Rutherford Appleton Laboratory

 Chilton DIDCOT Oxon OX11 0QX
Measurement of the Spin-rotation Parameter, B, in the Reaction $\pi^{+} p \rightarrow K^{+} \Sigma^{+}$at 1.69 and $1.88 \mathrm{GeV} / \mathrm{c}$

D J Candlin et al

June 1988

Scieuce and Engineering Research Countil

The Science and Engineering Research Council does not accept any responsibility for loss or damage arising from the use of information contained in any of its reports or in any commurications about its tests or investigations.

```
D J Candinn, D C Lowe and K J Peach
Department of Physics, University of Edinburgh
Eddnburgh, UK
G J Brankin, I F Corbett, S M Pisher, G S Ioannidis,
P JLitchfleld, l. P Mapelli', J Wright
Rutherford Appleton Laboratory, Chilton; Didcot, Oxon, UK
M G Green
Department of Phystes, Royal Holloway and Hedford Nes Gollege,
Egham HLLl, Egham, Surrey
E. Arik', % D Hallewell}\mp@subsup{}{}{3}\mathrm{ , B Pollock and A Shtrani
Department of Physics, Westfield College, London IK
```


Abstract

Valuks of the spin rotation parameter, 6 , are measured in the reaction $\mathbb{H}^{+} \mathrm{P} \rightarrow \mathrm{K}^{+} \mathrm{L}^{+}$at incident pion momenta of 1.69 and $1.86 \mathrm{GeV} / \mathrm{c}$.

1) GERN, 1211 Geneva 23, Suitzerland
2) Bogazici University, Bebek, Tstanbul, Turkey
3) BLAC, P O Box 4349, Stanford, California, USA

1) Introduction

This paper presents the results of a measurement of the spin rotation parameter, 8 , in the reactuon $n^{+} p+x^{+} L^{+}$at two incident pion momenta, 1.69 and $1.88 \mathrm{GeV} / \mathrm{C}$. The expertment was run at the CERN PS uskig the Rutherford Wultiparticle spectroneter (RMS). It was a follow up to the experiment performed at NMMROD in which the differential crossmsections and polarlsations wexe measured at 26 momenta between 1.282 and 2.473 Gev/c ${ }^{(1)}$

A partial waye analysis of the earliax data was carried out, (2) yielding parameters for A^{*} resonances formed In this reaction. The objective of this second expertuent was to add qualitatively new information to the partial wave analysis by measuring the spin rotation parameter, the only other observahe available in this reaction, at a feth points in the above energy range. In principle, the measurement of at a motantum point resolves many of the mathematical ambigutcies present in the partial wave analysis which in reference 2 were only resolved by continuty and the imposition of resonance behaviour in certain tominant partial waves.

As its name implles the measurement of B involyes the correlation of the initalal spin of the target proton with the outgoing spin of the L^{+}. The initlal spin duraction was defined by the use of a frozen spin polatised target yielding average polarisations of the otder of 95% for free protons. The outgotng $\&$ spin direction was measured using the weak decay of the Into pill. This experiment is the first to attempt to measure the of parameter in this reaction. The only comparable data is the measurement of the same parameter in the reaction $\pi^{-r} p+K^{0} A^{0(3)}$.

2) Experimental Conditions

RMS was a large dipole magnet ($6 \mathrm{~m} \times 2 \mathrm{~m} \times 1.35 \mathrm{~m}$) equipped with thacking detectors and trigger counters, originally built to study complex reactions in the energy range available at the NLAROD accelecator ac the Rucherford Laboratory. The detactor layout used in the previous experiment at NIMROD is described In some detajl in reference 1 . It consisted of a set
of cylfndrical spark chambers surrounding the target, a set of downstream flat spark chambers, a set of flat mpark chambers to one side of che target to measure slow positively charged tracks that curve in that direction, a set of multiwire chambers to define the momentum and direction of beam particles, time of flight and trigger scintillation counters behind the two sets of flat chambers and downstrem high pressure cherenkov counter that vetoed pions above about 1.3 Gev/e. This layout had a high acceptance for $\mathrm{K}^{+\mathrm{I}^{+}}+\mathrm{K}^{+\mathrm{pn}^{0}}$ Einal states produced in the plane of the magnet and proved very zuceessful in belng able to reconstruct fully the $\mathrm{m}^{+}+\mathrm{pr}^{0}$ decay and separake this reaction from the poscible backgrounds.

