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Quantum Field Theory - Notes

Chris White (University of Glasgow)

Abstract

These notes are a write-up of lectures given at the RAL school for High Energy Physicists,
which took place at Somerville College, Oxford in September 2010. The aim is to introduce the
canonical quantisation approach to QFT, and derive the Feynman rules for a scalar field.

1 Introduction

Quantum Field Theory is a highly important cornerstone of modern physics. It underlies, for
example, the description of elementary particles i.e. the Standard Model of particle physics is a
QFT. There is currently no observational evidence to suggest that QFT is insufficient in describ-
ing particle behaviour, and indeed many theories for beyond the Standard Model physics (e.g.
supersymmetry, extra dimensions) are QFTs. There are some theoretical reasons, however, for
believing that QFT will not work at energies above the Planck scale, at which gravity becomes
important. Aside from particle physics, QFT is also widely used in the description of condensed
matter systems, and there has been a fruitful interplay between the fields of condensed matter
and high energy physics.

We will see that the need for QFT arises when one tries to unify special relativity and quan-
tum mechanics, which explains why theories of use in high energy particle physics are quantum
field theories. Historically, Quantum Electrodynamics (QED) emerged as the prototype of mod-
ern QFT’s. It was developed in the late 1940s and early 1950s chiefly by Feynman, Schwinger
and Tomonaga, and has the distinction of being the most accurately verified theory of all time:
the anomalous magnetic dipole moment of the electron predicted by QED agrees with experi-
ment with a stunning accuracy of one part in 1010! Since then, QED has been understood as
forming part of a larger theory, the Standard Model of particle physics, which also describes the
weak and strong nuclear forces. As you will learn at this school, electromagnetism and the weak
interaction can be unified into a single “electroweak” theory, and the theory of the strong force
is described by Quantum Chromodynamics (QCD). QCD has been verified in a wide range of
contexts, albeit not as accurately as QED (due to the fact that the QED force is much weaker,
allowing more accurate calculations to be carried out).

As is clear from the above discussion, QFT is a type of theory, rather than a particular
theory. In this course, our aim is to introduce what a QFT is, and how to derive scattering am-
plitudes in perturbation theory (in the form of Feynman rules). For this purpose, it is sufficient
to consider the simple example of a single, real scalar field. More physically relevant exam-
ples will be dealt with in the other courses. Throughout, we will follow the so-called canonical
quantisation approach to QFT, rather than the path integral approach. Although the latter
approach is more elegant, it is less easily presented in such a short course.

The structure of these notes is as follows. In the rest of the introduction, we review those
aspects of classical and quantum mechanics which are relevant in discussing QFT. In particular,
we go over the Lagrangian formalism in point particle mechanics, and see how this can also be
used to describe classical fields. We then look at the quantum mechanics of non-relativistic point
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particles, and recall the properties of the quantum harmonic oscillator, which will be useful in
what follows. We then briefly show how attempts to construct a relativistic analogue of the
Schödinger equation lead to inconsistencies. Next, we discuss classical field theory, deriving
the equations of motion that a relativistic scalar field theory has to satisfy, and examining the
relationship between symmetries and conservation laws. We then discuss the quantum theory
of free fields, and interpret the resulting theory in terms of particles, before showing how to
describe interactions via the S-matrix and its relation to Green’s functions. Finally, we describe
how to obtain explicit results for scattering amplitudes using perturbation theory, which leads
(via Wick’s theorem) to Feynman diagrams.

1.1 Classical Mechanics

Let us begin this little review by considering the simplest possible system in classical mechanics,
a single point particle of massm in one dimension, whose coordinate and velocity are functions of
time, x(t) and ẋ(t) = dx(t)/dt, respectively. Let the particle be exposed to a time-independent
potential V (x). It’s motion is then governed by Newton’s law

m
d2x

dt2
= −∂V

∂x
= F (x), (1)

where F (x) is the force exerted on the particle. Solving this equation of motion involves two
integrations, and hence two arbitrary integration constants to be fixed by initial conditions.
Specifying, e.g., the position x(t0) and velocity ẋ(t0) of the particle at some initial time t0
completely determines its motion: knowing the initial conditions and the equations of motion,
we also know the evolution of the particle at all times (provided we can solve the equations of
motion).

We can also derive the equation of motion using an entirely different approach, via the
Lagrangian formalism. This is perhaps more abstract than Newton’s force-based approach, but
in fact is easier to generalise and technically more simple in complicated systems (such as field
theory!), not least because it avoids us having to think about forces at all.

First, we introduce the Lagrangian

L(x, ẋ) = T − V =
1

2
mẋ2 − V (x), (2)

which is a function of coordinates and velocities, and given by the difference between the kinetic
and potential energies of the particle. Next, we define the action

S =

∫ t1

t0

dt L(x, ẋ). (3)

The equations of motion are then given by the principle of least action, which says that the
trajectory x(t) followed by the particle is precisely that such that S is extremised 1. To verify
this in the present case, let us rederive Newton’s Second Law.

First let us suppose that x(t) is indeed the trajectory that extremises the action, and then
introduce a small perturbation

x(t) → x(t) + δx(t), (4)

such that the end points are fixed:

x′(t1) = x(t1)
x′(t2) = x(t2)

}
⇒ δx(t1) = δx(t2) = 0. (5)
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Figure 1: Variation of particle trajectory with identified initial and end points.

This sends S to some S+ δS, where δS = 0 if S is extremised. One may Taylor expand to give

S + δS =

∫ t2

t1

L(x+ δx, ẋ+ δẋ) dt, δẋ =
d

dt
δx

=

∫ t2

t1

{
L(x, ẋ) +

∂L

∂x
δx+

∂L

∂ẋ
δẋ+ . . .

}
dt

= S +
∂L

∂ẋ
δx

∣∣∣∣
t2

t1

+

∫ t2

t1

{
∂L

∂x
− d

dt

∂L

∂ẋ

}
δx dt, (6)

where we performed an integration by parts on the last term in the second line. The second and
third term in the last line are the variation of the action, δS, under variations of the trajectory,
δx. The second term vanishes because of the boundary conditions for the variation, and we are
left with the third. Now the Principal of Least Action demands δS = 0. For the remaining
integral to vanish for arbitrary δx is only possible if the integrand vanishes, leaving us with the
⁀Euler-Lagrange equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (7)

If we insert the Lagrangian of our point particle, Eq. (2), into the Euler-Lagrange equation we
obtain

∂L

∂x
= −∂V (x)

∂x
= F

d

dt

∂L

∂ẋ
=

d

dt
mẋ = mẍ

⇒ mẍ = F = −∂V
∂x

(Newton’s law). (8)

Hence, we have derived the equation of motion (the Euler-Lagrange equation) using the Prin-
cipal of Least Action and found it to be equivalent to Newton’s Second Law. The benefit of
the former is that it can be easily generalised to other systems in any number of dimensions,
multi-particle systems, or systems with an infinite number of degrees of freedom, where the
latter are needed for field theory.

1The name of the principle comes from the fact that, in most cases, S is indeed minimised.

- 7 -



For example, a general system of point particles has a set {qi} of generalised coordinates,
which may not be simple positions but also angles etc. The equations of motion are then given
by

d

dt

∂L

∂q̇i
=
∂L

∂qi
,

by analogy with the one-dimensional case. That is, each coordinate has its own Euler-Lagrange
equation (which may nevertheless depend on the other coordinates, so that the equations of
motion are coupled). Another advantage of the Lagrangian formalism is that the relationship
between symmetries and conserved quantities is readily understood - more on this later.

First, let us note that there is yet another way to think about classical mechanics (that we
will see again in quantum mechanics / field theory), namely via the Hamiltonian formalism.
Given a Lagrangian depending on generalised coordinates {qi}, we may define the conjugate
momenta

pi =
∂L

∂q̇i

e.g. in the simple one-dimensional example given above, there is a single momentum p = mẋ
conjugate to x. We recognise as the familiar definition of momentum, but it is not always true
that pi = mq̇i.

We may now define the Hamiltonian

H({qi}, {pi}) =
∑

i

q̇ipi − L({qi}, {q̇i}).

As an example, consider again

L =
1

2
mẋ2 − V (x).

It is easy to show from the above definition that

H =
1

2
mẋ2 + V (x),

which we recognise as the total energy of the system. From the definition of the Hamiltonian
one may derive (problem 1.1)

∂H

∂qi
= −ṗi,

∂H

∂pi
= ẋi,

which constitute Hamilton’s equations. These are useful in proving the relation between sym-
metries and conserved quantities. For example, one readily sees from the above equations that
the momentum pi is conserved if H does not depend explicitly on qi. That is, conservation
of momentum is related to invariance under spatial translations, if qi can be interpreted as a
simple position coordinate.

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum
mechanics. In doing so we shall use canonical quantisation, which is historically what was used
first and what we shall later use to quantise fields as well. We remark, however, that one can
also quantise a theory using path integrals.

Canonical quantisation consists of two steps. Firstly, the dynamical variables of a system are
replaced by operators, which we denote by a hat. Secondly, one imposes commutation relations
on these operators,

[x̂i, p̂j ] = i~ δij (9)

[x̂i, x̂j ] = [p̂i, p̂j ] = 0. (10)
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The physical state of a quantum mechanical system is encoded in state vectors |ψ〉, which are
elements of a Hilbert space H. The hermitian conjugate state is 〈ψ| = (|ψ〉)†, and the modulus
squared of the scalar product between two states gives the probability for the system to go from
state 1 to state 2,

|〈ψ1|ψ2〉|2 = probability for |ψ1〉 → |ψ2〉. (11)

On the other hand physical observables O, i.e. measurable quantities, are given by the expecta-
tion values of hermitian operators, Ô = Ô†,

O = 〈ψ|Ô|ψ〉, O12 = 〈ψ2|Ô|ψ1〉. (12)

Hermiticity ensures that expectation values are real, as required for measurable quantities. Due
to the probabilistic nature of quantum mechanics, expectation values correspond to statistical
averages, or mean values, with a variance

(∆O)2 = 〈ψ|(Ô −O)2|ψ〉 = 〈ψ|Ô2|ψ〉 − 〈ψ|Ô|ψ〉2. (13)

An important concept in quantum mechanics is that of eigenstates of an operator, defined by

Ô|ψ〉 = O|ψ〉. (14)

Evidently, between eigenstates we have ∆O = 0. Examples are coordinate eigenstates, x̂|x〉 =
x|x〉, and momentum eigenstates, p̂|p〉 = p|p〉, describing a particle at position x or with
momentum p, respectively. However, a state vector cannot be simultaneous eigenstate of
non-commuting operators. This leads to the Heisenberg uncertainty relation for any two non-
commuting operators Â, B̂,

∆A∆B ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|. (15)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they span
the entire Hilbert space,

〈p′|p〉 = δ(p− p′), 1 =

∫
d3p |p〉〈p|. (16)

As a consequence, an arbitrary state vector can always be expanded in terms of a set of eigen-
states. We may then define the position space wavefunction

ψ(x) = 〈x|ψ〉,
so that

〈ψ1|ψ2〉 =
∫
d3x〈ψ1|x〉〈x|ψ2〉

=

∫
d3xψ∗1(x)ψ2(x). (17)

Acting on the wavefunction, the explicit form of the position and momentum operators is

x̂ = x, p̂ = −i~∇, (18)

so that the Hamiltonian operator is

Ĥ =
p̂2

2m
+ V (x) = −~2∇2

2m
+ V (x). (19)

Having quantised our system, we now want to describe its time evolution. This can be done in
different “pictures”, depending on whether we consider the state vectors or the operators (or
both) to depend explicitly on t, such that expectation values remain the same. Two extreme
cases are those where the operators do not depend on time (the Schrödinger picture), and when
the state vectors do not depend on time (the Heisenberg picture). We discuss these two choices
in the following sections.
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1.3 The Schrödinger picture

In this approach state vectors are functions of time, |ψ(t)〉, while operators are time independent,
∂tÔ = 0. The time evolution of a system is described by the Schrödinger equation2,

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t). (20)

If at some initial time t0 our system is in the state Ψ(x, t0), then the time dependent state vector

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) (21)

solves the Schrödinger equation for all later times t.
The expectation value of some hermitian operator Ô at a given time t is then defined as

〈Ô〉t =
∫
d3xΨ∗(x, t)ÔΨ(x, t), (22)

and the normalisation of the wavefunction is given by
∫
d3xΨ∗(x, t)Ψ(x, t) = 〈1〉t. (23)

Since Ψ∗Ψ is positive, it is natural to interpret it as the probability density for finding a particle
at position x. Furthermore one can derive a conserved current j, as well as a continuity equation
by considering

Ψ∗ × (Schr.Eq.)−Ψ × (Schr.Eq.)
∗
. (24)

The continuity equation reads
∂

∂t
ρ = −∇ · j (25)

where the density ρ and the current j are given by

ρ = Ψ∗Ψ (positive), (26)

j =
~

2im
(Ψ∗∇Ψ − (∇Ψ∗)Ψ) (real). (27)

Now that we have derived the continuity equation let us discuss the probability interpretation
of Quantum Mechanics in more detail. Consider a finite volume V with boundary S. The
integrated continuity equation is

∫

V

∂ρ

∂t
d3x = −

∫

V

∇ · j d3x

= −
∫

S

j · dS (28)

where in the last line we have used Gauss’s theorem. Using Eq. (23) the left-hand side can be
rewritten and we obtain

∂

∂t
〈1〉t = −

∫

S

j · dS = 0. (29)

In other words, provided that j = 0 everywhere at the boundary S, we find that the time
derivative of 〈1〉t vanishes. Since 〈1〉t represents the total probability for finding the particle
anywhere inside the volume V , we conclude that this probability must be conserved: particles
cannot be created or destroyed in our theory. Non-relativistic Quantum Mechanics thus provides
a consistent formalism to describe a single particle. The quantity Ψ(x, t) is interpreted as a one-
particle wave function.

2Note that the Hamiltonian could itself have some time dependence in general, even in the Schrödinger picture, if

the potential of a system depends on time. Here we assume that this is not the case.
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1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrödinger picture, with the state vectors
regarded as constant, ∂t|ΨH〉 = 0, and operators which carry the time dependence, ÔH(t). This
is the concept which later generalises most readily to field theory. We make use of the solution
Eq. (21) to the Schrödinger equation in order to define a Heisenberg state vector through

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) ≡ e−

i
~
Ĥ(t−t0)ΨH(x), (30)

i.e. ΨH(x) = Ψ(x, t0). In other words, the Schrödinger vector at some time t0 is defined to
be equivalent to the Heisenberg vector, and the solution to the Schrödinger equation provides
the transformation law between the two for all times. This transformation of course leaves the
physics, i.e. expectation values, invariant,

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ(t0)|e
i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0)|Ψ(t0)〉 = 〈ΨH |ÔH(t)|ΨH〉, (31)

with
ÔH(t) = e

i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0). (32)

From this last equation it is now easy to derive the equivalent of the Schrödinger equation for
the Heisenberg picture, the Heisenberg equation of motion for operators:

i~
dÔH(t)

dt
= [ÔH , Ĥ ]. (33)

Note that all commutation relations, like Eq. (9), with time dependent operators are now in-
tended to be valid for all times. Substituting x̂, p̂ for Ô into the Heisenberg equation readily
leads to

dx̂i
dt

=
∂Ĥ

∂p̂i
,

dp̂i
dt

= −∂Ĥ
∂x̂i

, (34)

the quantum mechanical equivalent of the Hamilton equations of classical mechanics.

1.5 The quantum harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly recall
the harmonic oscillator in one dimension. Its Hamiltonian is given by

Ĥ(x̂, p̂) =
1

2

(
p̂2

m
+mω2x̂2

)
. (35)

Employing the canonical formalism we have just set up, we easily identify the momentum
operator to be p̂(t) = m∂tx̂(t), and from the Hamilton equations we find the equation of motion
to be ∂2t x̂ = −ω2x̂, which has the well known plane wave solution x̂ ∼ exp iωt.

An alternative path useful for later field theory applications is to introduce new operators,
expressed in terms of the old ones,

â =
1√
2

(√
mω

~
x̂+ i

√
1

mω~
p̂

)
, â† =

1√
2

(√
mω

~
x̂− i

√
1

mω~
p̂

)
. (36)

Using the commutation relation for x̂, p̂, one readily derives (see the preschool problems)

[â, â†] = 1, [Ĥ, â] = −~ωâ, [Ĥ, â†] = ~ωâ†. (37)
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With the help of these the Hamiltonian can be rewritten in terms of the new operators:

Ĥ =
1

2
~ω
(
â†â+ ââ†

)
=

(
â†â+

1

2

)
~ω. (38)

With this form of the Hamiltonian it is easy to construct a complete basis of energy eigenstates
|n〉,

Ĥ |n〉 = En|n〉. (39)

Using the above commutation relations, one finds

â†Ĥ |n〉 = (Ĥâ† − ~ωâ†)|n〉 = Enâ
†|n〉, (40)

and therefore
Ĥâ†|n〉 = (En + ~ω)â†|n〉. (41)

Thus, the state â†|n〉 has energy En + ~ω, so that â† may be regarded as a “creation operator”
for a quantum with energy ~ω. Along the same lines one finds that â|n〉 has energy En − ~ω,
and â is an “annihilation operator”.

Let us introduce a vacuum state |0〉 with no quanta excited, for which â|n〉 = 0, because
there cannot be any negative energy states. Acting with the Hamiltonian on that state we find

Ĥ|0〉 = ~ω/2, (42)

i.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation or zero
point energy. Acting with a creation operator onto the vacuum state one easily finds the state
with one quantum excited, and this can be repeated n times to get

|1〉 = â†|0〉 , E1 = (1 +
1

2
)~ω, . . .

|n〉 = â†√
n
|n− 1〉 = 1√

n!
(â†)n|0〉 , En = (n+

1

2
)~ω. (43)

The root of the factorial is there to normalise all eigenstates to one. Finally, the number operator
N̂ = â†â returns the number of quanta in a given energy eigenstate,

N̂ |n〉 = n|n〉. (44)

1.6 Relativistic Quantum Mechanics

So far we have only considered non-relativistic particles. In this section, we see what happens
when we try to formulate a relativistic analogue of the Schrödinger equation. First, note that
we can derive the non-relativistic equation starting from the energy relation

E =
p2

2m
+ V (x) (45)

and replacing variables by their appropriate operators acting on a position space wavefunction
ψ(x, t)

E → i~
∂

∂t
, p → −i~∇, x → x (46)

to give [
− ~2

2m
∇2 + V (x)

]
ψ(x, t) = i~

∂ψ(x, t)

∂t
. (47)
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As we have already seen, there is a corresponding positive definite probability density

ρ = |ψ(x, t)|2 ≥ 0, (48)

with corresponding current

j =
~

2im
(ψ∗∇ψ − (∇ψ∗)ψ) . (49)

Can we also make a relativistic equation? By analogy with the above, we may start with
the relativistic energy relation

E2 = c2p2 +m2c4, (50)

and making the appropriate operator replacements leads to the equation

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t) (51)

for some wavefunction φ(x, t). This is the Klein-Gordon equation, and one may try to form a
probability density and current, as in the non-relativistic case. Firstly, one notes that to satisfy
relativistic invariance, the probability density should be the zeroth component of a 4-vector
jµ = (ρ, j) satisfying

∂µj
µ = 0. (52)

In fact, one finds

ρ =
i~

2m

(
φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)
, (53)

with j given as before. This is not positive definite! That is, this may (and will) become negative
in general, so we cannot interpret this as the probability density of a single particle.

There is another problem with the Klein-Gordon equation as it stands, that is perhaps less
abstract to appreciate. The relativistic energy relation gives

E = ±
√
c2p2 +m2c4, (54)

and thus one has positive and negative energy solutions. For a free particle, one could restrict
to having positive energy states only. However, an interacting particle may exchange energy
with its environment, and there is nothing to stop it cascading down to energy states of more
and more negative energy, thus emitting infinite amounts of energy.

We conclude that the Klein-Gordon equation does not make sense as a consistent quantum
theory of a single particle. We thus need a different approach in unifying special relativity and
quantum mechanics. This, as we will see, is QFT, in which we will be able to reinterpret the
Klein-Gordon function as a field φ(x, t) describing many particles.

From now on, it will be extremely convenient to work in natural units, in which one sets
~ = c = 1. The correct factors can always be reinstated by dimensional analysis. In these units,
the Klein-Gordon equation becomes

(� +m2)φ(x, t) = 0, (55)

where

� = ∂µ∂µ =
∂

∂t2
−∇2. (56)
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Figure 2: System of masses m joined by springs (of constant k), whose longitudinal displacements
are {fi}, and whose separation at rest is δx.

2 Classical Field Theory

In the previous section, we have seen how to describe point particles, both classically and quan-
tum mechanically. In this section, we discuss classical field theory, as a precursor to considering
quantum fields. A field associates a mathematical object (e.g. scalar, vector, tensor, spinor...)
with every point in spacetime. Examples are the temperature distribution in a room (a scalar
field), or the E and B fields in electromagnetism (vector fields). Just as point particles can
be described by Lagrangians, so can fields, although it is more natural to think in terms of
Lagrangian densities.

