
Configuring WRF for Maximum
Performance on HECToR

AR Porter

July 2011

 Technical Report
DL-TR-2011-003

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Chadwick Library
Science and Technology Facilities Council
Daresbury Laboratory
Daresbury Science and Innovation Campus
Warrington
WA4 4AD

Tel: +44(0)1925 603397
Fax: +44(0)1925 603779
email: librarydl@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:librarydl@stfc.ac.uk
http://epubs.stfc.ac.uk/

Configuring WRF for Maximum Performance on
HECToR

A. R. Porter,
STFC Daresbury Laboratory, UK

andrew.porter@stfc.ac.uk

June 2010

Contents

1 How to Use this Document 2

2 Introduction 3
2.1 WRF . 3
2.2 Computers Used . 3
2.3 Performance Measurement . 3

3 Results Verification and Visualisation 4

4 Run-time Options 5
4.1 Optimisation of Cache Usage . 5
4.2 Choice of Domain Decomposition . 7

4.2.1 Effect of Domain Size/Shape . 7

5 Compile-time Optimisations 9
5.1 Nesting Domains . 9

6 Input/Output Performance 10
6.1 What if a domain won’t fit into available memory? 12

7 Conclusions 13

A Example job scripts 13

B Scripts for performance analysis 14
B.1 Mean time per model time step . 14
B.2 Time lost to doing I/O . 17

1

References 17

1 How to Use this Document

The heart of this document consists of three sections on how to improve the performance
of WRF; section 4 contains options that can be applied at run time and are therefore
easiest to try, section 5 contains options that can be applied when WRF is compiled and
section 6 contains options related to input/output.

Section 2.3 and Appendix B give information on how to check the performance of
WRF for yourself and section 3 gives information on checking that your changes haven’t
broken anything.

Essentially, we recommend you try the following:

1. Generate a version of your production job that completes in under 20 minutes on the
minimum number of cores that you’d consider running on (i.e. edit the run hours
and run minutes fields of the namelist.input file);

2. Run this short version of your job on varying numbers of cores and select the best
core count — the number of cores on which your job runs fastest while still being
cost effective (there’s little point doubling the number of cores your job uses if that
only makes it run a fraction faster);

3. On that core count, experiment with using > 1 tile per MPI patch (section 4.1);

4. Try changing the way in which the model domain is decomposed across cores (sec-
tion 4.2);

5. Reduce the time lost to writing history data by using I/O quilting (section 6) —
experiment with the number of IO servers to find the optimimum;

6. Compile WRF for mixed-mode with optimising flags on (section 5). Run with one
MPI process per node and four OpenMP threads per process on Phase IIa. On
Phase IIb use two MPI processes per node with 12 OpenMP threads each (see
Appendix A);

7. If your model contains nested domains, add the -DSGIALTIX flag when compiling
WRF (section 5.1);

8. CHECK that your results are sufficiently close to those produced by a default
build/run of WRF before going into production.

Note that WRF v.3.1.1 binaries compiled on Phase IIa of HECToR for both MPI-
only and mixed-mode execution are available in the /work/n02/n02/wrf/bin/ directory
on HECToR.

2

2 Introduction

This document is intended to provide a WRF user on HECToR with information on how
to make their simulations run as quickly as possible while still giving sufficiently correct
results. It is one of the outputs of the dCSE-funded project to optimise the performance
of the Weather Research and Forecast model (WRF) on the Cray XT component of
HECToR. More details may be found in either the project report [5] or Cray User Group
paper [6].

2.1 WRF

WRF versions 3.0.1.1 and 3.1.1 were used for the work on which these guidelines are
based. It is expected that the conclusions will carry through to future releases although
caution may have to be exercised with specific details such as namelist options.

2.2 Computers Used

HECToR is the current (2010) incarnation of the UK’s national academic supercomputing
service. When this project began, the scalar component of HECToR was at Phase I with
each ‘node’ of the Cray XT comprising a single, dual-core AMD 2.6 GHz Opteron chip.
However, HECToR was upgraded to Phase IIa in 2009 with each node comprising a
single, quad-core AMD 2.3 GHz Barcelona chip. (The node interconnect is unchanged
from Phase I). Just as this project was ending, Phase IIb of HECToR became available.
This has compute nodes built from two, 12-core AMD 2.1 GHz Magny-Cours chips while
initially retaining the same interconnect as Phases I and IIa.

