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Linear regression problem

Let A€ R™*", m > n, with Rank(A) = n. We consider the linear
regression model

y = Ax + e, (1)

where E[e] = 0 and V[e] = 02/,. We point out that A defines a
given model and x is an unknown deterministic value. The
minimum-variance unbiased (MVU) estimator of x is related to y
by the Gauss-Markov theorem.
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Gauss-Markov Theorem

For the linear model (1) the minimum-variance unbiased estimator
of x is given by
x* = (ATA)1ATy.

The variance V[x*] = 0?(ATA)~1. If e ~ N'(0,0° /), and if we

set )
s2 = HrH%, r=y— Ax*
m-—n

we have for our estimator of x and for s2, our estimator for o2,

2
x* ~ N (x,02(ATA)TY), §°~ 7 x2(m — n).

m-—n
Moreover, the predicted value y = Ax* and the residual r are

§ ~ N (Ax, a2 A(ATA)PAT) and r ~ NV (0, 0% (1 = A(ATA)"TAT)).
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Perturbation theory

What we mean with PERTURBATION ?
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Perturbation theory

What we mean with PERTURBATION ?
Let 6y be a stochastic variable such that

59 ~ N(0,72A(ATA)TAT).

Under the Hypotheses of Gauss-Markov, and assuming that § and
0y are independently distributed, we have

§+ 09 ~ N(Az, (72 + ?)A(ATA)1AT).
Moreover, we have that

189112 ~ 72x3(n).
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Perturbation theory

Let 6§ ~ N (0, 72A(ATA)~LAT).
Under the hypotheses of Gauss-Markov and assuming that § and
0y be uncorrelated, there exists

ox* ~ N(0, 72(ATA)Y), by ~ N(0,7%1,,),

such that
1. §+ 0y = A(x* + 0x*),
2. xX* + 0x* is the minimum-variance unbiased estimator of x for
the linear regression problem:
y+dy=Ax+e, e~N(0, (0% +7%)ln),
3. and 8% = L ||y + 0y — A(x* + 6x*)||3, is the estimator for

2 _ 2 2 s 2 2472 2
p° =0+ 7 with§° ~ 7 x“(m — n).
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Least-squares problem

The minimum-variance unbiased (MVU) estimators of x and o2 are
closely related to the solution of the least-squares problem (LSP),

min| |y — Ax| (2)

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

x* = (ATA)_lATy,
and the corresponding minimum value is achieved by the ||r||2

r=y—Ax* = (I - P)y, (/—P:/—A(ATA)—lAT).
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Least-squares problem

The minimum-variance unbiased (MVU) estimators of x and o2 are
closely related to the solution of the least-squares problem (LSP),

min| |y — Ax| (2)

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

* = (ATA)flATy’
and the corresponding minimum value is achieved by the ||r||2
r=y—Ax* = (I - Py, (/—P:/—A(ATA)—lAT).

We remark here that the solution of LSP is deterministic_ands
therefore, supplies only a realization of the MVA*)* and gf s? the
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Least-squares problem

The vector x* is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y — Ax||3:

ATAx* = ATy, (3)
We will denote in the following by
R(x) = AT(y — Ax)

the residual of (3).
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Least-squares problem

The vector x* is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y — Ax||3:

ATAx* = ATy. (3)
We will denote in the following by

R(x) = AT(y — Ax)
the residual of (3). Moreover, we have

Y1 = [ ara =110/ = P)yI5 = [ly — Ax7[[5.
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Least-squares problem

Given X as an approximation of x*,
oy = —A(ATA)IR(x)
is the minimum norm solution of
min |lw|3  suchthat  ATAXx=AT(y+ w).
Moreover, using R(%) = AT (y — A%) = ATA(x* — X), we have
1618 = 1R Bar ayr = X" = %|r 4.
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A statistical point of view

How, we can link the deterministic theory for the least-squares
perturbation to the Stochastic Perturbation theory?
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A statistical point of view

If Sy is a realization of a stochastic variable &y then ||§y||3 is a
realization of ||0§3 ~ 72x2(n).