2.1 Example: Model of an Elastic Rod

Let us consider a particular example, namely a set of point masses connected together by springs,
as shown in figure 2. Assume the masses m are equal, as also are the force constants of the
springs k. Furthermore, we assume that the masses may move only longitudinally, where the ith

displacement is fi, and that the separation of adjacent masses is δx when all fi are zero. This
system is an approximation to an elastic rod, with a displacement field f(x, t). To see what this
field theory looks like, we may first write the total kinetic and potential energies as

T =
∑

i

1

2
mḟ2

i , V =
∑

i

1

2
k(fi+1 − fi)

2 (57)

respectively, where we have used Hooke’s Law for the potential energy. Thus, the Lagrangian is

L = T − V =
∑

i

[
1

2
mḟ2

i − 1

2
k(fi+1 − fi)

2

]
. (58)

Clearly this system becomes a better approximation to an elastic rod as the continuum limit is
approached, in which the number of masses N → ∞ and the separation δx → 0. We can then
rewrite the Lagrangian as

L =
∑

i

δx

[
1

2

(m
δx

)
ḟ2
i − 1

2
(kδx)

(
fi+1 − fi

δx

)2
]
. (59)

We may recognise
lim
δx→0

m/δx = ρ (60)
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as the density of the rod, and also define the tension

κ = lim
δx→0

kδx. (61)

Furthermore, the position index i gets replaced by the continuous variable x, and one has

lim
δx→0

fi+1 − fi
δx

=
∂f(x, t)

∂x
. (62)

Finally, the sum over i becomes an integral so that the continuum Lagrangian is

L =

∫
dx

[
1

2
ρḟ(x, t)2 − 1

2
κ

(
∂f

∂x

)2
]
. (63)

This is the Lagrangian for the displacement field f(x, t). It depends on a function of f and ḟ
which is integrated over all space coordinates (in this case there is only one, the position along
the rod). We may therefore write the Lagrangian manifestly as

L =

∫
dxL[f(x, t), ḟ(x, t)], (64)

where L is the Lagrangian density

L[f(x, t), ḟ (x, t)] = 1

2
ρḟ2(x, t)− 1

2
κ

(
∂f

∂x

)2

. (65)

It is perhaps clear from the above example that for any field, there will always be an integration
over all space dimensions, and thus it is more natural to think about the Lagrangian density
rather than the Lagrangian itself. Indeed, we may construct the following dictionary between
quantities in point particle mechanics, and corresponding field theory quantities (which may or
may not be helpful to you in remembering the differences between particles and fields...!).

Classical Mechanics: Classical Field Theory:

x(t) −→ φ(x, t) (66)

ẋ(t) −→ φ̇(x, t)

Index i −→ Coordinate x (67)

L(x, ẋ) −→ L[φ, φ̇] (68)

Note that the action for the above field theory is given, as usual, by the time integral of the
Lagrangian:

S =

∫
dtL =

∫
dt

∫
dxL[f, ḟ ]. (69)

2.2 Relativistic Fields

In the previous section we saw how fields can be described using Lagrangian densities, and
illustrated this with a non-relativistic example. Rather than derive the field equations for this
case, we do this explicitly here for relativistic theories, which we will be concerned with for the
rest of the course (and, indeed, the school).

In special relativity, coordinates are combined into four-vectors, xµ = (t, xi) or x = (t,x),
whose length x2 = t2 − x2 is invariant under Lorentz transformations

x′µ = Λµ
ν x

ν . (70)
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A general function transforms as f(x) → f ′(x′), i.e. both the function and its argument trans-
form. A Lorentz scalar is a function φ(x) which at any given point in space-time will have the
same amplitude, regardless of which inertial frame it is observed in. Consider a space-time point
given by x in the unprimed frame, and x′(x) in the primed frame, where the function x′(x) can
be derived from eq. (70). Observers in both the primed and unprimed frames will see the same
amplitude φ(x), although an observer in the primed frame will prefer to express this in terms
of his or her own coordinate system x′, hence will see

φ(x) = φ(x(x′)) = φ′(x′), (71)

where the latter equality defines φ′.
Equation (71) defines the transformation law for a Lorentz scalar. A vector function trans-

forms as
V

′µ(x′) = Λµ
ν V

ν(x). (72)

We will work in particular with ∂µφ(x), where x ≡ xµ denotes the 4-position. Note in particular
that

(∂µφ)(∂
µφ) =

(
∂φ

∂t

)2

−∇φ · ∇φ

∂µ∂
µφ =

∂2φ

∂t2
−∇2φ.

In general, a relativistically invariant scalar field theory has action

S =

∫
d4xL[φ, ∂µφ], (73)

where ∫
d4x ≡

∫
dt d3x, (74)

and L is the appropriate Lagrangian density. We can find the equations of motion satisfied by
the field φ using, as in point particle mechanics, the principle of least action. The field theory
form of this is that the field φ(x) is such that the action of eq. (73) is extremised. Assuming
φ(x) is indeed such a field, we may introduce a small perturbation

φ(x) → φ(x) + δφ(x), (75)

which correspondingly perturbs the action according to

S → S + δS =

∫
d4x

[
L(φ, ∂µφ) +

∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
. (76)

Recognising the first term as the unperturbed action, one thus finds

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]

=

[
∂L

∂(∂µφ)
δφ

]

boundary

+

∫
d4x

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δφ,

where we have integrated by parts in the second line. Assuming the fields die away at infinity
so that δφ = 0 at the boundary of spacetime, the principle of least action δS = 0 implies

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (77)
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This is the Euler-Lagrange field equation. It tells us, given a particular Lagrangian density
(which defines a particular field theory) the classical equation of motion which must be satisfied
by the field φ. As a specific example, let us consider the Lagrangian density

L =
1

2
(∂µφ)(∂

µφ) − 1

2
m2φ2, (78)

from which one finds
∂L

∂(∂µφ)
= ∂µφ,

∂L
∂φ

= −m2φ, (79)

so that the Euler-Lagrange equation gives

∂µ∂
µφ+m2φ = (�+m2)φ(x) = 0. (80)

This is the Klein-Gordon equation! The above Lagrangian density thus corresponds to the
classical field theory of a Klein-Gordon field. We see in particular that the coefficient of the
quadratic term in the Lagrangian can be interpreted as the mass.

By analogy with point particle mechanics, one can define a canonical momentum field con-
jugate to φ:

π(x) =
∂L
∂φ̇

. (81)

Then one can define the Hamiltonian density

H[φ, π] = πφ̇ − L, (82)

such that

H =

∫
d3xH(π, φ) (83)

is the Hamiltonian (total energy carried by the field). For example, the Klein-Gordon field has
conjugate momentum π = φ̇, and Hamiltonian density

H =
1

2

[
π2(x) + (∇φ)2 +m2φ2

]
. (84)

2.3 Plane wave solutions to the Klein-Gordon equation

Let us consider real solutions to Eq. (80), characterised by φ∗(x) = φ(x). To find them we try
an ansatz of plane waves

φ(x) ∝ ei(k
0t−k·x). (85)

The Klein-Gordon equation is satisfied if (k0)2 − k2 = m2 so that

k0 = ±
√
k2 +m2. (86)

Defining the energy as

E(k) =
√
k2 +m2 > 0, (87)

we obtain two types of solution which read

φ+(x) ∝ ei(E(k)t−k·x), φ−(x) ∝ e−i(E(k)t−k·x). (88)

We may interpret these as positive and negative energy solutions, such that it does not matter
which branch of the square root we take in eq. (87) (it is conventional, however, to define energy
as a positive quantity). The general solution is a superposition of φ+ and φ−. Using

E(k)t− k · x = kµkµ = kµk
µ = k · x (89)
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this solution reads

φ(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xα∗(k) + e−ik·xα(k)

)
, (90)

where α(k) is an arbitrary complex coefficient. Note that the coefficients of the positive and
negative exponentials are related by complex conjugation. This ensures that the field φ(x) is
real (as can be easily verified from eq. (90)), consistent with the Lagrangian we wrote down.
Such a field has applications in e.g. the description of neutral mesons. We can also write down
a Klein-Gordon Lagrangian for a complex field φ. This is really two independent fields (i.e. φ
and φ∗), and thus can be used to describe a system of two particles (e.g. charged meson pairs).
To simplify the discussion in this course, we will explicitly consider the real Klein-Gordon field.
Note that the factors of 2 and π in eq. (90) are conventional, and the inverse power of the energy
is such that the measure of integration is Lorentz invariant (problem 2.1), so that the whole
solution is written in a manifestly Lorentz invariant way.

2.4 Symmetries and Conservation Laws

As was the case in point particle mechanics, one may relate symmetries of the Lagrangian
density to conserved quantities in field theory. For example, consider the invariance of L under
space-time translations

xµ → xµ + ǫµ, (91)

where ǫµ is constant. Under such a transformation one has

L(xµ + ǫµ) = L(xµ) + ǫµ∂µL(xµ) + . . . (92)

φ(xµ + ǫµ) = φ(xµ) + ǫµ∂µφ(x
µ) + . . . (93)

∂νφ(x
µ + ǫµ) = ∂νφ(x

µ) + ǫµ∂µ∂νφ(x
µ) + . . . , (94)

(95)

where we have used Taylor’s theorem. But if L does not explicitly depend on xµ (i.e. only
through φ and ∂µφ) then one has

L(xµ + ǫµ) = L[φ(xµ + ǫµ), ∂νφ(x
µ + ǫµ)]

= L+
∂L
∂φ

δφ+
∂L

∂(∂νφ)
δ(∂νφ) + . . . (96)

= L+
∂L
∂φ

ǫµ∂µφ+
∂L

∂(∂νφ)
ǫµ∂µ∂νφ+ . . . , (97)

where we have used the fact that δφ = ǫµ∂µφ in the third line, and all functions on the right-
hand side are evaluated at xµ. One may replace ∂L/∂φ by the LHS of the Euler-Lagrange
equation to get

L(xµ + ǫµ) = L+ ∂ν
∂L

∂(∂νφ)
ǫµ∂µφ+

∂L
∂(∂νφ)

ǫµ∂µ∂νφ+ . . .

= L+ ∂ν

[
∂L

∂(∂νφ)
∂µφ

]
ǫµ, (98)

and equating this with the alternative expression above, one finds

∂ν

[
∂L

∂(∂νφ)
∂µφ

]
ǫµ = ǫµ∂µL. (99)
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If this is true for all ǫµ, then one has
∂νΘνµ = 0, (100)

where

Θνµ =
∂L

∂(∂νφ)
∂µφ− gµνL (101)

is the energy-momentum tensor. We can see how this name arises by considering the components
explicitly, for the case of the Klein Gordon field. One then finds

Θ00 =
∂L
∂φ̇

φ̇− g00L = πφ̇ − L = H, (102)

Θ0j =
∂L
∂φ̇

∂jφ− g0jL = π∂jφ (j = 1 . . . 3). (103)

One then sees that Θ00 is the energy density carried by the field. Its conservation can then be
shown by considering

∂

∂t

∫

V

d3xΘ00 =

∫

V

d3x∂0Θ00

=

∫

V

d3x∂jΘj0 =

∫

S

dSj ·Θ0j = 0, (104)

where we have used Eq. (100) in the second line. The Hamiltonian density is a conserved
quantity, provided that there is no energy flow through the surface S which encloses the volume
V . In a similar manner one can show that the 3-momentum pj , which is related to Θ0j, is
conserved as well. It is then useful to define a conserved energy-momentum four-vector

Pµ =

∫
d3x Θ0µ. (105)

In analogy to point particle mechanics, we thus see that invariances of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved quanti-
ties like angular mometum and spin. Furthermore one can study so-called internal symmetries,
i.e. ones which are not related to coordinate but other transformations. Examples are conser-
vation of all kinds of charges, isospin, etc.

We have thus established the Lagrange-Hamilton formalism for classical field theory: we de-
rived the equation of motion (Euler-Lagrange equation) from the Lagrangian and introduced the
conjugate momentum. We then defined the Hamiltonian (density) and considered conservation
laws by studying the energy-momentum tensor Θµν .

3 Quantum Field Theory: Free Fields

3.1 Canonical Field Quantisation

In the previous sections we have reviewed the classical and quantum mechanics of point particles,
and also classical field theory. We used the canonical quantisation procedure in discussing quan-
tum mechanics, whereby classical variables are replaced by operators, which have non-trivial
commutation relations. In this section, we see how to apply this procedure to fields, taking the
explicit example of the Klein-Gordon field discussed previously. This is, as yet, a non-interacting
field theory, and we will discuss how to deal with interactions later on in the course.

The Klein-Gordon Lagrangian density has the form

L = 1
2∂

µφ∂µφ− 1
2m

2φ2. (106)
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y

space

time

(x− y)2 < 0, space-like

(x− y)2 > 0, time-like

(x− y)2 = 0, light-like

Figure 3: The light cone about y. Events occurring at points x and y are said to be time-like
(space-like) if x is inside (outside) the light cone about y.

We have seen that in field theory the field φ(x) plays the role of the coordinates in ordinary point
particle mechanics, and we defined a canonically conjugate momentum, π(x) = ∂L/∂φ̇ = φ̇(x).
We then continue the analogy to point mechanics through the quantisation procedure, i.e. we
now take our canonical variables to be operators,

φ(x) → φ̂(x), π(x) → π̂(x). (107)

Next we impose equal-time commutation relations on them,

[
φ̂(x, t), π̂(y, t)

]
= iδ3(x− y), (108)

[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0. (109)

As in the case of quantum mechanics, the canonical variables commute among themselves, but
not the canonical coordinate and momentum with each other. Note that the commutation
relation is entirely analogous to the quantum mechanical case. There would be an ~, if it hadn’t
been set to one earlier, and the delta-function accounts for the fact that we are dealing with
fields. It is zero if the fields are evaluated at different space-time points.

After quantisation, our fields have turned into field operators. Note that within the rela-
tivistic formulation they depend on time, and hence they are Heisenberg operators.

In the previous paragraph we have formulated commutation relations for fields evaluated at
equal time, which is clearly a special case when considering fields at general x, y. The reason
has to do with maintaining causality in a relativistic theory. Let us recall the light cone about
an event at y, as in Fig. 3. One important postulate of special relativity states that no signal
and no interaction can travel faster than the speed of light. This has important consequences
about the way in which different events can affect each other. For instance, two events which
are characterised by space-time points xµ and yµ are said to be causal if the distance (x − y)2

is time-like, i.e. (x− y)2 > 0. By contrast, two events characterised by a space-like separation,

i.e. (x − y)2 < 0, cannot affect each other, since the point x is not contained inside the light
cone about y.

In non-relativistic Quantum Mechanics the commutation relations among operators indicate
whether precise and independent measurements of the corresponding observables can be made.
If the commutator does not vanish, then a measurement of one observable affects that of the
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other. From the above it is then clear that the issue of causality must be incorporated into
the commutation relations of the relativistic version of our quantum theory: whether or not
independent and precise measurements of two observables can be made depends also on the
separation of the 4-vectors characterising the points at which these measurements occur. Clearly,
events with space-like separations cannot affect each other, and hence all fields must commute,

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] =

[
φ̂(x), π̂(y)

]
= 0 for (x− y)2 < 0. (110)

This condition is sometimes called micro-causality. Writing out the four-components of the time
interval, we see that as long as |t′ − t| < |x− y|, the commutator vanishes in a finite interval
|t′ − t|. It also vanishes for t′ = t, as long as x 6= y. Only if the fields are evaluated at an
equal space-time point can they affect each other, which leads to the equal-time commutation
relations above. They can also affect each other everywhere within the light cone, i.e. for time-
like intervals. It is not hard to show that in this case (e.g. problem 3.1)

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] = 0, for (x− y)2 > 0 (111)

[
φ̂(x), π̂(y)

]
=

i

2

∫
d3p

(2π)3

(
eip·(x−y) + e−ip·(x−y)

)
. (112)

n.b. since the 4-vector dot product p · (x− y) depends on p0 =
√
p2 +m2, one cannot trivially

carry out the integrals over d3p here.

3.2 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for
operators. For its solution we simply promote the classical plane wave solution, Eq. (90), to
operator status,

φ̂(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xâ†(k) + e−ik·xâ(k)

)
. (113)

Note that the complex conjugation of the Fourier coefficient turned into hermitian conjugation
for an operator.

Let us now solve for the operator coefficients of the positive and negative energy solutions.
In order to do so, we invert the Fourier integrals for the field and its time derivative,

∫
d3x φ̂(x, t)eikx =

1

2E

[
â(k) + â†(k)e2ik0x0

]
, (114)

∫
d3x

˙̂
φ(x, t)eikx = − i

2

[
â(k) − â†(k)e2ik0x0

]
, (115)

and then build the linear combination iE(k)(114)−(115) to find
∫
d3x

[
iE(k)φ̂(x, t) − ˙̂

φ(x, t)
]
eikx = iâ(k), (116)

Following a similar procedure for â†(k), and using π̂(x) =
˙̂
φ(x) we find

â(k) =

∫
d3x

[
E(k)φ̂(x, t) + iπ̂(x, t)

]
eikx, (117)

â†(k) =

∫
d3x

[
E(k)φ̂(x, t)− iπ̂(x, t)

]
e−ikx. (118)

Note that, as Fourier coefficients, these operators do not depend on time, even though the
right hand side does contain time variables. Having expressions in terms of the canonical
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field variables φ̂(x), π̂(x), we can now evaluate the commutators for the Fourier coefficients.
Expanding everything out and using the commutation relations Eq. (109), we find

[
â†(k1), â

†(k2)
]

= 0 (119)

[â(k1), â(k2)] = 0 (120)[
â(k1), â

†(k2)
]

= (2π)3 2E(k1)δ
3(k1 − k2) (121)

We easily recognise these for every k to correspond to the commutation relations for the harmonic
oscillator, Eq. (37). This motivates us to also express the Hamiltonian and the energy momentum
four-vector of our quantum field theory in terms of these operators. To do this, first note that
the Hamiltonian is given by the integral of the Hamiltonian density (eq. (84)) over all space.
One may then substitute eq. (113) to yield (see the problem sheet)

Ĥ =
1

2

∫
d3k

(2π)32E(k)
E(k)

(
â†(k)â(k) + â(k)â†(k)

)
, (122)

P̂ =
1

2

∫
d3k

(2π)32E(k)
k
(
â†(k)â(k) + â(k)â†(k)

)
. (123)

We thus find that the Hamiltonian and the momentum operator are nothing but a continuous
sum of excitation energies/momenta of one-dimensional harmonic oscillators! After a minute of
thought this is not so surprising. We expanded the solution of the Klein-Gordon equation into a
superposition of plane waves with momenta k. But of course a plane wave solution with energy
E(k) is also the solution to a one-dimensional harmonic oscillator with the same energy. Hence,
our free scalar field is simply a collection of infinitely many harmonic oscillators distributed
over the whole energy/momentum range. These energies sum up to that of the entire system.
We have thus reduced the problem of handling our field theory to oscillator algebra. From the
harmonic oscillator we know already how to construct a complete basis of energy eigenstates,
and thanks to the analogy of the previous section we can take this over to our quantum field
theory.

3.3 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0〉 with norm one,
which is annihilated by the action of the operator a,

〈0|0〉 = 1, â(k)|0〉 = 0 for all k. (124)

Let us next evaluate the energy of this vacuum state, by taking the expectation value of the
Hamiltonian,

E0 = 〈0|Ĥ |0〉 = 1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
〈0|â†(k)â(k)|0〉+ 〈0|â(k)â†(k)|0〉

}
. (125)

The first term in curly brackets vanishes, since a annihilates the vacuum. The second can be
rewritten as

â(k)â†(k)|0〉 =
{[
â(k), â†(k)

]
+ â†(k)â(k)

}
|0〉. (126)

It is now the second term which vanishes, whereas the first can be replaced by the value of the
commutator. Thus we obtain

E0 = 〈0|Ĥ|0〉 = δ3(0)
1

2

∫
d3k E(k) = δ3(0)

1

2

∫
d3k

√
k2 +m2 = ∞, (127)

which means that the energy of the ground state is infinite! This result seems rather paradoxical,
but it can be understood again in terms of the harmonic oscillator. Recall that the simple
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quantum mechanical oscillator has a finite zero-point energy. As we have seen above, our field
theory corresponds to an infinite collection of harmonic oscillators, i.e. the vacuum receives an
infinite number of zero point contributions, and its energy thus diverges.

This is the first of frequent occurrences of infinities in quantum field theory. Fortunately, it
is not too hard to work around this particular one. Firstly, we note that nowhere in nature can
we observe absolute values of energy, all we can measure are energy differences relative to some
reference scale, at best the one of the vacuum state, |0〉. In this case it does not really matter
what the energy of the vacuum is. This then allows us to redefine the energy scale, by always
subtracting the (infinite) vacuum energy from any energy we compute. This process is called
“renormalisation”.

We then define the renormalised vacuum energy to be zero, and take it to be the expectation
value of a renormalised Hamiltonian,

ER
0 ≡ 〈0|ĤR|0〉 = 0. (128)

According to this recipe, the renormalised Hamiltonian is our original one, minus the (unrenor-
malised) vacuum energy,

ĤR = Ĥ − E0 (129)

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
â†(k)â(k) + â(k)â†(k) − 〈0|â†(k)â(k) + â(k)â†(k)|0〉

}

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
2â†(k)â(k) +

[
â(k), â†(k)

]
− 〈0|

[
â(k), â†(k)

]
|0〉
}
. (130)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as

ĤR =

∫
d3p

(2π)3 2E(p)
E(p)â†(p)â(p)

+
1

2

∫
d3p

(2π)3 2E(p)
E(p)

{[
â(p), â†(p)

]
− 〈0|

[
â(p), â†(p)

]
|0〉
}
.

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p) + Ĥvac (131)

The operator Ĥvac ensures that the vacuum energy is properly subtracted: if |ψ〉 and |ψ′〉 denote
arbitrary N -particle states, then one can convince oneself that 〈ψ′|Ĥvac|ψ〉 = 0. In particular
we now find that

〈0|ĤR|0〉 = 0, (132)

as we wanted. A simple way to automatise the removal of the vacuum contribution is to introduce
normal ordering. Normal ordering means that all annihilation operators appear to the right of
any creation operator. The notation is

: ââ† : = â†â, (133)

i.e. the normal-ordered operators are enclosed within colons. For instance

: 1
2

(
â†(p)â(p) + â(p)â†(p)

)
: = â†(p)â(p). (134)

It is important to keep in mind that â and â† always commute inside : · · · :. This is true for an
arbitrary string of â and â†. With this definition we can write the normal-ordered Hamiltonian
as

: Ĥ : = :
1

2

∫
d3p

(2π)3 2E(p)
E(p)

(
â†(p)â(p) + â(p)â†(p)

)
:

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p), (135)
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and thus have the relation
ĤR =: Ĥ : +Ĥvac. (136)

Hence, we find that
〈ψ′| : Ĥ : |ψ〉 = 〈ψ′|ĤR|ψ〉, (137)

and, in particular, 〈0| : Ĥ : |0〉 = 0. The normal ordered Hamiltonian thus produces a renor-
malised, sensible result for the vacuum energy.

