggests there is nothing to stop ∆ being a width
specified by the user, and moreover that width could in principle be a function of r, i.e.
∆ = ∆(r). In Gudrun and GudrunX a form for this variation is allowed:

∆(r) = ∆0

(

1 + rβ
)

(3.75)

with β specified by the user, so the degree of broadening in r-space can vary distance.

3.10.5 Towards accurate Fourier transforms

One final note concerns the evaluation of the integral (3.72). Normally h(Q) is measured
as a histogram with each value representing the average value for each measurement bin.
Hence the exact integral is normally replaced by a sum over values:

h(r) =
1

2π2ρr

Qmax
∑

Qmin

h(Q)Q sinQr 2∆Q(Q) (3.76)

where 2∆Q(Q) is the width of the bins which may in general be a function of Q. Comparing
this with (3.72), and again in keeping with the spirit of Lorch, it would make sense to
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average the function Q sinQr over the bin width, i.e. instead of (3.76) we perform the
average

h(r) =
1

2π2ρr

Qmax
∑

Qmin

h(Q)

∫ Q+∆Q

Q−∆Q

Q sinQr dQ

=
1

2π2ρr

Qmax
∑

Qmin

Qh(Q)

[

cosQr

(

sin∆Qr

∆Qr
− cos∆Qr

)

+Qr sinQr
sin∆Qr

∆Qr

]

2∆Q

(3.77)

This reverts back to (3.72) in the event ∆Q → 0. This expression is useful in time-of-flight
work when the Q bins often increase in width with increasing Q.
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Running Gudrun

Gudrun comes in two flavours, GudrunN (for neutrons, previously called simply “Gu-
drun”), and GudrunX (for x-rays). In GudrunN most of the analysis is done via two
supplied Fortran executables, gudrun dcs.exe and purge det.exe. The graphical user inter-
face (GUI) in this case acts primarily as a guided editor to help the user write the input
files to these routines, and to also provide some graphics capabilities for looking at the
outputs. The input file has to be written in a particular format, so in practice it is much
easier to write these input files from the GUI. The latter is a Java program and so requires
Java Runtime Environment (JRE) to be installed on your computer, but this is normally
not a problem since Java is often present to run applets in web browsers. If you do choose
to run the Fortran programs directly, it is a good idea at least to write the first input files
from the GUI to make sure they have the format of the current version of Gudrun, since
the GUI can sometimes tolerate older versions of the input file and still write a sensible
output file, but the Fortran program will almost certainly not tolerate an older format
input file.

In GudrunX, most of the analysis is done with within the GUI itself, with just two
excursions to Fortran executables, corrsx in out.exe and tophatsub.exe, the former per-
forming the attenuation and multiple scattering calculations and the latter performing the
final Fourier transform of the differential cross section. Hence there is no choice but to run
within the Java framework: the GUI has been developed to make use of the high speed
string processing methods that are available within Java.

The underlying framework for the two versions of the GUI is common so that operations
such as copying and pasting tabs, and creating and saving files should be the same.

The GUI is normally started in a Windows system with the commands:
copy GudrunGUI windows.syspar GudrunGUI.syspar
java -cp ”..\GudrunGUI” -jar ”..\GudrunGUI\GudrunGUI 4.jar” N
copy GudrunGUI.syspar GudrunGUI windows.syspar

For a Linux system the equivalent commands are:
cp GudrunGUI linux.syspar GudrunGUI.syspar
java -cp ”../GudrunGUI” -jar ”../GudrunGUI/GudrunGUI 4.jar” N
cp GudrunGUI.syspar GudrunGUI linux.syspar

81
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Figure 4.1: Appearance of the main Gudrun folder

If you want to start an x-ray version, you simply replace the “N” by “X” in the above
examples. Note that since the GudrunGUI.syspar file will be different for the x-ray version
compared to the neutron version, it is good practice to start the x-ray and neutron GUIs
in separate folders.

In either case what happens here is that first the appropriate version of Gudrun-
GUI.syspar is generated, then the GUI is started, and in this example it is assumed the .jar
file resides in a folder called “GudrunGUI” which is in the main folder above the present
one. If the folder sequence in your case is different from this, you will need to modify
the Java command appropriately. Finally when the GUI is closed (using either the “Exit”
option in the file menu, or else by clicking the x button at the top of the GUI) the Gu-
drunGUI.syspar file is copied back to the original file in case it has been changed in any
way.

4.0.6 Files you need to run Gudrun

Gudrun should be supplied as .zip file which should be unzipped in your main directory
(C:\ for Windows, /home/username/ for Linux). This will create a folder called Gu-
drun#, where the # represents the current version of the GUI (currently # = 4) and in
this folder should be the files shown in Fig. 4.1. 1

The folder gnuplot contains the GNUplot plotting routines used in the Windows ver-
sion and will not be discussed extensively here as it comes as downloaded from the GNUplot
website. For Linux versions it will be necessary to have installed GNUplot separately in
order to make use of the plotting features within Gudrun (but note that this is strictly
optional - if you have a preferred plotting program the output files can be plot just as

1In this manual the files are shown for a Linux operating system. However the format in Windows
should be identical, even if the appearance is slightly different.
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Figure 4.2: Appearance of the GudrunGUI folder

easily with other packages.) If you intend to use the in-built GNUplot plotting option it
will be necessary to refer to it when setting up GudrunN to run.

The folder GudrunGUI contains the Java executable that will be used. Fig. 4.2 shows
what this folder should contain. Since these executables are the ones that can change from
time to time, probably it is a good idea not to store any of your own run files in this folder
since the entire folder will be updated with new versions. The executables with extension
.ex or .exe are the Windows executables, whereas those with no extension are the Linux
versions. Since these are not compiled as static executables under Linux it means they will
probably need to be recompiled for each operating system on which they run. Contact the
authors for information on how to do this. The Java executables (.jar file and lib folder)
should of course be common to all operating systems on which Java is installed.

Next are shown the contents of the GudrunN and GudrunX folders in Figs. 4.3 and
4.4.

4.0.7 Starting GudrunN - neutrons

The easiest way to start the GUI for neutrons is go to the folder GudrunN and double
click on the GudrunN.bat file in Windows, or run the corresponding shell script in Linux.
Probably it is better at the beginning, until you are confident in what you are doing, to
do this from the command prompt at the beginning as it will list any error messages that
Java produces if one or more files are not in place. If you do double click on the file icon
and nothing happens, you will be none the wiser as to what happened, so try starting from
the command prompt.

When it starts it should load the startup file which is specified in theGudrun windows.syspar
or Gudrun linux.syspar files. This filename is displayed along the top of the GUI, Fig.
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Figure 4.3: Appearance of the GudrunN folder

Figure 4.4: Appearance of the GudrunX folder
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Figure 4.5: Layout of the GUI when it starts. If the start up file has loaded correctly, then
four tabs should be displayed, INSTRUMENT, BEAM, NORMALISATION and SAMPLE
BACKGROUND.

4.5. If it does not load this file correctly check the system parameters to make sure they
point to the correct places. This is done by clicking the System menu item in the GUI,
then Set system path names, Fig. 4.6. You can get the required files by clicking the appro-
priate browse buttons. This is also a good time to check that the executables are correctly
specified. Note that in order for these new values to take effect the GUI has to be exitted,
then restarted.

Another check you can do at regular intervals to ensure that all the files you have
specified do indeed exist is press the Run menu item, then Check files exist. If all the
files you have specified in each tab are found where specified it will give an OK message,
otherwise it will list the missing files, Fig. 4.7. If lots of data files appear to be missing,
make sure the Data file directory specified on the INSTRUMENT tab is set correctly.