Therefore, we consider that dy is a sample of the stochastic
variable 0y if for some small enough 7,

Probability(|[s9]3 > [|6y/3) > 1 - n,

. 592
where we assume that the random variable ”T# follows a centered
x? distribution with n degrees of freedom. Thus, we can formulate
our criterion as

Sy 13 5y13 Sy |3
oo (1222, ) = prapanae (1512 < 118 <,

T2 ™2 - 7

where, py (., n) is the cumulative distribution function.of-the 2
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Preconditioned Conjugate Gradient for Normal equations 1

11 /25

At each step k the conjugate gradient method minimizes the
energy norm of the error x(K) = x* — x(k) on a Krylov space
xO) 4+ KCp:
min 6x(k)TATA5x(k),

<K xO) 4,
where K = Span(ATy, (ATA)ATy, ... (ATA}1ATy). Let
R(K) = AT (y — Ax(¥)) denote the normal equations residual at
step k. Moreover, using AT Adx(K) = AT (y — Ax(K) = R(K) the
value [|6x(¥)|| 47 4 is equal to the dual norm of the residual
IR (a7 ay-1-
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Preconditioned Conjugate Gradient for Normal equations 2

R(k—1)T p(k-1)
- q(kfl)TATAq(kfl) ’

xB) = xk-D) g gk D
RK) = Rk _q, ;AT Agtk—D |

RKT R(k)
kK k k—1 —
q( ) = R +5k—1q( )7 Br-1= Rk—1D)TR(k-1)"

The quantity ax_1 gives the step-size on the direction g(k—1)
during the conjugate gradient algorithm.
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Preconditioned Conjugate Gradient for Normal equations 3

In exact arithmetic, we have that the energy norm of the error
oxk) = x* — x(K) is

16x* 27, = e, = Z ROTRG),

and the energy norm of x* — x(9) is

n—1
" = xOra = >_asROTRY.
j=0
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Preconditioned Conjugate Gradient for Normal equations 3
In exact arithmetic, we have that the energy norm of the error
ox(F) = x* — x(K) js

1x 374 = €, Z RUTRO),

and the energy norm of x* — x(9) is

n—1
[ x* — X(O)HE\TA — ZOO.R(J)TR(J).
j=0
Under the assumption that e(k+d) << ei‘kT)A, where the integer d

denotes a suitable delay, the Hestenes and Stiefel estimate & of
the energy-norm of the error will then be computed by the formula

k+d—1
£ = Z aR()TR(/)
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Preconditioned Conjugate Gradient for Normal equations 4

14 / 25

Finally,
x* — ”ATA > ZQJ NTRU) — 4.
Therefore,
ly = A3 = lly = A = A(x* = xO)3 < |ly = AXOV - vy

Introducing a preconditioner, we want to speed up the convergence
rate of the conjugate gradient method but this will change the
matrix and, therefore, the energy norm. However, we still want to

estimate e/(qT)A It is proved that the energy norm of the

preconditioned problem is equal to ei‘kT)A( Arioli, Meurant ). Moreover,
when finite precision arithmetic is used, the Hestenes and Stiefel
method for computing the error norm is numerically-reliable
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Preconditioned Conjugate Gradient for Normal equations 5

PCG LS a|g0rlthm Given an initial guess x©) compute r© = (v — AX(D)) RO = AT/ ang
solve Mz(9) = R(O) et (0 = 20 gy =0, 1y = 0, leR(o)T (0) and € _4 = co. Set k =0

while z(&4_ ml\f iz, vk, 72, 02)) > 7 do

g1 = Xk/HPHQ

Pr = Qp_1Xki Vk = Vk—1 + Pii
NOTEN O SR Ot
RK) = rk=1) _, ,ATq (k— 1.
Solve Mz(K) = R(K);

Xk4+1 = R(k)TZm ;

Bk = Xk+1/Xki

o) = 50" g k),

if k > d then
k
€—a= D ¥
j=k—d+1
else
Ek—q =
endif
end while.
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Stopping criteria 1 and 72

We stop when Z(&k*d? ”r(O)H27 Vk77—270-2)) < n
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Stopping criteria 1 and 72