3.4 Fock space and Particles

After this lengthy grappling with the vacuum state, we can continue to construct our basis of
states in analogy to the harmonic oscillator, making use of the commutation relations for the
operators â, â†. In particular, we define the state |k〉 to be the one obtained by acting with the
operator a†(k) on the vacuum,

|k〉 = â†(k)|0〉. (138)

Using the commutator, its norm is found to be

〈k|k′〉 = 〈0|â(k)â†(k′)|0〉 = 〈0|[â(k), â†(k′)]|0〉+ 〈0|â†(k′)a(k)|0〉 (139)

= (2π)32E(k)δ3(k− k′), (140)

since the last term in the first line vanishes (â(k) acting on the vacuum). Next we compute the
energy of this state, making use of the normal ordered Hamiltonian,

: Ĥ : |k〉 =

∫
d3k′

(2π)3 2E(k′)
E(k′)â†(k′)â(k′)â†(k)|0〉 (141)

=

∫
d3k′

(2π)3 2E(k′)
E(k′)(2π)32E(k)δ(k − k′)â†(k)|0〉 (142)

= E(k)â†(k)|0〉 = E(k)|k〉, (143)

and similarly one finds
: P̂ : |k〉 = k|k〉. (144)

Observing that the normal ordering did its job and we obtain renormalised, finite results, we
may now interpret the state |k〉. It is a one-particle state for a relativistic particle of massm and
momentum k, since acting on it with the energy-momentum operator returns the relativistic one
particle energy-momentum dispersion relation, E(k) =

√
k2 +m2. The a†(k), a(k) are creation

and annihilation operators for particles of momentum k.
In analogy to the harmonic oscillator, the procedure can be continued to higher states. One

easily checks that (problem 3.4)

: P̂µ : â†(k2)â
†(k1)|0〉 = (kµ1 + kµ2 )â

†(k2)â
†(k1)|0〉, (145)

and so the state

|k2,k1〉 =
1√
2!
â†(k2)â

†(k1)|0〉 (146)

is a two-particle state (the factorial is there to have it normalised in the same way as the
one-particle state), and so on for higher states. These are called Fock states in the textbooks
(formally speaking, a Fock space is a tensor product of Hilbert spaces, where the latter occur
in ordinary Quantum Mechanics).

At long last we can now see how the field in our free quantum field theory is related to
particles. A particle of momentum k corresponds to an excited Fourier mode of a field. Since
the field is a superpositon of all possible Fourier modes, one field is enough to describe all possible
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configurations representing one or many particles of the same kind in any desired momentum
state.

There are some rather profound ideas here about how nature works at fundamental scales.
In classical physics we have matter particles, and forces which act on those particles. These
forces can be represented by fields, such that fields and particles are distinct concepts. In non-
relativistic quantum mechanics, one unifies the concept of waves and particles (particles can
have wave-like characteristics), but fields are still distinct (e.g. one may quantise a particle in
an electromagnetic field in QM, provided the latter is treated classically). Taking into account
the effects of relativity for both particles and fields, one finds in QFT that all particles are
excitation quanta of fields. That is, the concepts of field and particle are no longer distinct, but
actually manifestations of the same thing, namely quantum fields. In this sense, QFT is more
fundamental than either of its preceding theories. Each force field and each matter field have
particles associated with it.

Returning to our theory for the free Klein-Gordon field, let us investigate what happens
under interchange of the two particles. Since [â†(k1), â

†(k2)] = 0 for all k1,k2, we see that

|k2,k1〉 = |k1,k2〉, (147)

and hence the state is symmetric under interchange of the two particles. Thus, the particles
described by the scalar field are bosons.

Finally we complete the analogy to the harmonic oscillator by introducing a number operator

N̂(k) = â†(k)â(k), N̂ =

∫
d3k â†(k)â(k), (148)

which gives us the number of bosons described by a particular Fock state,

N̂ |0〉 = 0, N̂ |k〉 = |k〉, N̂ |k1 . . .kn〉 = n|k1 . . .kn〉. (149)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this operator,

: Ĥ :=

∫
d3k

(2π)3 2E(k)
E(k)N̂ (k), (150)

i.e. when acting on a Fock state it simply sums up the energies of the individual particles to
give

: Ĥ : |k1 . . .kn〉 = (E(k1) + . . . E(kn)) |k1 . . .kn〉. (151)

This concludes the quantisation of our free scalar field theory. We have followed the canon-
ical quantisation procedure familiar from quantum mechanics. Due to the infinite number of
degrees of freedom, we encountered a divergent vacuum energy, which we had to renormalise.
The renormalised Hamiltonian and the Fock states that we constructed describe free relativistic,
uncharged spin zero particles of mass m, such as neutral pions, for example.

If we want to describe charged pions as well, we need to introduce complex scalar fields,
the real and imaginary parts being necessary to describe opposite charges. For particles with
spin we need still more degrees of freedom and use vector or spinor fields, which have the
appropriate rotation and Lorentz transformation properties. For fermion fields (which satisfy
the Dirac equation rather than the Klein-Gordon equation), one finds that the condition of a
positive-definite energy density requires that one impose anti-commutation relations rather than
commutation relations. This in turn implies that multiparticle states are antisymmetric under
interchange of identical fermions, which we recognise as the Pauli exclusion principle. Thus, not
only does QFT provide a consistent theory of relativistic multiparticle systems; it also allows
us to “derive” the Pauli principle, which is put in by hand in non-relativistic quantum mechanics.
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More details on vector and spinor fields can be found in the other courses at this school.
Here, we continue to restrict our attention to scalar fields, so as to more clearly illustrate what
happens when interactions are present.

4 Quantum Field Theory: Interacting Fields

So far we have seen how to quantise the Klein-Gordon Lagrangian, and seen that this describes
free scalar particles. For interesting physics, however, we need to know how to describe interac-
tions, which lead to nontrivial scattering processes. This is the subject of this section.

From now on we shall always discuss quantised real scalar fields. It is then convenient to drop
the “hats” on the operators that we have considered up to now. Interactions can be described
by adding a term Lint to the Lagrangian density, so that the full result L is given by

L = L0 + Lint (152)

where
L0 = 1

2∂µφ∂
µφ− 1

2m
2φ2 (153)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction is
related to Lint simply by

Hint = H−H0, (154)

where H0 is the free Hamiltonian. If the interaction Lagrangian only depends on φ (we will
consider such a case later in the course), one has

Hint = −Lint, (155)

as can be easily shown from the definition above. We shall leave the details of Lint unspecified
for the moment. What we will be concerned with mostly are scattering processes, in which two
initial particles with momenta p1 and p2 scatter, thereby producing a number of particles in the
final state, characterised by momenta k1, . . . ,kn. This is schematically shown in Fig. 4. Our
task is to find a description of such a scattering process in terms of the underlying quantum
field theory.

p1

p2

k1

k2

kn

Figure 4: Scattering of two initial particles with momenta p1 and p2 into n particles with momenta
k1, . . . ,kn in the final state.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (interaction)
process takes place during a short interval around some particular time t with −∞ ≪ t ≪ ∞.
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Long before t, the incoming particles evolve independently and freely. They are described by a
field operator φin defined through

lim
t→−∞

φ(x) = φin(x), (156)

which acts on a corresponding basis of |in〉 states. Long after the collision the particles in the
final state evolve again like in the free theory, and the corresponding operator is

lim
t→+∞

φ(x) = φout(x), (157)

acting on states |out〉. The fields φin, φout are the asymptotic limits of the Heisenberg operator
φ. They both satisfy the free Klein-Gordon equation, i.e.

(�+m2)φin(x) = 0, (�+m2)φout(x) = 0. (158)

Operators describing free fields can be expressed as a superposition of plane waves (see Eq. (113)).
Thus, for φin we have

φin(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xa†in(k) + e−ik·xain(k)

)
, (159)

with an entirely analogous expression for φout(x). Note that the operators a† and a also carry
subscripts “in” and “out”.

The above discussion assumes that the interaction is such that we can talk about free parti-
cles at asymptotic times t→ ±∞ i.e. that the interaction is only present at intermediate times.
This is not always a reasonable assumption e.g. it does not encompass the phenomenon of
bound states, in which incident particles form a composite object at late times, which no longer
consists of free particles. Nevertheless, the assumption will indeed allow us to discuss scattering
processes, which is the aim of this course. Note that we can only talk about well-defined particle
states at t → ±∞ (the states labelled by “in” and “out” above), as only at these times do we
have a free theory, and thus know what the spectrum of states is (using the methods of section
3). At general times t, the interaction is present, and it is not possible in general to solve for
the states of the quantum field theory. Remarkably, we will end up seeing that we can ignore all
the complicated stuff at intermediate times, and solve for scattering probabilities purely using
the properties of the asymptotic fields.

At the asymptotic times t = ±∞, we can use the creation operators a†in and a†out to build
up Fock states from the vacuum. For instance

a†in(p1) a
†
in(p2)|0〉 = |p1,p2; in〉, (160)

a†out(k1) · · · a†out(kn)|0〉 = |k1, . . . ,kn; out〉. (161)

We must now distinguish between Fock states generated by a†in and a†out, and therefore we have
labelled the Fock states accordingly. In eqs. (160) and (161) we have assumed that there is a
stable and unique vacuum state of the free theory (the vacuum at general times t will be that
of the full interacting theory, and thus differ from this in general):

|0〉 = |0; in〉 = |0; out〉. (162)

Mathematically speaking, the a†in’s and a†out’s generate two different bases of the Fock space.
Since the physics that we want to describe must be independent of the choice of basis, expectation
values expressed in terms of “in” and “out” operators and states must satisfy

〈in|φin(x) |in〉 = 〈out|φout(x) |out〉 . (163)
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Here |in〉 and |out〉 denote generic “in” and “out” states. We can relate the two bases by
introducing a unitary operator S such that

φin(x) = S φout(x)S
† (164)

|in〉 = S |out〉 , |out〉 = S† |in〉 , S†S = 1. (165)

S is called the S-matrix or S-operator. Note that the plane wave solutions of φin and φout also
imply that

a†in = S a†out S
†, âin = S âout S

†. (166)

By comparing “in” with “out” states one can extract information about the interaction – this is
the very essence of detector experiments, where one tries to infer the nature of the interaction by
studying the products of the scattering of particles that have been collided with known energies.
As we will see below, this information is contained in the elements of the S-matrix.

By contrast, in the absence of any interaction, i.e. for Lint = 0 the distinction between φin
and φout is not necessary. They can thus be identified, and then the relation between different
bases of the Fock space becomes trivial, S = 1, as one would expect.

What we are ultimately interested in are transition amplitudes between an initial state i of,
say, two particles of momenta p1,p2, and a final state f , for instance n particles of unequal
momenta. The transition amplitude is then given by

〈f, out| i, in〉 = 〈f, out|S |i, out〉 = 〈f, in|S |i, in〉 ≡ Sfi. (167)

The S-matrix element Sfi therefore describes the transition amplitude for the scattering process
in question. The scattering cross section, which is a measurable quantity, is then proportional
to |Sfi|2. All information about the scattering is thus encoded in the S-matrix, which must
therefore be closely related to the interaction Hamiltonian density Hint. However, before we try
to derive the relation between S and Hint we have to take a slight detour.

4.2 More on time evolution: Dirac picture

The operators φ(x, t) and π(x, t) which we have encountered are Heisenberg fields and thus
time-dependent. The state vectors are time-independent in the sense that they do not satisfy a
non-trivial equation of motion. Nevertheless, state vectors in the Heisenberg picture can carry a
time label. For instance, the “in”-states of the previous subsection are defined at t = −∞. The
relation of the Heisenberg operator φH(x) with its counterpart φS in the Schrödinger picture is
given by

φH(x, t) = eiHt φS e−iHt, H = H0 +Hint, (168)

Note that this relation involves the full Hamiltonian H = H0 +Hint in the interacting theory.
We have so far found solutions to the Klein-Gordon equation in the free theory, and so we know
how to handle time evolution in this case. However, in the interacting case the Klein-Gordon
equation has an extra term,

(�+m2)φ(x) +
∂Vint(φ)

∂φ
= 0, (169)

due to the potential of the interactions. Apart from very special cases of this potential, the equa-
tion cannot be solved anymore in closed form, and thus we no longer know the time evolution.
It is therefore useful to introduce a new quantum picture for the interacting theory, in which
the time dependence is governed by H0 only. This is the so-called Dirac or Interaction picture.
The relation between fields in the Interaction picture, φI , and in the Schrödinger picture, φS ,
is given by

φI(x, t) = eiH0t φS e−iH0t. (170)
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At t = −∞ the interaction vanishes, i.e. Hint = 0, and hence the fields in the Interaction and
Heisenberg pictures are identical, i.e. φH(x, t) = φI(x, t) for t → −∞. The relation between
φH and φI can be worked out easily:

φH(x, t) = eiHt φS e−iHt

= eiHt e−iH0t eiH0tφS e−iH0t

︸ ︷︷ ︸
φI(x,t)

eiH0t e−iHt

= U−1(t)φI(x, t)U(t), (171)

where we have introduced the unitary operator U(t)

U(t) = eiH0t e−iHt, U †U = 1. (172)

The field φH(x, t) contains the information about the interaction, since it evolves over time with
the full Hamiltonian. In order to describe the “in” and “out” field operators, we can now make
the following identifications:

t→ −∞ : φin(x, t) = φI(x, t) = φH(x, t), (173)

t→ +∞ : φout(x, t) = φH(x, t). (174)

Furthermore, since the fields φI evolve over time with the free Hamiltonian H0, they always act
in the basis of “in” vectors, such that

φin(x, t) = φI(x, t), −∞ < t <∞. (175)

The relation between φI and φH at any time t is given by

φI(x, t) = U(t)φH(x, t)U−1(t). (176)

As t→ ∞ the identifications of eqs. (174) and (175) yield

φin = U(∞)φout U
†(∞). (177)

From the definition of the S-matrix, Eq. (164) we then read off that

lim
t→∞

U(t) = S. (178)

We have thus derived a formal expression for the S-matrix in terms of the operator U(t), which
tells us how operators and state vectors deviate from the free theory at time t, measured relative
to t0 = −∞, i.e. long before the interaction process.

An important boundary condition for U(t) is

lim
t→−∞

U(t) = 1. (179)

What we mean here is the following: the operator U actually describes the evolution relative to
some initial time t0, which we will normally suppress, i.e. we write U(t) instead of U(t, t0). We
regard t0 merely as a time label and fix it at −∞, where the interaction vanishes. Equation (179)
then simply states that U becomes unity as t → t0, which means that in this limit there is no
distinction between Heisenberg and Dirac fields.

Using the definition of U(t), Eq. (172), it is an easy exercise to derive the equation of motion
for U(t):

i
d

dt
U(t) = Hint(t)U(t), Hint(t) = eiH0tHint e

−iH0t. (180)
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The time-dependent operator Hint(t) is defined in the interaction picture, and depends on the
fields φin, πin in the “in” basis. Let us now solve the equation of motion for U(t) with the
boundary condition lim

t→−∞
U(t) = 1. Integrating Eq. (180) gives

∫ t

−∞

d

dt1
U(t1) dt1 = −i

∫ t

−∞

Hint(t1)U(t1) dt1

U(t)− U(−∞) = −i
∫ t

−∞

Hint(t1)U(t1) dt1

⇒ U(t) = 1− i

∫ t

−∞

Hint(t1)U(t1) dt1. (181)

The right-hand side still depends on U , but we can substitute our new expression for U(t) into
the integrand, which gives

U(t) = 1− i

∫ t

−∞

Hint(t1)

{
1− i

∫ t1

−∞

Hint(t2)U(t2) dt2

}
dt1

= 1− i

∫ t

−∞

Hint(t1)dt1 −
∫ t

−∞

dt1Hint(t1)

∫ t1

−∞

dt2Hint(t2)U(t2), (182)

where t2 < t1 < t. This procedure can be iterated further, so that the nth term in the sum is

(−i)n
∫ t

−∞

dt1

∫ t1

−∞

dt2 · · ·
∫ tn−1

−∞

dtnHint(t1)Hint(t2) · · ·Hint(tn). (183)

This iterative solution could be written in much more compact form, were it not for the fact that
the upper integration bounds were all different, and that the ordering tn < tn−1 < . . . < t1 < t
had to be obeyed. Time ordering is an important issue, since one has to ensure that the
interaction Hamiltonians act at the proper time, thereby ensuring the causality of the theory.
By introducing the time-ordered product of operators, one can use a compact notation, such
that the resulting expressions still obey causality. The time-ordered product of two fields φ(t1)
and φ(t2) is defined as

T {φ(t1)φ(t2)} =

{
φ(t1)φ(t2) t1 > t2
φ(t2)φ(t1) t1 < t2

≡ θ(t1 − t2)φ(t1)φ(t2) + θ(t2 − t1)φ(t2)φ(t1), (184)

where θ denotes the step function. The generalisation to products of n operators is obvious.
Using time ordering for the nth term of Eq. (183) we obtain

(−i)n
n!

n∏

i=1

∫ t

−∞

dti T {Hint(t1)Hint(t2) · · ·Hint(tn)} . (185)

Here we have replaced each upper limit of integration with t. Each specific ordering in the time-
ordered product gives a term identical to eq. (183), where applying the T operator corresponds
to setting the upper limit of integration to the relevant ti in each integral. However, we have
overcounted by a factor n!, corresponding to the number of ways of ordering the fields in the
time ordered product. Thus one must divide by n! as shown. We may recognise eq. (185) as the
nth term in the series expansion of an exponential, and thus can finally rewrite the solution for
U(t) in compact form as

U(t) = T exp

{
−i
∫ t

−∞

Hint(t
′) dt′

}
, (186)

where the “T ” in front ensures the correct time ordering.

- 30 -



4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering process,
can be written as

S = 1 + iT, (187)

where T is commonly called the T -matrix. The fact that S contains the unit operator means that
also the case where none of the particles scatter is encoded in S. On the other hand, the non-
trivial case is described by the T -matrix, and this is what we are interested in. So far we have
derived an expression for the S-matrix in terms of the interaction Hamiltonian, and we could
use this in principle to calculate scattering processes. However, there is a slight complication
owing to the fact that the vacuum of the free theory is not the same as the true vacuum of
the full, interacting theory. Instead, we will follow the approach of Lehmann, Symanzik and
Zimmerman, which relates the S-matrix to n-point Green’s functions

Gn(x1, . . . xn) = 〈0|T (φ(x1) . . . φ(xn))|0〉 (188)

i.e. vacuum expectation values of Heisenberg fields. We will see later how to calculate these in
terms of vacuum expectation values of “in” fields (i.e. in the free theory).

In order to relate S-matrix elements to Green’s functions, we have to express the “in/out”-

states in terms of creation operators a†in/out and the vacuum, then express the creation operators

by the fields φin/out, and finally use the time evolution to connect those with the fields φ in our
Lagrangian.

Let us consider again the scattering process depicted in Fig. 4. The S-matrix element in this
case is

Sfi =
〈
k1,k2, . . . ,kn; out

∣∣∣p1,p2; in
〉

=
〈
k1,k2, . . . ,kn; out

∣∣∣a†in(p1)
∣∣∣p2; in

〉
, (189)

where a†in is the creation operator pertaining to the “in” field φin. Our task is now to express

a†in in terms of φin, and repeat this procedure for all other momenta labelling our Fock states.
The following identities will prove useful

a†(p) = i

∫
d3x

{(
∂0 e
−iq·x

)
φ(x) − e−iq·x (∂0φ(x))

}

≡ −i
∫
d3x e−iq·x

←→

∂0 φ(x), (190)

â(p) = −i
∫
d3x

{(
∂0 e

iq·x
)
φ(x) − eiq·x (∂0φ(x))

}

≡ i

∫
d3x eiq·x

←→

∂0 φ(x). (191)

The S-matrix element can then be rewritten as

Sfi = −i
∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φin(x1)
∣∣∣p2; in

〉

= −i lim
t1→−∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉
, (192)

where in the last line we have used Eq. (156) to replace φin by φ. We can now rewrite limt1→−∞

using the following identity, which holds for an arbitrary, differentiable function f(t), whose
limit t→ ±∞ exists:

lim
t→−∞

f(t) = lim
t→+∞

f(t)−
∫ +∞

−∞

df

dt
dt. (193)
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The S-matrix element then reads

Sfi = −i lim
t1→+∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉

+i

∫ +∞

−∞

dt1
∂

∂t1

{∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉}
. (194)

The first term in this expression involves limt1→+∞ φ = φout, which gives rise to a contribution

∝
〈
k1, . . . ,kn; out

∣∣∣a†out(p1)
∣∣∣p2; in

〉
. (195)

This is non-zero only if p1 is equal to one of k1, . . . ,kn. This, however, means that the particle
with momentum p1 does not scatter, and hence the first term does not contribute to the T -
matrix of Eq. (187). We are then left with the following expression for Sfi:

Sfi = −i
∫
d4x1

〈
k1, . . . ,kn; out

∣∣∣∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

} ∣∣∣p2; in
〉
. (196)

The time derivatives in the integrand can be worked out:

∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

}

= − [E(p1)]
2
e−ip1·x1 φ(x1)− e−ip1·x1 ∂20φ(x1)

= −
{((

−∇2 +m2
)
e−ip1·x1

)
φ(x1) + e−ip1·x1 ∂20 φ(x1)

}
, (197)

where we have used that −∇2e−ip1·x1 = p2
1 e
−ip1·x1 . For the S-matrix element one obtains

Sfi = i

∫
d4x1 e

−ip1·x1

〈
k1, . . . ,kn; out

∣∣∣
(
∂20 −∇2 +m2

)
φ(x1)

∣∣∣p2; in
〉

= i

∫
d4x1 e

−ip1·x1

(
�x1

+m2
) 〈

k1, . . . ,kn; out
∣∣∣φ(x1)

∣∣∣p2; in
〉
, (198)

where we have used integration by parts twice so that ∇2 acts on φ(x1) rather than on e−ip1·x1 .
What we have obtained after this rather lengthy step of algebra is an expression in which the
(Heisenberg) field operator is sandwiched between Fock states, one of which has been reduced
to a one-particle state. We can now successively eliminate all momentum variables from the
Fock states, by repeating the procedure for the momentum p2, as well as the n momenta of the
“out” state. The final expression for Sfi is

Sfi = (i)n+2

∫
d4x1

∫
d4x2

∫
d4y1 · · ·

∫
d4yn e(−ip1·x1−ip2·x2+ik1·y1+···+ikn·yn)

×
(
�x1

+m2
) (

�x2
+m2

) (
�y1

+m2
)
· · ·
(
�yn

+m2
)

×
〈
0; out

∣∣∣T {φ(y1) · · ·φ(yn)φ(x1)φ(x2)}
∣∣∣0; in

〉
, (199)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality
is obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula. It relates the formal definition of the scattering amplitude to a vacuum
expectation value of time-ordered fields. Since the vacuum is uniquely the same for “in/out”,
the VEV in the LSZ formula for the scattering of two initial particles into n particles in the
final state is recognised as the (n+ 2)-point Green’s function:

Gn+2(y1, y2, . . . , yn, x1, x2) =
〈
0
∣∣∣T {φ(y1) · · ·φ(yn)φ(x1)φ(x2)}

∣∣∣0
〉
. (200)
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You will note that we still have not calculated or evaluated anything, but merely rewritten the
expression for the scattering matrix elements. Nevertheless, the LSZ formula is of tremendous
importance and a central piece of QFT. It provides the link between fields in the Lagrangian and
the scattering amplitude S2

fi, which yields the cross section, measurable in an experiment. Up
to here no assumptions or approximations have been made, so this connection between physics
and formalism is rather tight. It also illustrates a profound phenomenon of QFT and particle
physics: the scattering properties of particles, in other words their interactions, are encoded in
the vacuum structure, i.e. the vacuum is non-trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions. Alas,
for any physically interesting and interacting theory this cannot be done exactly, contrary to
the free theory discussed earlier. Instead, approximation methods have to be used in order to
simplify the calculation, while hopefully still giving reliable results. Or one reformulates the
entire QFT as a lattice field theory, which in principle allows to compute Green’s functions
without any approximations (in practice this still turns out to be a difficult task for physically
relevant systems). This is what many theorists do for a living. But the formalism stands,
and if there are discrepancies between theory and experiments, one “only” needs to check the
accuracy with which the Green’s functions have been calculated or measured, before approving
or discarding a particular Lagrangian.