Several minor changes, detalled below, were made For the gecond atage of the experfment:
a) The magnet was modified by the addition of carefully shimaed pole pieces which provided the 2.5 f field, unifore over the volume of the target to $\$ 4 \mathrm{mT}$, required to polartse the target uniformy.
b) The side spark chambers were replaced with proportional chambers (SD1-4).
c) Two proportional chembers were placed behan the large downsteam hodoscope (DS1. DS2).
d) The first downstream flat spark chamber was replaced by a proportional chamber (MD1).
e) A 20 cm square proporthonal chamber was placed acter the cylinarical chambers (II).
f) The downstrean hodoscope, 31 was raised so that the bot tom element was centred on the incident beam. The downstream cherenkyp was rajaed to cover the same aperture.

The layout for this experiment 1 s shown in Figure 1.

The objective of the changes was to provide extra triggering capability using the MNPC, since the trigger for the first part of the experiment was not appropritate for the spin rotation measurement, and also to provide
some increased track point accuracy and efficiency.

2.2 The beam

It was originally proposed to run both the hydrogen target and polarised target experiments at NIMROD. However on the closure of NIMROD the equipment was moved to GBRN and installed in the Gast Hall at the PS. A conventional separated bean with one stage of electrostatic separation provided approximately 10^{5} positive pions per pulse of a few hundred milliseconds duration. The proton contamination was very small but the fdentification of the beam particle was confirmed by a time-of-flight measurement over 13 w with an accuracy of ± 250 psec. The electron and muon contatinations were separately measured. The bean would provide plons from 1.3 to $2.5 \mathrm{CeV} / \mathrm{c}$ but good data were obtained at only two momenta, 1.69 and $1.88 \mathrm{GeV} / \mathrm{c}$.

2.3 Trigger

The dipole configuration of the aagnet is not ideal for a spin rotation measurement as the maximur effect oceurs when the polarisation drection, Hhich is aligned with the magnetic field, lies in the event production plane (See Section 4.1). The trigger was designed to select events which could be fully reconstructed in the detector and approached as closely as posstble the destred orientation. This goal could best be realised in two limited kinematic regions; the "forward" region ($0.7<\cos \theta \times 1.0$) and the "backward" region ($0.9<\cos \theta<-0.1$) where $\cos \theta$ is the centre of mass scattering angle of the K^{+}.

The forward trigger demanded a correlation in the bending plane between the coordinates of a track in MPPC Ul and DS1 based on the known kinemattes of the K^{+}. As well as these forward K^{+}events this trigger also accepted an apprectable fraction of the protons from backward KL events which have a similar momentum/angle correlation.

The backward trigger demanded a track in the backward part of the first side MUPC (SDI) plus a forward track in Ul and DSL but without requiring the correlation in position in the two chambers. In addition any hits in the regions of MDI not covered by $U 1$ and in the forward part of DSI vetoed the event.

Both triggers required a count in the hodoscope $J 1$ and no count in the cherenkov counter, thus vetolng plons over $1.3 \mathrm{GeV} / \mathrm{c}$ momentum. The presence of a good beam particle was imposed by scintillation counters and solid state counters in the beam*

2.4 Eolarised carget

A frozen spin tamget 12 cm long and lom fadius made of propanediol ($\mathrm{C}_{3} \mathrm{O}_{2} \mathrm{~h}_{6}$) Whs wsed, giving a free wo bound nucleon ratio of 1:9.5. Two NMR coils around the target measured the target polartataton.

The target was polarised in a field of $2.5 T$ at a temperature of about $1 k$ between the shimmed pole pleces addec to the RMS magnet. Typically polarisations of 95% were achleved, determined by calibration of the NuR codis on the natural polarisation of about 0.25% produced by the polarising fleld alone. The target was then cooled co below SOm\& and woved to its working position in the experiment where the polarisation was maintained by the IT field of the RUS magnet. Polatisation Lfetimes of typically 800 hours for positive polarisations and 330 houks for negative polarisations were obtained.