For some of the results mentioned in this document we have also used ‘Monte Rosa’
which is a Cray XT5 at the Swiss National Supercomputing centre [1]. Rosa has compute
nodes built from two, six-core AMD Opteron 2.4 GHz Istanbul chips giving 12 cores per
node compared to HECToR Phase IIa’s four. The compute-node interconnect is the same
as that on HECToR. Unless stated otherwise, any results presented in this document were
obtained on Phase IIa of the HECToR Cray XT.

2.3 Performance Measurement

When examining the performance of WRF it is not sufficient simply to examine the total
wall-clock time used by a job. This is because model initialisation can account for a
significant fraction of the time taken by a short (e.g. 10 model minutes) benchmarking
run. It is best therefore to look at the mean time taken to step the whole model for-
wards in time. This information is printed to the rsl.out.0000 file by MPI process zero.
If using nested domains, it is the time taken to step the outermost one. A script to
extract this information and exclude the effects of input/output is available on HECToR
(/work/n02/n02/wrf/bin/analyse times.pl) and is reproduced in Appendix B. That Ap-
pendix also contains information on extracting the time spent by a WRF job on doing

3

Figure 1: The three domains for the ‘Great North Run’ benchmarking configuration.

input/output (I/O).
Performance variability is a fact of life on large, shared machines and can be significant

on HECToR (typically ∼ 10% but can be much larger), especially when doing I/O or
running on a large number (≥ 1024) of cores (when a job is less likely to be mapped to
a contiguous section of physical compute nodes). Therefore, as well as using the script
mentioned above which performs averaging over all of the time-steps executed in a job,
we recommend running the same job at least three times and looking at the mean step
times from all three.

3 Results Verification and Visualisation

When making modifications to the way in which WRF is compiled and/or run, it is crucial
to check that no scientifically-significant changes occur in the simulation results that WRF
produces. It is down to you, the user, and your knowledge of the type of simulation to be
performed to decide which aspects of the results need to be checked.

The effects of the changes described in this document were tested on a six model-hour
run of the ‘Great North Run’ configuration shown in figure 1. The surface-pressure and
surface-temperature fields were used to compare the results produced by binaries compiled
with different compilers and differing degrees of optimisation. In particular, checks were
performed between results from the most optimised binaries and those compiled with flags
that force the compiler to only use math operations that are IEEE compliant.

4

Figure 2: Differences between the ‘Temperature at 2m’ fields for the inner GNR domain
produced by two different builds of WRF doing a six-hour simulation.

Results were compared using the Integrated Data Viewer (IDV) [4] with its ability to
display the difference between two fields. An example of the small differences typically
found is shown in Figure 2 which displays the Temperature at an elevation of two metres
across the inner-most domain of the GNR configuration. Note the scale at the top-right
of the image which shows that all differences are ∼ 0.2 Kelvin.

4 Run-time Options

This section details the options most readily-available to the user since they only involve
changes to the namelist.input file prior to job execution.

4.1 Optimisation of Cache Usage

WRF was written to support mixed-mode execution where each MPI process is further
parallelised across a number of OpenMP threads. This has implications for the way
in which WRF decomposes the model domain. When running in distributed-memory
(dm)/MPI-only mode, the model domain is decomposed into as many rectangular ‘patches’
as there are PEs (i.e. MPI processes) and each patch is assigned to a PE. When running
in mixed (dm+sm)-mode those patches are further decomposed into ‘tiles’ which are then
shared amongst the available OpenMP threads, see figure 3 for an illustration.

Although this decomposition is generated automatically by WRF, the user can control
the number of tiles per patch, even when no OpenMP is being used. Changing the number
of tiles/patch can be used to change the size of the arrays within the computation in order
to make more efficient use of the cache architecture of the processors.

5

Figure 3: Illustration of a domain decomposition within WRF suitable for a mixed-mode
job with six MPI processes, each with eight OpenMP threads. Patches are drawn with
bold, solid lines and tiles with dashed lines.

Figure 4: The percentage reduction in the mean wall-clock time taken to step the model
as a function of the number of tiles used per patch. Results are shown for a variety of PE
counts for the GNR configuration. Lines are guides to the eye.