In the next section we shall discuss how to compute the Green’s function of scalar field theory
in perturbation theory. Before we can tackle the actual computation, we must take a further
step. Let us consider the n-point Green’s function

Gn(x1, . . . , xn) = 〈0 |T {φ(x1) · · ·φ(xn)}| 0〉 . (201)

The fields φ which appear in this expression are Heisenberg fields, whose time evolution is
governed by the full Hamiltonian H0 +Hint. In particular, the φ’s are not the φin’s. We know
how to handle the latter, because they correspond to a free field theory, but not the former,
whose time evolution is governed by the interacting theory, whose solutions we do not know.
Let us thus start to isolate the dependence of the fields on the interaction Hamiltonian. Recall
the relation between the Heisenberg fields φ(t) and the “in”-fields3

φ(t) = U−1(t)φin(t)U(t). (202)

We now assume that the fields are properly time-ordered, i.e. t1 > t2 > . . . > tn, so that we can
forget about writing T (· · · ) everywhere. After inserting Eq. (202) into the definition of Gn one
obtains

Gn =
〈
0
∣∣U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·
× U−1(tn)φin(tn)U(tn)

∣∣0
〉
. (203)

Now we introduce another time label t such that t≫ t1 and −t≪ t1. For the n-point function
we now obtain

Gn =
〈
0
∣∣∣U−1(t)

{
U(t)U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·

× U−1(tn)φin(tn)U(tn)U
−1(−t)

}
U(−t)

∣∣∣0
〉
. (204)

The expression in curly braces is now time-ordered by construction. An important observation
at this point is that it involves pairs of U and its inverse, for instance

U(t)U−1(t1) ≡ U(t, t1). (205)

3Here and in the following we suppress the spatial argument of the fields for the sake of brevity.
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One can easily convince oneself that U(t, t1) provides the net time evolution from t1 to t. We
can now write Gn as

Gn =
〈
0
∣∣∣U−1(t)T

{
φin(t1) · · ·φin(tn)U(t, t1)U(t1, t2) · · ·U(tn,−t)︸ ︷︷ ︸

U(t,−t)

}
U(−t)

∣∣∣0
〉
, (206)

where we have used the fact that we may commute the U operators within the time-ordered
product. Let us now take t → ∞. The relation between U(t) and the S-matrix Eq. (178), as
well as the boundary condition Eq. (179) tell us that

lim
t→∞

U(−t) = 1, lim
t→∞

U(t,−t) = S, (207)

which can be inserted into the above expression. We still have to work out the meaning of
〈0|U−1(∞) in the expression for Gn. In a paper by Gell-Mann and Low it was argued that the
time evolution operator must leave the vacuum invariant (up to a phase), which justifies the
ansatz

〈0|U−1(∞) = K〈0|, (208)

with K being the phase4. Multiplying this relation with |0〉 from the right gives

〈0|U−1(∞)|0〉 = K〈0|0〉 = K. (209)

Furthermore, Gell-Mann and Low showed that

〈0|U−1(∞)|0〉 = 1

〈0|U(∞)|0〉 , (210)

which implies

K =
1

〈0|S|0〉 . (211)

After inserting all these relations into the expression for Gn we obtain

Gn(x1, . . . , xn) =
〈0|T {φin(x1) · · ·φin(xn)S} |0〉

〈0|S|0〉 . (212)

The S-matrix is given by

S = T exp

{
−i
∫ +∞

−∞

Hint(t) dt

}
, Hint = Hint(φin, πin), (213)

and thus we have finally succeeded in expressing the n-point Green’s function exclusively in
terms of the “in”-fields. This completes the derivation of a relation between the general defini-
tion of the scattering amplitude Sfi and the VEV of time-ordered “in”-fields. This has been a
long and technical discussion, but the main points are the following:

Scattering probabilities are related to S-matrix elements. To calculate S-matrix elements
for an n particle scattering process, one must first calculate the n particle Green’s function
(eq. (212)). Then one plugs this into the LSZ formula (eq. (199)).

In fact, the Green’s functions cannot be calculated exactly using eq. (212). Instead, one can
only obtain answers in the limit in which the interaction strength λ is small. This is the subject
of the following sections.

4As hinted at earlier, K relates the vacuum of the free theory to the true vacuum of the interacting theory.
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5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field theory
explicitly. We will specify the interaction Lagrangian in detail and use an approximation known
as perturbation theory. At the end we will derive a set of rules, which represent a systematic
prescription for the calculation of Green’s functions, and can be easily generalised to apply to
other, more complicated field theories. These are the famous Feynman rules.

We start by making a definite choice for the interaction Lagrangian Lint. Although one
may think of many different expressions for Lint, one has to obey some basic principles: firstly,
Lint must be chosen such that the potential it generates is bounded from below – otherwise
the system has no ground state. Secondly, our interacting theory should be renormalisable.
Despite being of great importance, the second issue will not be addressed in these lectures. The
requirement of renormalisability arises because the non-trivial vacuum, much like a medium,
interacts with particles to modify their properties. Moreover, if one computes quantities like
the energy or charge of a particle, one typically obtains a divergent result5. There are classes
of quantum field theories, called renormalisable, in which these divergences can be removed by
suitable redefinitions of the fields and the parameters (masses and coupling constants).

For our theory of a real scalar field in four space-time dimensions, it turns out that the only
interaction term which leads to a renormalisable theory must be quartic in the fields. Thus we
choose

Lint = − λ

4!
φ4(x), (214)

where the coupling constant λ describes the strength of the interaction between the scalar fields,
much like, say, the electric charge describing the strength of the interaction between photons
and electrons. The factor 4! is for later convenience. The full Lagrangian of the theory then
reads

L = L0 + Lint =
1

2
(∂µφ)

2 − 1

2
m2φ2 − λ

4!
φ4, (215)

and the explicit expressions for the interaction Hamiltonian and the S-matrix are

Hint = −Lint, Hint =
λ

4!

∫
d3xφ4in(x, t)

S = T exp

{
−i λ

4!

∫
d4xφ4in(x)

}
. (216)

The n-point Green’s function is

Gn(x1, . . . , xn)

=

∞∑

r=0

(
− iλ
4!

)r
1

r!

〈
0

∣∣∣∣T
{
φin(x1) · · ·φin(xn)

(∫
d4y φ4in(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r
1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4in(y)

)r∣∣∣∣ 0
〉 . (217)

This expression cannot be dealt with as it stands. In order to evaluate it we must expand Gn in
powers of the coupling λ and truncate the series after a finite number of terms. This only makes
sense if λ is sufficiently small. In other words, the interaction Lagrangian must act as a small
perturbation on the system. As a consequence, the procedure of expanding Green’s functions in
powers of the coupling is referred to as perturbation theory. We will see that there is a natural
diagrammatic representation of this expansion (Feynman diagrams). First, we need to know
how to calculate the vacuum expectation values of time ordered products. This is the subject
of the next section.

5This is despite the subtraction of the vacuum energy discussed earlier.
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5.1 Wick’s Theorem

The n-point Green’s function in Eq. (217) involves the time-ordered product over at least n
fields. There is a method to express VEV’s of n fields, i.e. 〈0|T {φin(x1) · · ·φin(xn)} |0〉 in terms
of VEV’s involving two fields only. This is known as Wick’s theorem.

Let us for the moment ignore the subscript “in” and return to the definition of normal-
ordered fields. The normal-ordered product : φ(x1)φ(x2) : differs from φ(x1)φ(x2) by the vacuum
expectation value, i.e.

φ(x1)φ(x2) = : φ(x1)φ(x2) : +〈0|φ(x1)φ(x2)|0〉. (218)

We are now going to combine normal-ordered products with time ordering. The time-ordered
product T {φ(x1)φ(x2)} is given by

T {φ(x1)φ(x2)} = φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)

= : φ(x1)φ(x2) :
(
θ(t1 − t2) + θ(t2 − t1)

)

+〈0|φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)|0〉. (219)

Here we have used the important observation that

: φ(x1)φ(x2) : = : φ(x2)φ(x1) :, (220)

which means that normal-ordered products of fields are automatically time-ordered.6 Equa-
tion (219) is Wick’s theorem for the case of two fields:

T {φ(x1)φ(x2)} = : φ(x1)φ(x2) : +〈0|T {φ(x1)φ(x2)} |0〉. (221)

For the case of three fields, Wick’s theorem yields

T {φ(x1)φ(x2)φ(x3)} = : φ(x1)φ(x2)φ(x3) : + : φ(x1) : 〈0|T {φ(x2)φ(x3)}|0〉
+ : φ(x2) : 〈0|T {φ(x1)φ(x3)}|0〉+ : φ(x3) : 〈0|T {φ(x1)φ(x2)}|0〉 (222)

At this point the general pattern becomes clear: any time-ordered product of fields is equal to its
normal-ordered version plus terms in which pairs of fields are removed from the normal-ordered
product and sandwiched between the vacuum to form 2-point functions. Then one sums over
all permutations. Without proof we give the expression for the general case of n fields (n even):

T {φ(x1) · · ·φ(xn)} =

: φ(x1) · · ·φ(xn) :
+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · ·φ(xn) : 〈0|T {φ(xi)φ(xj)}|0〉+ perms.

+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · · φ̂(xk) · · · φ̂(xl) · · ·φ(xn) :
× 〈0|T {φ(xi)φ(xj)}|0〉〈0|T {φ(xk)φ(xl)}|0〉+ perms.

+ . . .+

+〈0|T {φ(x1)φ(x2)}|0〉〈0|T {φ(x3)φ(x4)}|0〉 · · · 〈0|T {φ(xn−1)φ(xn)}|0〉
+ perms.. (223)

The symbol φ̂(xi) indicates that φ(xi) has been removed from the normal-ordered product.
Let us now go back to 〈0|T {φ(x1) · · ·φ(xn)}|0〉. If we insert Wick’s theorem, then we find

that only the contribution in the last line of Eq. (223) survives: by definition the VEV of a

6The reverse is, however, not true!
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normal-ordered product of fields vanishes, and it is precisely the last line of Wick’s theorem in
which no normal-ordered products are left. The only surviving contribution is that in which all
fields have been paired or “contracted”. Sometimes a contraction is represented by the notation:

φ (xi)φ︸ ︷︷ ︸(xj) ≡ 〈0|T {φ(xi)φ(xj)}|0〉, (224)

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now be
rephrased as

〈0|T {φ(x1) · · ·φ(xn)}|0〉 = sum of all possible contractions of n fields. (225)

An example of this result is the 4-point function

〈0|T {φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = φ (x1)φ︸ ︷︷ ︸(x2)φ (x3)φ︸ ︷︷ ︸(x4)

+φ (x1)φ
︷ ︸︸ ︷
(x2)φ(x3)φ︸ ︷︷ ︸(x4) + φ(x1)φ

︷ ︸︸ ︷
(x2)φ(x3)φ(x4)︸ ︷︷ ︸ . (226)

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression involving
only 2-point functions. Let us have a closer look at

G2(x, y) = 〈0|T {φin(x)φin(y)}|0〉. (227)

We can now insert the solution for φ in terms of â and â†. If we assume tx > ty then G2(x, y)
can be written as

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)

×
〈
0
∣∣(â†(p) eip·x + â(p) e−ip·x

) (
â†(q) eiq·y + â(q) e−iq·y

)∣∣ 0
〉

=

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣â(p)â†(q)

∣∣ 0
〉
. (228)

This shows that G2 can be interpreted as the amplitude for a meson which is created at y and
destroyed again at point x. We can now replace â(p)â†(q) by its commutator:

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣[â(p), â†(q)

]∣∣ 0
〉

=

∫
d3p

(2π)3 2E(p)
e−ip·(x−y), (229)

and the general result, after restoring time-ordering, reads

G2(x, y) =

∫
d3p

(2π)3 2E(p)

(
e−ip·(x−y)θ(tx − ty) + eip·(x−y)θ(ty − tx)

)
. (230)

Furthermore, using contour integration one can show that this expression can be rewritten as a
4-dimensional integral

G2(x, y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iǫ
, (231)
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p1

p2

k1

k2

Figure 5: Scattering of two initial particles with momenta p1 and p2 into 2 particles with momenta
k1 and k2.

where ǫ is a small parameter which ensures that G2 does not develop a pole. This calculation
has established that G2(x, y) actually depends only on the difference (x− y). Equation (231) is
called the Feynman propagator GF (x − y):

GF (x− y) ≡ 〈0|T {φ(x)φ(y)}|0〉 = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iǫ
. (232)

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it satisfies

(
�x +m2

)
GF (x− y) = −iδ4(x− y), (233)

and describes the propagation of a meson between the space-time points x and y.

5.3 Two-particle scattering to O(λ)

Let us now consider a scattering process in which two incoming particles with momenta p1 and
p2 scatter into two outgoing ones with momenta k1 and k2, as shown in Fig. 5. The S-matrix
element in this case is

Sfi = 〈k1,k2; out|p1,p2; in〉
= 〈k1,k2; in|S|p1,p2; in〉, (234)

and S = 1+ iT . The LSZ formula Eq. (199) tells us that we must compute G4 in order to obtain
Sfi. Let us work out G4 in powers of λ using Wick’s theorem.

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by
order in λ is

G4(x1, . . . , x4) (235)

=

∞∑

r=0

(
− iλ
4!

)r
1

r!

〈
0

∣∣∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

(∫
d4y φ4(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r
1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4(y)

)r∣∣∣∣ 0
〉 .

At O(λ0), the denominator is 1, and the numerator gives

〈0|T {φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = GF (x1 − x2)GF (x3 − x4) +GF (x1 − x3)GF (x2 − x4)

+GF (x1 − x4)GF (x2 − x3), (236)

where we have used Wick’s theorem. We may represent this graphically as follows:
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x3

x4

x1

x2

+

x3

x4

x1

x2

+

x3

x4

x1

x2

But this is the same answer as if we had set λ = 0, so O(λ0) does not describe scattering and
hence is not a contribution to the T -matrix.

The first non-trivial scattering happens at O(λ). For example, the expansion of the above
formula includes the contribution (from the numerator)

− iλ
4!
〈0|T [φ(x1) . . . φ(x4)

∫
d4yφ4(y)|0〉 = − iλ

4!

∫
d4y 4!GF (x1 − y)GF (x2 − y)GF (x3 − y)

×GF (x4 − y), (237)

where the 4! inside the integral arises from all possible contractions in Wick’s theorem. This
has the graphical representation

x3

x4

x1

x2

y
−iλ

∫
d4y

where each line corresponds to a propagator, and we have assinged a vertex to each space-
time point. Also at this order, we have the graphs

x3

x4

x1

x2

+

x3

x4

x1

x2

+ . . .

We will see later on that neither of these graphs contributes to the S-matrix element (after sub-
stituting the Green’s function into the LSZ formula of eq. (199)), as they are not fully connected.
By this we mean that not all external particle vertices are connected to the same graph. At yet
higher orders, we may have graphs wich involve fully connected pieces, dressed by additional
“vacuum bubbles” (such as that which is sitting in the middle of the right-most figure above).
These vacuum bubbles are cancelled by the denominator in eq. (212) which, given that it con-
tains no external fields, generates all possible vacuum graphs. The presence of these vacuum
graphs explains why the vacuum of the interacting theory is different to that of the free theory,
as mentioned earlier.

To summarise, the final answer for the scattering amplitude to O(λ) is given by Eq. (237).
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5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green’s functions
in perturbation theory after applying Wick’s theorem. It is possible to formulate a simple set
of rules which allow us to draw the graphs directly without using Wick’s theorem and to write
down the corresponding algebraic expressions.

We again consider a neutral scalar field whose Lagrangian is

L =
1

2
∂µ φ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (238)

Suppose now that we want to compute the O(λm) contribution to the n-point Green’s function
Gn(x1, . . . , xn). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Draw n dots and label them x1, . . . , xn (external points)

• Draw m dots and label them y1, . . . , ym (vertices)

• Join the dots according to the following rules:

– only one line emanates from each xi
– exactly four lines run into each yj
– the resulting diagram must be connected, i.e. there must be a continuous path

between any two points.

(2) Assign a factor − iλ
4!

∫
d4yi to the vertex at yi

(3) Assign a factor GF (xi − yj) to the line joining xi and yj

(4) Multiply by the number of contractions C from the Wick expansion which lead to the same
diagram.

These are the Feynman rules for scalar field theory in position space.
Let us look at an example, namely the 2-point function. According to the Feynman rules

the contributions up to order λ2 are as follows:

O(1): x1 x2
= GF (x1 − x2)

O(λ):

x1 x2y

= iλ
2

∫
d4yGF (x1 − y)GF (x2 − y)GF (0)

O(λ2):

x1 x2y1

y2
= −λ2

4

∫
d4y

∫
d4zGF (x1 − y)GF (x2 − y)

×G2
F (y − z)GF (0)

O(λ2): x1 x2y1 y2

= C
(
− iλ
4!

)2 ∫
d4y1d

4y2 GF (x1 − y1) [GF (y1 − y2)]
3GF (y2 − x2)
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The combinatorial factor for this contribution is worked out as C = 4 · 4!. Note that the same
graph, but with the positions of y1 and y2 interchanged is topologically distinct. Numerically it
has the same value as the above graph, and so the corresponding expression has to be multiplied
by a factor 2.

Another contribution at order λ2 is

O(λ2):

x1 x2

y1 y2 vacuum contribution;

not connected

This contribution must be discarded, since not all of the points are connected via a continuous
line.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation of
Feynman rules in this case. This also reflects what is typically done in scattering experiments
(i.e. incoming and outgoing particles have definite momentum). If one works in momentum
space, the Green’s functions are related to those in position space by a Fourier transform

G̃n(p1, . . . , pn) =

∫
d4x1 · · ·

∫
d4xn e

ip1·x1+...+ipn·xn Gn(x1, . . . , xn). (239)

The Feynman rules then serve to compute the Green’s function G̃n(p1, . . . , pn) order by order
in the coupling.

Let us see how this works for the 2 → 2 scattering example we considered above. At O(λ)
this was given in eq. (237), which we may simplify slightly to

−iλ
∫
d4y GF (x1 − y)GF (x2 − y)GF (x3 − y)GF (x4 − y). (240)

We may now substitute in the momentum space form of each propagator (eq. (232)) to give

− iλ

∫
d4y

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iǫ

)
e−i

∑
i
pi·(xi−y)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iǫ

)
e−i

∑
i
pi·xi ,

where we have carried out the y integration in the second line. Substituting this into eq. (239)
and carrying out the integrals over each xi, one finds

G̃4(p1, . . . , pn) = −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i

∫
d4pi
(2π)4

i

p2i −m2 + iǫ
(2π)4δ(pi)

)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)
∏

i

i

p2i −m2 + iǫ

We will not repeat the above derivation for a general Green’s function. Rather, we now state the
Feynman rules in momentum space, and the reader may easily verify that the above example is
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a special case.

Feynman rules (momentum space)

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Assign momenta p1, . . . , pn to the external lines

• Assign momenta kj to the internal lines

(2) Assign to each external line a factor

i

p2k −m2 + iǫ

(3) Assign to each internal line a factor

∫
d4kj
(2π)4

i

k2j −m2 + iǫ

(4) Each vertex contributes a factor

− iλ
4!
(2π)4δ4

(∑
momenta

)
,

(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading to
the same momentum space diagram (note that C may be different from the combinatorial
factor for the same diagram considered in position space!)

Alternatively, one may rephrase (4) and (5) as follows:

(4*) Each vertex carries a factor

−iλ(2π)4δ4
(∑

momenta
)
,

(5*) Divide by the symmetry factor i.e. the dimension of the group of symmetry transformations
that leaves the diagram invariant.