4.0.8 Features of the GudrunN GUI

As can be seen from Fig. 4.5, GudrunN (and GudrunX) are tabbed windows, with one tab
for each of INSTRUMENT, BEAM, NORMALISATION and SAMPLE BACKGROUND.
If the startup file has been set up correctly, these four tabs should be correct for the instru-
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Figure 4.6: Layout of the system menu, achieved by clicking System then Set system path
names

Figure 4.7: Layout of Check files exist warning menu, achieved by clicking Run then Check
files exist
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ment you intend to analyse and for the operating system in which you are running. You
are only allowed to have one each of the INSTRUMENT, BEAM and NORMALISATION
tabs - these cannot be removed, but you can have as many SAMPLE BACKGROUND
tabs as you wish. Hence if you need to run with different INSTRUMENT, BEAM or
NORMALISATION tabs you will have to start separate input files for each configuration.
Two additional types of tabs are possible, namely one or more SAMPLE tabs, and up to
three CONTAINER tabs for each sample. The CONTAINER tabs can only be inserted
after a SAMPLE tab, and they must be specified in the order in which they occur in the
experiment, namely innermost first, outermost last.

SAMPLE, SAMPLE BACKGROUND and CONTAINER tabs can added as required.
To insert a sample or container, simply click on the tab immediately BEFORE where you
want to insert the new tab to highlight it. Then insert either from the Edit menu, or by
typing Ctrl-S, Ctrl-B or Ctrl-C respectively. For the sample this must be inserted after a
SAMPLE BACKGROUND tab or after the last container of the previous SAMPLE. There
is no limit to the number of SAMPLE tabs that can be inserted, but obviously the more
tabs, the slower will be the analysis. If a sample has no container, then simply specify
the sample tab. When starting a new SAMPLE or CONTAINER you will be asked to
specify a name. This name is just used within the GUI to help keep track of samples and
containers.

Fig. 4.8 shows what this should look like. Here there are three samples, only the middle
one of which has a container.

In addition to the tabs, there is an editor panel on the right hand side of the GUI which
shows the current GudrunN Input File exactly as it has been read in. This editor panel is
useful for checking that what is shown in the GUI does indeed appear in the input file. It
can be read into and out of the GUI using the Transfer in and Transfer out options under
the File menu without changing any of the input files. It is possible to edit the GudrunN
Input File directly in the panel, but note that if you do so, it must be first read into the
GUI using the Transfer in option before saving, otherwise any changes not in the GUI will
be overwritten when the GUI is saved to the GudrunN Input File. It should be mostly
straightforward to identify which parts of the GudrunN Input File correspond to in the
GUI as the comments in the Input File are the same as those appearing in the GUI.

4.0.9 GudrunN menus

File menu

This allows you to open and save Gudrun Input Files. It is important that you Save your
current input file BEFORE opening another because no checking is done to see if a file has
been changed. If you fail to save a file, before opening another, any changes will be lost.

In addition to Open, Save and Save As options, there is a Reload option in this menu.
This is so that if at some point you wish to discard any changes you have made without
saving, the original Gudrun Input File can be reloaded again as it was since the last time
it was saved. (Note that it is not necessary to save the Input File before running the
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Figure 4.8: Layout of the GUI after loading three samples. The second sample, MSU silica,
has a container. The first sample is in fact the empty container on its own.
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GudrunN executable since the GUI writes a separate file, Gudrun dcs.dat, directly from
the GUI before running Gudrun.

Edit menu

This allows you to perform the various operations of adding, removing, and renaming SAM-
PLEs, SAMPLE BACKGROUNDs and CONTAINERs. Note that you need to highlight
a particular tab, sometimes requiring two clicks, before these options will work. The menu
also lists the corresponding short cut keys for most of these operations. If you wish to
remove a tab it is better to Cut it rather than Delete it since the former method makes a
copy before deleting, whereas the latter does not. That way if you delete a tab by mistake
it can always be restored with a Paste.

Run menu

The Run menu has several items. The first has already been described, namely Check files
exist. This runs through the GUI and for each filename found checks to see that it exists
in the location specified. Note that the file name is listed slightly differently in GudrunN
compared to GudrunX. In GudrunN a file is listed with its path either relative to the
current input file folder or relative to the folder where the startup file was found: Gudrun
will search for either of these folders for the requested files. In GudrunX on the other hand,
unless a file is found in the current input file folder, the full path to this file will be listed.

The second item in this menu is Write purge file. This brings up a separate box to allow
you to specify the allowed variation in detector performance within each group of detectors,
as specified in Section 3.3. On pressing the Press to write purge det.dat button a file
of that name is created in the current folder, and can be used to Run purge, which is the
next item in this menu.

At that point it is a good idea to check the Command Prompt to be sure that purge det
ran correctly: at the end of lots of output it should say how many good detectors were
found. If any errors occurred, the program will not complete properly and the important
spec.bad file will not be written. It is crucial that this file exists BEFORE attempting
to run GudrunN itself. spec.bad lists all the spectra found in the input file. A 0 means
the detector is good, that is it is within the specified range, a -ve number means it is low
counting, +ve means it is high counting. Generally speaking it is not necessary to run
this check repeatedly as new runs appear, but if you are worried about detector stability
it is a good idea to check the bad detectors regularly: a steadily reducing number of good
detectors may indicate a problem with the detectors or their electronics. Perhaps more
important is to run this check near the beginning of a set of runs so that you are aware
and can get fixed detector problems before you attempt to accumulate data.

The last item in this menu is to run Gudrun itself - actually the program is called
Gudrun dcs. If everything has run correctly up to now, this should execute satisfactorily,
depending on what values are in the various tabs as described below.

Note that when purge det and Gudrun dcs are running (and when Run GudrunX is
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running in GudrunX GUI) the GUI freezes and cannot be accessed. This is to prevent
values being changed while the programs are running. When the GUI becomes free to use
again is your signal that the execution has finished.

Plot menu

This menu has two items. The first produces a new plotting window called Plot Data which
allows you to set up and save a GNUplot plot file. This is described in a separate section
below, 4.2. The second item will simply run GNUplot in the current GudrunN Input File
folder. I will not describe how to use GNUplot here since there is already comprehensive
documentation both in GNUplot itself and on the Internet. For Windows it is important
to use the correct version, so this is distributed with both GudrunN and GudrunX. The
GNUplot window allows you to enter GNUplot commands directly.

System menu

The main item in this menu is the box to enter the system values as already described
in Section 4.0.7 and shown in Fig. 4.6. In addition to the items already described, it is
possible to specify a default folder where the raw diffraction data are stored. This is useful
when running a GudrunN Input File from another machine, but you want to use the raw
data in your own folder.

The bottom line of the System box also allows you to supply a plotting sequence when
plotting multiple groups of detectors. This is so that the groups can be shown (say) in
order of increasing scattering angle.

The second item in this menu allows you to use this default data directory (instead
of the one shown in the INSTRUMENT tab). When this is set a red warning message
appears in the top left of the GUI to remind you of this.

4.0.10 GudrunN GUI tabs

INSTRUMENT tab

The INSTRUMENT tab, Fig. 4.8, allows you to specify a number of parameters for a
particular run. Normally much of this will come from the startup file for a particular
instrument, but some values may need to be adjusted depending on the particular circum-
stances. The ones highlighted are those you should check and pay attention to:-

1. The Instrument name;

2. Where the raw data are stored (meaning the files containing the actual neutron
counts);

3. The type of dataset (currently only ISIS RAW and SAV formats and D4C format are
supported - NEXUS format is being contemplated but is not currently supported.
Note that all the data files for a given GudrunN Input File must be stored in the
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same folder and must have the same format, so it is not possible to mix RAW and
SAV formats for example.);

4. The detector calibration file, (.dat, or .calib. If the latter, then this is strictly a
spectrum calibration file - at ISIS spectrum and detector numbers are not necessarily
the same.);

5. The groups file (.grp, .dat, which describes how the detectors are to be grouped);

6. The deadtime correction parameter file;

7. Spectrum numbers for the incident and transmitted beam monitors (if more than
one monitor is to be included separate their spectrum numbers by spaces);

8. The minimum and maximum wavelength range to calculate the monitor normalisa-
tion for (use 0 and 0 for this range to use point-by-point normalisation - this is the
default);

9. The channel numbers for spike analysis and the spike acceptance factor (these values
are normally not changed. In recent years the occurrence of spikes, caused by sudden
detector noise in particular time channels, has become extremely rare.);

10. The wavelength range to be used in the data analysis - this will vary from instrument
to instrument and may also depend on the sample. At the same time the step in
wavelength at which the corrections will be calculated is also specified on this line.
Normally this is 0.1Å.