Data nere taken in runs of typically 3 days between repolarisation for posltive polarisations and 2 days for negative. The analysls procedure adopted (see section 4) depends on the mean tve and we polarisation being equal to better than the errot on the polarisation value obtained in the subsequent analysis (typically 10\%). Study of the NAR measurements shows that the spread in the difference in indtial polarisation measuretents between positive and negative 1 s 3 M , and the difference in average polardation due to the difference in polarisation lifetimes in the two cases 2.8%. Also the run to run stabillty of the polarisation measurememt wat found to be good to 3%.

We conclude that the positive and negative polaxisations under which the expertment was run vere equal to betwew than ± 6.

Two solid state counters mounted in the target cryostat and operated at liquid helium temperatures ensured that the beam trafectory passed through
the target material and avoided the significant mass zurrounding the propanediol target.

3) Data

3.1 Data taking

Because of problems with secting up the polarised target on ${ }^{*}$ one month of good data taking was available before the PS shotdown during which the East Hall was to be remodelled for Lep operations and the bem line dismantled. In this period useful data sould be taken at only two momenta, 1.69 and 1.88 Gev/c. Koreover, in order to obtain the maxinum data in the mininus tiae, only the forward crigger was run as this trigger accepted both forward and backward events, though with a reduced effxckency in che backward direction. Approximately 6×10^{6} triggers were taken at each monentum points 3×10^{6} at each polarisation setting. Again in order to save time the polarlations were not reversed after each 2 or 3 day polarisathon period but the polarisation was copped up to its maximum value. The polarisation was reversed after all data at one setting had been obtained; typically less than one week's ruming. The scudy described above in section 2.4 , togecher Wth the powexful analysts technique available and the observation that the statistical precision available did not require high precision on the polarisation measurement, confitmed that this arrangement was adequate for thes experiment, though not ideal.

3.2 Data reduction

Essentially the same data reduction programs were used as fin the first part of the experiment. These are described in some detail in reference 1. Tracks with oore than 4 hits were found and had their momenta and direction fitted with high efficiency (greater than 95%. Corcactions for gxi and track angle effects in the spark chambets were applied and the full

The orlginal target vessel could not be used, We would Jjke to thank the CERN polarised target group and particulaniy Dr T Ninikowski Eor the loan of a stmilar vessel and their help during the setting up of the polarised target.
correlated Coulomb scatering error matrix used in the Eit. All pairs of outgong tracks were subjected to a combined geonetrical and kinemathe fitting procedure which performed a wo vertex geometrical fic to che ${ }^{+}{ }^{+} p \rightarrow$ $K^{\dagger} \varepsilon^{+}+\mathrm{K}^{\dagger} \mathrm{p}^{0}$ reaction subject to the kinematical constraints at each vertex. The decay length of the Σ^{+}, whoch was not observed in the track detectors, was a parameter of the fit.

In addition the times of 1 light in hodoscopes 51 and 32 (if the latter was hit) were caleulated and a time of $\frac{14}{} 1$ ght X^{2} addad to the kinematic X^{2}. Ftus were also earried out for the single vertex hypotheses $\pi^{+} p \rightarrow \pi^{+} p, \pi^{+} p H^{0}$ and $\pi^{+} \pi^{+} n$.

The same cuts to separate $k \Sigma$ events from background were used as in reterence 1 . 5tudies there showed that for events produced from free
 contauination of background events. As an indication of purity of the sample Figute 2 shows the time of 1 light probability for tracks that hit i2 assuming that they are π_{3}, or p after kinematic fitting and before the final selectlon process. Tt can be seen that even at this stage the rajority of events contain good K^{+}.

3.3 Final event Sample

It was found that at both momenta the events entering the lower element of hodoscope JI, i.e. events whose production plane is perpendicular to the polarisation direction, contained considerably more background than those in the other two elaments. Since these events had low weight for the cetermination of they wera rejected. Cut to ensure good measurability of the tracks and vertex position cuts were also imposed.

Finduly a selected sample of 3297 positive polarisation and 2998 negative polarisation \mathbb{T}^{+4+} events memained at $1.69 \mathrm{GeV} / \mathrm{c}$ and 2740 positive and 2721 negative events at 1.88 Gev/e. The distribution in cos eor the wwo data sets if shown in Etgure 3. Due to a misalignment of the trigger counters ul and DSL, the accoptance of the foward triggor to forward $\mathbb{K}^{+}{ }^{+}{ }^{\text {to }}$ events fron free bydrogen was poor. However, it hed little effect on the acceptance for the backward events which was insensitive to their positioning.

