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Linear operators

Let M ∈ IRm×m and N ∈ IRn×n be symmetric positive definite
matrices, and let A ∈ IRm×n be a full rank matrix.

M = {v ∈ IRm; ‖u‖2
M = vTMv}, N = {q ∈ IRn; ‖q‖2

N = qTNq}

M′ = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N ′ = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}
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N ′ = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}

〈v,Aq〉M,M′ = vTAq, Aq ∈ L(M) ∀q ∈ N .

The adjoint operator AF of A can be defined as

〈AFg, f〉N ′,N = fTATg, ATg ∈ L(N ) ∀g ∈M.
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Generalized SVD

Given q ∈M and v ∈ N , the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “generalized singular values and singular vectors’’ of A.
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The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qT

i Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

The generalized singular values are the standard singular values of

Ã = M−1/2AN−1/2. The generalized singular vectors qi and vi ,

i = 1, . . . , n are the transformation by M−1/2 and N−1/2 respectively of

the left and right standard singular vector of Ã.
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Quadratic programming

The general problem

min
AT w=r

1

2
wTWw − gTw

where the matrix W is positive semidefinite and
ker(W) ∩ ker(AT ) = 0 can be reformulated by choosing

M = W + νAN−1AT

u = w −M−1g
b = r − ATM−1g.


as a projection problem

min
AT u=b

‖u‖2
M

If W is non singular then we can choose ν = 0.

5 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

Augmented system

The augmented system that gives the optimality conditions for the
projection problem:[

M A
AT 0

] [
u
p

]
=

[
0
b

]
.
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m × n matrix are presented. All of
them can be theoretically applied to Ã and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the
”Craig”-variant (see Paige Saunders (1982), Saunders
(1995,1997)).

7 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Algorithm

The augmented system that gives the optimality conditions for
minAT u=b ‖u‖2

M [
M A
AT 0

] [
u
p

]
=

[
0
b

]
can be transformed by the change of variables{

u = Vz
p = Qy
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Algorithm

 In 0 B
0 Im−n 0

BT 0 0

 z1

z2

y

 =

 0
0

QTb

 .
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[
In B

BT 0

] [
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y

]
=

[
0

QTb

]
.
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Algorithm

[
In B

BT 0

] [
z1

y

]
=

[
0

QTb

]
.

QTb = e1‖b‖N

the value of z1 will correspond to the first column of the inverse of
B multiplied by ‖b‖N.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N−1
(
ATvi − αiNqi

)
βi+1 = gTNg

qi+1 = g
√
βi+1

w = M−1 (Aqi+1 − βi+1Mvi )
αi+1 = wTMw
vi+1 = w/

√
αi+1.
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

u(k) = Vkzk =
k∑

j=1

ζjvj .
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

u(k) = Vkzk =
k∑

j=1

ζjvj .

The entries ζj of zk can be easily computed recursively starting
with

ζ1 = −‖b‖N

α1

as

ζi+1 = − βi
αi+1

ζi i = 1, . . . , n
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

11 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

From p(k) = −QkB−1
k zk = −

(
B−Tk QT

k

)T
zk and Dk = B−Tk QT

k

di =
qi − βidi−1

αi
i = 1, . . . , n

(
d0 = 0

)
where dj are the columns of D.
Starting with p(1) = −ζ1d1 and u(1) = ζ1v1

u(i+1) = u(i) + ζi+1vi+1

p(i+1) = p(i) − ζi+1di+1

}
i = 1, . . . , n
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.
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‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.
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‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.

‖p− p(k)‖N =
∣∣∣∣∣∣QB−1

(
z−

[
zk
0

]) ∣∣∣∣∣∣
N
≤ ‖e

(k)‖M

σn
.
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Error bound

Lower bound We can estimate ‖e(k)‖2
M by the lower bound

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
j < ‖e(k)‖2

M.

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

ζ2
j < τ‖u‖2

M.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).

13 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

Error bound

Lower bound We can estimate ‖e(k)‖2
M by the lower bound

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
j < ‖e(k)‖2

M.

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

ζ2
j < τ‖u‖2

M.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).

13 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

Two examples

Stokes
The Stokes problems have been generated using the software
provided by ifiss3.0 package (Elman, Ramage, and Silvester). We
use the default geometry of “Step case” and the Q2-Q1
approximation described in ifiss3.0 manual and in Elman,
Silvester, and Wathen (2005).

name m n nnz(M) nnz(A)

Step1 418 61 2126 1603
Step2 1538 209 10190 7140
Step3 5890 769 44236 30483
Step4 23042 2945 184158 126799
Step5 91138 11521 751256 518897

(nnz(M) is only for the symmetric part)
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Two examples

name # Iter.s ‖e(k)‖2 ‖ATu(k) − b‖2 ‖p− p(k)‖2 κ(B)