We stop when z(&4_y, [[r(D |2, v, 72, 6%)) < 1

1. nis a probability (in our experiments = 1078 but = 1073
can realistic)
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Stopping criteria 1 and 72

We stop when z(&4_y, [[r(D |2, v, 72, 6%)) < 1

1. nis a probability (in our experiments = 1078 but = 1073
can realistic)

2

2. 72 = o2 can be fragile and it is better to impose 72 = 0.0152
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Stopping criteria 1 and 72

We stop when Z(fk,d, ”r(O)H27 Vvazt 02)) < n

1. nis a probability (in our experiments = 1078 but = 1073
can realistic)

2. 72 = o2 can be fragile and it is better to impose 72 = 0.0152

3. & depend on d the delay. When the preconditioned problem
is still ill conditioned we must choose d = 20 for reliability.

4. p, is cheap to compute ( in our experiments we use the
Matlab functions fcdf, and chis_cdf )
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Stopping criteria summary

’

2. tp=p (i —0.1°02, p= 0,2,

mn 2_

17 /25

P(lylz = vi). p

Mario Arioli, RAL

—k,m— n) (F-test)

=0,2.
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Test problems (Paige-Saunders)

Mario Arioli, RAL

id m n | nnz | k(A)
well1033 | 1033 | 320 | 4732 | 1.6 102
i11¢1033 | 10033 | 320 | 4719 | 1.8 10*
well1850 | 1850 | 712 | 8755 | 1.1 102
i11c1850 | 1850 | 712 | 8636 | 1.4 10*
Dimensions, number of non zeros and x(A) = ||AT||2||A]|2 for

In all the problems the standard deviation has been normalized

18 / 25

Paige-Saunders tests.
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Numerical tests (72 = 02)
id d 1C(1e-2)
M1 K2 M3
10 28 ( 1.1e-03, 1.061 ) 28 (1.1e-03 , 1.061 ) 28 ( 1.1e-03 , 1.061 )
Welll033 | 20 28 (1.1e-03, 1.061 ) 28 (1.1e-03 , 1.061 ) 28 (1.1e-03, 1.061)
30 28 ( 1.1e-03, 1.061 ) 28 (1.1e-03 , 1.061 ) 28 ( 1.1e-03 , 1.061 )
10 22 (12.0e-03, 1.048 ) 22 (2.0e-03 , 1.048 ) 22 (1 2.0e-03, 1.048)
Well1850 20 22 (12.0e-03 , 1.048 ) 22 (2.0e-03 , 1.048 ) 22 (12.0e-03, 1.048 )
30 22 (12.0e-03, 1.048 ) 22 (2.0e-03 , 1.048 ) 22 (1 2.0e-03, 1.048)
10 | 124 (4.9e-03,1.886) | 124 (4.9e-03,1.886 ) 59 (2.0e-02 , 6.742 )
il1c1033 | 20 | 157 ( 6.3e-04 ,1.021) | 156 (1.3e-03,1.089 ) | 153 ( 1.8e-03, 1.160 )
30 | 157 (6.3e-04,1.021) | 156 (1.3e-03,1.089 ) | 153 ( 1.8e-03, 1.160 )
10 62 (3.1e-02, 5.010 ) 120 (7.9e-03 , 1.591 ) 59 ( 3.6e-02 , 5.770 )
il1c1850 | 20 | 140 (4.2e-03,1.198) | 143 (3.5e-03 , 1.144 ) 93 (1 1.3e-02, 2.283)
30 | 143 (3.5e-03,1.144) | 145 (3.0e-03,1.106 ) | 132 ( 5.7e-03, 1.343)

19 /25

Number of iterations for each stopping criterion n = 1078 and 72 = 2. In bracket, the value of