6

Figure 4 shows the effect on the performance of WRF built in dm mode running
the GNR configuration when the number of tiles per patch is increased. Increasing the
number of tiles has the greatest effect on the lower processing-element (PE) counts when
the patches and thus arrays are at their largest. So we see that using 16 tiles/patch on
a 64-PE job achieves a speed-up of almost 20% whilst the best achieved for the 1024-PE
job is approximately 5% with just four tiles/patch. Note that the optimum number of
tiles for any given job will depend upon the size and shape of the domains used in the
configuration that WRF is running as well as the number of MPI processes: the user must
test with their own configuration in order to determine the optimum number of tiles to
use.

Altering the number of tiles can be done at run time by setting the numtiles member
of the &domains section of the namelist.input file. By default numtiles is set to one when
running in dm mode and to the number of OpenMP threads when running in dm+sm
mode. If the model domains are sufficiently large, the performance of WRF in dm+sm
mode might also be improved by increasing the number of tiles from the default value.

4.2 Choice of Domain Decomposition

Given a number of PEs, n, on which to execute in dm mode WRF will, by default,
select a factorisation nx.ny = n where nx and ny are as close as possible to

√
n. Here,

nx and ny are the horizontal and vertical dimensions of the processor grid on which the
domain is decomposed. The choice of this decomposition can affect the performance of
the simulation since it changes the dimensions of the rectangular patches (and hence of
the arrays) that each PE works on and also changes the length of the boundaries across
which PEs must exchange halo data. Users may explicitly select a decomposition rather
than allowing WRF to set it. This is achieved by setting the nproc x and nproc y fields
in the &domains section of the namelist.input file.

Predicting the effect on performance is complex but it is straightforward to run a few
experiments and select the best domain decomposition for the model to be run. Figure 5
shows the results of doing this for the GNR configuration on 256 and 504 PEs on HECToR
. Although the number of factorisations of 256 is limited, we can still find a case (8× 32)
that improves on the performance of the default decomposition by approximately 10%.
On 504 PEs where the patches are much smaller, the effects are much less dramatic.

4.2.1 Effect of Domain Size/Shape

Since WRF uses the same decomposition for each domain of a nested run, it will scale most
efficiently to higher numbers of cores when all of the nested domains in a configuration
are of the same shape. Otherwise scaling will be limited by PEs having insufficient work
to do on the domain with the shortest extent in a given dimension. Cray staff have found
that a minimum of seven grid points is required in each direction per PE. Beyond this
point, no futher performance improvement is obtained through running WRF on more
cores.

7

Figure 5: The variation in performance of WRF running the GNR configuration on 256
and 504 PEs as the x-y decomposition of the PE grid is varied. Lines are guides to the
eye.

8

5 Compile-time Optimisations

WRF is supplied with its own, interactive ‘configure’ script which seeks to identify the
platform and offer appropriate options. On HECToR which has the Portland Group
(PGI), Pathscale (PS), Gnu and Cray compiler suites installed, this results in approxi-
mately 20 different ways of building WRF. However, the relatively-young Cray compiler
was unable to build WRF and therefore was not an option for this project. This is likely
to change in the future, especially since Cray now own the PS compiler.

Running the configure script generates a configure.wrf text file which stores all of the
configurable compilation options. Once a good configuration has been generated, a copy
of this text file may be taken in order to keep a backup of it. It can also be used as a
starting point for compiling WRF on other computers of similar architecture.

By default, the WRF configure script sets safe compiler optimising flags — i.e. those
that the WRF development team are confident will not significantly alter the results
produced by the code. However, if one is prepared to do some testing, it is possible to
generate a faster-running WRF binary.

Which compiler is best to use depends on what sort of WRF binary you want to pro-
duce; MPI only (dm) or mixed MPI/OpenMP (dm+sm). For dm-mode, the PGI compiler
was found to produce a slightly faster WRF binary than the PS compiler. The default con-
figure.wrf file produced when configuring to use PGI contains commented-out suggestions
for a better set of flags. Taking those as a starting point, we have found the best set of
flags for PGI to be: -O3 -fastsse -Mvect=noaltcode -Msmartalloc -Mprefetch=distance:8
-Mfprel. These did not significantly alter the results obtained for the GNR configura-
tion but you need to test for yourself as changes of compiler, WRF version, and different
configurations and physics options could all affect this.

For dm+sm mode, the PS compiler was found to be best and again, performance can
be improved by editing the configure.wrf file to use additional compiler flags:
-O3 -OPT:Ofast:ro=1:malloc algorithm=1:early intrinsics=ON -LNO:prefetch ahead=8:
full unroll=10.