11. The number of smooths on the monitor (three-point smoothing) and the vanadium
(top-hat smoothing). These numbers should normally be supplied by the instrument
scientist, but you may need to change for particular samples;

12. The “Subtract single atom scattering” and “Subtract wavelength binned data” boxes
should be left unchecked unless you know what you are doing!

13. The units of the output DCS files and whether the binning is to be linear or loga-
rithmic;

14. The minimum, maximum and step size in the requested output units;

15. Whether you wish to specify particular x-ranges and background factors for specific
groups;

16. The groups acceptance factor (normally 1.0. A value less than this may mean some
groups do not appear in the final merge of groups.), the merge power (normally 4,
this value controls the weighting on Q for estimating the assymptotic level of the
DCS. Hence a value of 4 means the weighting goes as Q4. Currently this scheme
does not work correctly when units other than Q are used.), and whether statistical
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weighting in the merge is to be used - this means each group is weighted by its
relative statistical accuracy when forming the merge. (The alternative is to form the
arithmetic mean of the groups, but this tends to worsen the statistical quality of the
final result, although this is sometimes unavoidable for hydrogenous samples.)

17. The incident flight path in m. This should not be changed unless you know it is
incorrect;

18. The spectrum number for diagnostic files. If this is 0 no diagnostic files will be output.
If it corresponds to a spectrum found in the data files, it will show the analysis step-
by-step as given in sections 3.2, 3.6, 3.7 - 3.9 and 3.10.1 for that particular spectrum.
A comprehensive list of outputs is given in Chapter 5;

19. The file name containing the neutron scattering lengths, total cross sections, and
capture cross sections.

BEAM tab

The BEAM tab, Fig. 4.9 allows you to specify aspects of the incident neutron beam, the
sample geometry, and the scattering detector. In order, you need to specify (or at least
check)

1. The sample geometry (CYLINDRICAL or FLATPLATE);

2. The beam profile, N(x), discussed in Section 3.4.2. Referring to Fig. 3.1, N(x)
is the number of neutrons per unit width measured at position x in a direction at
right angles to the direction of the beam. For the corrections programs contained in
Gudrun, the value of x is measured from the centre of the sample, with +ve x along
a direction at right angles to the incident beam and to the left when facing away
from the neutron source. For cylindrical sample, the z-aixis will go along the axis of
the cylinder. This beam profile does not need to be normalised since the corrections
programs do this normalisation in any case.

3. The step sizes for the CYLINDRICAL attenuation and multiple scattering corrections
and the number of slices for the FLATPLATE multiple scattering correction. Note
there is no step size for the flat plate attenuation correction because this correction
is analytic. IMPORTANT NOTE: for cylindrical samples it is necessary to set the
attenuation step size to approximately 1/25th of the outer radius of the sample and
the multiple scattering step size to about 1/5th of the outer radius. These values
are not set automatically, but if they are too large, then teh calculated corrections
will not be accurate, and if they are too small, the programs will print a message
to say some array specifier is out of bounds, and not calculate any corrections. In
GudrunX GUI these step sizes are set automatically by the program, but this has not
been implemented so far within Gudrun. For the FLATPLATE multiple scattering
corrections setting the number of slices to 100 seems to give stable results in all cases.
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4. The step in angle at which to calculate the corrections [degrees]. Note the GUI has
an error here - the number input is NOT the number scattering angles at which to
calculate the corrections!

5. The edges of the incident beam. These are defined as a1 and b1 in Fig. 3.1 and
are measured from the centre of the sample. Also required are the top and bottom
positions where the incident beam intersects the sample along its axis if cylindrical.
These positions are also measured from the centre of the sample. Note that these
values ONLY affect the calculation of the cylindrical corrections, since the flat plate
corrections assume the sample is larger than the beam;

6. The edges of the scattered beam (assumed parallel) as defined in Fig. 3.1. These
values might be useful where there is heavy collimation on the scattered beam which
restricts the view of the sample by the detector.

7. The filename containing the incident beam spectrum parameters;

8. A background factor which will be applied to the background for all detectors, except
where it has been changed at step 15 in Section 4.0.10.

NORMALISATION tab

The word “normalisation” here in GudrunN refers to the process of putting the data on an
absolute scale of cross section per unit solid angle, as described in Section 3.8.1. For this a
sample of vanadium of the same geometry as the sample is normally used due to its large
and flat incoherent differential cross section. For GudrunN to work correctly it is expecting
the vanadium to have the same geometry as the sample, i.e. cylindrical vanadium with
cylindrical sample, flat plate vanadium with flate plate sample. In principle it is possible
to mix the two, but GudrunN will not recognise a flat plate vanadium with a cylindrical
sample because the units of the calculated cross sections are different. For cylindrical
samples the cross section is the actual cross section per steradian, expressed in the units
of cm2 per sr, but for flat plate samples the cross section calculated in the corrections
programs is per unit area of beam, and so is dimensionless. It is possible to fool the
program into thinking the vanadium is cylindrical (for example) when in fact it was flat
plate, by using a “normalisation” factor described in the SAMPLE tab, however this will
not give an absolute scale and the appropriate factor can only be guessed at best.

The NORMALISATION tab allows you to

1. Define the data files for the vanadium data and its corresponding background files.
Note that in the past multiple periods have been used on SANDALS so there is the
option of specifying the period number for these data files, but normally the period
number is 1. Data files are added to the windows by pressing Add, then selecting the
required files from the window that pops up. If no files are shown, it probably means
the data file directory in the INSTRUMENT tab has not been set correctly, or else,
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Figure 4.9: Layout of the BEAM tab in GudrunGUI
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if the data file directory is being accessed across a network, there is a delay in the
network. Data files are removed by first highlighting those to be removed, then press
Remove. The normalisation background is normally a run with the beam on but no
sample or sample environment at the sample position, as explained in Section 3.7.

2. The composition, dimensions and density of the vanadium. Note that when typing
in the composition window it is important to press “enter” when finished in a box,
or use the arrow keys to move to another box, otherwise the typed value may not be
transferred correctly to the GudrunN Input File.

3. The temperature for the Placzek (inelasticity) correction on the vanadium. If this is
zero, then no inelasticity correction on the vanadium will be performed.

4. Whether the vanadium total cross section is to be obtained from cross-section tables,
the transmission monitor (if it exists) or read from a file. Normally the table values
are sufficient for this purpose.

5. Finally it possible to specify either a differential cross section (DCS) file for the
vanadium or else specify a list of Bragg peaks, (.bragg file, for vanadium as a function
of Q with their (Gaussian) heights and widths. Normally the weak Bragg peaks from
vanadium are not visible in data with high signal to noise ratio, but for samples with
weak coherent signal, such as hydrogenous samples removing these peaks prior to
normalisation can be crucial to obtaining useful data.

SAMPLE BACKGROUND tab

As already explained you can have as many SAMPLE BACKGROUNDs as you wish: for
any given SAMPLE the one used will be that closest and prior to that sample in the
list of tabs. The sample background may be different from the normalisation background
since the latter is normally the background with nothing in the beam, while the sample
background may include the background from a furnace or cryostat which surrounds the
sample. It is for this reason that multiple sample backgrounds are allowed, since one sample
may be measured in a container in a cryostat, while another may have been measured just
in its container. The cryostat could have been treated as a second container, but if it is
not strongly scattering it is probably sufficient to treat it simply as a background.

The only parameters for the SAMPLE BACKGROUND tab are the data files which
store the data for this background, Fig. 4.0.10.

SAMPLE tab

The top half of the SAMPLE tab, Fig. 4.12, down to the cross section source specification,
is almost identical to the top half of the NORMALISATION tab, with two exceptions:-

1. Obviously there is no sample background specified here since this is already specified
in the SAMPLE BACKGROUND tab.
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Figure 4.10: Layout of the NORMALISATION tab in GudrunGUI

Figure 4.11: Layout of the SAMPLE BACKGROUND tab in GudrunGUI



CHAPTER 4. RUNNING GUDRUN 97

2. Below the data files box there are two extra tick boxes, one to force each run file
to be analysed separately, and the other to avoid analysing this sample altogether.
The first option is useful if you want to compare separate runs on the same sample,
looking for stability or changes of structure with time. The second allows you to have
multiple samples in the GUI, but you do not have to analyse all of them everytime
you run Gudrun. Only those that are ticked will be analysed.

