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Linear regression problem

Let A ∈ IRm×n, m ≥ n, with Rank(A) = n. We consider the linear
regression model

y = AX + e, (1)

where E [e] = 0 and V [e] = σ2
Im. We point out that A defines a

given model and X is an unknown deterministic value. The
minimum-variance unbiased (MVU) estimator of X is related to y
by the Gauss-Markov theorem.
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Gauss-Markov Theorem

For the linear model (1) the minimum-variance unbiased estimator
of X is given by

x∗ = (AT
A)−1

A
Ty.

The variance V [x∗] = σ2(AT
A)−1. If e ∼ N

�
0, σ2

Im
�
, and if we

set

s2 =
1

m − n
||r||22, r = y − Ax∗

we have for our estimator of X and for s2, our estimator for σ2,

x∗ ∼ N
�
X, σ2(AT

A)−1
�
, s2 ∼ σ2

m − n
χ2(m − n).

Moreover, the predicted value ŷ = Ax∗ and the residual r are

ŷ ∼ N
�
AX, σ2

A(AT
A)−1

A
T
�
and r ∼ N

�
0, σ2(I − A(AT

A)−1
A
T )

�
.
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Perturbation theory

What we mean with PERTURBATION ?
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Perturbation theory

What we mean with PERTURBATION ?
Let δŷ be a stochastic variable such that

δŷ ∼ N
�
0, τ2A(AT

A)−1
A
T
�
.

Under the Hypotheses of Gauss-Markov, and assuming that ŷ and

δŷ are independently distributed, we have

ŷ + δŷ ∼ N
�
AX, (τ2 + σ2)A(AT

A)−1
A
T
�
.

Moreover, we have that

||δŷ||22 ∼ τ2χ2(n).
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Perturbation theory

Let δŷ ∼ N
�
0, τ2A(AT

A)−1
A
T
�
.

Under the hypotheses of Gauss-Markov and assuming that ŷ and

δŷ be uncorrelated, there exists

δx∗ ∼ N (0, τ2(AT
A)−1), δy ∼ N (0, τ2Im),

such that

1. ŷ + δŷ = A(x∗ + δx∗),

2. x∗ + δx∗ is the minimum-variance unbiased estimator of X for

the linear regression problem:

y + δy = AX + ē, ē ∼ N (0, (σ2 + τ2)Im),

3. and s̄2 = 1
m−n ||y + δy − A(x∗ + δx∗)||22, is the estimator for

ρ2 = σ2 + τ2 with s̄2 ∼ σ2+τ2

m−n χ2(m − n).
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Least-squares problem

The minimum-variance unbiased (MVU) estimators of X and σ2 are
closely related to the solution of the least-squares problem (LSP),

min
x

||y − Ax ||22 (2)

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

x
∗ = (AT

A)−1
A
T
y ,

and the corresponding minimum value is achieved by the ||r ||2

r = y − Ax
∗ = (I − P)y ,

�
I − P = I − A(AT

A)−1
A
T
�
.
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Least-squares problem

The minimum-variance unbiased (MVU) estimators of X and σ2 are
closely related to the solution of the least-squares problem (LSP),

min
x

||y − Ax ||22 (2)

where y is a realization of y. The least-squares problem (LSP) has
the unique solution

x
∗ = (AT

A)−1
A
T
y ,

and the corresponding minimum value is achieved by the ||r ||2

r = y − Ax
∗ = (I − P)y ,

�
I − P = I − A(AT

A)−1
A
T
�
.

We remark here that the solution of LSP is deterministic and,
therefore, supplies only a realization of the MVU x∗ and of s2 the
corresponding estimator of σ2.
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Least-squares problem

The vector x∗ is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y − Ax ||22:

A
T
Ax

∗ = A
T
y . (3)

We will denote in the following by

R(x) = A
T (y − Ax)

the residual of (3).
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Least-squares problem

The vector x∗ is also the solution of the normal equations, i.e. it is
the unique stationary point of ||y − Ax ||22:

A
T
Ax

∗ = A
T
y . (3)

We will denote in the following by

R(x) = A
T (y − Ax)

the residual of (3). Moreover, we have

||y ||22 − ||x∗||2ATA = ||
�
I − P

�
y ||22 = ||y − Ax

∗||22.
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Least-squares problem

Given x̃ as an approximation of x∗,

δy = −A(AT
A)−1

R(x̃)

is the minimum norm solution of

min
w

||w ||22 such that A
T
Ax̃ = A

T (y + w).