For machines such as the Cray XT6 with large (12 or more) cores per compute node,
we strongly recommend building WRF in dm+sm mode as it performs significantly better
than the dm-mode version on large core counts (512+). In our tests we have found the
PS compiler to produce the fastest mixed-mode version (using the same optimising flags
as given above). An example job script for running a mixed-mode job on HECToR is
given in Appendix A.

Note that WRF v.3.1.1 binaries built on Phase IIa with the various configurations
described in this section are all available in the /work/n02/n02/wrf/bin directory on
HECToR.

5.1 Nesting Domains

When running configurations involving one or more nested domains we have found that
the process of inter-domain interpolation can become surprisingly time consuming. The

9

culprit is the initialisation of the temporary arrays used in the interpolation. In many cases
this initialisation is unnecessary and can be switched-off at compile time by editing config-
ure.wrf and adding -DSGIALTIX to the line that sets the ARCH LOCAL variable. Doing
so reveals a tiny bug in the code which can be fixed by editing the patch domain rsl lite
routine in WRFV3/external/RSL LITE/module dm.F. You must add ‘alloc space field’
to the line specifying which routines are USE’d from the module domain module:

USE module domain, ONLY : domain, head grid, &
find grid by id, alloc space field

and then re-build. As with the compiler flags, it is essential to check that compiling
WRF with SGIALTIX defined does not alter the results produced for the configuration
of interest.

We found this fix to give a 20–25% improvement in the performance of dm+sm-mode
WRF when running the GNR configuration on 512–2048 cores of HECToR. See the project
report [5] for a plot.

6 Input/Output Performance

Writing (and sometimes reading) data often becomes a bottleneck for high-performance
applications and WRF is no exception The default approach to outputting history data
in WRF is to gather all of the data onto the master PE, reconstruct the whole field and
then write it to disk using the standard, serial netCDF library. The number of bytes
written to disk is then broadcast back to all PEs meaning that all PEs must wait until
the master has completed the write. The time taken to do all of this for each domain is
written to standard output and can be found in the rsl.out.0000 file.

WRF has several different mechanisms available for doing I/O (see the WOMPS
project report for more details [5]) and we recommend that WRF’s so-called ‘I/O quilting’
functionality be used in place of the default. In this case, the user chooses to reserve a
number of PEs purely for doing I/O. These ‘IO servers’ receive data from the remaining
(compute) PEs and deal with writing it to disk while the compute PEs continue number
crunching. The bottleneck now is the sending of data from the compute PEs to the IO
servers and how long this takes depends on how many compute PEs each IO server must
receive data from.

We tested the performance of this functionality on HECToR for the GNR configuration
run on 1024 compute PEs and the results are shown in figure 6. Use of the IO servers
reduces the time ‘lost’ by the compute PEs in writing a single frame of history from 30
to 19 seconds. The optimum number of IO servers in this case is 12 so that there are
approximately 85 compute PEs per IO server.

The number of IO servers to use is set at runtime via the nio tasks per group member
of the &namelist quilt section of the namelist.input file. (The nio groups member must be
left set equal to one.) If the user wishes to preserve the number of PEs actually used for
computation then they will need to add the value of nio tasks per group to the number

10

Figure 6: The mean time ‘lost’ by the compute nodes due to writing a single history frame
for all three domains in the GNR model. WRF was run with 1024 compute PEs plus the
specified number of IO servers.

11

Figure 7: The time ‘lost’ to writing a single frame of history data as the number of cores
used in the WRF job is increased. Each data point represents the mean value obtained
from three separate runs and error bars show the associated standard error. Lines are
guides to the eye.

of PEs being requested in their job script. In order to avoid being charged for un-used
cores, this total number of PEs must remain a multiple of the number of cores per node
(four on Phase IIa of HECToR but 24 on Phase IIb).

6.1 What if a domain won’t fit into available memory?

The current trend in high-performance computing is to seek better performance by adding
more cores to a node. Unfortunately, the amount of memory available per node is not
increasing as rapidly and therefore the net effect is to reduce the amount of memory
available to a single computational core. This, combined with the requirement to run
ever larger models (resulting in increased memory usage), means that increasingly it will
not be possible to gather a whole domain onto a single core for writing to disk.