As in the hydrogen target experimenc a complete simulation was carried out using Monte Carlo generated, tracked and triggered events which were then passed through the identical set of reconstruction and selection programs. The decails are the same as those tescribed in refecence 1 . About three times as nany good honte Cario as data events were produced. This involved the generation and tracking of approximately 0.5 milion $\mathrm{K}^{+} \mathrm{E}^{+}$events at each polarisation and motentum setting.

4) Data Analysis and Resules

4.1 Formalism and method

The reaction $\pi^{+} p \rightarrow K^{+} \Sigma^{+}+K^{+} p \pi^{0}$ is described by 5 variables. We chose;

1) Total centre of mass energy (8).
 the zncident pion direction and \bar{X} is the outgoing K^{+}direction)
2) Angle between the polarisation direction and the event production plane projected onto the plane perpendtoular to the incident π direction (ф).
3) the polar $\left(\theta_{d}\right)$ and arinuthal $\left(\phi_{d}\right)$ decay angles of the proton defined
4) un the Σ^{+}decay frame such that the proton direction (\bar{p}) has components
$\vec{p} \cdot \vec{n}=\cos \theta_{d} \vec{p} \cdot \vec{k}=\sin \theta_{d} \cos \phi_{d} \vec{p} \cdot(\vec{n} x \bar{Z})=\sin \theta_{d} \sin \epsilon_{d}$ where \bar{n} is the nomal to the production plate $(\overline{\mathbb{M}} \times \overline{\mathcal{K}}$) and $\vec{\Sigma}$ is the \mathbb{E} direction.

For a given centre of mass energy and production angle bin the distribution function is givan by

$$
\begin{aligned}
W= & 1+a P \cos \theta_{d}+P_{T}\left[P \sin \phi+\alpha\left[\sin \phi \cos \theta_{d}+\sqrt{\left(1-Q^{2}\right)}\right.\right. \\
& \left.\left.\sin \theta_{d} \cos \phi \sin \left(\theta+\phi_{d}-B\right)\right)\right]
\end{aligned}
$$

where
P is che polarisation ${ }^{F}$ T is the target polamisation
a is the z asymatry parameter (-0.979)
B 15 the spin rotation parameter.

Note that P can be deterained twice, once from che decay and once fron the
 independent of the polarisation.

The three patameters P, P_{T}, β can be determined by a maximum likelihood fit of the data to this expression, that is by winimising the expression

A Is the integral of W weighted by the acceptance of the expertment, deteratned by che Monte Carlo situlation, and N is the total number of events.

A significant simplification can be made by obsurying that the two settings of the polarisation are equivalent to taking data with the same polarisation in regions corresponding to ϕ and $\phi+\pi$. Making the fransformation in khe expression for W it cam be seen that all sems apart from orcos 0 d change sign* Thus if we analyse the two data sets as one, wth the negative polarisation reversed and its ofansfotaed, then all terns in the integral A, except the apcoso term, vanish under the assumptions:
a) that the acceptance is the same for the two polarisation settings, a good assumption for the 1.69 and 1.89 data which were taken over a short perlod with the equipaent in atable contiguration,
b) that the distribution of background events (i.e. $\mathrm{K}^{+} \mathrm{L}^{+}$events from unpolarised protons and events that are not $\mathrm{K}^{+} \Sigma^{+}$but that give fits and pass the selection eriteria) are the same in the two polartsation settings, again a good assumption shace the background rou bound protons is unaftected by the polarisation setting and the analysis of reference 1 showed that the background from free probong is negligible,
c) that the free polatisation is the same in the two settings, justified in section 2.4 .
 determined to a sufficient accuracy by father modest mounts of Monte Carlo data, in contrast to the fategrals involving B. Furthermore its cormelation With is small so that the determination of is almozt independent of the detailed acceptance of the experiment.

A correction has been applied to take account of the small difference (less than 10 类) in the awount of data taken at the two polarisation settings by weighting the negative polarisation data by the ratio of the beam coumes in the two settings. SmaLL errors due to diterences in transmission coefficients in the tho settings are below the sensitivity of the experiment. Yests were made with different values of the weights, within reasonable ranges, without affecting the value of β within its errors.

```
4.2 Fitting procedure
```

The sample of selected events consists of three types
a) $\mathrm{K}^{+}{ }^{+}$events off polarised free protons
b) $K^{+} \Sigma^{+}$events off bound protons (zewo polarisation)
c) background non- $K^{+} K^{+}$events.