Moreover, using R(x̃) = A
T (y − Ax̃) = A

T
A(x∗ − x̃), we have

||δy ||22 = ||R(x̃)||2(ATA)−1 = ||x∗ − x̃ ||2ATA.
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A statistical point of view

How, we can link the deterministic theory for the least-squares
perturbation to the Stochastic Perturbation theory?
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A statistical point of view

If δy is a realization of a stochastic variable δy then �δy�22 is a
realization of �δŷ�22 ∼ τ2χ2(n).
Therefore, we consider that δy is a sample of the stochastic
variable δŷ if for some small enough η,

Probability(�δŷ�22 ≥ �δy�22) ≥ 1− η,

where we assume that the random variable
�δŷ�22
τ2 follows a centered

χ2 distribution with n degrees of freedom. Thus, we can formulate
our criterion as

pχ

�
�δy�22
τ2

, n

�
≡ Probability

�
�δŷ�22
τ2

≤ �δy�22
τ2

�
≤ η,

where, pχ (., n) is the cumulative distribution function of the χ2

distribution.
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Preconditioned Conjugate Gradient for Normal equations 1

At each step k the conjugate gradient method minimizes the
energy norm of the error δx (k) = x

∗ − x
(k) on a Krylov space

x
(0) +Kk :

min
x(k)∈ x(0)+Kk

δx (k)TAT
Aδx (k),

where Kk = Span(AT
y , (AT

A)AT
y , . . . , (AT

A)k−1
A
T
y). Let

R
(k) = A

T
�
y − Ax

(k)
�
denote the normal equations residual at

step k . Moreover, using A
T
Aδx (k) = A

T (y − Ax
(k)) = R

(k), the
value �δx (k)�ATA is equal to the dual norm of the residual
�R(k)�(ATA)−1 .
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Preconditioned Conjugate Gradient for Normal equations 2

x
(k) = x

(k−1) + αk−1q
(k−1), αk−1 =

R
(k−1)T

R
(k−1)

q(k−1)TATAq(k−1)
,

R
(k) = R

(k−1) − αk−1A
T
Aq

(k−1) ,

q
(k) = R

(k) + βk−1q
(k−1), βk−1 =

R
(k)T

R
(k)

R(k−1)TR(k−1)
.

The quantity αk−1 gives the step-size on the direction q
(k−1)

during the conjugate gradient algorithm.

12 / 25



Linear Regression, BAMC, 11th April 2011 Mario Arioli, RAL

Preconditioned Conjugate Gradient for Normal equations 3

In exact arithmetic, we have that the energy norm of the error
δx (k) = x

∗ − x
(k) is

�δx (k)�2ATA = e
(k)
ATA

=
n−1�

j=k

αjR
(j)T

R
(j),

and the energy norm of x∗ − x
(0) is

�x∗ − x
(0)�2ATA =

n−1�

j=0

αjR
(j)T

R
(j).
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Preconditioned Conjugate Gradient for Normal equations 3

In exact arithmetic, we have that the energy norm of the error
δx (k) = x

∗ − x
(k) is

�δx (k)�2ATA = e
(k)
ATA

=
n−1�

j=k

αjR
(j)T

R
(j),

and the energy norm of x∗ − x
(0) is

�x∗ − x
(0)�2ATA =

n−1�

j=0

αjR
(j)T

R
(j).

Under the assumption that e(k+d)
ATA

<< e
(k)
ATA

, where the integer d
denotes a suitable delay, the Hestenes and Stiefel estimate ξk of
the energy-norm of the error will then be computed by the formula

ξk =
k+d−1�

j=k

αjR
(j)T

R
(j).
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Preconditioned Conjugate Gradient for Normal equations 4

Finally,

�x∗ − x
(0)�2ATA ≥

k−1�

j=0

αjR
(j)T

R
(j) = νk .

Therefore,

�y − Ax
∗�22 = �y − Ax

(0) − A(x∗ − x
(0)�22 ≤ �y − Ax

(0)�22 − νk .