Neither of these tick boxes will affect what is saved to the GudrunN Input File, but note
that in addition to writing the file specified at the top of the frame, the GUI writes a
second file, called Gudrun dcs.dat which is the file actually input into Gudrun dcs. It is
this second file that contains the schedule of samples and containers that are actually put
through the analysis.

Below this main section comes the details of other parameters that can be specified for
particular samples, Fig. 4.13. Reading from left to right, top to bottom:

1. The sample “tweak” factor. (Horrible name!) This is really the invert of the packing
fraction: a packing fraction of 0.5 would translate to a tweak factor of 2, and so on.
Basically this factor was invented to correct for the fact that with powdered samples
it is not possible to fill the container completely, or for liquids in awkward shaped
containers such as those made from fused silica, it was not always possible to know
the sample dimensions precisely. The sample tweak factor is to be distinguished from
the container tweak factor because it is used to modify the specified number density
(which is assumed to be that for the sample with 100% packing) by dividing that
density by the tweak factor. It is this modified density that is used to calculate the
attenuation and multiple scattering corrections, and the number of atoms in the beam
for the final normalisation of the cross section to b/sr/atom, Section 3.9. However
if a Fourier transform is done on the data, then it is the unmodified density that is
used, since this corresponds to the local density.

2. Normalisation correction factor. This was mentioned in the NORMALISATION tab
and is used (very rarely in fact) to correct for the fact that the normalisation geometry
may not be consistent with that of the sample.

3. The final normalisation to either nothing, 〈b〉2, or 〈b2〉.

4. The top hat width for removing the single atom background scattering, see Section
3.10.3, prior to Fourier transform. If this value is zero, no background is subtracted
and no Fourier transform is performed. If the value is negative, the final differential
cross section is averaged from thatQ value to the maximum Q value, and that average
level subtracted from the data prior to Fourier transform. The top hat convolution
will only be performed if there is linear binning and the units are Q, but the constant
subtraction and subsequent Fourier transform will be performed with both log and
linear binning. However the data units always have to be Q.
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5. There is a choice of h(r) or d(r) = 4πρrh(r) if the Fourier transform is being per-
formed. These outputs are given alternative extensions .mgor01 and .mdor01 re-
spectively.

6. The minimum radius used for cleaning up the Fourier transform. This is the value of
rmin as described in Section 3.10.3, equation (3.62).

7. The maximum and step in radius for the Fourier transform are specified.

8. The broadening in r-space is defined as described in Section 3.10.4.

9. The minimum and maximum wavelength of any resonances that are to be avoided
when merging the detectors are specified. Up to 5 pairs of values are allowed for each
sample.

10. Up to 5 pairs of exponential amplitudes and decay constants can be specified. This
is mainly used with hydrogenous samples to subtract the residual low Q behaviour
which is not removed by the top hat function. The formula for this background
function in Q-space is B(Q) =

∑

i Ai exp (−Q/γi), where the sum is over the number
of exponentials specified, Ai is the amplitude of each exponential, and γi is the decay
constant for each exponential. The amplitudes Ai can have both positive and negative
values.

11. The last line of this tab should be ignored at this stage as it is related to work in
progress, and may eventually disappear.

CONTAINER tab

As already mentioned each sample can have up to three containers, listed in the order
innermost to outermost. The format is very similar to the SAMPLE tab down to the cross
section specification, Fig. 4.14, but there are no tick boxes since whether this container is
included or not is governed by the directions given in the preceding SAMPLE tab. There
is just one extra factor, a container tweak factor, normally unity, which is used to adjust
the container scattering up or down in cases where normal application of the attenuation
correction either unde- or over-subtracts the container scattering.

Note that neither in the GUI nor when the corrections are calculated in Gudrun dcs
is any check done that the dimensions of each container are consistent with the sample
and other containers, that is there are no overlaps. The corrections programs will produce
results even if there are overlaps between containers or with the sample, but corrections
will of course be incorrect in that case! Hence this check needs to be done by the user
before running the analysis.
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Figure 4.12: Layout of the top half of the SAMPLE tab in GudrunGUI

Figure 4.13: Layout of the bottom half of the SAMPLE tab in GudrunGUI
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Figure 4.14: Layout of the CONTAINER tab in GudrunGUI
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Figure 4.15: Appearance of the GudrunX bin folder

4.1 Running GudrunX from the GUI

4.1.1 Files you need to run GudrunX

GudrunX should be supplied as part of the Gudrun#.zip file as described in section 4.
Fig. 4.4 shows what this folder should look like.

The folder bin contains the Fortran executables that will be used. Fig. 4.15 shows
what this folder should contain. Since these executables are the ones that can change from
time to time, probably it is a good idea not to store any of your own run files in this folder
since the entire folder will be updated with new versions. The executables with extension
.ex or .exe are the Windows executables, whereas those with no extension are the Linux
versions. Since these are not compiled as static executables under Linux it means they will
probably need to be recompiled for each operating system on which they run. Contact the
authors for information on how to do this.

4.1.2 Starting the GudrunX GUI

The GudrunX GUI is started by going to the GudrunX folder and either by double click-
ing on gudrunx.bat (in Windows) or running the corresponding shell script, gudrunx.sh
in Linux. When it opens it should look like Fig. 4.16. Note that there are INSTRUMENT,
BEAM, NORMALISATION and SAMPLE BACKGROUND tabs as before, but their for-
mats are often different from the corresponding neutron versions.

Currently a major difference between GudrunN and GudrunX is that in GudrunN all
the processing is done in separate, Fortran compiled, executables, namely purge det.ex
and Gudrun dcs.ex. In GudrunX most of the processing is done in the Java routines
behind the GudrunX GUI. The exceptions are the routine to calculate the attenuation and
multiple scattering corrections, calc corrsx in out.exe and the routine to calculate the
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Figure 4.16: Layout of the GudrunX GUI when it starts. If the start up file has loaded
correctly, then four tabs should be displayed, INSTRUMENT, BEAM, NORMALISATION
and SAMPLE BACKGROUND.



CHAPTER 4. RUNNING GUDRUN 103

Figure 4.17: Layout of the GudrunX System box, achieved by clicking System then Set
system path names

Fourier transform, tophatsub.exe. These latter two routines are Fortran compiled and
are run by an external call from Java. Hence these need to be specified correctly in the
System box, Fig. 4.17 if Java is to be able to find them when it wants to them run.

4.1.3 Features of the GudrunX GUI and menus

These are pretty much identical to those already described in Sections 4.0.8 so will not be
repeated here. Equally the menus are almost identical to GudrunGUI, Section 4.0.9. The
only exception is the Run menu which has only two items, namely the Check files exist
item and the Run GudrunX item. There is currently no Purge option with GudrunX. Note
also that GudrunX will require a different GudrunGUI.syspar file compared to GudrunN
because the executables are different.

Fig. 4.18 shows what this should look like once a sample and its container are loaded.
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Figure 4.18: Layout of the GudrunX GUI after loading a sample with its container.
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Figure 4.19: Layout of the GudrunX INSTRUMENT tab.

4.1.4 GudrunX GUI tabs

INSTRUMENT tab

The first two lines of the INSTRUMENT tab in GudrunX, Fig. 4.19, are exactly the same
as for GudrunGUI. Currently there are two types of data format supported. These are
.xrdml, which is the standard PANalytical XML data file format, or .xye or .dat (you can
have one or the other but not both) which is x,y,e format, with x the scattering angle,
y the intensity (in arbitrary units) and e the RMS error on the value of y. These latter
extensions were set up for synchrotron data.

Below these lines are:

1. The names of the total cross section, form factor coefficients, and Compton scattering
coefficients files. These are normally stored in the directory where GudrunX begins.
They have a particular format that is recognised by the GUI.

2. The lowest, highest and step in Q values for the output files

3. The maximum and step in r values for the output g(r), if required.

BEAM tab

As with the INSTRUMENT tab, the first part of the BEAM tab in GudrunX, Fig. 4.20 is
identical to that in GudrunGUI. A notable difference however is that the GUI will set the
attenuation and multiple scattering step sizes based on the outer dimension of the sample
so there is no need to worry about these values in GudrunX.

