
logo

The robust and efficient partial factorization of
dense symmetric indefinite matrices

John Reid and Jennifer Scott

STFC Rutherford Appleton Laboratory, UK

Householder Symposium 2011, Lake Tahoe

Jennifer Scott (RAL) Partial factorization of indefinite matrices 1 / 22

logo

Motivation

The partial factorization of dense matrices lies at the heart of frontal
and multifrontal solvers.

In particular, we want to robustly and efficiently perform the
partial or complete factorization (and subsequent solve) of
dense symmetric indefinite matrices.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 2 / 22

logo

Motivation

The partial factorization of dense matrices lies at the heart of frontal
and multifrontal solvers.

In particular, we want to robustly and efficiently perform the
partial or complete factorization (and subsequent solve) of
dense symmetric indefinite matrices.

Three components/challenges:

pivoting → stability (robustness)

blocking → efficiency (time)

packing → efficiency (memory)

Jennifer Scott (RAL) Partial factorization of indefinite matrices 2 / 22

logo

Partial factorization

Dense A of order n is of the form
(

A1 A∗

21

A21 A2

)

where A1 is order p ≤ n and pivots restricted to A1.
Partial factorization takes the form

PAP∗ =

(

L1
L2 I

)(

D

S2

)(

L∗1 L∗2
I

)

P is a permutation matrix

L1 is unit lower triangular of order q ≤ p

D is block diagonal of order q, with each diagonal block of size
one or two.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 3 / 22

logo

Aim

Exploit symmetry and store only half of A.

Use standard high level BLAS (note: there is no BLAS 3 for A in
packed triangular form).

Incorporate threshold partial pivoting.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 4 / 22

logo

What’s in LAPACK?

Complete factorization only (p = n)

Two subroutines that use Bunch-Kaufman pivoting
◮ sytrf stores whole of A (but does use BLAS)
◮ sptrf does not use BLAS (and was 10 times slower

than sytrf in our tests)

Note on Bunch-Kaufman pivoting (’77)
Ashcraft, Grimes and Lewis (’98): Bunch-Kaufman solvers are norm-wise
backward stable but can produce inaccurate results since L is not bounded.
Thus LAPACK routines can be unstable.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 5 / 22

logo

Pivoting and stability
Choose pivots one-by-one, with aim of limiting size of the entries in L:

|lij | < u−1,

where u ∈ [0, 1] is user-set threshold.

Ashcraft et al: bounding lij plus backward stable scheme for 2× 2 linear systems
⇒ backward stability of entire process.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 6 / 22

logo

Pivoting and stability
Choose pivots one-by-one, with aim of limiting size of the entries in L:

|lij | < u−1,

where u ∈ [0, 1] is user-set threshold.

Ashcraft et al: bounding lij plus backward stable scheme for 2× 2 linear systems
⇒ backward stability of entire process.

Usual threshold test for 1× 1 pivot:

|aq+1,q+1| > u max
i>q+1

|ai ,q+1|.

Test for 2× 2 pivot (Duff, Gould, Reid, Scott and Turner ’91):

∣

∣

∣

∣

∣

(

aq+1,q+1 aq+1,q+2

aq+1,q+2 aq+2,q+2

)

−1
∣

∣

∣

∣

∣

(

maxi>q+2 |ai,q+1|
maxi>q+2 |ai,q+2|

)

<

(

u
−1

u
−1

)

(absolute value notation refers to matrix of corresponding absolute values).

Jennifer Scott (RAL) Partial factorization of indefinite matrices 6 / 22

logo

Notes

u = 0 is interpreted as requiring that the pivot be nonsingular.

Our default value is u = 0.1 (although 0.01 is used within our
multifrontal codes).

Proposed strategy is the symmetric equivalent of rook pivoting in that
the pivot is compared with other entries in its rows and columns.

In our implementation, we found it is beneficial to select 2× 2 pivots
over 1× 1 pivots (BLAS 3).

Jennifer Scott (RAL) Partial factorization of indefinite matrices 7 / 22

logo

Simple factorization: no blocking

q is number of pivots chosen so far;
m is index of column to be searched for a pivot.

Input: A, p
Output: q, P , L and D

Initialise: q = 0; m = 0
do while (q < p)

call find pivot(m,piv size)
if (piv size == 0) exit ! Failed to find a pivot
q = q + piv size

update the active columns q + 1 to m

end do
apply outstanding updates to columns p+1 to n

Jennifer Scott (RAL) Partial factorization of indefinite matrices 8 / 22

logo

Finding a pivot

This involves incrementing m then

updating column m with pivots found so far (use gemv)

searching column m for 1× 1 pivot, or

searching columns q + 1 to m − 1 for a partner k to make (k ,m) a
2× 2 pivot

then permuting pivot row(s)/col.(s) to positions q+1 (and q+2)

Jennifer Scott (RAL) Partial factorization of indefinite matrices 9 / 22

logo

Storage

intensive activity in columns q + 1 to m

want to hold these columns contiguously in memory

for pivot searching and row/column interchanges, easier and more
efficient if each column held contiguously.