Introducing a preconditioner, we want to speed up the convergence
rate of the conjugate gradient method but this will change the
matrix and, therefore, the energy norm. However, we still want to

estimate e
(k)
ATA

. It is proved that the energy norm of the

preconditioned problem is equal to e
(k)
ATA

( Arioli, Meurant). Moreover,
when finite precision arithmetic is used, the Hestenes and Stiefel
method for computing the error norm is numerically reliable
( Strakos Tichy).
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Preconditioned Conjugate Gradient for Normal equations 5

PCGLS algorithm Given an initial guess x(0), compute r (0) =
�
y − Ax(0)

�
, R(0) = AT r (0), and

solve Mz(0) = R(0). Set q(0) = z(0), β0 = 0, ν0 = 0, χ1 = R(0)T z(0), and ξ−d = ∞. Set k = 0

while z(ξk−d , �r (0)�2, νk , τ2, σ2)) > η do
k = k + 1;

p = Aq(k−1);
αk−1 = χk/||p||22;
ψk = αk−1χk ; νk = νk−1 + ψk ;

x(k) = x(k−1) + αk−1q
(k−1);

R(k) = R(k−1) − αk−1A
T q(k−1);

Solve Mz(k) = R(k);

χk+1 = R(k)T z(k) ;
βk = χk+1/χk ;

q(k) = z(k) + βk q
(k−1);

if k > d then

ξk−d =
k�

j=k−d+1

ψj ;

else
ξk−d = ∞;

endif
end while.
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Stopping criteria η and τ 2

We stop when z(ξk−d , �r (0)�2, νk , τ2, σ2)) ≤ η

1. η is a probability (in our experiments η = 10−8 but η = 10−3

can realistic)

2. τ2 = σ2 can be fragile and it is better to impose τ2 = 0.01σ2

3. ξk depend on d the delay. When the preconditioned problem
is still ill conditioned we must choose d = 20 for reliability.

4. pχ is cheap to compute ( in our experiments we use the
Matlab functions fcdf, and chis cdf )
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Stopping criteria summary

1. µ1 = pFS

��
m−n
n−k

�
ξk

||y ||22−νk
, n − k ,m − n

�
(F-test)

2. µ2 = pχ

�
ξk
τ2 , n

�
τ2 = 0.1pσ2, p = 0, 2,

3. µ3 = pχ

�
(m−n)ξk

τ2k
, n
�
, τ2k = 0.1p(�y�22 − νk), p = 0, 2.
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Test problems (Paige-Saunders)

id m n nnz κ(A)

well1033 1033 320 4732 1.6 102

illc1033 10033 320 4719 1.8 104

well1850 1850 712 8755 1.1 102

illc1850 1850 712 8636 1.4 104

Dimensions, number of non zeros and κ(A) = ||A+||2||A||2 for
Paige-Saunders tests.

In all the problems the standard deviation has been normalized
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Numerical tests (τ 2 = σ2)

id d IC(1e-2)

µ1 µ2 µ3

10 28 ( 1.1e-03 , 1.061 ) 28 (1.1e-03 , 1.061 ) 28 ( 1.1e-03 , 1.061 )

Well1033 20 28 ( 1.1e-03 , 1.061 ) 28 (1.1e-03 , 1.061 ) 28 ( 1.1e-03 , 1.061 )

30 28 ( 1.1e-03 , 1.061 ) 28 (1.1e-03 , 1.061 ) 28 ( 1.1e-03 , 1.061 )

10 22 ( 2.0e-03 , 1.048 ) 22 (2.0e-03 , 1.048 ) 22 ( 2.0e-03 , 1.048 )

Well1850 20 22 ( 2.0e-03 , 1.048 ) 22 (2.0e-03 , 1.048 ) 22 ( 2.0e-03 , 1.048 )

30 22 ( 2.0e-03 , 1.048 ) 22 (2.0e-03 , 1.048 ) 22 ( 2.0e-03 , 1.048 )

10 124 ( 4.9e-03 , 1.886 ) 124 (4.9e-03 , 1.886 ) 59 ( 2.0e-02 , 6.742 )

illc1033 20 157 ( 6.3e-04 , 1.021 ) 156 (1.3e-03 , 1.089 ) 153 ( 1.8e-03 , 1.160 )

30 157 ( 6.3e-04 , 1.021 ) 156 (1.3e-03 , 1.089 ) 153 ( 1.8e-03 , 1.160 )

10 62 ( 3.1e-02 , 5.010 ) 120 (7.9e-03 , 1.591 ) 59 ( 3.6e-02 , 5.770 )

illc1850 20 140 ( 4.2e-03 , 1.198 ) 143 (3.5e-03 , 1.144 ) 93 ( 1.3e-02 , 2.283 )

30 143 ( 3.5e-03 , 1.144 ) 145 (3.0e-03 , 1.106 ) 132 ( 5.7e-03 , 1.343 )

Number of iterations for each stopping criterion η = 10−8 and τ2 = σ2. In bracket, the value of
||x∗ − x̃||