The remaining part of this tab defines the bremsstrahlung spectrum. This is defined
according to equation (3.50, and can be specified either as a file, containing entries in the
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Figure 4.20: Layout of the GudrunX BEAM tab.

order Ex(MeV ), IBr (Ex), or else the parameters to this intensity equation can be specified
in the tab itself, in hopefully an obvious format. To use the values in the GUI it is necessary
to give the filename for the bremsstrahlung spectrum as an asterisk, as shown here. The
target material and tube voltage are obtained from the SAMPLE tab, see below.

NORMALISATION tab

As already mentioned there is no equivalent to the vanadium sample in an x-ray experiment,
so the NORMALISATION tab, Fig. 4.21, in GudrunX simply specifies what type of
normalisation is to be performed and how the data are to be calibrated to put them on an
absolute cross section scale. The items to be specified are:

1. The angle ρ from equation (3.47). This is normally zero unless you have good reason
to believe otherwise.

2. The type of normalisation of the data required. This was specified in the SAMPLE
tab in GudrunGUI.

3. The power for the Breit-Dirac factor, equation 2.57 in the Klein-Nishina formula,
equation 2.56. Strictly speaking this power should be 2, according to equation 2.56,
GudrunX gives the option of changing this power to improve the subtraction of the
single atom scattering. The power mostly affects the higher angle part of the scattered
spectrum. This might be a reasonable thing to do if the detector is not the “black”
detector that is traditionally assumed.
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Figure 4.21: Layout of the GudrunX NORMALISATION tab.

4. If using the Krogh-Moe and Norman method for data calibration, you can specify an
overlap factor, δ, as desctibed in Section 3.8.2, equation (3.35.

5. If using calibration to the single atom scattering, the program simply forms the
average value of the data in the range from half Qmax to Qmax and the same average
value of the single atom scattering over the same range of Q values, and uses the
ratio of these two numbers as the data calibration factor. Generally speaking this
method is less satisfactory than the Krogh-Moe and Norman method.

SAMPLE BACKGROUND tab

This is very similar to the GudrunN SAMPLE BACKGROUND tab, except that some
new (non-editable) boxes appear which give details of the x-ray tube and angles when the
data have been read in. The data can be read in at any time by pressing the Read data
button. Currently only XRDml format files are supported - as generated by PANalytical
software, but a simpler x,y format would be easy to implement.

IMPORTANT NOTE: There is currently a bug in the software that when specifying
the data files it is important that the first file covers the lowest scattering angles. If it
appears later in the sequence it seems that the data may not be read correctly.

There is also the option to specify a sample background factor if so required. This is
in place of the background factor that appeared in the BEAM tab in GudrunGUI.

SAMPLE tab

The top half of the SAMPLE tab in GudrunX, Fig. 4.23, is very similar to that found in
GudrunGUI, with the changes to the data file specification area as already noted for the
SAMPLE BACKGROUND tab. Also note that you can tick the Run files separately box
and enable the cross-section filename button, but these do not currently do anything, and
the program will proceed as if they had been left unchecked. The sample tweak factor is
used in exactly the same way as for GudrunN.
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Figure 4.22: Layout of the GudrunX SAMPLE BACKGROUND tab.

Figure 4.23: Layout of the top half of the GudrunX SAMPLE tab.
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The bottom half, Fig. 4.24, however has some differences, namely:

1. Fluorescence counts. As explained in Section 3.10.2, this is subtracted from the sam-
ple data prior to any processing. If fluorescence is present in the sample, then the
“Specify Fluorescence Levels” needs to be pressed and a separate table will appear
where the fluorescence energies and relative weights for each element can be set.
In addition it is necessary to set the overall relative level of fluorescence scattering
compared to the total scattering from the sample. The correct value for this level
to subtract can only be determined by trial and error. Subtract too much and the
data will have negative intensity in some regions, which of course is physically im-
possible. Subtract too little and you will have a hard time fitting the single atom
scattering to the data. The fluorescence scattering, equation 3.53, is time consuming
to evaluate, so if the only thing that is changed between each run of GudrunX is the
overall fluorescence level it is not necessary to recalculate the fluorescence scattering,
so normally the “Force fluorescence calculation” box is left unchecked. However if
you want to force this calculation you can check the box. If either the individual
atom fluorescence energies or weights are changed, then the fluorescence scattering
is automatically recalculated from scratch.

2. Factor to modify multiple scattering. While it is often assumed multiple scattering
in an x-ray experiment is a small component, calculations with GudrunX at high
energies suggest this is not so. However given the very large change in x-ray scattering
cross section with angle plus the effect of the polarisation correction, it is not clear
that the isotropic approximation used in the correction programs is really valid. (This
approximation assumes that for the purposes of calculating the multiple scattering
the once scattered x-rays radiate isotropically with scattering angle, an assumption
which is clearly not true in this case.) Hence you have the option of multiplying
the multiple scattering above or below its calculated level, to try to improve the
behaviour of the large Q data after subtracting the single atom scattering.

3. Incident beam polarisation factor. This is φ the polarisation factor defined in equation
(3.48.

4. Compton scattering factor. As for the muliple scattering, you are allowed to multiply
the Compton scattering by the specified value so help improve the subtraction of the
single atom scattering, if necessary.

5. The bremsstrahlung amplitude and the number of bremsstrahlung iterations. The
deconvolution of the differential cross section from the bremsstrahlung spectrum has
to be performed iteratively, as described in Section 3.10.2, and generally 10 iterations
is sufficient to get a good deconvolution. The bremsstrahlung amplitude defines that
fraction of the overall intensity that occurs as bremsstrahlung radiation. Normally a
value of ∼ 0.4 works well for the Ag tube on PANalytical XRD, if there seems to be
a problem this relative amplitude can be modified if needed.
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Figure 4.24: Layout of the bottom half of the GudrunX SAMPLE tab.

6. The sample calibration factor is determined by the program using one of the nor-
malising options specified in the NORMALISATION tab, so does not need to be
set.

7. The number of iterations required to calculate this calibration is normally in the
region of 3-4, but if the number of iterations is set to zero, the program will use the
value shown in the tab. Hence in that case the user can set their own calibration
constant.

8. The top hat width for removing the single atom background scattering, see Section
3.10.3, prior to Fourier transform. If this value is zero, no background is subtracted
and no Fourier transform is performed. The option of using a negative value for the
top hat width is currently not available within GudrunX.

9. The minimum radius used for cleaning up the Fourier transform. This is the value of
rmin as described in Section 3.10.3, equation (3.62).

10. The broadening in r-space is defined as described in Section 3.10.4. Note that in
GudrunX the maximum r value and step size are defined in the INSTRUMENT tab
rather than in the SAMPLE tab.

CONTAINER tab

This follows the CONTAINER tab in GudrunN closely, with the same changes in the data
files area as already noted for the SAMPLE BACKGROUND and SAMPLE.

4.2 Plotting options

Chapter 5 will indicate the files that are output by GudrunN and GudrunX. These include
diagnostic files as well as output files containing the analysed data. Most likely you will
use your own method of presenting these data in a form ready for publication, but both
GUIs provide a simple interface to generate GNUplot plot files to be used to interogate the
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Figure 4.25: The table used to set the fluorescence levels.

data and diagnostic files produced. In fact with the postscript option GNUplot can easily
produce publication quality graphs, so this is normally my preferred method of graphing
data, but others may not agree!...

The simplest way to do this is to start GNUplot from the Plot menu: this opens
GNUplot in the current input file folder and you can enter commands by hand. However
if plotting lots of files, this can become tedious, so now there is a separate plot dialogue to
allow you some flexibility in the way the plots are produced. The same dialogue will allow
you save and reload a previous list of plot commands. The GNUplot commands are shown
in files with extension .plt, while the saved plotting commands that can be read back into
the plot dialogue are stored in a file with extensinn .aux.

4.2.1 Plot dialogue

The plot dialogue is shown in Fig. 4.26 and is started by pressing Plot, then Generate
GNUplot plotting file.