Block column format (n = 10, nb = 3)

1 # #
2 12 #
3 13 23
4 14 24 31 # #
5 15 25 32 39 #
6 16 26 33 40 47
7 17 27 34 41 48 52 # #
8 18 28 35 42 49 53 57 #
9 19 29 36 43 50 54 58 62

10 20 30 37 44 51 55 59 63 64

Jennifer Scott (RAL) Partial factorization of indefinite matrices 10 / 22

logo

Factorization with blocking

Prior to looking for pivots, rearrange A to block column format.

Modify factorization to allow for block columns
◮ update a block column when it is needed for pivoting with pivots

chosen so far
◮ can be done with gemm
◮ avoids updating single candidate column (reduces use of Level 2

BLAS).

Jennifer Scott (RAL) Partial factorization of indefinite matrices 11 / 22

logo

Factor storage with blocking

After partial factorization, rearrange computed factor columns

(

L1
L2

)

limit storage (do not waste storage by holding blocks on diagonal as
full matrices but pack L1)

allow use of BLAS in solve phase by holding columns of L2
contiguously.

Storage after rearrangement (n = 10, nb = 3 and q = 8).

1
2 4
3 5 6
7 14 21 28
8 15 22 29 31
9 16 23 30 32 33

10 17 24 34 38 42 46
11 18 25 35 39 43 47 48
12 19 26 36 40 44 49 51
13 20 27 37 41 45 50 52

Jennifer Scott (RAL) Partial factorization of indefinite matrices 12 / 22

logo

Inner block

Experiments suggest large block size (eg nb = 96) is good choice.
But large block means gemv (BLAS 2) used for significant part of
computation

use inner block nbi (typically nbi = nb/6)

whenever multiple of nbi columns of L found, gemm used to update
the rest of the block column.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 13 / 22

logo

Factorization algorithm with 2-level blocking

Input: A, p
Output: q, P , L and D

Initialise: q = 0; m = 0
do while (q < p)

call find pivot(m,piv size)
if (piv size == 0) exit ! Failed to find a pivot
q = q + piv size

update the active columns q + 1 to end of inner block
if (outer block complete) then

update outer block columns
else if (inner block complete) then

update inner block columns
end if

end do
apply outstanding updates to columns p+1 to n

Jennifer Scott (RAL) Partial factorization of indefinite matrices 14 / 22

logo

Parallel working

When n and p are large, most of the work is done by gemm when
updating trailing matrix by block columns.

Improve performance by optionally using OpenMP parallel do.

Break each block column into blocks of nb rows and loop over these.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 15 / 22

logo

Numerical experiments

Our new partial factorization code for symmetric indefinite
dense linear systems is HSL MA64.

All codes written in Fortran 95.

Experiments performed using double precision arithmetic on 2-way
quadcore Harpertown machine (2× 4 cores).

Compiler is Intel 11.0 with option -fast, Intel BLAS and LAPACK.

Times are all in seconds.

Redundant floating-point operations in the upper-triangular part of
the matrix are excluded when computing speeds in Gflop/s.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 16 / 22

logo

Comparisons with LAPACK (complete factorization)

Wall-clock Gflop/s No. 2× 2 pivots
dsytrf HSL MA64 dsytrf HSL MA64

1 thread 1 thread 8 threads
favour: 2× 2 1× 1 2× 2 1× 1 2× 2 1× 1

n

1000 5.6 6.1 5.9 10.5 9.1 312 369 87
4000 7.0 7.6 7.5 29.9 28.4 1403 1473 366
8000 7.3 7.8 7.8 38.0 36.1 2902 2910 758

16000 7.2 7.9 7.8 43.2 39.9 6050 5830 1611

Notes:

On 1 thread, competitive with dsytrf in terms of speed.

Saves half the memory.

Peak speed of dgemm on 1 thread is 9.3 Gflop/s

Jennifer Scott (RAL) Partial factorization of indefinite matrices 17 / 22

logo

HSL MA64 performance (partial factorization)

Speed (wall-clock Gflop/s) and speed-up with n = 4000,
nb = 96 and nbi = 16.

1 thread 4 threads 8 threads
p Speed Speed Speed-up Speed Speed-up

128 6.5 14.5 2.2 17.5 2.7
512 7.6 21.0 2.6 29.7 3.9

2048 7.8 22.4 2.9 32.8 4.2

Jennifer Scott (RAL) Partial factorization of indefinite matrices 18 / 22

logo

Multifrontal performance

Recall: key motivation for HSL MA64 was for partial factorization of the
dense frontal matrices within a multifrontal sparse solver.

Here HSL MA64 used within the multifrontal code HSL MA77 (Reid and
Scott ’09). fmax is maximum frontsize.