[Ix* = %[| y7 4/ 11x™ || ;7 4 and of the standard deviation of r = b — A% at the correspondingiteration.
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Numerical tests (72 = 02)
1C(1e-3)
10 | 9(7.8e-04,1.032) 0 (7.8¢-04 , 1.032) 9 (7.8e-04,1.032)
Well1033 | 20 | 9 (7.8e-04,1.032) 9 (7.8e-04 , 1.032) 9 (7.8e-04,1.032)
30 9 (7.8e-04,1.032) 9 (7.8e-04 , 1.032) 9 (7.8e-04,1.032)
10 | 7(1.2e-03,1.017) 7 (1.2¢-03 , 1.017 ) 7 (1.2e-03,1.017 )
Well1850 | 20 | 7 (1.2e-03,1.017) 7 (1.2¢-03 , 1.017 ) 7(1.2e-03,1.017)
30 | 7(1.2¢03,1.017) 7 (1.2¢-03 , 1.017 ) 7 (1.2e-03,1.017)
10 | 59 (1.4e-03,1.106) | 59 (1.4e-03, 1.106 ) 7 (1.8e-03 , 1.166 )
i11¢1033 | 20 | 63 (1.3e-03,1.082) 3 (1.3e-03, 1.082 ) | 58 ( 1.5e-03,1.122)
30 63 ( 1.3e-03,1.082) 3 (1.3e-03, 1.082) 58 ( 1.5e-03 , 1.122)
10 36 (4.1e-03, 1.186 ) 7 (2.7e-03 , 1.085 ) 36 (4.1e-03, 1.186 )
i11¢1850 | 20 | 37 (2.7e-03,1.085) 7 (2.7e-03,1.085 ) | 36 (4.1e-03, 1.186 )
30 | 37(27e03,1.085) | 37 (2.7¢-03,1.085) | 36 (4.1e-03,1.186)
Number of iterations for each stopping criterion n = 10~ 8 and 72 = 2. In bracket, the value of

20 / 25

Mario Arioli,

[|x* — x| |ATA/HX [| 7 4 and of the standard deviation of r = b — Ax at the corresponding iteration.

RAL
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Numerical tests (72 = 02/100)
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id d 1C(1e-2)
M1 K2 M3
10 | 28(1.1e-03, 1.061) 33 (5.0e-05 , 1.000 ) 33 (5.0e-05 , 1.000 )
Welll033 | 20 28 (1.1e-03, 1.061 ) 33 (5.0e-05 , 1.000 ) 33 ( 5.0e-05, 1.000 )
30 28 (1.1e-03, 1.061 ) 33 (5.0e-05 , 1.000 ) 33 (/5.0e-05 , 1.000 )
10 22 (12.0e-03, 1.048 ) 25 (1.7e-04 , 1.000 ) 24 (1 3.8e-04, 1.002)
Well1850 20 22 (12.0e-03 , 1.048 ) 25 (1.7e-04 , 1.000 ) 24 (1 3.8e-04 , 1.002 )
30 22 (12.0e-03, 1.048 ) 25 (1.7e-04 , 1.000 ) 24 ( 3.8e-04, 1.002)
10 | 124 (4.9¢-03,1.886) | 164 (6.6e-05,1.000) | 138 ( 2.1e-03, 1.209 )
il1c1033 | 20 | 157 ( 6.3e-04,1.021) | 164 (6.6e-05,1.000) | 163 ( 1.5e-04 , 1.001 )
30 | 157 (6.3e-04,1.021) | 164 (6.6e-05,1.000) | 163 ( 1.5e-04, 1.001 )
10 62 (3.1e-02, 5.010 ) 178 (6.1e-04 , 1.005 ) | 178 ( 6.1e-04 , 1.005 )
i11c1850 | 20 | 140 ( 4.2e-03,1.198 ) | 196 (2.6e-04 ,1.001 ) | 195 ( 3.6e-04 , 1.002 )
30 | 143 (3.5e-03,1.144) | 196 (2.6e-04,1.001) | 195 ( 3.6e-04 , 1.002 )

Number of iterations for each stopping criterion n = 1078 and 72 = 0'2/100. In bracket, the value of
[Ix™ = %[| y7 4/ 11x™ || ;7 4 and of the standard deviation of r = b — A% at the correspondingiteration.
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Numerical tests (72
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— 52/100)