Events of type b) werely dilute the effective target polarisation from the measured 95% of the free protons. Events of type c) mill obviously not have the characterintics of $\mathrm{K}^{+} \Sigma^{+}$events ank in parthcular, since they whil generally come from events not containing weak decays will have gero or low effective Σ polarlsations as measured whth the apcos eferm.

It might be hoped to distinguish between the free proton events and the others uskng the kinematic fit probabllity, This probability was studied for the free hydrogen data in reterence 1 and found not to be flat but to be peaked to low values. This was atributed to residual misalignments of chamber yositions and uncertanties in the field mapa and fn spark corrections. These effects are expected co remain in this data. In addition events of types b) and c) would be expected to populate the low probability region. Figure 4 shows a typical probability distribution.

Fits were made tith a variable lower probability out. The results for and ${ }^{P_{T}}$ are shown in Figure 5 For the 1.69 Gev/c data. It can be seen that the absolute value of P rises as the cut is fncreased and there is also a tendency for $P_{\text {ra }}$ to rise. These reflect the removal of events which are not $\mathrm{K}^{+} \mathrm{\Sigma}^{+}$off free hydrogen as the probability cut is increased. A probability cut of 5 各 optimises themaval of background while retalning a maxinum number of events. Figure 6 show the measured $\frac{1}{2}$ polarisation (P) at 1.69 and $1.88 \mathrm{GeV} / \mathrm{c}$ with chis cut compared with the results obtained in the hydrogen target experiment ${ }^{(1)}$. The agreement is good, indicating that the सitting process is woking well and justifying the assumptions made. Effective target polarksations of around 20% wete obtained, rapresenting the dilution of free with bound proton events.

4.3 Measurement of 6

The values of f obtained with 5% probablifty cut in 4 bins of cos at 1.69 and 3 at $k .88$ are plotted in Figure 7 and tabulated in Table 1.

Because of the different acceptance at the two momentum points the cos 0
 evencs per bin. The data with $\cos 0<-0.7$ at 1.88 Gev/c lad small values of effective target polarisation and too big errors on fo be useful. Whthit the quoted errots the value of β is not feterted by the value of the probability cut. Figure 8 shows some sample distributions of the angle conbinations involved in the expansion of the distribution function W, together with the Monte Carlo expectations glven the values of the fitted parameters, Note the generally good fics; the combinathon sin ϕ cos 0 is dependent only on the target polarisation $\left(P_{T}\right), \cos \theta_{d}$ is dependent only on P. Notice also the broad range of the distribution involving cos (0 (B) ($\cos \phi \sin \theta_{d} \sin \phi_{d}$)* The expertment las good sensieivity to B despite the restricted acceptance.

4.4 Comparison with the partial waye analysis

The partial waves decermined in reference 2 were used to calculate the expected values of B. The formalisw used in references 3 and 4 was followed. Briefly this reaction is deseribed by a scatcering matrix

$$
x \equiv \hat{f}+i g n w \underline{w}
$$

where f is the non-spinmilip anplitude
g is the spin-tif amplicude
n is the production plane noraal.
a are the pauli spin matrices

The observables I_{o} (the intensity for zero tamget polarlsation), P (the polarisation) and β (spln rotatton angle) ${ }^{(5)}$ are defined fn terms of f and g as

$$
\begin{aligned}
I_{0} & =|f|^{2}+|g|^{2} \\
I_{0} P & =-2 \operatorname{Im}\left(f^{\star} g\right) \\
\beta & =\arg \left(\frac{f-i g}{f+i g}\right) \\
& =\tan ^{-1}\left(\frac{-2 \operatorname{Re}\left(f^{*} g\right)}{|f|^{2}-|g|^{2}}\right)
\end{aligned}
$$

F and g can be simply calculated fron the pareial wave amplutes ${ }^{\text {4 }}$.

The predictions of the partial wave analysis are plotced as the curves on Ftgure 7. The overall agreement of the new data and the predictions of reference 2 is not good. The x^{2} of the fit at 1.69 Gev/e is 22 for 4 data polnts and 5.4 for 3 data points at 1.88 Gev/e.