Adding files to and removing files from the Plot dialogue

On the lower right hand side of the dialogue is a text box with the label “Extension(s) to
search for”. This is useful when the data analysis folder has lots of files in it. By typing in
this box you can select which files you want to list. If the specified extension is preceded
by a dot, then only files of that specific extension will be listed, while without the dot, files
with extensions that contain the typed text will be listed. Fig. 4.27 shows what happens
when you type dcs in this box, then press Add file. Finally Fig. 4.28 shows what it looks
like after the file has been selected.

Each line in the list of files has several parameters to be assigned.

1. The filename is the first: this can be changed either by typing in the filename box or
pressing the Browse button.
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Figure 4.26: Layout of the Plot dialogue. In this view no plotting files have been inserted
so far.
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Figure 4.27: Layout of the Plot dialogue. In this view the Add file button has been pressed
after typing “dcs” in the extension box.
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Figure 4.28: Layout of the Plot dialogue. In this view the Add file button has been pressed
after typing “dcs” in the extension box, and a file has been selected (by pressing Select in
the file selection dialogue).
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2. The filename is followed by the Group number. For files with multiple groups, such
as the .dcs01 files from Gudrun, each group occurs as a pair of columns, intensity
versus root mean square deviation on this intensity. The left most column is the
x-scale (e.g. Q, wavelength, energy, d-spacing, or TOF. Hence group 2 for example
would correspond to columns 4 and 5 in the .dcs01 file.

3. Following the Group number, you have the option to plot the data as a line or as
points. The type of line or point is specified in the next text box, Line type. The
line colour can also be specified in the box Line colour.

4. Next in this line is a box to specify the offset of this curve from the previous curve (if
there is more than one. If a * is given, then the offset will be generated automatically
from the value of Default y-spacing further down the box. A value of 0 for the spacing
is normally assigned to the first file of the list.

5. The next box gives this line a label. A * will indicate a default label will be generated
if required, while if the box contains nothing, no label will be generated. Note that
labels will only be plotted if specifically asked to do so if the Labels on graph? box
is checked.

6. Finally there is tick box at the end of the line to signal you want this line deleted
when the Delete files button at the bottom of the dialogue is pressed.

If you press Add file again it will add another line to the list of files which will be a
carbon copy of the previous line, except that the line colour will be incremented by 1 (to
give a different colour), and, if the Group plotting sequence in the System path names box,
Fig. 4.6, has been given a list of group numbers, the next group number appearing in
this sequence will be set for the next file added. If you don’t want these numbers you can
always delete the Group plotting sequence or else simply edit the Group number box.

Files can be removed from the list by ticking the Remove box on the right hand side,
then pressing Remove files at the bottom of the dialogue. Alternatively you can delete all
files by pressing the Remove all files button.

Other features of the Plot dialogue

Below the list of files to plot there are a number of additional options which control the
appearance of the plot. Mostly these are self explanatory. If both of either the x or y limits
are zero, then GNUplot will use the full range of data found in the plotting files. If only
one of the limits is zero, it will set that limit as zero, not the minimum x value in the file.

Other buttons to note are:-

1. The Plot button instigates the actual plotting, depending what values have been set
in the Plot dialogue. To do this it uses the command given on the Full path for
GNUplot plot command line in the System box. Note that the file actually input to
GNUplot is called GNUplot.plt.
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2. The Set all filenames same as first button will do exactly that, but it won’t change
the filename extensions, assignment of group numbers, line types and colour, and the
other parameters on each line.

3. The Set all extensions same as first button will do exactly that, but it won’t change
the filenames themselves, nor assignment of group numbers, line types and colour,
and the other parameters on each line.

4. The Postscript output? check box will produce an encapsulated postscript file if
checked, but there will be no corresponding graphic window (although in some ver-
sions a command prompt window may appear - this should be closed if it does
appear).

5. Plot files can be saved and opened with the corresponding buttons at the bottom of
the Plot dialogue. This is useful if you want to revert to a previous plot and change
it in some way.

6. Finally the Close button will close the Plot dialogue window, but will not erase its
contents, so that if you open it again it will come up looking as it was when you last
closed it.

4.2.2 Plotting problems

When the Plot button is pressed then a GNUplot graph window should appear with the
required graph on it. If it does not, it almost certainly means there is some problem with
the command used to start GNUplot, e.g. the executable does not exist or is not in the
path specified. Sometimes the problem can be simple in that an input file directory (found
on the INSTRUMENT tab) must be specified in order for GNUplot to know where to start.
This can happen if you are using the GUI simply to plot data without running any actual
data analysis.

The easiest thing to do in case problems occur is open a terminal or command prompt
and go to the folder where the current input file is stored, and practice the GNUplot
plot command, such as that found in the file rungnuplotplot.bat (for Windows) or file
rungnuplotplot.sh (for Linux). If that works in a command prompt, it should work from
the GUI, provided the command is typed correctly in the System box. In Windows for
example the command might be:

C:\GudrunX\gnuplot\binary\wgnuplot.exe GNUplot.plt -
This command tells the terminal to start GNUplot in the current folder and load the

file GNUplot.plt. The hyphen at the end tells GNUplot to pause after plotting the file
rather than closing immediately. This allows you to inspect the plot after it has been plot.
You then have to close the plot window (and any associated terminal window) manually.

Occasionally it will happen that the graphics screen just flashes when you press Plot
then immediately disappears again. This is almost certainly because there are no files to
plot, or the requested Group number does not exist in the file specified, or an older version
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of GNUplot is being run. If after inspection you cannot figure out what is wrong, start
GNUplot from the Plot menu, and then type: “call ‘GNUplot.plt”’. This will run the
plot file, but not delete the GNUplot command prompt so that you can hopefully see what
is wrong with your plot file. Usually GNUplot will give a message indicating which part
of the plotting script it doesn’t understand.

4.3 Problems running the GUIs

Normally, provided Java is correctly installed on your machine, you should not encounter
problems starting the GUI. In recent editions of Windows there seems to be some reluctance
to allow Java to install the correct path, so that when you type: “Java” or “Java -version”
in a command prompt, the command is not recognised. If this happens you will need to
find the path to your installed version of Java. Normally it can be found in the Program
Files folder on a Windows system. So instead of typing simply “Java” as above, you would
need to type something like:-

“C:\Program Files\Java\jre6\bin\java”
This command would have to replace the Java command in the Windows batch file

that starts the GUI, usually GudrunGUI.bat.
For users running on European computers, a comma is used in place of a period (full

stop) to signify the decimal point. This can throw off reading the data into the GUI. To
avoid this problem insert the following qualifier after the Java command:

“Java -Duser.language=en -jar ...”
Having got the GUI started however is not necessarily the end of the problems, since it

is necessary to load the correct Gudrun.syspar file. There are normally two versions of
this file in the directory containing the GudrunGUI.bat files, one for Windows and one for
Linux. The .bat or shell script .sh file first copies the corresponding .syspar file over to
Gudrun.syspar, then runs the GUI. When the GUI is closed, the Gudrun.syspar file
is copied back to its original file, in case any changes have been made. However this does
not ensure the values in these files are correct, since the pathnames on the current system
may be different from those assumed in the .syspar file.

If this happens, the only thing to be done is to edit the appropriate .syspar file and
correct the path names and commands as necessary.

Finally, having got the GUI started with the correct .syspar file, it is possible the
specified startup file is corrupt and will need to be edited. This is easier, since if the
GUI is operating correctly it can be used to edit or create a new startup file with the
current settings, then save to the folder specified in the .syspar file. Normally the startup
file will have the four tabs INSTRUMENT, BEAM, NORMALISATION and SAMPLE
BACKGROUND defined, but of course it can contain any number of SAMPLES and
CONTAINERS as well.

Unfortunately, if Java hits an error it prints a long series of error messages, only the first
few of which give useful information. These can be found in the command prompt which
opens when GudrunGUI.bat or GudrunX.bat are started. However that information
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is quite important since it tells you exactly at which line in the program the error occurred.
Based on what the error message says, it is often easy to diagnose what has gone wrong,
but for this you might need help from one of us at ISIS.



Chapter 5

Outputs

The purpose of this chapter is to help you understand the large number of files that are
produced when Gudrun and GudrunX run. The majority of the output files take their
name from the first data file in the SAMPLE tab, or, in the case of diagnostic files, from
the corresponding data file. In GudrunX if this name has spaces in it, the spaces are
replaced by underscores, .