1 thread 8 threads
Problem N/103 fmax MA77 MA64 MA64 MA77 MA64 MA64

Time Time Gflop/s Time Time Gflop/s

bratu3d 27.8 1521 4.2 3.4 3.7 3.7 2.9 4.2
qa8fk 66.1 2075 4.4 3.5 6.2 3.0 2.0 10.4

Si5H12 19.9 5551 43.7 32.8 4.7 38.1 26.5 5.8
NICE20MC 71.6 11688 945 690 7.6 460 160 32.7

SiO2 15.5 21406 2760 2298 5.8 1498 1033 12.8

Jennifer Scott (RAL) Partial factorization of indefinite matrices 19 / 22

logo

Other features of HSL MA64

Handles singular systems: when column m is searched, if its largest
entry has magnitude less than small , the row and column are set to
zero, the diagonal entry is accepted as a zero 1× 1 pivot, and no
corresponding pivotal operations are applied to the rest of the matrix.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 20 / 22

logo

Other features of HSL MA64

Handles singular systems: when column m is searched, if its largest
entry has magnitude less than small , the row and column are set to
zero, the diagonal entry is accepted as a zero 1× 1 pivot, and no
corresponding pivotal operations are applied to the rest of the matrix.

Option for relaxed pivoting: if no 1× 1 or 2× 2 candidate pivot
satisfies threshold test but the pivot that is nearest to satisfying it
would satisfy it with u = v ≥ umin, the pivot is accepted and u is
reduced to v .

Jennifer Scott (RAL) Partial factorization of indefinite matrices 20 / 22

logo

Other features of HSL MA64

Handles singular systems: when column m is searched, if its largest
entry has magnitude less than small , the row and column are set to
zero, the diagonal entry is accepted as a zero 1× 1 pivot, and no
corresponding pivotal operations are applied to the rest of the matrix.

Option for relaxed pivoting: if no 1× 1 or 2× 2 candidate pivot
satisfies threshold test but the pivot that is nearest to satisfying it
would satisfy it with u = v ≥ umin, the pivot is accepted and u is
reduced to v .

Option for static pivoting: if no 1× 1 or 2× 2 candidate pivot
satisfies threshold test (even after relaxing the value of u) the 1× 1
pivot that is nearest to satisfying the test is accepted. If its absolute
value is less than static , it is given the value that has the same sign
but absolute value static .

Jennifer Scott (RAL) Partial factorization of indefinite matrices 20 / 22

logo

Static pivoting within HSL MA77

Entries in L (in thousands) and times for factorization and solve phases.

nz(L) Factor Solve
Problem N without with without with without with

cvxqp3 17500 4884 3131 1.6 0.7 0.1 0.07
dtoc 24993 6701 227 1.3 0.1 0.2 0.02

mario001 38434 746 665 0.1 0.1 0.04 0.03
ncvxqp7 87500 39192 24707 43 13 0.8 0.6

Scaled residuals for HSL MA77 without and with static pivoting, before and after
iterative refinement.

without with
Problem before after before after

cvxqp3 1.3 ∗ 10−10 2.0 ∗ 10−16 (1) 1.7 ∗ 10−06 1.9 ∗ 10−15 (3)
dtoc 1.1 ∗ 10−14 7.4 ∗ 10−17 (1) 6.7 ∗ 10−13 1.1 ∗ 10−16 (1)

mario001 6.1 ∗ 10−15 6.1 ∗ 10−15 (0) 1.3 ∗ 10−10 3.2 ∗ 10−16 (4)
ncvxqp7 2.1 ∗ 10−09 1.9 ∗ 10−16 (1) 1.5 ∗ 10−07 3.1 ∗ 10−16 (5)

Jennifer Scott (RAL) Partial factorization of indefinite matrices 21 / 22

logo

Concluding remarks

Presented HSL MA64 for the partial or complete factorization and
solution of dense symmetric indefinite linear systems.

HSL MA64 offers fast execution speeds without compromising
stability while minimizing factor storage.

Key to the design is combining blocking with the use of standard
BLAS and incorporating threshold partial pivoting.

OpenMP allows parallel execution.

HSL MA64 is employed within the sparse multifrontal code HSL MA77

and a modified version is used within the indefinite DAG-base sparse
solver HSL MA86 (Hogg and Scott ’10).

Paper to appear in ACM TOMS.

Jennifer Scott (RAL) Partial factorization of indefinite matrices 22 / 22

logo

Concluding remarks

Presented HSL MA64 for the partial or complete factorization and
solution of dense symmetric indefinite linear systems.

HSL MA64 offers fast execution speeds without compromising
stability while minimizing factor storage.

Key to the design is combining blocking with the use of standard
BLAS and incorporating threshold partial pivoting.

OpenMP allows parallel execution.

HSL MA64 is employed within the sparse multifrontal code HSL MA77

and a modified version is used within the indefinite DAG-base sparse
solver HSL MA86 (Hogg and Scott ’10).

Paper to appear in ACM TOMS.

Thank you for your attention!

Jennifer Scott (RAL) Partial factorization of indefinite matrices 22 / 22