The Barrelet zeros formalism ${ }^{\text {(6) }}$ has been used to calculate the 1024 anbiguicies to the partial wave amplitudes determined $\frac{1}{n}$ reference 2 at each of the two data points measured here. Amongst these amblgutties a number can be found that give good values of x^{2} for the fit of their predieted B Walues to these wasurad here. However none of then have the pattern of amplltudes In the high partial waves (f 17 and above) that was inferred from the resonanca pattern in these waves determined in the elastic ehannel and Hsad in weference 2 to constrain the energy continuity of che solution. A new partial wave analysis incorporating this data is needed to determine whether afit to can be obtained by small adjustments around the values found in taferance 2 of whether a solution corresponding to a completely different Barmelet ambiguity is required in this energy region.

5. Acknowledgements

Our thanks are due to the many people who contributed to this experiment. I Alner; J Chauhan, J Craig, D Cragg, S Cox, M Page, G Pulifnger, G Warmex and P White built and operated the polarised target. M Gibson. Morrissey and k Nickson worked long and hard to keep a blg experiment with amall crew on the road. Finally we would like to thank all the staff of cakn, particularly the crew of the PS, for their usual efflciency and professtonalism.

References

1) D.J. Candiln et al. Nuel. Phys. B226 (1983), 1 ,
2) D.J. Candin et al. Nuel. Phys. B238 (1984), 477.
3) K. Bell et a1. Nucl. Phys. 1222 (1983), 389.
 (unpublished).
4) H.L. kelly, J.C. Sandusky, R.E. Cutkosky, Phys. Rev. D10 (1974), 2309.
5) E. Barrelet, Nuovo Cimento As (1972), 331.

Table 1

Heasured values of β (all values are modulus 2π)

$1.69 \mathrm{GeV} / \mathrm{c}$	$1.88 \mathrm{GeV} / \mathrm{c}$	
$\cos \theta$ range	$\cos \theta$ range	β
-0.9-0.7-1.4 ± 1.0		
$-0.7-0.4 \quad-0.7 \pm 0.9$	$-0.7-0.5$	1.2 ± 2.1
-0.4-0.1 0.9 ± 0.9	$-0.5-0.3$	0.2 ± 1.4
$0.7-0.95-1.9 \pm 0.9$	0.70 .9	1.4 4.5

Figure Captions

Figute 1 Layout of chambers and counters in the $\mathbb{R M S}$ magnet.

Figure 2 The time-of-flight probability for a typical sample of $213 \mathrm{~K}^{+\mathrm{L}^{+}}$ events selocted on kinematic probability in which the backward paricicie entered hodoscope $\mathrm{J} / 2$, assuming the particle is a $\mathbb{I}^{+} \mathbb{X}^{+}$ or proton. lypotheses wilif very lok probabilities are not included in the plots.

Figure 3 Centre of wass scattering angle (0) distributions for (a) 1.69 Gev/e tve and -ve polarisations (b) $1.06 \mathrm{GeV} / \mathrm{c}+\mathrm{ye}$ and -ve polarisations.

Flgare 4 A typical kinematic fit probablifty distribution. The arrow shous the 5% probability cut tetermined in the analysis described in the text.

Figure 5 Fitced values of ${ }^{\text {m }}$ and P for the four cos θ bins at 1.69 Gev/c as a function of the kinenatic probability cut.

Figure 6 Values of the E polarisation measured in this experiment (open circles) compared with those measured on a hydrogen target in reference 1 (solid circles).

Figure 7 Fitced values of B plotted as a function of cos θ. The solid curve is the prediction of the partial wave analyshs of reference 2.

Figure 8 Comparison of the data at $1.69 \mathrm{GeV} / \mathrm{c}$, fye polarisation, (histogram) and the distributions predieted by the Monte Carlo programme (o) assuming the fitted values of P, P_{T} and β and including the full experimental acceptance for (a) cos θ_{d} (b) $\sin \phi \cos \theta_{d}(c) \cos \phi \sin \theta_{d} \sin \psi_{d}$

SECTION B-B (side view)

SECTION A-A (top view)
FIG. 1

FIG. 2

FIG. 3a

FIG. 3b

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