5.1 Output files produced by Gudrun

Table 5.1: Output files produced by Gudrun. A * signi-
fies the first part of the file name can vary from run to
run.

File name Description

*.dcs01 Gives the extracted differential scattering cross section
for each detector group as a function of Q. These
data have had no post processing done on them.

*.dcsd01 Same as for .dcs01 but when the units are d-spacing.

*.dcse01 Same as for .dcs01 but when the
units are energy (meV).

*.dcst01 Same as for .dcs01 but when the units are time-of-flight.

*.dcsw01 Same as for .dcs01 but when the units are wavelength.

*.int01 Gives the extracted differential scattering cross section
for each detector group as a function of Q IF the
Subtract single atom scattering box is checked in
the INSTRUMENT tab. They will have had the
estimated single atom scattering subtracted.

119
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*.mdcs01 Gives the merged differential scattering cross
section AFTER removing any backgrounds, such
as those generated by the Top Hat function.

*.mdcsd01 Same as for .mdcs01 but when the units are d-spacing.

*.mdcse01 Same as for .mdcs01 but when the units are energy.

*.mdcst01 Same as for .mdcs01 but when the
units are time-of-flight.

*.mdcsw01 Same as for .mdcs01 but when the
units are wavelength.

*.mint01 Gives the merge differential scattering cross section
AFTER post processing using the Top Hat function
and deconvoluting the function in real space,
removing any scattering which gives rise to spurious
structure below r = rmin (see SAMPLE tab). This
only applies when the output units are Q.

*.mgor01 Gives the Fourier transform of .mint01, us-
ing the real space broadening parameters
specified in the SAMPLE tab.

*.mdor01 Gives the function 4πρrh(r) when spec-
ified in the SAMPLE tab.

5.2 Diagnostic files produced by Gudrun

Table 5.2: Diagnostic files produced by Gudrun. Where
a * is shown the first part of the file name can vary from
run to run. This list shows the main files - there are a few
others not listed, but these are mostly not informative on
the operation of the program.

File name Description

deadtime.cor Lists the deadtime constants for each module as
well as the overall detector deadtime constant.

gudrun run par.dat Lists various parameters picked up from the ISIS .raw
file. In particular it shows how the detector numbers
map onto spectrum numbers, how the spectrum
numbers related to detector numbers and how the
detectors are divided into modules, based on their crate
numbers in the Data Acquisition Electronics (DAE).
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gudrun grp.dat Lists the group scattering angles, flight
paths and azimuthal angles, as well as the
group number for each spectrum.

gudrun calib.dat Lists the flight path, scattering angle and
azimuthal angle of each detector

gudrun van tcb.dat Lists the time channel boundaries and widths for
the vanadium and vanadium background data files.
Note that these can be different from those for the
sample, sample background, and container data files.

gudrun sam tcb.dat Lists the time channel boundaries and widths
for the sample, sample background and container
data files. It is assumed all these files have
the same time channel boundaries.

vanadium.soq Shows the model vanadium differential cross section
as derived from the .bragg or .mdcs file in the
NORMALISATION tab, expressed on a Q scale.

*.abs01 The calculated absorption corrections as a function of
wavelength, scattering angle, and where appropriate
azimuthal angle. The wavelengths, then the scattering
angles are listed down the page, while the azimuthanl
angles are listed across the page. If there is no container,
only the As,s is listed. If there is one container,
then As,sc, Ac,sc, and Ac,c are listed. If there are two
containers then As,scf , Ac,scf , Af,scf , and Af,f are listed.
This repeats itself if the sample has three containers.

*.abscor This shows the result of the final absorption
correction after dividing by the number of atoms
in the sample as a function of wavelength. This
file only appears if a diagnostic spectrum has
been specified (INSTRUMENT tab).

*.bad Lists the bad detectors from this run - same as spec.bad

*.bak Shows the result of Fourier transform the
.gr2 data back to Q space.

*.cnt The neutron counts per unit time as read from the
RAW file. This file only appears if a diagnostic
spectrum has been specified (INSTRUMENT tab).

*.gr1 Shows the result of Fourier transforming the data prior
to deconvoluting the top hat function in r space.

*.gr2 Shows the result of deconvoluting the
top hat function in r space.
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*.grp Shows the groups of good detectors for this run.

*.gud Gives a summary of the results from this run, giving
estimations of the scattering level of each group.

*.merge Shows the same data as .premerge after rebinning onto
the final Q scale, for the specified diagnostic spectrum.

*.module Lists the detector module deadtime correc-
tions for the corresponding data file.

*.mul01 The calculated multiple scattering corrections.
For each specified scattering angle the file
shows the neutron wavelength, the calculated
single scattering and the calculated multiple
scattering over the specified wavelength range
as defined in the NORMALISATION tab.

*.mulcor Shows the result of subtracting the multiple
scattering for the specified diagnostic spectrum.

*.mut01 Calculated or measured transmission total cross section
(barns per atom) as a function of neutron wavelength.

*.normmon The scattering data normalised to the monitor
for the specified diagnostic spectrum.

*.normvan For the specified diagnostic spectrum shows
the result of dividing by the smoothed vana-
dium as a function of wavelength.

*.pla01 The calculated Placzek correction for the
specified sample as a function of wavelength
for each specified scattering angle.

*.premerge Shows the result of converting the data
from .abscor onto a Q scale.

*.rat Lists the ratio of counts in this spectrum to counts in the
corresponding vanadium spectrum. Used in purge det.

*.rawmon The monitor counts per unit wavelength
as a function of wavelength.

*.rawtrans The transmission monitor counts per unit
wavelength as a function of wavelength.

*.smo Shows the result of Top Hat smoothing if this has
been invoked from the SAMPLE tab, as a function
of Q. This will be shown for the last group.

*.smomon Shows the smoothed monitor spectrum. This should
overlap the corresponding .rawmon data.
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*.smovan Shows the smoothed vanadium for the
specified diagnostic spectrum.

*.subbak Shows the result of subtracting the back-
ground for the specified diagnostic spectrum
as a function of wavelength.

*.sub Shows the result of subtracting the exponential
background as specified in the SAMPLE tab as a
function of Q. This will be shown for the last group.

*.trans01 Shows the transmission for this sample as
estimated from the transmission monitor
as a function of wavelength.

*.vanbin Shows the merge weighting for the spec-
ified diagnostic spectrum.

*.vancor The vanadium data after correction for the total
scattering differential cross section for the specified
diagnostic spectrum. These are the data that
are put through the vanadium smoothing.

*.vdcsbin Shows the model vanadium differential cross
section for the specified diagnostic spectrum,
as derived from the .vdcscor file, binned onto
the same wavelength scale as the data.

*.vdcscor Shows the model vanadium differential cross section for
the specified diagnostic spectrum, as derived from the
vanadium.soq file, expressed on a wavelength scale.

5.3 Output files produced by GudrunX

Compared to Gudrun, GudrunX produces relatively few output files, and the extensions
are not always the same as Gudrun. For most files the first part of the name is adopted
from the corresponding data file, with any spaces replaced by underscores.

Table 5.3: Output files produced by GudrunX. A * sig-
nifies the first part of the file name can vary from run to
run.

File name Description

*.gofr Gives the Fourier transform of .int01, us-
ing the real space broadening parameters
specified in the SAMPLE tab.
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*.int01 Gives the differential scattering cross section
AFTER post processing using the Top Hat function
and deconvoluting the function in real space,
removing any scattering which gives rise to spurious
structure below r = rmin (see SAMPLE tab).

*.soq Gives the interference differential scattering
cross section AFTER removing the single atom
scattering, but BEFORE any post processing
such as subtracting any backgrounds generated
by the Top Hat function, as a function of Q.

5.4 Diagnostic files produced by GudrunX

There is no Spectrum for diagnostic files to be specified for GudrunX, so the diagnostic
files are simply those produced whenever the program runs.

Table 5.4: Diagnostic files produced by GudrunX. A *
signifies the first part of the file name can vary from run
to run and is normally the first part of the first data file
name for each sample.