Step1 30 6.8e-16 5.1e-16 1.1e-13 7.6
Step2 32 5.4e-14 5.4e-14 5.0e-12 7.7
Step3 34 3.8e-14 2.7e-14 1.0e-11 7.8
Step4 34 5.0e-13 1.3e-13 1.4e-10 7.8
Step5 35 1.8e-13 3.1e-14 1.7e-10 7.8

Stokes (Step) problems results (d = 5, τ = 10−8).
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Two examples
Poisson with mixed b.c. Problems The Poisson problem is casted
in its dual form as a Darcy’s problem:

Find w ∈ H = {~q | ~q ∈ Hdiv (Ω), ~q · n = 0 on ∂N(Ω)} , u ∈ L2(Ω) s.t.∫
Ω ~w · ~q +

∫
Ω) div(~q)u =

∫
∂D(Ω) uD~q · n ∀~q ∈ H∫

Ω div(~w)v =
∫

Ω fv ∀v ∈ L2(Ω).

We approximated the spaces H and L2(Ω) by RT0 and by
piecewise constant functions respectively The matrix N is the mass
matrix for the piecewise constant functions and it is a diagonal
matrix with diagonal entries equal to the area of the corresponding
triangle. The matrix M has been chosen such that each
approximation Hh of H is

Hh =
{

q ∈ IRm ‖q‖2
Hh

= qTMq
}
.

Therefore, denoting by W the mass matrix for Hh, we have

M = W + AN−1AT .
14 / 21
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Two examples

Poisson with mixed b.c. Problems

h = 2−k m n nnz(M) nnz(A)

2−6 12288 8192 36608 24448
2−7 49152 32768 146944 98048
2−8 196608 131072 588800 392704
2−9 786432 524288 2357248 1571840

(nnz(M) is only for the symmetric part)

With the chosen boundary conditions, it is easy to verify that the
continuous solution u is u(x , y) = x .
We point out that the pattern of W is structurally equal to the
pattern AN−1AT .
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Two examples

name # Iter.s ‖e(k)‖2 ‖ATu(k) − b‖2 ‖p− p(k)‖2 κ(B)

h = 2−6 10 2.8e-12 2.9e-16 4.1e-11 1.05
h = 2−7 10 9.7e-12 3.0e-16 2.6e-10 1.05
h = 2−8 10 2.5e-11 3.0e-16 7.9e-10 1.05
h = 2−9 10 2.9e-10 2.8e-16 1.3e-08 1.05

Poisson with mixed b.c. data and RT0 problem results (d = 5,
τ = 10−8).
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Symmetric Quasi-Definite Systems

[
M A
AT −N

] [
x
y

]
=

[
f
g

]
where M = MT � 0, N = NT � 0.

I Interior-point methods for LP, QP, NLP, SOCP, SDP, . . .

I Regularized/stabilized PDE problems

I Regularized least squares

I How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation
matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDLT .

I Cholesky-factorizable

I Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

I Stability analysis by Gill, Saunders, Shinnerl (1996).
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Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

I MINRES

I SYMMLQ

I (F)GMRES??

I QMRS????

Fact: . . . none exploits the SQD structure.

If the system were definite, we would like to use CG.
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
=

[
b
0

]

are the optimality conditions of

min
y∈IRm

1
2

∥∥∥∥[A
I

]
y −

[
b
0

]∥∥∥∥2

E−1
+

≡ min
y∈IRm

1
2

∥∥∥∥∥
[

M−
1
2 0

0 N
1
2

]([
A
I

]
y −

[
b
0

])∥∥∥∥∥
2

2
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Generalized Least Squares

Normal equations: (ATM−1A + N)y = ATM−1b.

At k-th iteration, seek y ≈ yk := Vk ȳk :

(B̃T
k B̃k + I)ȳk = B̃T

k β1e1

i.e.:

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk

]
=

[
β1e1

0

]
.

19 / 21
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ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk
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ȳk

]
=

[
β1e1

0

]
.

19 / 21



GGK, Householder XVIII 13 June 2011 Mario Arioli, RAL

Generalized LSQR
Solve

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

by specialized Givens Rotations (Eliminate I first andRk will be
upper bidiagonal)

min
ȳ∈IRk

1
2

∥∥∥∥[R̃k

0

]
ȳ −

[
φk
0

]∥∥∥∥2

2

.

As in Paige-Saunders ’82 we can build recursive expressions of yk

yk+1 = yk + dkφk

(
Dk = VkR−1

k

)
and we have that

||y||2N+AT M−1A =
m∑
j=1

φ2
j and ||y − yk ||2N+AT M−1A =

m∑
j=k+1

φ2
j
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ȳ∈IRk

1
2

∥∥∥∥[R̃k

0

]
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Conclusions

I Nice relation between the algebraic error and the
approximation error for mixed finite-element method (See A.
RAL-TR-2010-008)

I Dominique Orban and I are analysing several other variants
I Craig,
I GLSMR

and the numerical results validate the theory.

I A. and Orban ”Iterative methods for symmetric quasi definite
systems” in preparation. WORK IN PROGRESS
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