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-matrix ele-
ment and a particular momentum space Green’s function, which has its external legs amputated:
the so-called truncated Green’s function. This further simplifies the calculation of scattering
amplitudes using Feynman rules.

Let us return to the LSZ formalism and consider the scattering of m initial particles (mo-
menta p1, . . . ,pm) into n final particles with momenta k1, . . . ,kn. The LSZ formula (eq. (199))
tells us that the S-matrix element is given by

〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj





×
m∏

i=1

(
�xi

+m2
) n∏

j=1

(
�yj

+m2
)
Gn+m(x1, . . . , xm, y1, . . . , yn). (241)
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Let us have a closer look at Gn+m(x1, . . . , xm, y1, . . . , yn). As shown in Fig. 6 it can be split
into Feynman propagators, which connect the external points to the vertices at z1, . . . , zn+m,
and a remaining Green’s function Gn+m, according to

Gn+m =

∫
d4z1 · · · d4zn+mGF (x1 − z1) · · ·GF (yn − zn+m)Gn+m(z1, . . . , zn+m), (242)

where, perhaps for obvious reasons, Gn+m is called the truncated Green’s function.

x1

x2

x3

G

z1

z2

z3

Figure 6: The construction of the truncated Green’s function in position space.

Putting Eq. (242) back into the LSZ expression for the S-matrix element, and using that

(
�xi

+m2
)
GF (xi − zi) = −iδ4(xi − zi) (243)

one obtains
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj



 (244)

×(−i)n+m

∫
d4z1 · · · d4zn+m δ4(x1 − z1) · · · δ4(yn − zn+m)Gn+m(z1, . . . , zn+m).

After performing all the integrations over the zk’s, the final relation becomes

〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

=

∫ m∏

i=1

d4xi

n∏

j=1

d4yj exp




−i
m∑

i=1

pi · xi + i

n∑

j=1

kj · yj






× Gn+m(x1, . . . , xm, y1, . . . , yn)

≡ Gn+m(p1, . . . , pm, k1, . . . , kn), (245)

where Gn+m is the truncated n+m-point function in momentum space. This result shows that
the scattering matrix element is directly given by the truncated Green’s function in momentum
space. In other words, calculating the S-matrix is much the same as calculating the Green’s
function, but without the free propagators associated with the external legs. Note that this
renders zero any graph which is not fully connected - any diagram in which not all external
points are connected to the same graph vanishes upon multiplication by the (p2i +m2) factors.
This is what allowed us to neglect such graphs in the previous section.
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6 Summary

That completes this introductory look at quantum field theory. Although we did not get as far
as some of the more relevant physical applications of QFT, we have looked in detail at what a
QFT is, and how the description of scattering amplitudes leads to Feynman diagrams. To recap
how we did this:

1. We reviewed the Lagrangian formalism for classical field theory, and also the canonical
quantisation approach to quantum mechanics.

2. We constructed the Lagrangian for a relativistic field theory (the free Klein-Gordon field),
and applied the techniques of canonical quantisation to this field theory.

3. States in this theory were found to represent particle excitations, such that a particle of
momentum p was found to be a quantum of excitation in the relevant Fourier mode of the
field.

4. We then studied the interacting theory, arguing that at initial and final times (when the
interaction dies away) we can work with free fields. These were related by an operator S,
whose matrix elements represented the transition probability to go from a given initial to
a given final state.

5. Using the interaction picture for time evolution, we found an expression for the S matrix
in terms of an evolution operator U , describing how the fields at general time t deviate
from the initial free fields.

6. We also found a formula which related S matrix elements to n-particle Green’s functions
(vacuum expectation values of time-ordered fields). This was the LSZ formula of eq. (199).

7. We related the Green’s functions involving Heisenberg fields to those involving the “in”
fields at time t → −∞ (eq. (212)).

8. We then found how to compute these Green’s functions in perturbation theory, valid
when the strength of the interaction is weak. This involved having to calculate vacuum
expectation values of time-ordered products, for which we could use Wick’s theorem.

9. We developed a graphical representation of Wick’s theorem, which led to simple rules
(Feynman rules) for the calculation of Green’s functions in position or momentum space.

10. These can easily be converted to S matrix elements by truncating the free propagators
associated with the external lines.

Needless to say, there are many things we did not have time to talk about. Some of these will
be explored by the other courses at this school:

• Here we calculated S-matrix elements without explaining how to turn these into decay
rates or cross-sections, which are the measurable quantities. This is dealt with in the QED
/ QCD course.

• The Klein-Gordon field involves particles of spin zero, which are bosons. One may also con-
struct field theories for fermions of spin 1

2 , and vector bosons (spin 1). Physical examples
include QED and QCD.

• Fields may have internal symmetries (e.g. local gauge invariance). Again, see the QED /
QCD and Standard Model courses.

• Diagrams involving loops are divergent, ultimately leading to infinite renormalisation of
the couplings and masses. The renormalisation procedure can only be carried out in certain
theories. The Standard Model is one example, but other well-known physical theories (e.g.
general relativity) fail this criterion.
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• There is an alternative formulation of QFT in terms of path integrals (i.e sums over
all possible configurations of fields). This alternative formulation involves some extra
conceptual overhead, but allows a much more straightforward derivation of the Feynman
rules. More than this, the path integral approach makes many aspects of field theory
manifest i.e. is central to our understanding of what a quantum field theory is. This will
not be covered at all in this school, but the interested student will find many excellent
textbooks on the subject.

There are other areas which are not covered at this school, but nonetheless are indicative of
the fact that field theory is still very much an active research area, with many exciting new
developments:

• Calculating Feynman diagrams at higher orders is itself a highly complicated subject, and
there are a variety of interesting mathematical ideas (e.g. from number theory and complex
analysis) involved in current research.

• Sometimes perturbation theory is not well-behaved, in that there are large coefficients at
each order of the expansion in the coupling constant. Often the physics of these large
contributions can be understood, and summed up to all orders in the coupling. This is
known as resummation, and is crucial to obtaining sensible results for many cross-sections,
especially in QCD.

• Here we have “solved” for scattering probabilities using a perturbation expansion. It is
sometimes possible to numerically solve the theory fully non-perturbatively. Such ap-
proaches are known as lattice field theory, due to the fact that one discretizes space and
time into a lattice of points. It is then possible (with enough supercomputing power!)
to calculate things like hadron masses, which are completely incalculable in perturbation
theory.

• Here we set up QFT in Minkowski (flat space). If one attempts to do the same thing in
curved space (i.e. a strong gravitational field), many weird things happen that give us
tantalising hints of what a quantum field of gravity should look like.

• There are some very interesting recent correspondences between certain limits of certain
string theories, and a particular quantum field theory in the strong coupling limit. This
has allowed us to gain new insights into nonperturbative field theory from an analytic
point of view, and there have been applications in heavy ion physics and even condensed
matter systems.

I could go on of course, and many of the more formal developments of current QFT research
are perhaps not so interesting to a student in experimental particle physics. However, at the
present time some of the more remarkable and novel extensions to the Standard Model (SUSY,
extra dimensions) are not only testable, but are actively being looked for. Thus QFT, despite
its age, is very much at the forefront of current research efforts and may yet surprise us!
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A Books on QFT

There have been numerous texts on Quantum Field Theory over many decades, and a surpris-
ingly high number are appearing all the time. Here I list some notable ones, although I have
not read every page of all of them...!

In the following list, [1] is a good introductory text. So is [2], which also features reason-
ably accessible introductions to topics which are not normally featured in general purpose QFT
books (e.g. SUSY, topological aspects). By far one of the best all-round books is [3], which
many use as a standard text (it is particularly useful for looking things up in). A very good
book for doing explicit calculations, especially in QCD where there is a very good coverage of
advanced material (e.g. resummation), is [4]. People say nice things about [5], although I am
not so familiar with this book.

For particle physics applications in particular, a very nice two volume set is that of [6]. Also
of note (with a very physically motivated and Feynman diagrammatic approach to field theory)
is [7], although this is hard to get hold of (an updated version is in preparation).

Finally, those who are not faint of heart and who like their field theory from the horse’s
mouth may like to consult Weinberg’s monumental three volume set [8]!

References

[1] F. Mandl and G. Shaw, Quantum Field Theory, Wiley 1984.

[2] L. Ryder, Quantum Field Theory, CUP 1985.

[3] M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison
Wesley 1995

[4] G. Sterman, An Introduction to quantum field theory, CUP 1993.

[5] C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill 1987.

[6] I. Aitchison and A. Hey, Gauge theories in particle physics: A practical introduction. Vol.

1: From relativistic quantum mechanics to QED; Vol. 2: Non-Abelian gauge theories: QCD

and the electroweak theory, IOP 2004.

[7] B. de Wit and J. Smith, Field Theory in Particle Physics, 1986.

[8] S. Weinberg, The Quantum Theory of Fields, Vol. 1, CUP 1995

- 46 -



B Notation and conventions

4-vectors:

xµ = (x0,x) = (t,x)

xµ = gµν x
ν = (x0,−x) = (t,−x)

Metric tensor: gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Scalar product:

xµxµ = x0x0 + x1x1 + x2x2 + x3x3

= t2 − x2

Gradient operators:

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)

d’Alembertian: ∂µ∂µ =
∂2

∂t2
−∇2 ≡ �

Momentum operator:

p̂µ = i~∂µ =

(
i~
∂

∂t
, −i~∇

)
=
(
Ê, p̂

)
(as it should be)

δ-functions:
∫
d3p f(p) δ3(p− q) = f(q)

∫
d3x e−ip·x = (2π)3δ3(p)

∫
d3p

(2π)3
e−ip·x = δ3(x)

(similarly in four dimensions)

Note:

δ(x2 − x20) = δ{(x− x0)(x+ x0)}

=
1

2x
{δ(x − x0) + δ(x+ x0)}
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These lectures present a heuristic introduction to gauge theories of electromagnetic and
strong interactions, focusing on perturbative applications of the S matrix and the use
of Feynman graphs in QED and QCD. They are complementary to the presentations of
field theory in the Standard Model and Quantum Field Theory courses at this School.
The approach followed in these lectures may be found in the textbooks given in Ref. [1].
Quantum field theory treatments may be found in the textbooks given in Ref. [2].
Secs. 1 and 2 discuss relativistic quantum mechanics and spin. Secs. 3 to 5 are devoted to
interactions and scattering processes at tree level in QED. Sec. 6 extends the discussion to
QCD. Secs. 7 and 8 consider loops and give an introductory discussion to renormalization.
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1 Relativistic quantum mechanics

In this section we present the Klein-Gordon equation and the Dirac equation as they
arise from attempts to generalize quantum-mechanical wave equations to include rela-
tivity. We discuss the difficulties in interpreting these equations as single-particle wave
equations, and illustrate that the Feynman-Stueckelberg causality argument points to
the resolution of these difficulties by going beyond the single particle interpretation.

1.1 Relativistic wave equations

Let us start with the case of nonrelativistic quantum mechanics, and ask how we can
generalize it to the relativistic case.

The time evolution of the state |ψ〉 of a quantum mechanical system is given by the
Schrödinger equation,

i
∂

∂t
|ψ〉 = H|ψ〉 , (1.1)

where H is the hamiltonian operator corresponding to the total energy.
For a free, spinless, nonrelativistic particle we have

H =
p2

2m
, (1.2)

where p is the momentum operator, and m is the particle’s mass. In the basis of
eigenstates of the position operator, p is represented by

p = −i ∇ , (1.3)

and therefore the evolution equation reads

i
∂

∂t
ψ(x, t) = − 1

2m
∇

2
ψ(x, t) , (1.4)

where ψ(x, t) = 〈x|ψ〉 is the position-space wave function.
The wave equation (1.4) admits a probabilistic interpretation. By taking the complex

conjugate ψ∗ times Eq. (1.4) and subtracting ψ times the complex conjugate equation,
we obtain

∂ρ

∂t
+∇ · j = 0 , (1.5)

with

ρ = ψ
∗
ψ , j = − i

2m
[ψ∗(∇ψ)− (∇ψ

∗)ψ] . (1.6)

Here ρ and j are interpreted as probability density and current, and the continuity
equation (1.5) expresses probability conservation.

How could we extend this to the relativistic case? To do this, we need to incorporate
the relativistic energy-momentum relation

E
2 = p2 +m

2
. (1.7)

If we naively were to take

H =
√
p2 +m2 , (1.8)
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this would yield the correct energy-momentum relation, but would give as a candidate
wave equation

i
∂

∂t
ψ =

√
p2 +m2 ψ , (1.9)

which contains space derivatives under the square root. This equation has a number of
difficulties, because it treats time and space derivatives on a different footing, contrary
to what one would expect of a relativistic theory, and because it is non-local in space,
as the square root gives rise to an infinite number of spatial derivatives.

One possible way to overcome this is to square the differential operators in Eq. (1.9)
before applying them to ψ. This gives

− ∂
2

∂t2
ψ = (−∇

2 +m
2) ψ , (1.10)

that is, using covariant notation with ∂µ = (∂/∂t,−∇), ∂2 = ∂
µ
∂µ,

(∂2 +m
2) ψ = 0 . (1.11)

This is the approach originally proposed by Schrödinger, Klein and Gordon, and Eq. (1.11)
is referred to as the Klein-Gordon equation. This equation describes relativistic spin-0
particles. We will discuss Klein-Gordon in Subsec. 1.2. As we will see, this equation
is a candidate wave equation consistent with relativity, but it runs into problems with
quantum mechanics as a single-particle wave equation, because, due to the second-order
time derivative, it does not lead to a positive-definite probability density.

A second possible way around the naive Eq. (1.9) is to insist on the equation being
first-order in the time derivative but devise a new hamiltonian Hd which is local, linear in
momentum, and such that its square returns the correct relativistic energy-momentum
relation (1.7):

i
∂

∂t
ψ = Hd ψ . (1.12)

This is the approach followed originally by Dirac. It turns out that this route is viable
only if the wave function is not one-component but multi-component (which implies
spin), and the new hamiltonian is of the form

Hd = α · p+ βm , (1.13)

where α and β are four matrices, in a space to be determined, obeying the relations

αiαj + αjαi = 2δij , βαi + αiβ = 0 , β
2 = 1 . (1.14)

Eq. (1.12), with Hd given in Eqs. (1.13),(1.14), is the Dirac equation. This equation
describes relativistic spin-1/2 particles. We will discuss it in Subsec. 1.3.

We will see that, unlike the Klein-Gordon equation, the Dirac equation, being first-
order, allows one to construct a positive-definite probability density. However, we will
see that both the Klein-Gordon equation and the Dirac equation have solutions corre-
sponding to states with negative energies. In Subsec. 1.4 we discuss how this issue can be
addressed via the Feynman-Stueckelberg picture of causality. This picture reinterprets
negative energy states by introducing the concept of antiparticle, and leads us to think of
theories that incorporate quantum mechanics and relativity as theories for which particle
number is not conserved.
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1.2 The Klein-Gordon equation

We have seen in the previous subsection that the Klein-Gordon equation emerges from
requiring the relativistic energy-momentum relation and taking the square of the hamil-
tonian operator in the position-space wave equation. In covariant form, the Klein-Gordon
equation is given by

(∂2 +m
2) φ(x) = 0 , (1.15)

where

∂
2 ≡ ∂

µ
∂µ =

∂
2

∂t2
−∇

2
. (1.16)

The Klein-Gordon equation is relativistically covariant. That is, if we start with
Eq. (1.15) and make a Lorentz transformation,

x
µ → x

′µ = Λµ
νx

ν
, ΛµρΛνσ

gµν = g
ρσ

, (1.17)

φ(x) → φ
′(x) = φ(Λ−1

x) , (1.18)

in the primed coordinate system an equation of the same form holds, because

(∂2 +m
2)φ′(x) =

[
(Λ−1)ρµ∂ρ(Λ

−1)σν∂σg
µν +m

2
]
φ(Λ−1

x)

= (∂ρ∂σg
ρσ +m

2)φ(Λ−1
x) = (∂2 +m

2)φ(Λ−1
x) = 0 . (1.19)

On the other hand, interpreting the Klein-Gordon equation as a single particle rel-
ativistic wave equation leads to difficulties with quantum mechanics. As the equation
is second-order in the time derivative, the norm of φ is not conserved with time. We
can see the difficulty by looking for a continuity equation for Klein-Gordon similar to
Eq. (1.5) for the nonrelativistic case. Following the same steps as described for Eq. (1.5),
we obtain

∂µj
µ = 0 , j

µ = (ρ, j) , (1.20)

with

ρ = i

[
φ
∗∂φ

∂t
− ∂φ

∗

∂t
φ

]
, j = −i [φ∗(∇φ)− (∇φ

∗)φ] . (1.21)

The current j is formally similar to that of the nonrelativistic case in Eq. (1.6). The
density ρ, however, is not. Nor could it be, because φ∗

φ would transform under Lorentz
like a scalar rather than like the time component of a four-vector. Because Eq. (1.15)
contains second-order time derivatives, the density ρ contains terms in ∂/∂t, and is not
positive definite.

If we look for plane wave solutions of the Klein-Gordon equation,

φ(x) = Ne
−ipx

, (1.22)

where pµ = (E,p), another difficulty arises. By substituting Eq. (1.22) into the equation,
we find that Eq. (1.22) is solution if

p
2 = m

2
, (1.23)

that is,

E = ±
√
p2 +m2 . (1.24)

The Klein-Gordon equation contains both positive-energy and negative-energy solutions.
Since jµ in Eq. (1.20) is proportional to pµ, negative energy solutions also have negative
probability density. We discuss in Subsec. 1.4 how to interpret negative-energy states.
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1.3 The Dirac equation

We have seen in Eqs. (1.12),(1.13) that the Dirac equation has the form

i
∂

∂t
ψ = (−iα ·∇+ βm) ψ . (1.25)

Consistency with the relativistic energy-momentum relation requires that by squaring
Eq. (1.25),

−∂
2
ψ

∂t2
= [−αi

α
j∇i∇j − i (βαi + α

i
β)m∇i + β

2
m

2]ψ , (1.26)

we reobtain the Klein-Gordon equation,

−∂
2
ψ

∂t2
= [−∇i∇i +m

2]ψ . (1.27)

Then αi and β must obey anticommutation relations,

α
i
α
j + α

j
α
i = 2δij , βα

i + α
i
β = 0 , β

2 = 1 . (1.28)

Eq. (1.28) implies that
Tr αi = Tr β = 0 , (1.29)

and that the eigenvalues of αi and β are ±1. Then αi and β must be even-dimensional
matrices. In two dimensions there are no four matrices satisfying Eq. (1.28) (the three
Pauli σ matrices would be three candidate matrices but there is no fourth anticommuting
2 × 2 matrix). So the minimum possible dimension is four. Then ψ in Eq. (1.25) is a
four-component object, referred to as a four-component spinor.

A possible choice of αi and β is given by

α =
(
0 σ

σ 0

)
, β =

(
1 0
0 −1

)
, (1.30)

where we use block matrix notation.
The Dirac equation can be recast in manifestly covariant form by defining four new

matrices γ in terms of the α and β as

γ
0 = β, γ = βα, (1.31)

and noting that Eq. (1.25), multiplied by β, can be compactly rewritten in terms of the
γ matrices as

(iγµ∂µ −m)ψ = 0 , (1.32)

where
γ
µ = (γ0,γ) . (1.33)

In terms of the γ matrices the anticommutation relations (1.28) become

{γµ, γν} ≡ γ
µ
γ
ν + γ

ν
γ
µ = 2gµν . (1.34)

The representation (1.30) is

γ =
(

0 σ

−σ 0

)
, γ

0 =
(
1 0
0 −1

)
. (1.35)
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Because the Dirac equation is first-order, it gives rise to a positive-definite density,
unlike the Klein-Gordon equation. By manipulations analogous to those seen in the
previous sections, we obtain the continuity equation

∂µj
µ = 0 , j

µ = (ρ, j) , (1.36)

with
ρ = ψ

†
ψ, j = ψ

†αψ. (1.37)

On the other hand, because α and β are traceless (Eq. (1.29)), the hamiltonian is
traceless. Then the eigenvalues must be E, −E. Thus the Dirac equation, like the
Klein-Gordon equation, has negative energy solutions.

A first interpretation of negative energy solutions is provided by Dirac’s “sea” picture.
Dirac postulates the existence of a “sea” of negative energy states (Fig. 1), such that
the vacuum has all the negative energy states filled with electrons. The Pauli principle
forbids any positive-energy electron from falling into one of the lower states. Although
the vacuum state has infinite negative charge and energy, this leads to an acceptable
theory based on the fact that all observations only involve differences in energy and
charge. When energy is supplied and one of the negative energy electrons is promoted to
a positive energy one, an electron-hole pair is created, i.e. a positive energy electron and a
hole in the negative energy sea. The hole, i.e. the absence of a negative-energy electron,
is seen as the presence of a positive-energy and positive-charge state, the positron.

This picture led Dirac to postulate (1927) the existence of the positron as the elec-
tron’s antiparticle, which was discovered experimentally five years later.

− m

+ m

E

Figure 1: Dirac sea picture of negative energy states.

But Dirac’s sea picture does not work for bosons, which have no exclusion principle.
A second, more general interpretation of negative-energy states is given by Feynman’s
picture, which we describe in the next subsection.

1.4 The Feynman-Stueckelberg picture

The Feynman-Stueckelberg interpretation of negative-energy states does not appeal to
the exclusion principle but rather to a causality principle. It is based on the observation
that causality ensures that positive energy states, with time dependence e−iEt, propagate
forwards in time, and that if we impose that negative energy states propagate only
backwards in time, with

e
−i(−|E|)(−|t|) → e

−i|E||t|
, (1.38)
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we still obtain an acceptable theory, consistent with causality. In this picture the emission
of a negative energy particle with momentum p

µ is interpreted as the absorption of a
positive energy antiparticle with momentum −pµ.

Consider for example photon-particle scattering (Fig. 2). In Fig. 2(a) a particle comes
in with energy E1, and at time t1 and point x1 it emits a photon with energy Eγ < E1.
It travels on forwards in time, and at time t2 and point x2 it absorbs the initial state
photon, giving rise to the photon-particle final state.