AT A
/||x∗||

AT A
and of the standard deviation of r = b − Ax̃ at the corresponding iteration.
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Numerical tests (τ 2 = σ2)

IC(1e-3)

10 9 ( 7.8e-04 , 1.032 ) 9 (7.8e-04 , 1.032 ) 9 ( 7.8e-04 , 1.032 )

Well1033 20 9 ( 7.8e-04 , 1.032 ) 9 (7.8e-04 , 1.032 ) 9 ( 7.8e-04 , 1.032 )

30 9 ( 7.8e-04 , 1.032 ) 9 (7.8e-04 , 1.032 ) 9 ( 7.8e-04 , 1.032 )

10 7 ( 1.2e-03 , 1.017 ) 7 (1.2e-03 , 1.017 ) 7 ( 1.2e-03 , 1.017 )

Well1850 20 7 ( 1.2e-03 , 1.017 ) 7 (1.2e-03 , 1.017 ) 7 ( 1.2e-03 , 1.017 )

30 7 ( 1.2e-03 , 1.017 ) 7 (1.2e-03 , 1.017 ) 7 ( 1.2e-03 , 1.017 )

10 59 ( 1.4e-03 , 1.106 ) 59 (1.4e-03 , 1.106 ) 57 ( 1.8e-03 , 1.166 )

illc1033 20 63 ( 1.3e-03 , 1.082 ) 63 (1.3e-03 , 1.082 ) 58 ( 1.5e-03 , 1.122 )

30 63 ( 1.3e-03 , 1.082 ) 63 (1.3e-03 , 1.082 ) 58 ( 1.5e-03 , 1.122 )

10 36 ( 4.1e-03 , 1.186 ) 37 (2.7e-03 , 1.085 ) 36 ( 4.1e-03 , 1.186 )

illc1850 20 37 ( 2.7e-03 , 1.085 ) 37 (2.7e-03 , 1.085 ) 36 ( 4.1e-03 , 1.186 )

30 37 ( 2.7e-03 , 1.085 ) 37 (2.7e-03 , 1.085 ) 36 ( 4.1e-03 , 1.186 )

Number of iterations for each stopping criterion η = 10−8 and τ2 = σ2. In bracket, the value of
||x∗ − x̃||

AT A
/||x∗||

AT A
and of the standard deviation of r = b − Ax̃ at the corresponding iteration.
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Numerical tests (τ 2 = σ2/100)

id d IC(1e-2)

µ1 µ2 µ3

10 28 ( 1.1e-03 , 1.061 ) 33 (5.0e-05 , 1.000 ) 33 ( 5.0e-05 , 1.000 )

Well1033 20 28 ( 1.1e-03 , 1.061 ) 33 (5.0e-05 , 1.000 ) 33 ( 5.0e-05 , 1.000 )

30 28 ( 1.1e-03 , 1.061 ) 33 (5.0e-05 , 1.000 ) 33 ( 5.0e-05 , 1.000 )

10 22 ( 2.0e-03 , 1.048 ) 25 (1.7e-04 , 1.000 ) 24 ( 3.8e-04 , 1.002 )

Well1850 20 22 ( 2.0e-03 , 1.048 ) 25 (1.7e-04 , 1.000 ) 24 ( 3.8e-04 , 1.002 )

30 22 ( 2.0e-03 , 1.048 ) 25 (1.7e-04 , 1.000 ) 24 ( 3.8e-04 , 1.002 )

10 124 ( 4.9e-03 , 1.886 ) 164 (6.6e-05 , 1.000 ) 138 ( 2.1e-03 , 1.209 )

illc1033 20 157 ( 6.3e-04 , 1.021 ) 164 (6.6e-05 , 1.000 ) 163 ( 1.5e-04 , 1.001 )

30 157 ( 6.3e-04 , 1.021 ) 164 (6.6e-05 , 1.000 ) 163 ( 1.5e-04 , 1.001 )

10 62 ( 3.1e-02 , 5.010 ) 178 (6.1e-04 , 1.005 ) 178 ( 6.1e-04 , 1.005 )

illc1850 20 140 ( 4.2e-03 , 1.198 ) 196 (2.6e-04 , 1.001 ) 195 ( 3.6e-04 , 1.002 )

30 143 ( 3.5e-03 , 1.144 ) 196 (2.6e-04 , 1.001 ) 195 ( 3.6e-04 , 1.002 )

Number of iterations for each stopping criterion η = 10−8 and τ2 = σ2/100. In bracket, the value of
||x∗ − x̃||