There are two possible solutions to this problem. The first is to run on under-populated
nodes, thus increasing the amount of memory available per core (although the job will
still be charged for all of the nodes it occupies, irrespective of how many cores are actually
used). The second solution is to use WRF’s Parallel netCDF (pNetCDF) I/O layer in
which every PE writes its portion of the data to disk. This is not an approach which will

12

work well for very large jobs (upwards of 5000 cores) but it is workable — figure 7 shows
the performance obtained with this method for the GNR model on Rosa.

WRF must be built with pNetCDF support included in order to make this functionality
available. The pNetCDF library is not available as a module on HECToR and therefore
must be built manually, e.g.:

cd parallel-netcdf-1.1.1

export CC=cc

export FC=ftn

export MPIF77=$FC

export MPICC=$CC

./configure --enable-fortran

--prefix=/home/n02/<MY_HOME_DIRECTORY>/parallel-netcdf-1.1.1/PGI

make

make install

Once that is done, set the PNETCDF environment variable to the location of the
pNetCDF library (as specified with the –prefix argument to the configure script) before
running the WRF configure script.

Once a WRF binary with pNetCDF support has been built, use of pNetCDF must be
switched on in the namelist.input file. This is achieved by seting the io form * elements
of the &time control section to 11:

io form history = 11
io form restart = 11
io form input = 11
io form boundary = 11

Note that IDV (version 2.3) was found to have trouble opening the CDF2 NetCDF files
produced by pNetCDF. (Version 3.6.2 of the NetCDF library produces CDF1 NetCDF
files.) The ncview [7] tool was used instead.

7 Conclusions

This document has described the main ways in which the performance of the WRF code
may be both measured and improved by the user. These findings are a result of the dCSE
WOMPS project; more detail on all of the issues discussed here may be found in the
project report [5].

A Example job scripts

Below is an example script for running a mixed-mode WRF binary on Phase IIa of HEC-
ToR:

13

#!/bin/bash

Script for running WRF in mixed mode (MPI + OMP) on 32 compute nodes

with one MPI process and 4 OpenMP threads on each.

#PBS -N wrfmixedexe

#PBS -l mppwidth=32

#PBS -l mppnppn=1

#PBS -l mppdepth=4

#PBS -l walltime=00:20:00

#PBS -j oe

#PBS -A n02-weat

This variable should be set to allow the ALPS and the OS scheduler to

assign the task affinity rather than the compiler. If this is not set

then you may see a large negative effect on performance.

export PSC_OMP_AFFINITY=FALSE

cd $PBS_O_WORKDIR

export MPICH_UNEX_BUFFER_SIZE=256M

Set the number of MPI tasks

export NPROC=‘qstat -f $PBS_JOBID | awk ’/mppwidth/ {print $3}’‘

Set the number of MPI tasks per node

export NTASK=‘qstat -f $PBS_JOBID | awk ’/mppnppn/ {print $3}’‘

Set the number of OpenMP threads per node

export OMP_NUM_THREADS=‘qstat -f $PBS_JOBID | awk ’/mppdepth/ {print $3}’‘

aprun -n $NPROC -N $NTASK -d $OMP_NUM_THREADS ./wrf.exe.mixed

On Phase IIb of HECToR there are 24 cores available per node and therefore mppdepth
should be set to 24 in the above script. Experiments on Rosa have indicated that when
the compute node has more than one socket (processor) it is preferable to run a single
MPI process on each. To do this on HECToR IIb set mppnppn = 2 and mppdepth = 12.

B Scripts for performance analysis

B.1 Mean time per model time step

Below is a Perl script that uses AWK to calculate the mean time taken to step each domain
in a WRF run. It takes as input one or more WRF stdout files (e.g. rsl.out.0000). Two
passes are made of the file for each domain; the first to calculate an initial mean and

14

standard deviation and the second to calculate a revised mean, excluding any values that
differ from the initial estimate of the mean by more than twice the standard deviation.
This is done so as to exclude time steps which involve I/O as these take significantly
longer.

Note that the text has been formatted slightly for display here, principally through
the addition of line breaks.