Another process is shown in Fig. 2(b). In this process the particle coming in with
energy E1 emits a photon with energy Eγ > E1, and is thus forced to travel backwards
in time. Then at an earlier time it absorbs the initial state photon at the point x2, which
renders its energy positive again.

( b )

   

t

E γ > E1

x

E
1

t

x

 ( a ) 

E
1 E γ < E1

Figure 2: Feynman interpretation of positive-energy and negative-energy states in terms
of particle and antiparticle propagation.

The process in Fig. 2(b) can be described by saying that in the initial state we have
a particle and a photon, and that at point x2 the photon creates a particle-antiparticle
pair, both of which propagate forwards in time. The particle ends up in the final state,
whereas the antiparticle is annihilated at a later time by the initial state particle, thereby
producing the final state photon. According to this picture, the negative energy state
moving backwards in time is viewed as a negatively charged state with positive energy
moving forwards in time.
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2 Spin

In the previous section we have introduced Dirac spinors, which we will use to describe
spin-1/2 relativistic charges. In this section we further the study of spin in the context
of Dirac theory.

We start from the algebraic description of the group of Lorentz transformations and
associated representations, which parallels the treatment of the group of rotations and
its representations in quantum mechanics. We describe how Dirac spinors emerge from
this point of view, and we discuss solutions of the Dirac equations.

2.1 Algebra of Lorentz transformations

Let us start with the group of rotations in three dimensions. In quantum mechanics,
given a particle with spin s, the matrices that rotate its n-component wave function,
where n = 2s+ 1, are constructed from the angular momentum operators Ji, i = 1, 2, 3.
These satisfy the commutation relations

[Ji, Jj ] = iεijkJk . (2.1)

Rotation operators are obtained by exponentiation as

R = e
−iθiJi , (2.2)

where the parameters θi specify the rotation axis and angle. The angular momentum
operators Ji are the generators of the rotation group, and have matrix representations
for every dimensionality n. The representation for n = 2, corresponding to spin s = 1/2,
is given by

Ji →
1

2
σi , (2.3)

where σi are the three Pauli matrices, so that

R1/2 = e
−iθiσi/2 . (2.4)

We can generalize this from the group of rotations to the group of Lorentz transfor-
mations. One way to obtain the commutation relations of the Lorentz generators is as
follows. In the case of the rotation group, the relations (2.1) can be obtained by taking

J = x ∧ p = −ix ∧∇ , (2.5)

and evaluating the commutators. The components of angular momentum in Eq. (2.5)
can also be rewritten explicitly, using antisymmetric tensor notation, as

J
ij = −i(xi∇j − x

j∇i) . (2.6)

The generalization of this formula to the four-dimensional case,

L
µν = i(xµ∂ν − x

ν
∂
µ) , (2.7)

gives the correct generators of Lorentz transformations. As it is antisymmetric in µ

and ν, Eq. (2.7) contains six operators, the three generators of rotations and three
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generators of boosts. The commutation relations can be obtained by evaluating directly
the commutators of the operators (2.7), and the result is

[Lµν , Lρσ] = i (gµσLνρ − gνσLµρ − gµρLνσ + gνρLµσ)

= i (gµσLνρ − {µ↔ ν})− {ρ↔ σ} . (2.8)

Given the six operators in Eq. (2.7), it is helpful to distinguish the three operators

Ji =
1

2
εijkLjk (2.9)

and the three operators
Ki = L0i . (2.10)

From Eq. (2.8) we get
[Ji, Jj ] = iεijkJk , (2.11)

that is, the three operators in Eq. (2.9) are the generators of rotations. The three
remaining operators in Eq. (2.10) are the generators of boosts. From Eq. (2.8) we have

[Ji, Kj] = iεijkKk , (2.12)

[Ki, Kj] = −iεijkJk . (2.13)

The J and K operators in Eqs. (2.9),(2.10) have the clear physical interpretation
of rotation and boost generators, but they are mixed by the algebra of commutation
relations (2.8), as shown in Eqs. (2.12),(2.13). It is useful to disentangle the algebra by
introducing the linear combinations of generators

Ai =
1

2
(Ji + iKi) , Bi =

1

2
(Ji − iKi) . (2.14)

By computing the commutators of the A and B operators in Eq. (2.14), we find

[Ai, Aj ] = iεijkAk , [Bi, Bj ] = iεijkBk , [Ai, Bj] = 0 . (2.15)

That is, the A and the B operators do not mix, and each set obeys commutation relations
of the form (2.1). This means that we can specify a representation of the group of Lorentz
transformations by specifying a pair of rotation-group representations,

(a, b) , where AiAi = a(a+ 1) , BiBi = b(b+ 1) , (2.16)

with a and b integer or half-integer. Here a + b gives the spin quantum number: so the
representation (0, 0) is spin-0 (scalar); (1/2, 1/2) is spin-1 (vector); (1/2, 0) and (0, 1/2)
are spin-1/2. The latter are referred to as Weyl spinors (respectively, left-handed and
right-handed). A Dirac spinor is obtained from two Weyl spinors, (1/2, 0)⊕ (0, 1/2).

Dirac spinors are thus identified by a representation of the group of Lorentz trans-
formations reducible to the sum of two representations (2.16), (1/2, 0) and (0, 1/2).

We discuss Weyl and Dirac spinors in the next two subsections.
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2.2 Weyl spinors

A left-handed Weyl spinor is defined by taking a = 1/2, b = 0 in Eq. (2.16). We thus
have

A
i =

1

2
σ
i
, B

i = 0 . (2.17)

Using Eq. (2.14), the representation of the rotation and boost generators is given by

J
i =

1

2
σ
i (rotation generators) , K

i = −i 1
2
σ
i (boost generators) . (2.18)

So a left-handed Weyl spinor is a two-component spinor,

ξL =
(
ξ
1
L

ξ
2
L

)
, (2.19)

which transforms under rotations and boosts as

ξL → e
−iθkσk/2−ηkσk/2

ξL . (2.20)

A right-handed Weyl spinor is defined by taking a = 0, b = 1/2 in Eq. (2.16). Then

A
i = 0 , B

i =
1

2
σ
i
, (2.21)

i.e.,

J
i =

1

2
σ
i (rotation generators) , K

i = i
1

2
σ
i (boost generators) . (2.22)

So a right-handed Weyl spinor is a two-component spinor,

ξR =
(
ξ
1
R

ξ
2
R

)
, (2.23)

which transforms under rotations and boosts as

ξR → e
−iθkσk/2+ηkσk/2

ξR . (2.24)

Eq. (2.20) and Eq. (2.24) differ by the sign in the boost transformation.

2.3 Dirac spinors

A Dirac spinor is a four-component spinor built out of two Weyl spinors as

ψ =
(
ξL

ξR

)
. (2.25)

We can construct explicitly its Lorentz transformation matrix S

ψ → ψ
′ = Sψ (2.26)
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from those for the Weyl spinors in Sec. 2.2. We obtain

ψ → ψ
′ = e

−iωµνΣµν

ψ ≡ Sψ , (2.27)

where

Σµν ≡ i

4
[γµ, γν ] (2.28)

with the γ matrix representation

γ =
(

0 σ

−σ 0

)
, γ

0 =
(
0 1
1 0

)
. (2.29)

Thus the generators of boosts for Dirac spinors are

Σ0i =
i

4
[γ0, γi] = − i

2

(
σ
i 0
0 −σi

)
(boost generators) , (2.30)

and the generators of rotations are

Σij =
i

4
[γi, γj ] =

1

2
εijk

(
σ
k 0
0 σ

k

)
(rotation generators) . (2.31)

An alternative method, equivalent to that given above, for constructing Dirac spinors
is based on observing that if 4 n× n matrices γµ satisfy

{γµ, γν} ≡ γ
µ
γ
ν + γ

ν
γ
µ = 2gµν , (2.32)

then

Σµν ≡ i

4
[γµ, γν ] (2.33)

obey the Lorentz algebra (2.8). Then, by a reasoning similar to that followed in Sec. 1.3,
one sees that n must be 4. By this method one arrives at Dirac spinors without going
through the construction from two Weyl spinors.

Note the following two properties of the Lorentz transformation matrix S for Dirac
spinors, which follow from Eqs. (2.27),(2.28). The first is that

S
−1
γ
µ
S = Λµν

γν . (2.34)

This relation implies that the Dirac equation Eq. (1.32),

(iγµ∂µ −m)ψ = 0 , (2.35)

is relativistically covariant, because under a Lorentz transformation we have

(iγµ∂µ −m)ψ(x) →
[
iγ

µ(Λ−1)ρµ∂ρ −m

]
Sψ(Λ−1

x)

= S(iγν∂ν −m)ψ(Λ−1
x) = 0 . (2.36)

The second property is that, because boost generators (2.30) are not hermitian, S is not
unitary; rather, it satisfies

S
† = γ

0
S
−1
γ
0
. (2.37)

- 62 -



For this reason the product ψ†
ψ is not Lorentz invariant. It is thus useful to define the

adjoint spinor
ψ ≡ ψ

†
γ
0
. (2.38)

Using Eq. (2.37), we see that the product ψψ is Lorentz invariant.
We have seen the transformation law of Dirac spinors under rotations and boosts.

Lorentz transformations also include discrete transformations, space parity and time
reversal. The transformation law of Dirac spinors under these are

Pψ(x, t)P−1 = ηγ
0
ψ(−x, t) , Pψ(x, t)P−1 = η

∗
ψ(−x, t)γ0 , (2.39)

where η is a phase factor to be fixed, and

Tψ(x, t)T−1 = −γ1γ3ψ(x,−t) , Tψ(x, t)T−1 = ψ(x,−t)γ1γ3 . (2.40)

A third discrete symmetry is charge conjugation, exchanging particle and antiparticle,

CψC
−1 = −iγ2ψ∗

, CψC
−1 = −iψT

γ
2
γ
0
. (2.41)

Finally, it is useful to introduce a fifth γ matrix

γ
5 ≡ iγ

0
γ
1
γ
2
γ
3
, (2.42)

obeying (
γ
5
)2

= 1 , {γ5, γµ} = 0 ,

(
γ
5
)†

= γ
5
. (2.43)

Then define the projection operators

PL =
1− γ

5

2
, PR =

1 + γ
5

2
. (2.44)

In the representation (2.29) we have

γ
5 =

(−1 0
0 1

)
=⇒ PL =

(
1 0
0 0

)
, PR =

(
0 0
0 1

)
. (2.45)

Thus

ψL ≡ PLψ =
1− γ

5

2

(
ξL

ξR

)
=
(
ξL

0

)
, ψR ≡ PRψ =

1 + γ
5

2

(
ξL

ξR

)
=
(

0
ξR

)
. (2.46)

Note that, because γ5 anticommutes with γ0, for the adjoint we have

ψL = ψ
†
Lγ

0 = ψ
†
PLγ

0 = ψ
†
γ
0
PR = ψPR , (2.47)

and similarly
ψR = ψPL . (2.48)

By including γ5, it is possible to see that any combination of the form

ψΓψ , (2.49)

where Γ is any 4× 4 matrix, can be decomposed into terms with definite transformation
properties under Lorentz, because a basis for 4 × 4 matrices is given by the sixteen,
linearly independent matrices

1 , γ
5
, γ

µ
, γ

µ
γ
5
, Σµν

, (2.50)

transforming respectively like scalar, pseudoscalar, vector, pseudovector and tensor.
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2.4 Solutions of the Dirac equation

We can use Dirac spinors to write plane wave solutions of the Dirac equation. Consider

ψ(x) =
(
χ(p)
φ(p)

)
e
−ipx

, (2.51)

where pµ = (E,p), and χ and φ are two-components spinors. Substituting (2.51) into the
Dirac equation (2.35) and using the representation (1.35) yields the coupled equations
for χ and φ

E

(
χ

φ

)
=
(

m σ · p
σ · p −m

) (
χ

φ

)
, (2.52)

that is,

σ · p φ = (E −m) χ

σ · p χ = (E +m) φ . (2.53)

These have solutions for positive and negative energies, E = ±√
p2 +m2. We can write

the solution for positive energies as

ψ+(x) = N
(

χr
σ·p
E+m

χr

)
e
−ipx ≡ ur(p)e

−ipx
, (2.54)

where N =
√
E +m, and the spinors χr for r = 1, 2 are given by

χ1 =
(
1
0

)
, χ2 =

(
0
1

)
. (2.55)

For negative energies, it is convenient to make the transformation pµ → −pµ, so that we
write the corresponding solution as

ψ−(x) = N
(

σ·p
E+m

χr

χr

)
e
ipx ≡ vr(p)e

ipx
. (2.56)

The spinors u and v defined by Eqs. (2.54),(2.56) correspond respectively to particle
and antiparticle solutions. Taking the solutions in the rest frame p = 0, the top two
components of ψ describe electrons with spin up and spin down, while the bottom two
components describe positrons with spin up and spin down. This provides a clear physical
interpretation to the four components of Dirac spinors. For arbitrary p, we can study
the spin content of the solutions by using the explicit expression of the spin operator

S =
1

2
Σ =

1

2

(
σ 0
0 σ

)
, (2.57)

corresponding to spin 1/2,

S2 =
1

4
Σ2 =

1

4

(
σ · σ 0
0 σ · σ

)
=

3

4
1 , (2.58)

and helicity operator

h =
S · p
|p| =

1

2

(
σ · p̂ 0
0 σ · p̂

)
. (2.59)
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The u and v spinors satisfy the Dirac equation in momentum space,

(/p−m)u = 0 , (/p+m)v = 0 , (2.60)

and obey orthonormality and completeness relations. The orthonormality relations are
given by

u
†
r(p)us(p) = v

†
r(p)vs(p) = 2Eδrs , (2.61)

u
†
r(p)vs(−p) = v

†
r(p)us(−p) = 0 . (2.62)

Equivalently, in terms of the adjoint spinors ū = u
†
γ
0 and v̄ = v

†
γ
0,

ūr(p)us(p) = −v̄r(p)vs(p) = 2mδrs , (2.63)

ūr(p)vs(p) = −v̄r(p)us(p) = 0 , (2.64)

The completeness relations are given by

2∑

r=1

ur(p)ūr(p) = (/p+m) , (2.65)

2∑

r=1

vr(p)v̄r(p) = (/p−m) . (2.66)
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3 Perturbation theory and S matrix

We now consider the coupling of the Klein-Gordon and the Dirac equation to electromag-
netism, and study scattering processes (Fig. 3) in quantum electrodynamics, applying
time-dependent perturbation theory.

We will express physical cross sections in terms of invariant scattering matrix ele-
ments. The application of perturbation theory can be encoded in the Feynman rules for
the calculation of the S matrix elements.

4

31p

φ
3

φ
1

φ φ
2 4

p p2

p

Figure 3: The scattering process φ1 + φ2 → φ3 + φ4.

3.1 Electromagnetic interaction of spinless charges

We consider a relativistic, spinless system described by the Klein-Gordon equation,
Eq. (1.15), and we couple it to electromagnetism via the replacement

∂µ → ∂µ + ieAµ . (3.1)

By including the electromagnetic interaction (3.1) into Eq. (1.15), the equation of motion
of the system can be written

(∂µ∂µ +m
2)φ = −ie(∂µAµ + Aµ∂

µ)φ+ e
2
A

2
φ ≡ −Vφ , (3.2)

where in the right hand side we identify the potential

V = V1 + V2 , (3.3)

V1 = ie(∂µA
µ + A

µ
∂µ) , (3.4)

V2 = −e2A2
. (3.5)

Let us apply first-order time-dependent perturbation theory to the transition ampli-
tude A due to the interaction given by V ,

A = −i
∫
d
3
x dt φ

∗
fVφi . (3.6)

We will derive the result for the term V1 of the potential. The contribution of V2 can be
treated analogously, and we will include the result later.
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By inserting the potential (3.4) into Eq. (3.6) and doing an integration by parts, we
can recast the transition amplitude in the form of a j · A interaction,

A = −i
∫
d
4
x jµA

µ
, (3.7)

where the interaction current is given by

jµ = ie[φ∗
3 [∂µφ1)− (∂µφ

∗
3)φ1] . (3.8)

V

31p

φ
3

φ
1

p

Figure 4: The φ1 → φ3 transition subprocess by V interaction.

We take the initial and final states φ1 and φ3 to be given by plane waves (Fig. 4)

φ1 = N1e
−ip1x , φ3 = N3e

−ip3x , (3.9)

normalized in a box of volume V so that

N1 = 1/
√
2E1V , N3 = 1/

√
2E3V . (3.10)

Inserting Eqs. (3.4),(3.9) into Eq. (3.6) we obtain

A = −iN1N3

∫
d
4
x e

ip3x(ie)(∂µA
µ + A

µ
∂µ)e

−ip1x

= −ieN1N3(p1 + p3)µ

∫
d
4
x e

−iqx
A

µ
, (3.11)

where q = p1 − p3, and we have done an integration by parts in the second line.
Let us now determine the electromagnetic potential Aµ in Eq. (3.11) which results

from the transition φ2 → φ4. Let us use the Lorentz gauge-fixing condition,

∂
ν
Aν = 0 . (3.12)

Then the equation of motion for the electromagnetic potential is given by

∂
2
A

µ = J
µ
, (3.13)

where the current Jµ is of the form (3.8), with the replacements 1 → 2, 3 → 4. The
states φ2 and φ4 are also represented by plane waves, analogously to Eqs. (3.9),(3.10).
By Fourier-transforming Eq. (3.13) with respect to x, we get

−q2Ãµ = J̃
µ
, (3.14)

where
Ã

µ =
∫
d
4
x e

−iqx
A

µ
, J̃

µ =
∫
d
4
x e

−iqx
J
µ
. (3.15)
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That is,

Ã
µ =

−gµν
q2

J̃ν . (3.16)

By substituting the explicit expression of the current J and inserting the result (3.16)
into Eq. (3.11), we obtain

A = ie
2
N1N3N2N4(p1 + p3)µ(p2 + p4)

µ 1

q2

∫
d
4
x e

i(p3−p1)xe
i(p4−p2)x . (3.17)

Performing the integral in d4x in Eq. (3.17) gives (2π)4δ4(p3+p4−p1−p2), which expresses
four-momentum conservation in the scattering process (Fig. 3). By inserting this result
and the explicit expressions of the normalization factors, we can rewrite Eq. (3.17) as

A = (2π)4δ4(Pf − Pi)
1

∏
f

√
2EfV

1
∏

i

√
2EiV

Mfi , (3.18)

where the products over i and f run respectively over initial and final state particles,
Pi and Pf denote the total four-momentum in the initial and final state, and we have
defined the scattering matrix element

Mfi = −e (p1 + p3)µ
−i gµν
q2

e (p2 + p4)ν . (3.19)

We will interpret Eq. (3.19) as resulting from associating a factor ie(p1 + p3)µ to the

ν

p

p

µ

p

p

(p + )
µ

i  e 

p

µ ν
i  e  g  2  2 

µ

Figure 5: Feynman rules for interaction vertices of spin-0 particles with photons.

transition vertex in Fig. 4, an analogous factor ie(p2 + p4)µ to the φ2 → φ4 transition
vertex, and the factor −igµν/q2 to the electromagnetic interaction. This gives the Feyn-
man rules in the top row in Fig. 5 and in the top row in Fig. 8 (more comment on this in
Sec. 3.3). An analogous treatment of the potential term in Eq. (3.5) gives the Feynman
rule in the bottom row in Fig. 5.

3.2 Electromagnetic interaction of spin-1/2 charges

The case of spin 1/2 can be treated by an analysis analogous to that of the previous
subsection. In this case, by including the electromagnetic interaction (3.1) into the Dirac
equation (1.32),

(i/∂ − e /A−m)ψ = 0 , (3.20)
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we arrive at the interaction potential

V = −eγ0γµAµ . (3.21)

Then first-order perturbation theory gives

A = −i
∫
d
3
x dt ψ

∗
f V ψi

= ie

∫
d
4
x ψfγ

µ
ψiAµ , (3.22)

that is, a j · A interaction,

A = −i
∫
d
4
x j

µ
Aµ , (3.23)

with the current given by
j
µ = −eψfγ

µ
ψi . (3.24)

Now we represent initial and final states by plane-wave solutions

ψk = Nku(pk)e
−ipkx , Nk = 1/

√
2EkV , k = 1, 2, 3, 4 . (3.25)

By following the same steps as in the scalar case, we arrive at

A = (2π)4δ4(Pf − Pi)
∏

f

[
1√

2EfV

]
∏

i

[
1√
2EiV

]
Mfi , (3.26)

where now the scattering matrix element is given by

Mfi = −eu(p3)γµu(p1)
−i gµν
q2

eu(p4)γνu(p2) . (3.27)

The corresponding Feynman rule for the spin-1/2 transition vertex is given in Fig. 5.

i  e 

p

µ γ
µ

p

Figure 6: Feynman rule for the interaction vertex of spin-1/2 particles with photons.

3.3 Green’s functions

In Sec. 3.1 we have treated the equation of motion (3.13) for the electromagnetic potential
by taking the Fourier transformation, and we have solved for the potential in Eq. (3.16) in
terms of the Green function, or propagator, of the ∂2 differential operator, proportional
to 1/q2. This function has poles for q2 = q

02 − q2 = 0, that is,

q
0 = ±|q| . (3.28)
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Therefore, when we take the inverse Fourier transform, in order to fully specify the solu-
tion we need to specify the prescription for going around these poles on the integration
contour in the complex q0 plane. Different possible choices are sketched in Fig. 7, and
correspond to different boundary conditions on the solutions of Eq. (3.13):

a) vanishing fields far in the past (radiation case)

b) vanishing fields far in the future (absorption case)

c) propagation of positive frequencies in the future and negative frequencies in the past
(Feynman)

d) propagation of negative frequencies in the future and positive frequencies in the past
(anti-Feynman)

a) ret b) adv

c) F d) antiF

Figure 7: Contours in the complex q0 plane: a) retarded; b) advanced; c) Feynman;
d) anti-Feynman.