1C(1e-3)
10 | 9(7.8¢04,1.032) | 13(6.3e05,1.000) | 13 ( 6.3e-05, 1.000 )
Well1033 | 20 | 9 (7.8e-04,1.032) | 13 (6.3e-05,1.000) | 13 ( 6.3e-05, 1.000 )
30 | 9(7.8e04,1.032) | 13 (6.3e05,1.000) | 13 (6.3e:05, 1.000 )
10 | 7(1.2e03,1.017) | 8(2.2e-04,1.001) | 8(2.2e-04,1.001)
Well1s50 | 20 | 7(1.2e03,1.017) | 8(22e04,1.001) | 8(2.2e04,1.001)
30 | 7(1.2e-03,1.017) | 8(22e-04,1.001) | 8(2.2e-04,1.001)
10 | 59 (1.4e-03,1.106) | 83 (8.3e-05,1.000) | 83 ( 8.3e-05, 1.000 )
i11c1033 | 20 | 63 (1.3e-03,1.082) | 83 (8.3e-05,1.000) | 83 ( 8.3e-05, 1.000 )
30 | 63(1.3e03,1.082) | 83(8.3e-05,1.000) | 83 ( 8.3e-05, 1.000)
10 | 36 (4.1e-03,1.186) | 55(3.2e04,1.001) | 51 (4.1e-04,1.002)
i11c1850 | 20 | 37 (2.7e-03,1.085) | 55 (3.2¢-04,1.001) | 51 ( 4.1e-04,1.002)
30 | 37(27e-03,1.085) | 55(3.2¢-04,1.001) | 51 (4.1e-04,1.002)

Mario Arioli,

Number of iterations for each stopping criterion n = 1078 and 72 = 02/100. In bracket, the value of
[|x* — x| |ATA/HX* [| ;7 4 and of the standard deviation of r = b — A% at the corresponding iterations
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Data Assimilation
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Data assimilation purpose is to reconstruct the initial conditions at
t = 0 of a dynamical system based on knowledge of the system’s
evolution laws and on observations of the state at times t;.

u="f(t,u) u(t)= M(t)uo

Assume that the system state is observed (possibly only in parts)
at times {t;}V, yielding observation vectors {y;}",, whose model
is given by

yi = Hu(t;) +¢, €~N(0,R =0°l).

Find ug which minimizes

7ZHHM UO_yIHR—

Mario Arioli,

RAL

Science & Technology

@ Facilities Council



Linear Regression, BAMC, 11th April 2011 Mario Arioli, RAL

Data Assimilation

Heat Equation model

d .
a—;’:—Au in S, =1[0,1] x [0,1],
u=0 on 0S5, u(,0)=u in S
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Data Assimilation

The system is integrated with time-step dt, using an implicit Euler
scheme. In the physical domain, a regular finite difference scheme
is taken for the Laplace operator, with same spacing h in the two
spatial dimensions. The data of our problem is computed by
imposing a solution wup(x, y,0) computing the exact system
trajectory and observing Hu at every point in the spatial domain
and at every time step. In our application, m = 8100,
n=900=30% dt=1, h=1/31, N =8 and

H = diag(1%°,2%5 ... n'®). The observation vector y is obtained
by imposing uo(x, y,0) = 7 sin(3x)(x — 1)sin(5y)(y — 1), and by
adding a random measurement error with Gaussian distribution
with zero mean and covariance matrix R; = ¢2l,, where o = 1073,
In our numerical experiments, we use PCGLS without
preconditioner.
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Data Assimilation: results (d=5)

by
by

10 ——l3

(a) Stopping criteria, (b) Energy norm of the error«(c)

IIYII e
Ck = 2=, (d) Residual-histogram. @M qicnce s rechmoioey
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Conclusion

> F-test stopping rule for PCGLS
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Conclusion

> F-test stopping rule for PCGLS

» LSQR has similar behaviour
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Conclusion

> F-test stopping rule for PCGLS
» LSQR has similar behaviour

» Orthodir (or re-orthogonalization) can be a valuable
alternative for LSP where A is implicit
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Conclusion

v

F-test stopping rule for PCGLS
LSQR has similar behaviour

Orthodir (or re-orthogonalization) can be a valuable
alternative for LSP where A is implicit

v

v

v

How to generalize to other non linear regression problems or
to NON-NORMAL distribution?
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