AT A
/||x∗||

AT A
and of the standard deviation of r = b − Ax̃ at the corresponding iteration.
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Numerical tests (τ 2 = σ2/100)

IC(1e-3)

10 9 ( 7.8e-04 , 1.032 ) 13 (6.3e-05 , 1.000 ) 13 ( 6.3e-05 , 1.000 )

Well1033 20 9 ( 7.8e-04 , 1.032 ) 13 (6.3e-05 , 1.000 ) 13 ( 6.3e-05 , 1.000 )

30 9 ( 7.8e-04 , 1.032 ) 13 (6.3e-05 , 1.000 ) 13 ( 6.3e-05 , 1.000 )

10 7 ( 1.2e-03 , 1.017 ) 8 (2.2e-04 , 1.001 ) 8 ( 2.2e-04 , 1.001 )

Well1850 20 7 ( 1.2e-03 , 1.017 ) 8 (2.2e-04 , 1.001 ) 8 ( 2.2e-04 , 1.001 )

30 7 ( 1.2e-03 , 1.017 ) 8 (2.2e-04 , 1.001 ) 8 ( 2.2e-04 , 1.001 )

10 59 ( 1.4e-03 , 1.106 ) 83 (8.3e-05 , 1.000 ) 83 ( 8.3e-05 , 1.000 )

illc1033 20 63 ( 1.3e-03 , 1.082 ) 83 (8.3e-05 , 1.000 ) 83 ( 8.3e-05 , 1.000 )

30 63 ( 1.3e-03 , 1.082 ) 83 (8.3e-05 , 1.000 ) 83 ( 8.3e-05 , 1.000 )

10 36 ( 4.1e-03 , 1.186 ) 55 (3.2e-04 , 1.001 ) 51 ( 4.1e-04 , 1.002 )

illc1850 20 37 ( 2.7e-03 , 1.085 ) 55 (3.2e-04 , 1.001 ) 51 ( 4.1e-04 , 1.002 )

30 37 ( 2.7e-03 , 1.085 ) 55 (3.2e-04 , 1.001 ) 51 ( 4.1e-04 , 1.002 )

Number of iterations for each stopping criterion η = 10−8 and τ2 = σ2/100. In bracket, the value of
||x∗ − x̃||

AT A
/||x∗||

AT A
and of the standard deviation of r = b − Ax̃ at the corresponding iteration.
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Data Assimilation

Data assimilation purpose is to reconstruct the initial conditions at
t = 0 of a dynamical system based on knowledge of the system’s
evolution laws and on observations of the state at times ti .

u̇ = f (t, u) u(t) = M(t)u0

Assume that the system state is observed (possibly only in parts)
at times {ti}Ni=0, yielding observation vectors {yi}Ni=0, whose model
is given by

yi = Hu(ti ) + �, � ∼ N
�
0,Ri = σ2

I
�
.

Find u0 which minimizes

1

2

N�

i=0

�HM(ti )u0 − yi�2R−1
i
.

23 / 25



Linear Regression, BAMC, 11th April 2011 Mario Arioli, RAL

Data Assimilation

Heat Equation model

∂u

∂t
= −∆u in S2 = [0, 1]× [0, 1],

u = 0 on ∂S2, u(., 0) = u0 in S2
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Data Assimilation

The system is integrated with time-step dt, using an implicit Euler
scheme. In the physical domain, a regular finite difference scheme
is taken for the Laplace operator, with same spacing h in the two
spatial dimensions. The data of our problem is computed by
imposing a solution u0(x , y , 0) computing the exact system
trajectory and observing Hu at every point in the spatial domain
and at every time step. In our application, m = 8100,
n = 900 = 302, dt = 1, h = 1/31, N = 8 and
H = diag(11.5, 21.5, . . . , n1.5). The observation vector y is obtained
by imposing u0(x , y , 0) =

1
4 sin(

1
4x)(x − 1) sin(5y)(y − 1), and by

adding a random measurement error with Gaussian distribution
with zero mean and covariance matrix Ri = σ2

In, where σ = 10−3.
In our numerical experiments, we use PCGLS without
preconditioner.
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Data Assimilation: results (d=5)

(a) (b)

(c) (d)

(a) Stopping criteria, (b) Energy norm of the error, (c)

ζk =
�y�22−νk
m−n , (d) Residual histogram.
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Conclusion

� F-test stopping rule for PCGLS

� LSQR has similar behaviour

� Orthodir (or re-orthogonalization) can be a valuable
alternative for LSP where A is implicit

� How to generalize to other non linear regression problems or
to NON-NORMAL distribution?
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