The Feynman contour is obtained by taking

1

q2 + iε
(3.29)

in the denominator of the Green function, where ε is real and positive. We will take the
Feynman prescription for the propagator, according to the causality picture in Sec. 1.4.

The same discussion applies to the Green functions for the the Klein-Gordon equation
and the Dirac equation. The results for the photon, Klein-Gordon and Dirac propagators
are given in Fig. 8, using the Feynman prescription.

Note that Fig. 8 gives the photon propagator for a general covariant gauge-fixing
condition, Eq. (3.12). This depends on the gauge parameter ξ. The value ξ = 1 is the
Feynman gauge choice.
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i

q ( q + m )i

q 2 − m 2
+ i ε

µ q ν

q 2 + i 

q
µ

q
ν

q
2

/
− i

ξ)− (1−
νµ

g

ε

q

q 2 − m 2
+ i ε

Figure 8: Feynman rules for propagators: (top) photon; (middle) Klein-Gordon; (bottom)
Dirac.

3.4 From scattering matrix elements to cross sections

In order to go from transition amplitudes to scattering cross sections, we need to i) con-
struct transition probabilities by squaring the amplitudes, ii) integrate over the final
state phase space, iii) divide by the incident flux of particles.

To carry out step i), we evaluate the square of the δ function, working in volume V
and time interval T , as

|(2π)4δ4(Pf − Pi)|2 ≃ (2π)4δ4(Pf − Pi)
∫
e
i(Pf−Pi)x d

4
x

≃ V T (2π)4δ4(Pf − Pi) . (3.30)

For step ii), we take the phase space element for each particle f in the final state,

dφf =
V d

3
pf

(2π)3
. (3.31)

Then the transition probability per unit time is given by

dwfi =
|Afi|2
T

∏

f

dφf

=
1

T

∏

f

[
1

2EfV

]∏

i

[
1

2EiV

]
(2π)4δ4(Pf − Pi)|Mfi|2V T

∏

f

(
V d

3
pf

(2π)3

)
.(3.32)

Note that the factor of T cancels; so does each factor of V associated with final state
particles.

Let us now consider the decay process in Fig. 9. The decay rate is given by

dΓfi =
1

2Ei /V
|Mfi|2 /V

∏

f

(
d
3
pf

(2π)32Ef

)
(2π)4δ4(Pf − Pi)
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=
1

2Ei

|Mfi|2
∏

f

(
d
3
pf

(2π)32Ef

)
(2π)4δ4(Pf − Pi) . (3.33)

Note the cancellation of the factor of V for the initial state.

a

f
n

f
1

Figure 9: Decay process a→ f1 + f2 + . . . fn.

Next consider the scattering process in Fig. 10. To obtain the cross section we need
to divide the transition probability by the incident particle flux F ,

dσfi =
dwfi

F
, (3.34)

F =
1

V
|va − vb| , (3.35)

where |va − vb| is the relative velocity of colliding particles. Thus

dσfi =
/V

|va − vb|
1

2Ea /V 2Eb /V
|Mfi|2 /V

∏

f

(
d
3
pf

(2π)32Ef

)
(2π)4δ4(Pf − Pi)

=
1

4EaEb|va − vb|
|Mfi|2

∏

f

(
d
3
pf

(2π)32Ef

)
(2π)4δ4(Pf − Pi) . (3.36)

Note again the cancellation of all V factors.

a

f
n

f
1

b

Figure 10: Scattering process a+ b→ f1 + f2 + . . . fn.

Therefore the scattering cross section has the form

dσ =
1

J |Mfi|2 dΦ , (3.37)
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where each of the three factors is relativistically invariant. The invariant matrix element
square |Mfi|2 contains the dynamics of the process, while the factors J and dΦ are
kinematic factors, giving respectively the invariant initial-state flux,

J = 4EaEb|va − vb| , (3.38)

and the invariant final-state phase space

dΦ =
∏

f

(
d
3
pf

(2π)32Ef

)
(2π)4δ4(Pf − Pi) . (3.39)

The invariant flux J can also be rewritten in equivalent forms as

J = 4EaEb|va − vb|

= 4|p(c.m.)
i |√s

= 4
√
(pa · pb)2 −m2

am
2
b , (3.40)

where s = (pa + pb)
2, and p

(c.m.)
i is the initial three-momentum in the center of mass

frame.
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4 Coulomb scattering

In this section we analyze Coulomb scattering in QED using the formalism developed
in Sec. 3 for S-matrix calculations in perturbation theory. We begin in Subsec. 4.1 by
recalling Coulomb scattering in the nonrelativistic case. In Subsecs. 4.2-4.4 we calculate
elastic electron-muon scattering to lowest order in the QED coupling. Then in Subsec. 4.5
we obtain the cross section for the scattering of a relativistic particle from an external
Coulomb potential. In Subsec. 4.6 we consider the annihilation of electron pairs into
muon pairs, related to eµ scattering by crossing symmetry.

4.1 Nonrelativistic case

The cross section in nonrelativistic quantum mechanics for the scattering of a particle
of mass m from potential V is given in the first-order Born approximation by

dσ

dΩ
=
m

2

4π2
|Ṽ (q)|2 , (4.1)

where Ṽ is the Fourier transform of the potential,

Ṽ (q) =
∫
d
3
x e

−iq·x
V (x) , (4.2)

q is the momentum transferred in the scattering (Fig. 11), and dΩ is the solid angle
element.

q

   

k

k

θ

Figure 11: Scattering through angle θ, with q = k− k′.

Let us take a potential of the form

V (x) = C
e
−µ|x|

|x| , µ > 0 . (4.3)

We can apply Eq. (4.1), and we can obtain the nonrelativistic cross section for Coulomb
scattering by letting

C → e
2

, µ→ 0 (4.4)

in the result.
By inserting Eq. (4.3) into Eq. (4.2), we get

Ṽ (q) = C
4π

µ2 + q2
. (4.5)

Thus
dσ

dΩ
=

4C2
m

2

(µ2 + q2)2
. (4.6)
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Substituting Eq. (4.4) into Eq. (4.6), we obtain that the Coulomb scattering cross section
in the nonrelativistic case is given by

(
dσ

dΩ

)

Coul.

=
4m2

e
4

q4

=
α
2

4 k2 v2 sin4(θ/2)
≡
(
dσ

dΩ

)

R

, (4.7)

where in the last line we have used q2 = 4k2 sin2(θ/2), k = mv. The result is given by
the classical Rutherford scattering cross section (dσ/dΩ)R.

In the next few sections we analyze elastic electron-muon scattering in the fully
relativistic quantum theory. From this analysis we will also obtain, in Subsec. 4.5,
the relativistic correction to the result (4.7) for scattering from an external Coulomb
potential.

4.2 The eµ scattering matrix element in QED

Consider elastic electron-muon scattering e(p) + µ(k) → e(p′) + µ(k′) (Fig. 12). Let m
be the electron mass and M the muon mass.

Using the Feynman rules for perturbation theory in Sec. 3, the scattering matrix
element Mfi is given by

Mfi = ie
2
ur′(k

′)γµur(k)
gµν

q2
us′(p

′)γνus(p) , (4.8)

where the momentum and spin labels are given in Fig. 12, and q
2 = (k − k

′)2 is the
invariant momentum transfer.

e

k rk,r ,

p,sp,s

q

µ µ

e

Figure 12: Electron-muon scattering at lowest order in e.

To compute the unpolarized cross section, we need the squared matrix element, av-
eraged over initial spins and summed over final spins:

|Mfi|2 =
1

2

2∑

r=1

1

2

2∑

s=1

2∑

r′=1

2∑

s′=1

|Mfi|2

=
1

4

e
4

(q2)2
∑

spins

|ur′(k′)γµur(k)|2|us′(p′)γµus(p)|2 . (4.9)

In the next subsection we give the basic result that is needed to evaluate such spin sums.
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4.3 Fermionic spin sums

For any matrix Γ given by a product of Dirac γ matrices, it can be shown that

2∑

α=1

2∑

β=1

|uα(p′)Γuβ(p)|2 = Tr
[
Γ(/p +m)γ0Γ†

γ
0(/p′ +m)

]
. (4.10)

To see this, write the square as

2∑

α=1

2∑

β=1

|uα(p′)Γuβ(p)|2 =
2∑

α=1

2∑

β=1

[uα(p
′)Γuβ(p)][uα(p

′)Γuβ(p)]
∗ (4.11)

and evaluate the complex conjugate factor:

[uα(p
′)Γuβ(p)]

∗ = u
†
β(p)Γ

†(u†α(p
′)γ0)†

= uβ(p) γ
0Γ†

γ
0

︸ ︷︷ ︸
Γ̃

uα(p
′) . (4.12)

Now write out all products of spinors and γ matrices in Eq. (4.11) in components:

2∑

α=1

2∑

β=1

|uα(p′)Γuβ(p)|2 =
2∑

α=1

2∑

β=1

uαa(p
′)Γabuβb(p)uβc(p)Γ̃cduαd(p

′) (4.13)

Next use the completeness relation for u spinors:

2∑

α=1

uαj(p)uαk(p) = (/p +m)jk . (4.14)

Then from Eq. (4.13) we have

2∑

α=1

2∑

β=1

|uα(p′)Γuβ(p)|2 = Γab(/p +m)bcΓ̃cd(/p
′ +m)da

= [Γ(/p +m)Γ̃(/p′ +m)]aa

= Tr[Γ(/p +m)γ0Γ†
γ
0(/p′ +m)] , (4.15)

which is the result in Eq. (4.10).
Analogous results hold for spin sums involving v spinors. For instance,

2∑

α=1

2∑

β=1

|uα(p′)Γvβ(p)|2 = Tr
[
Γ(/p −m)γ0Γ†

γ
0(/p′ +m)

]
. (4.16)

4.4 Elastic eµ scattering cross section

By using the general result (4.10), the matrix element (4.9) can be written as

|Mfi|2 =
1

4

e
4

(q2)2
Tr
[
γ
α (/k′+m) γλ (/k+m)

]
Tr
[
γ
β (/p′+M) γρ (/p+M)

]
gαβ gλρ . (4.17)
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We can in general evaluate traces of products of γ matrices by using the anticommutation
relations (1.34) and (2.43). To do the calculation in Eq. (4.17) we need the following
traces,

Tr(odd number of γ matrices) = 0 , (4.18)

Tr(γµγν) = 4gµν , (4.19)

Tr(γµγνγργσ) = 4 (gµνgρσ − g
µρ
g
νσ + g

µσ
g
νρ) , (4.20)

which can be obtained using Eqs. (1.34),(2.43). By then carrying out the algebra in
Eq. (4.17), we get

|Mfi|2 =
2e4

(q2)2

[
2 (m2 +M

2) q2 + (s−m
2 −M

2)2 + (s+ q
2 −m

2 −M
2)2
]

, (4.21)

where s is the invariant center-of-mass energy square s = (k + p)2.
We are now in a position to compute the cross section. This is given in terms of the

scattering matrix element via Eq. (3.37),

dσ =
1

J |Mfi|2 dΦ , (4.22)

where J is the invariant initial-state flux and dΦ is the invariant final-state phase space.
We can compute the cross section by plugging Eq. (4.21) into Eq. (4.22), choosing a
reference frame, and evaluating the flux factor J and the phase space dΦ integration in
this frame.

Consider the center-of-mass reference frame, k + p = 0 (Fig. 13). From Eq. (3.40)
we have

J = 4|p|√s . (4.23)

To carry out the integration over the final state phase space in Eq. (3.39),

dΦ =
d
3
k
′

(2π)3 2E ′
k

d
3
p
′

(2π)3 2E ′
p

(2π)4δ4(p′ + k
′ − p− k) , (4.24)

we can first use the three-momentum δ function to do the integral in d3k′, so that the
cross section differential in the final-state solid angle dΩ = sin θdθdϕ can be written

dσ

dΩ
=

1

4|p|√s
1

(2π)2

∫
p′2

d|p′| 1

4E ′
pE

′
k

|Mfi|2 δ(E ′
p + E

′
k − Ep − Ek) . (4.25)

Next it is convenient to make the change of integration variable

|p′| → E
′ =

√
p′2 +M2 +

√
p′2 +m2

= E
′
p + E

′
k , (4.26)

with jacobian
∂E

′

d|p′| =
E

′|p′|
E ′

pE
′
k

, (4.27)
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by which Eq. (4.25) can be rewritten as

dσ

dΩ
=

1

4|p|√s
1

(2π)2

∫
dE

′ |p′|
4E ′

|Mfi|2 δ(E ′ −√
s) . (4.28)

Performing the E ′ integral with the δ function and substituting the explicit expression
(4.21) of |Mfi|2, we obtain (e2 = 4πα)

dσ

dΩ
=

α
2

2 s q4

[
2 (m2 +M

2) q2 + (s−m
2 −M

2)2 + (s+ q
2 −m

2 −M
2)2
]

. (4.29)

k=(      ,  k)

k

Ek Ep

p
   

θ

p =(      ,  p)

Figure 13: Center-of-mass reference frame.

The result (4.29) takes a simpler form in in the high energy limit s ≫ M
2
,m

2. In
this case we have s→ 4p2, q2 → −4p2 sin2(θ/2), and the cross section becomes

dσ

dΩ
≃ α

2

2 s sin4(θ/2)

(
1 + cos4 θ/2

)
for s≫M

2
,m

2
. (4.30)

The leading behavior of the cross section (4.30) at small angle is given by

dσ

dΩ
∝ 1

θ4
for θ ≪ 1 , (4.31)

where the θ−4 singularity is characteristic of the Coulomb interaction. It comes from the
factor 1/(q2)2, and reflects the long range of the interaction.

4.5 Scattering by an external Coulomb potential

The cross section for the scattering of a relativistic particle from an external Coulomb
potential (Fig. 14) can be obtained as a particular case of the result of the previous
subsection for eµ scattering, by working in the rest frame of µ and letting M → ∞.

To this end, first express the invariant flux J in terms of the electron’s three-
momentum k in the rest frame of µ (Fig. 14),

J = 4|k|M . (4.32)

Next, carry through the final-state phase space integration in terms of rest-frame
variables. This yields

dσ

dΩ
=

1

4|k|M
|k′|

16π2M
|Mfi|2 . (4.33)
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θ

k

Ekk=(      ,  k)

   

Figure 14: Scattering by external Coulomb potential.

Finally, let M → ∞ in the invariant matrix element (4.21). In this limit |k′| ≃ |k|,
q
2 ≃ −4k2 sin2(θ/2), and the square bracket in Eq. (4.21) becomes

[
2 (m2 +M

2) q2 + (s−m
2 −M

2)2 + (s+ q
2 −m

2 −M
2)2
]

≃ [2M2
q
2 + 2(2MEk)

2 + . . .]

≃ 8M2
E

2
k

[
1− (|k|/Ek)

2 sin2(θ/2)
]

. (4.34)

Substituting Eq. (4.34) into Eq. (4.33), we obtain

dσ

dΩ
=

α
2

4 k2 v2 sin4(θ/2)

[
1− v2 sin2(θ/2)

]
, (4.35)

where v = |k|/Ek.
Eq. (4.35) can be compared with the nonrelativistic result in Eq. (4.7). Observe that

Eq. (4.35) has the form

dσ

dΩ
=

(
dσ

dΩ

)

R

[
1− v2 sin2(θ/2)

]
, (4.36)

where (
dσ

dΩ

)

R

=
α
2

4 k2 v2 sin4(θ/2)
(4.37)

is the Rutherford cross section, and the factor in the square bracket is the relativistic
correction.

The relativistic correction
[
1− v2 sin2(θ/2)

]
characterizes Coulomb scattering for

spin 1/2. Computing Coulomb potential scattering of spinless charges, one finds

(
dσ

dΩ

)

spin−0

=

(
dσ

dΩ

)

R

, (4.38)

that is, in the case of spinless particles the result does not differ from the nonrelativistic
result. Eq. (4.36) shows that for |v| → 1 the angular distribution of a spin-1/2 particle
differs from the nonrelativistic result as diffusion in the backward direction is strongly
suppressed.
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Figure 15: Annihilation of electron pairs into muon pairs.

4.6 Crossing symmetry: e+e− → µ+µ− annihilation

The eµ scattering process computed earlier is related by crossing symmetry to the an-
nihilation process e+(k′)e−(k) → µ

+(p′)µ−(p) (Fig. 15). Let us compute this in the
approximation of massless electrons. The matrix element square, averaged over initial
spins and summed over final spins, is given by

|Mfi|2 =
1

4

e
4

(q2)2
Tr
[
γ
ρ (/p′ +M) γσ (−/p+M)

]
Tr
[
γ
τ /k′ γλ (−/k)

]
gλρ gστ (4.39)

where q2 = s, and we have set the electron mass to zero. Computing the traces yields

|Mfi|2 =
8e4

s2

[
(p · k)2 + (p · k′)2 +M

2
k · k′

]
. (4.40)

Let us work in the center-of-mass reference system, and denote by θ the center-of-
mass scattering angle. In this system the matrix element square (4.40) takes the form

|Mfi|2 = e
4

[
1 +

4M2

s
+

(
1− 4M2

s

)
cos2 θ

]
. (4.41)

The annihilation cross section can be computed via the general formula (3.37),

dσ =
1

J |Mfi|2 dΦ . (4.42)

Note that for massless electrons
J = 2s , (4.43)

and that the final-state phase space can be written as

dΦ =
|p|

16π2
√
s
dΩ , (4.44)

where dΩ = sin θdθdϕ, and

|p| =
√
s

2

√

1− 4M2

s
. (4.45)

Then the differential cross section dσ/dΩ is given by

(
dσ

dΩ

)

e+e−→µ+µ−

=
α
2

4 s

√

1− 4M2

s

[
1 +

4M2

s
+

(
1− 4M2

s

)
cos2 θ

]
. (4.46)
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In the high energy limit 4M2
/s→ 0, from Eq. (4.46) we get

(
dσ

dΩ

)

e+e−→µ+µ−

=
α
2

4 s

(
1 + cos2 θ

)
for s≫M

2
. (4.47)

The total cross section is obtained by integrating Eq. (4.46) over angles,

σtot =
∫
dσ

dΩ
dΩ

=
α
2

4 s

√

1− 4M2

s
2π

[(
1 +

4M2

s

)∫ π

0
sin θ dθ +

(
1− 4M2

s

)∫ π

0
sin θ cos2 θ dθ

]

=
4 π α2

3 s

√

1− 4M2

s

(
1 +

2M2

s

)
. (4.48)

In the high energy limit,

σtot ≃
4 π α2

3 s
. (4.49)

Remark. In addition to the annihilation into muons and other leptons, experiments
at high-energy e+e− accelerators measure the cross section for the annihilation of e+e−

into hadrons. The cross section for e+e− → hadrons at large s differs from the expression
(4.49) for e+e− → µ

+
µ
− by a factor of the squared electric charge of the hadron con-

stituents (quarks), summed over the possible Nc quark “colors” and Nf quark “flavors”,
and by effects of higher order in the strong interaction:

σ(e+e− → hadrons) =
4 π α2

3 s
Nc

Nf∑

i=1

Q
2
i [1 +O(αstrong)] . (4.50)
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5 Compton scattering

Let us analyze electron-photon Compton scattering at lowest order in e. This receives
contribution from the graphs in Fig. 16.

k

    ( b )  ( a ) 

p

p

k

kp p

k

Figure 16: Electron-photon scattering at lowest order in e.

The scattering matrix element Mfi is given by

Mfi = −ie2ε′µ(k′)εν(k)u(p′)
[
γµ

(/p + /k +m)

(p+ k)2 −m2
γν + γν

(/p − /k
′ +m)

(p− k′)2 −m2
γµ

]
u(p), (5.1)

where ε(k) and ε′(k′) are the incoming and outgoing photon polarization vectors. The
two terms in the square bracket in Eq. (5.1) correspond respectively to graphs (a) and
(b) in Fig. 16.

The sum of graphs (a) and (b) is gauge invariant, namely, withMfi =Mµνε
′µ(k′)εν(k),

we have
Mµνk

′µ =Mµνk
ν = 0 . (5.2)

This can be seen by writing

Mµνk
ν = −ie2u(p′)

[
γµ

1

/p + /k −m
/k + /k

1

/p
′ − /k −m

γµ

]
u(p)

= −ie2u(p′)
{
γµ

1

/p + /k −m
[(/p + /k −m)− (/p −m)]

+ [−(/p′ − /k −m) + (/p′ −m)]
1

/p
′ − /k −m

γµ

}
u(p) . (5.3)

Then, from each of the square brackets in the last two lines, the contributions of the first
terms cancel each other, while the contributions of the second terms vanish separately
because of the Dirac equation. Thus

Mµνk
ν = −ie2u(p′)

[
γµ

1

/p + /k −m
(/p −m) + (/p′ −m)

1

/p
′ − /k −m

γµ

]
u(p)

= 0 . (5.4)

Similarly for the dot product of Mµν with k′µ.
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To compute the unpolarized cross section, we need the squared matrix element, av-
eraged over the initial electron and photon polarizations, and summed over the final
electron and photon polarizations,

|Mfi|2 =
1

4

∑

polarizations

|Mfi|2 . (5.5)

The electron sums can be dealt with using the general result in Subsec. 4.3. The photon
sums are discussed in the next subsection.