File name Description

BeamParameters.txt This lists the information in the BEAM
tab, to be read by the attenuation and
multiple scattering corrections program.

*.abs The calculated absorption corrections as a
function of scattering angle for the specified x-ray
wavelength, as for the .abs01 files in Gudrun.

*.brem Shows the bremsstrahlung spectrum either as input
from the specified file or using the parameters
given in the BEAM and SAMPLE tabs

*.fluor Shows the calculated fluorescence spectrum
calculated as a function of scattering from the
supplied data in the SAMPLE tab.

*.gr1 Shows the result of Fourier transforming
the data prior to deconvoluting the top hat
function in r space in tophatsub.

*.gr2 Shows the result of deconvoluting the top
hat function in r space in tophatsub.
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*.mul The calculated multiple scattering corrections as a
function of scattering angle for the specified x-ray
wavelength. If the sample has containers, the
multiple scattering is listed for these containers beside
the sample multiple scattering for each scattering
angle. As for the .mul01 files in Gudrun, both the
estimated single and multiple scattering are shown.

*.qbak Shows the result of Fourier transform the .gr2
data back to Q space in tophatsub.

*.qbin Rebin of the input data, .soq, onto the
output Q scale in tophatsub.

*.qsmooth Shows the result of Top Hat smoothing if
this has been invoked from the SAMPLE
tab, as a function of Q in tophatsub.

*.qsub Shows the effect of subtracting the .qsmooth
data from the input data in tophatsub.

*.subbak Shows the result of subtracting the background
for the sample and any containers as a func-
tion of scattering angle. There is a pair of
columns for each sample and container.

*.subcan This is the main diagnostic file from GudrunX. It
has 6 groups of data arranged in standard column
format. Leftmost column is the scattering angle,
Group 1 (columns 2 and 3) is the estimated differential
cross section prior to normalisation or subtraction of
the single atom scattering but after subtracting the
bremsstrahlung contribution, Group 2 (columns 4 and
5) is the calculated single atom scattering, Group 3
(columns 6 and 7) shows the single atom scattering
again, UNLESS the data is not being normalised
(NORMALISATION tab) when it shows just the
Compton scattering to be subtracted from the data,
Group 4 (columns 8 and 9) shows the normalisation
to be applied to the data (if no normalisation is
being done this is simply a factor of 1.0), Group 5
(columns 10 and 11) shows the data after subtracting
Group 3 (either the single atom scattering or the
Compton scattering) and dividing by Group 4
normalising factor, Group 6 shows the estimated
bremsstrahlung contribution to the total scattering
- this has already been subtracted from Group 1.
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*.submul Shows the result of subtracting the multiple scattering
for the sample as a function of scattering angle.

*.temp Temporary file produced by tophatsub showing the input
.soq data BEFORE rebinning onto the output Q scale.
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List of neutron resonances

A.1 Neutron resonances in eV

Z Element Resonance
energies (eV)

17 35Cl 400
23 V 170
25 Mn 350
27 Co 140
29 63Cu 600

65Cu 240
30 65Zn 220 450

68Zn 510
31 69Ga 110 350

71Ga 95 300
32 Ge 100 110 200
33 As 46 95 250
34 Se 2.6 210 270
35 Br 35 55
36 Kr 28 41 110
38 Sr 3.5 600
40 Zr 300 700
41 Nb 35 42 95
42 Mo 12 45 70
43 Tc 5.6 20 40
44 Ru 10 15 25
45 Rh 1.2 34 46
46 Pd 3 13 25
47 107Ag 16 40

109Ag 5 30 40
48 Cd 0.18 19 29
49 In 1.5 4 9 12
50 Sn 40 45 65
51 Sb 6 15 21
52 Te 2.3 8.5 25
53 I 20 31
54 Xe 5 9.4 14
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Z Element Resonance
energies (eV)

55 Cs 6 22 50
56 Ba 25 80
57 La 7
59 Pr 85 210
60 Nd 4.3 45 55
61 Pm 5.4 6.9 7.0 16
62 147Sm 3.4 18

149Sm 0.1 0.9 5 9 15
152Sm 8

63 Eu 0.5 1 2.5 3.4
64 Gd 2.1 2.6 2.9 6.3 7
65 Tb 3.3 11
66 Dy 1.7 2.7 3.7
67 Ho 3.9 12.8
68 Er 0.45 0.58 4.4 6 9
69 Tm 3.9 14 17.5
70 Yb 0.6 7.9 13
71 Lu 0.14 2.6 5.2
72 Hf 1.1 2.4
73 Ta 4.3 10.3 14
74 W 4.2 7.6 18.8
75 Re 2.16 4.4
76 Os 6.7 9.0 10.3
77 Ir 0.66 1.3 5.4
78 Pt 12 20
79 Au 4.9 60 80
80 Hg 23 32
81 Tl 240
88 Ra 0.5
90 Th 22 23 60
91 Pa 0.4 5
92 233U 1.8 2.3 6.8

234U 5.2
235U 8.8 11.7 12.4 19.3
236U 5.4
238U 6.67 20.9

93 Np 0.5 1.5
94 238Pu 2.9 10 18

239Pu 0.3 7.8 11
240Pu 1.06 20.5
241Pu 0.3 4.3
242Pu 2.7

95 Am 0.3 0.6 1.3
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A.2 Neutron resonances in Å

Z Element Resonance
wavelength (Å)

17 35Cl 0.014
23 V 0.022
25 Mn 0.015
27 Co 0.024
29 63Cu 0.012

65Cu 0.018
30 65Zn 0.019 0.013

68Zn 0.013
31 69Ga 0.027 0.015

71Ga 0.029 0.017
32 Ge 0.029 0.027 0.020
33 As 0.042 0.029 0.018
34 Se 0.177 0.020 0.017
35 Br 0.048 0.039
36 Kr 0.054 0.045 0.027
38 Sr 0.153 0.012
40 Zr 0.017 0.011
41 Nb 0.048 0.044 0.029
42 Mo 0.083 0.043 0.034
43 Tc 0.121 0.064 0.045
44 Ru 0.090 0.074 0.057
45 Rh 0.261 0.049 0.042
46 Pd 0.165 0.079 0.057
47 107Ag 0.072 0.045

109Ag 0.128 0.052 0.045
48 Cd 0.674 0.066 0.053
49 In 0.234 0.143 0.095 0.083
50 Sn 0.045 0.043 0.035
51 Sb 0.117 0.074 0.062
52 Te 0.189 0.098 0.057
53 I 0.064 0.051
54 Xe 0.128 0.093 0.076
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Z Element Resonance
wavelength (Å)

55 Cs 0.117 0.061 0.040
56 Ba 0.057 0.032
57 La 0.108
59 Pr 0.031 0.020
60 Nd 0.138 0.043 0.039
61 Pm 0.123 0.109 0.108 0.072
62 147Sm 0.155 0.067

149Sm 0.904 0.301 0.128 0.095 0.074
152Sm 0.101

63 Eu 0.404 0.286 0.181 0.155
64 Gd 0.197 0.177 0.168 0.114 0.108
65 Tb 0.157 0.086
66 Dy 0.219 0.174 0.149
67 Ho 0.145 0.080
68 Er 0.426 0.376 0.136 0.117 0.095
69 Tm 0.145 0.076 0.068
70 Yb 0.369 0.102 0.079
71 Lu 0.764 0.177 0.125
72 Hf 0.273 0.185
73 Ta 0.138 0.089 0.076
74 W 0.140 0.104 0.066
75 Re 0.195 0.136
76 Os 0.111 0.095 0.089
77 Ir 0.352 0.251 0.123
78 Pt 0.083 0.064
79 Au 0.129 0.037 0.032
80 Hg 0.060 0.051
81 Tl 0.018
88 Ra 0.404
90 Th 0.061 0.060 0.037
91 Pa 0.452 0.128
92 233U 0.213 0.189 0.110

234U 0.125
235U 0.096 0.084 0.081 0.065
236U 0.123
238U 0.111 0.063

93 Np 0.404 0.234
94 238Pu 0.168 0.090 0.067

239Pu 0.522 0.102 0.086
240Pu 0.278 0.063
241Pu 0.522 0.138
242Pu 0.174

95 Am 0.522 0.369 0.251
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