#!/usr/bin/perl

use strict;

if(@ARGV < 1){

print "Usage: analyse_times.pl [-v]

<space-delimited list of wrf stdout files>\n";

exit;

}

my $verbose = 0;

if($ARGV[0] eq "-v"){

$verbose = 1;

shift @ARGV;

}

my $string="";

my $mean =0.0;

my $stdev =0.0;

FILE: foreach my $file (@ARGV){

next FILE unless (-f $file);

if($verbose){

print "====== Processing file ".$file.":\n\n";

}

For models containing up to 3 domains

DOMAIN: for (my $idomain=1;$idomain<4;$idomain++){

Sum the time (and the time squared) taken for each timestep

of this domain

$string=‘awk ’BEGIN{first1=0;};

/on domain $idomain:/{

15

Skip the first time-step as it includes

initialisation

if(first1==0){

first1=1;

}else{

tot=tot+\$9;totsq+=\$9*\$9;

cnt++;

}

};

END{if(cnt>0){

avg=tot/cnt;

stdev=sqrt(totsq/cnt - avg*avg);

print avg, stdev;

}else{

print "ERROR ERROR";

}

};’ $file‘;

next DOMAIN if(index($string, "ERROR") > -1);

Extract the initial mean and standard deviation from the string

produced by the awk script

($mean, $stdev) = split(/\s+/, $string);

if($verbose){

print "Domain $idomain: original mean = ".$mean.

", original stdev = ".$stdev."\n";

}

This version only rejects timings with values that are 2*stdev

GREATER than the mean (because doing IO takes longer)

$string=‘awk ’BEGIN{maxDiff=2.0*$stdev;oldavg=$mean;};

/on domain $idomain:/{

diff=\$9 - oldavg;

if(diff < maxDiff){

tot=tot+\$9;

totsq+=\$9*\$9;

cnt++;

}else{

print "Ignoring: ",\$0;

}

};

END{avg=tot/cnt;

16

stdev=sqrt(totsq/cnt - avg*avg);

print "Domain $idomain, avg = ",avg,

"Std. dev. = ",stdev,"Std. err = ",

stdev/sqrt(cnt),"Total = ",tot;

}’ $file‘;

print $string;

if($verbose){print "\n";}

}

}

B.2 Time lost to doing I/O

The time lost to doing I/O can be obtained directly from the stdout files by e.g.:

$ awk ’/Timing for Writing/{sum += $8;count++;print;

if(count == 3){

print "Sum = ",sum;

count=0;sum = 0;

}

}’ rsl.out.0000

Timing for Writing wrfout_d01_2008-07-31_00_00_00 for dom 1: 3.04047 elapsed s.

Timing for Writing wrfout_d02_2008-07-31_00_00_00 for dom 2: 4.05419 elapsed s.

Timing for Writing wrfout_d03_2008-07-31_00_00_00 for dom 3: 4.78711 elapsed s.

Sum = 11.8818

Timing for Writing wrfout_d03_2008-07-31_00_05_00 for dom 3: 3.01881 elapsed s.

Timing for Writing wrfout_d01_2008-07-31_00_05_06 for dom 1: 2.36254 elapsed s.

Timing for Writing wrfout_d02_2008-07-31_00_05_06 for dom 2: 9.32022 elapsed s.

Sum = 14.7016

Timing for Writing wrfout_d03_2008-07-31_00_10_00 for dom 3: 3.00149 elapsed s.

Timing for Writing wrfout_d02_2008-07-31_00_10_03 for dom 2: 3.88293 elapsed s.

Timing for Writing wrfout_d01_2008-07-31_00_10_12 for dom 1: 2.34952 elapsed s.

Sum = 9.23394

References

[1] The Swiss National Supercomputing Centre, http://www-users.cscs.ch/

[2] HECToR - The UK Supercomputing Service, http://www.hector.ac.uk/

17

[3] NetCDF, http://www.unidata.ucar.edu/software/netcdf/

[4] IDV - the Integrated Data Viewer, http://www.unidata.ucar.edu/software/idv/

[5] A. R. Porter, M. Ashworth, A. Gadian, R. Burton and M. Bane, ‘WRF code
Optimisation for Meso-scale Process Studies (WOMPS) dCSE Project Report,’
http://epubs.stfc.ac.uk/work-details?w=53226.

[6] A. R. Porter and M. Ashworth, ‘Configuring and Optimizing the Weather Research
and Forecast Model On the Cray XT’ in Proceedings of the Cray User Group 2010,
May 2010.

[7] ncview - a visual browser for netCDF files, http://meteora.ucsd.edu/~pierce/

ncview_home_page.html

18

	DLTR-2011-003
	DLTR cover&inner.pdf
	DLTR-2007-004.pdf
	DLTR inner cover

	DLTR inner cover

	wrf_tune_guide