5.1 Photon polarization sums

The sum over photon polarizations can be performed by replacing the sum with −gµν ,
2∑

α=1

ε
α
µ(k)ε

α
ν (k) → −gµν , (5.6)

because the amplitude into which ε is dotted is conserved, Eq. (5.2).
To see this, consider a matrix element of the form

A
µ
εµ(k) (5.7)

for Aµ such that
A

µ
kµ = 0 , (5.8)

and sum the matrix element square over polarizations,

2∑

α=1

|Aµ
ε
α
µ(k)|2 =

2∑

α=1

A
µ
A

ν
ε
α
µ(k)ε

α
ν (k) . (5.9)

Now use that polarizations form an orthonormal set in the plane transverse to the mo-
mentum k,

2∑

α=1

ε
αi(k)εαj(k) = δ

ij − k̂
i
k̂
j
, where k̂

i = k
i
/|k| = k

i
/k

0
. (5.10)

Then the sum (5.9) can be written

2∑

α=1

|Aµ
ε
α
µ(k)|2 =

2∑

α=1

A
µ
A

ν
ε
α
µ(k)ε

α
ν (k)

= A
i
A

j(δij − k̂
i
k̂
j) = A

i
A

i − (Ai
k̂
i)(Aj

k̂
j)

= A
i
A

i − A
0
A

0 = −Aµ
A

ν
gµν , (5.11)

where in the last line we have used that Eq. (5.8) implies

A
0
k
0 − A

i
k
i = 0 , i.e., A

i
k̂
i = A

0
. (5.12)

From Eqs. (5.9) and (5.11) we obtain that the sum over polarizations amounts to

2∑

α=1

ε
α
µ(k)ε

α
ν (k) → −gµν , (5.13)

as stated in Eq. (5.6).
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5.2 The eγ unpolarized cross section

The unpolarized matrix element square (5.5) can now be determined from Eq. (5.1) by
using the result in Eq. (4.10) for the electron polarization sums and the result in Eq. (5.6)
for the photon polarization sums.

To do this calculation, we need to evaluate the traces of γ matrices generated by the
electron spin sums in Eq. (4.10), making use of the γ matrix identities

γµγ
µ = 4 , (5.14)

γµγ
ρ
γ
µ = −2γρ , (5.15)

which follow from the anticommutation relations (1.34). By working out the algebra, we
obtain the result

|Mfi|2 =
1

4

∑

polarizations

|Mfi|2

= 2e4


 p · k
p · k′ +

p · k′
p · k + 2m2

(
1

p · k − 1

p · k′
)
+m

4

(
1

p · k − 1

p · k′
)2

 .(5.16)

The eγ cross section is related to the scattering matrix element via the general formula
(3.37),

dσ =
1

J |Mfi|2 dΦ . (5.17)

We can compute it by choosing a reference frame, plugging Eq. (5.16) into Eq. (5.17)
and evaluating the flux factor J and phase space dΦ integration.

)

p

k kω

   

p=(m,0)

θ

k=(     ,  k)ω

= (     ,  

Figure 17: Compton scattering in the laboratory frame.

Consider the laboratory frame in which the electron is initially at rest, pµ = (m,0)
(Fig. 17). In the notation of Fig. 17 we have

m
2 = p

′2 = (p+ k − k
′)2 = m

2 + 2m(ω − ω
′)− 2ωω′(1− cos θ) , (5.18)

which gives

ω
′ =

ω

1 + (ω/m)(1− cos θ)
. (5.19)
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By evaluating the right hand side of Eq. (5.16) in the laboratory frame and using
Eq. (5.19), we obtain

|Mfi|2 = 2e4
(
ω

ω′
+
ω
′

ω
− sin2

θ

)
. (5.20)

From Eq. (3.40) for the flux factor we get

J = 4EaEb|va − vb| = 4mω . (5.21)

Let us now carry out the integration over the final-state phase space (3.39),

dΦ =
d
3
k
′

(2π)3 2ω′

d
3
p
′

(2π)3 2E ′
(2π)4δ4(p′ + k

′ − p− k) . (5.22)

By using the three-momentum δ function to perform the integral in d3p′, and inserting
the results (5.20) and (5.21) into Eq. (5.17), the differential cross section in the solid
angle Ω of the final photon momentum is given by

dσ

dΩ
=

2e4

4mω

∫
dω

′ ω
′

16π2E ′
δ(E ′ + ω

′ −m− ω)

[
ω

ω′
+
ω
′

ω
− sin2

θ

]
, (5.23)

where
E

′ =
√
ω2 + ω′2 − 2ωω′ cos θ +m2 . (5.24)

Performing the integral in dω′, we arrive at the unpolarized electron-photon cross section

dσ

dΩ
=

α
2

2m2

(
ω
′

ω

)2 [
ω

ω′
+
ω
′

ω
− sin2

θ

]
, (5.25)

where α = e
2
/4π.

In the low energy limit ω ≪ m, from Eq. (5.19) we have ω′ ≈ ω, and Eq. (5.25)
reduces to the Thomson cross section,

dσ

dΩ
−→ α

2

2m2
(1 + cos2 θ) for ω ≪ m , (5.26)

describing the scattering of classical electromagnetic radiation by a free electron.
In the high energy limit ω ≫ m, Eq. (5.25) gives rise to a logarithmic behavior in the

total cross section, arising from the emission of photons at small angles. This is because
for ω ≫ m from Eq. (5.19) we have

ω
′ ≃ m

1− cos θ
for

ω

m
(1− cos θ) ≫ 1 , (5.27)

which means that in the region

1 ≫ θ
2 ≫ 2m

ω
(5.28)

the cross section is strongly peaked,

dσ

dΩ
≃ α

2

2m2

(
m

ω

)2 1

(1− cos θ)2

[
ω

m
(1− cos θ)− sin2

θ

]

≃ α
2

2mω

1

1− cos θ
. (5.29)
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Integrating over angles gives

σ ≃ 2π
∫
d cos θ

α
2

2mω

1

1− cos θ

≃ 2π
∫ 1

2m/ω

dθ
2

θ2

α
2

mω
≃ 2πα2

mω
ln

ω

2m
. (5.30)

The total cross section σ falls like ω−1, but with a logarithmic enhancement from the
integration over the small-angle, or collinear, region. The collinear region is cut off by
the mass m. The occurrence of collinear logarithms illustrated by this example is a
general feature associated with the massless limit of the theory.

5.3 Photon polarization dependence

The calculation performed above can be redone for fixed ε(k) and ε
′(k′) to obtain the

dependence of the cross section on the initial and final photon polarizations. The result
for the cross section including the polarization dependence is

(
dσ

dΩ

)

pol.

=
α
2

4m2

(
ω
′

ω

)2 [
ω

ω′
+
ω
′

ω
+ 4(ε · ε′)2 − 2

]
. (5.31)

From Eq. (5.31) we recover Eq. (5.25) through averaging over ε and summing over ε′ by
using Eq. (5.10), i.e., that the sum over polarizations gives the transverse projector with
respect to the momentum,

2∑

α=1

ε
α
i (k)ε

α
j (k) = δij − k̂ik̂j , (5.32)

2∑

β=1

ε
′β
i (k

′)ε′βj (k
′) = δij − k̂

′
ik̂

′
j . (5.33)

We thus have

1

2

2∑

α=1

2∑

β=1

(
dσ

dΩ

)

pol.

=
α
2

4m2

(
ω
′

ω

)2


2

[
ω

ω′
+
ω
′

ω
− 2

]
+ 4

1

2

2∑

α=1

2∑

β=1

[εα(k) · ε′β(k′)]2


 , (5.34)

where

1

2

2∑

α=1

2∑

β=1

[εα(k) · ε′β(k′)]2 =
1

2

2∑

α=1

2∑

β=1

ε
α
i (k)ε

α
j (k)ε

′β
i (k

′)ε′βj (k
′)

=
1

2
(δij − k̂ik̂j) (δij − k̂

′
ik̂

′
j) =

1

2
[1 + (k̂ · k̂′)2]

=
1

2
(1 + cos2 θ) =

1

2
(2− sin2

θ) . (5.35)

Substituting Eq. (5.35) into Eq. (5.34) we re-obtain the unpolarized result (5.25).
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6 Strong interactions

In this section we extend the discussion given in the previous sections to the case of strong
interactions. The theory of strong interactions, Quantum Chromodynamics (QCD), is
treated systematically in the Standard Model course. Here we give a brief introduction
building on material presented for QED. In Subsec. 6.1 we introduce the gauge symmetry
of the strong interaction as a generalization of that of QED and examine the couplings
that follow from it. In Subsec. 6.2 we contrast features of photon and gluon polarization
degrees of freedom and discuss physical implications. In Subsec. 6.3 we give basic results
on the algebra of QCD charges that serve in practical calculations.

We will use the results presented here to further discuss strong interactions in Sec. 8.

6.1 Basic structure

We can think of QCD as a theory similar to QED but with

• N = 3 charged spin-1/2 particles ψi (quarks, replicated in six families — the
so-called quark “flavors”),

• N
2 − 1 = 8 gauge bosons Aa

µ (gluons),

with different couplings to different charges. The couplings are to be thought of as
matrices

T
a
, a = 1, . . . , N 2 − 1 (6.1)

obeying well-prescribed commutation relations

[T a
, T

b] = if
abc
T

c
, (6.2)

where fabc are “structure constants”, antisymmetric in all indices. The quantum number
specifying the charge of QCD is called “color”, and T

a are the color-charge matrices.
Thus QCD contains multiple vector particles and its charges are non-commuting, or
“non-abelian”.

Eq. (6.2) defines an algebra of color-charge operators whose formal properties can
usefully be thought of along similar lines to the discussion given in Sec. 2 for the algebra
(2.1) of angular momentum operators J i. J i are the generators of the rotation group. T a

are the generators of the color symmetry group (SU(N) with N = 3), and have matrix
representations for different dimensionalities n. The fundamental representation is the
representation with dimensionality n = N to which quarks belong, ψi, i = 1, 2, 3. The
matrix representation of the generators is given by

T
a → 1

2
λ
a
, (6.3)

where λa are the eight Gell-Mann 3 × 3 matrices. The adjoint representation is the
representation with dimensionality n = N

2 − 1 to which gluons belong, Aa
µ, a = 1, . . . , 8.

The matrix representation of the generators in the adjoint is given by the structure
constants themselves,

(T a)bc → −ifabc
. (6.4)
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As in QED, the spin-1/2 charged particles satisfy equations of motion of Dirac type,

(i/∂ −m)ψ = 0 , (6.5)

and we can write down their coupling to the vector particles, the gluons, based on
similar reasoning as in QED. While in QED we write the electron-photon interaction by
replacing

∂µ → Dµ = ∂µ + ieAµ (QED) (6.6)

in the equations of motion, in QCD it is not just one term by which we modify ∂µ but
a sum of terms, one for each of the gluons, and each term is proportional not just to a
number like the electric charge but to a color-charge matrix:

∂µ → Dµ = ∂µ + igsA
a
µT

a (QCD) , (6.7)

where gs is the strong-interaction coupling constant. With this interaction term, by going
through the analogous perturbation analysis as for QED, we can extract the Feynman
rule for the quark-quark-gluon coupling. This is given in Fig. 18. It has a similar
structure to the QED vertex of Fig. 6, with the difference being in the color matrix.

jk

a

µ
j k

i g 
s

γ
µ

( T
a

)

Figure 18: QCD Feynman rule for quark-quark-gluon vertex.

For internal lines we have the Feynman rules for propagators (Fig. 19), similar to
those of QED except for the additional dependence on color indices.

ε

j k

q

µ
a

q ν
b

δ
ab − i g

µν

q 2 + i 

(Feynman 

gauge)

δ
jk ( q + m )i

q 2 − m 2
+ i ε

Figure 19: QCD Feynman rules for quark and gluon propagators.

The quark-gluon coupling above does not exhaust QCD interactions, though. In a
theory of multiple vector particles such as QCD the vector particles turn out to necessar-
ily be self-interacting. The reason for this lies with the non-abelian nature of the color
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charges, i.e., with the nonzero commutator (6.2). The origin and precise form of the gluon
self-couplings can specifically be traced back to the form of the gauge transformations
in QCD and relationship between potentials and fields.

Electromagnetism is invariant under gauge transformations given by changes of the
four-potential Aµ by an arbitrary four-gradient,

Aµ → Aµ + ∂µλ (QED) . (6.8)

In QCD the gauge freedom involves an additional contribution, namely we can change
Aµ by a four-gradient and/or by a pure rotation of its color indices,

A
a
µ → A

a
µ + ∂µλ

a − gsf
abc
λ
b
A

c
µ (QCD) , (6.9)

leaving physics invariant. Eq. (6.9) specifies the form of the gauge transformations in
QCD. Because of the nonvanishing structure constants fabc, while the field strength
tensor Fµν in QED is given by

Fµν = ∂µAν − ∂νAµ (QED) , (6.10)

in QCD this acquires an extra term,

F
a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abc
A

b
µA

c
ν (QCD) . (6.11)

It is precisely the extra term in F a
µν in Eq. (6.11) which is responsible for producing

gluon self-interactions when one constructs a gauge-invariant kinetic energy term for
gluons by taking the square of F a

µν , analogously to the case of photons. The square of
F

a
µν in Eq. (6.11) gives rise to both cubic and quartic gluon self-interaction terms. The

cubic term is proportional to gs × f and contains derivative couplings, while the quartic
term is proportional to g2s×f 2, with no derivatives. Their precise form is given in Fig. 20.

+ permutations  

, bν

, bν

g  
s

k

p

q

, , cρ
f  

abc
[ g  

µν
( k − p )  

ρ

+ g  
ν ρ µ

( p − q )  

ρ µ ν
( q − k )  + g  ]  

,µ a,

, aµ

,, dσcρ

g  
s

2
−i  f  

abc
f  

abc
(   g  

µρ
g  

ν σ
)  − g  

µ σ
g  

νρ

Figure 20: QCD Feynman rules for cubic and quartic gluon vertices.

The construction above implies in particular that the coupling constant gs in the
gauge boson self-interaction vertices is one and the same as the coupling constant gs
in the quark-gluon interaction vertex. Later in the section we see a specific example
showing that this equality of couplings is necessary for non-abelian gauge invariance to
be satisfied.
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6.2 Physical polarization states and ghosts

In this subsection we discuss implications of the non-abelian gauge symmetry by com-
paring features of photon and gluon polarization degrees of freedom. We start from
examining gauge invariance in a simple example, the QCD analogue of Compton scat-
tering, and contrast the case of QCD with the case of QED seen in Sec. 5.

µ

p

p

p

k

    ( b ) 

k

k

 ( a ) c )  (

p
p p

k,a,ν k,a, k,a,ν ν,b,

,b,

,b,µ

µ

Figure 21: Quark-gluon Compton scattering at lowest order in gs.

The QCD analogue of Compton scattering is the quark-gluon scattering depicted in
Fig. 21 at lowest order in the coupling gs. The graphs in Fig. 21(a) and (b) are analogous
to the QED graphs of Fig. 16, while the three-gluon coupling graph in Fig. 21(c) is non-
abelian. The scattering matrix element Mfi can be written as

Mfi =Mµνε
′µ(k′)εν(k) . (6.12)

From graphs (a) and (b) in Fig. 21 we have

M
(a)+(b)
µν = −ig2su(p′)

[
γµT

b 1

/p + /k −m
γνT

a + γνT
a 1

/p − /k
′ −m

γµT
b

]
u(p) . (6.13)

The sum of graphs (a) and (b) is not by itself gauge-invariant, because by dotting
Eq. (6.13) into kν we get

M
(a)+(b)
µν k

ν = ig
2
s [T

a
, T

b]u(p′)γµu(p) , (6.14)

which is nonvanishing due to the nonzero commutator of color charges.
From graph (c) in Fig. 21 we have

M
(c)
µν = g

2
su(p

′)γρT c
u(p)

1

(k − k′)2
f
abc [gνµ(k + k

′)ρ + gµρ(k − 2k′)ν + gρν(k
′ − 2k)µ] .

(6.15)
By dotting Eq. (6.15) into kν we get

M
(c)
µν k

ν = g
2
sf

abc
T

c
u(p′)γµu(p) + {. . .} k′µ

= −ig2s [T a
, T

b]u(p′)γµu(p) + {. . .} k′µ (6.16)

where in the last line we have used Eq. (6.2) to rewrite fabc
T

c in terms of the commutator.
The second term in the right hand side of Eq. (6.16) is a term proportional to k′µ, which
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gives zero once it is dotted into physical polarizations ε′(k′) · k′ = 0. The first term, on
the other hand, precisely cancels the contribution in Eq. (6.14). Thus gauge invariance
is achieved once graph (c) is added to graphs (a) and (b). This illustrates that gauge
boson self-interactions are required by gauge invariance in the non-abelian case, and that
their coupling constant must equal that of quark-gluon interactions.

The term in k
′
µ in the right hand side of Eq. (6.16), however, signifies that gauge

invariance is realized in quite a different manner than in the abelian case. In Eq. (6.16)
we obtain Mµνk

ν = 0 only if µ is restricted to physical polarizations, while in the QED
case, Eq. (5.4), we haveMµνk

ν = 0 regardless of µ. While this is of no consequence in the
present lowest-order case, since we are entitled to enforce physical gluon polarizations,
it implies a profound difference when we analyze the theory beyond lowest order and
include loops (as we will do in the next two sections).

Recall that in QED as a consequence of Mµνk
ν = 0 we arrived at the equivalence

implied by Eq. (5.6),
2∑

α=1

ε
α
µ(k)ε

α
ν (k) → −gµν (QED) , (6.17)

in which the sum on the left hand side is over transverse polarizations, while the right
hand side sums over all covariant polarization states, including the unphysical longitu-
dinal ones. This means that the structure of the abelian theory implies that unphysical
polarization states automatically cancel. The result we have just found for QCD indi-
cates that this cancellation is not automatic in the non-abelian theory. Thus, if we are to
restore the equivalence between sum over physical states and sum over covariant states
in the QCD case, further degrees of freedom are to be added in to the theory, which will
have to be such that they cancel the contribution of unphysical gluon polarizations.

µ

δ
ab

q 2 + i ε

   i 

a

q

b

µa

b c
q

qf
a b

g
s

c

Figure 22: QCD Feynman rules for ghost vertex and ghost propagator.

The systematic construction of the theory shows that such terms emerge in a well-
prescribed, precise manner. They are referred to as ghosts and correspond to well-
defined, but not physical, degrees of freedom, which can propagate and couple to gluons,
but never be produced in physical final states. Their role is precisely that of canceling
unphysical gluon polarization states. The Feynman rules for ghost propagator and cou-
pling are given in Fig. 22. Ghosts transform under the adjoint representation (6.4) of
the color symmetry group, and transform like scalars under Lorentz (though they obey
anticommuting relations like fermions), hence the form of their propagator and deriva-
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tive coupling in Fig. 22. Ghosts are a non-abelian effect. Their coupling is proportional
to fabc. We could introduce ghosts in electrodynamics, but they will just decouple.

It is possible to exploit the gauge freedom in order to devise a gauge-fixing condition
such that the unphysical gluon polarizations are automatically eliminated, and thus no
need arises for ghosts. Such gauges without ghosts are referred to as physical gauges, and
are the gauges in which the non-abelian theory looks the most like its abelian counterpart.
They are distinct from the covariant gauges based on the Lorentz gauge-fixing condition
(3.12) in which we have worked so far. The gauge-fixing relation for physical gauges is
given by assigning a four-vector nµ and setting

A
a
µ n

µ = 0 . (6.18)

Physical gauges (6.18) present certain advantages, as they do not contain unphysical
degrees of freedom. However, the form of the gluon propagator becomes rather more
complicated in these gauges. This is given in Fig. 23.

n 

µ
a

q ν
b q 2 + i ε

i
( − g

νµ
+ 

+ 
q 

µ
n 

ν
+ q 

ν
n 

µ

q n 
−  

q 
µ

q 
ν

(q  n ) 2
) 

ab

δ

2

Figure 23: Gluon propagator in physical gauge A · n = 0.

6.3 Color algebra

QCD calculations involve charge factors based on the color algebra in Eq. (6.2). We
here introduce basic invariants of the algebra which occur in practical applications, the
Casimir invariants CR and the trace invariants TR. The subscript R specifies the repre-
sentation of the algebra (6.2).

The Casimir invariant can be defined from the square operator T 2 = T
a
T

a. This
operator commutes with all generators of the algebra (6.2),

[T a
T

a
, T

b] = T
a[T a

, T
b] + [T a

, T
b]T a

= if
abc(T a

T
c + T

c
T

a) = 0 (6.19)

where the last line vanishes due to f
abc being antisymmetric. This is analogous to

the case of the algebra of angular momentum operators, where [J2
, J

i] = 0, and the
eigenvalue of the square operator J2 is used to label different representations. In the
case of the color charge operators, Eq. (6.19) implies that T 2 takes a constant value on
each representation, and the matrix representation of T 2 is given by a constant CR times
the identity matrix,

T
a
T

a = CR 1 . (6.20)
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Here 1 is the identity matrix in n dimensions, where n is the dimensionality of the
representation. The constant CR is the Casimir invariant, and characterizes the specific
representation.

The trace invariant can be defined from the trace of two generators, Tr(T a
T

b), based
on the fact that one can choose a basis such that this trace is proportional to δab,

Tr(T a
T

b) = TR δ
ab

. (6.21)

The constant TR is the trace invariant, specific to any given representation. Convention-
ally we normalize the color generators so that in the fundamental representation R = F ,
specified by the generator matrices (6.3), we have

TF =
1

2
. (6.22)

Once this is fixed, all other Casimir and trace invariants are determined in all represen-
tations. The normalization (6.22) for the color generators is analogous to that of the
angular momentum generators in the spin-1/2 representation (2.3), J i → σ

i
/2, for which

Tr(J i
J
j) =

1

2
δ
ij
. (6.23)

The Casimir invariant CR and the trace invariant TR are related to each other, because
if we multiply Eq. (6.21) by δab we get

δ
ab Tr(T a

T
b) = TR δ

ab
δ
ab = TR d , (6.24)

where d = N
2−1 is the number of generators, and therefore, using Eq. (6.20) to evaluate

the left hand side of Eq. (6.24), we have

CR n = TR d . (6.25)

Eq. (6.25) implies that the Casimir invariant for the fundamental representation
R = F , for which n = N = 3, is given by

CF = TF
d

n
=
N

2 − 1

2N
=

4

3
, (6.26)

where we have used Eq. (6.22). In the adjoint representation R = A specified by the
generator matrices (6.4), for which n = N

2 − 1, Eq. (6.25) implies that the Casimir
invariant and trace invariant are equal, CA = TA. By performing the explicit calculation
we get

CA = TA = N = 3 . (6.27)

We will see examples of QCD calculations involving the color factors above in Sec. 8.
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7 Renormalization

So far we have considered tree-level effects, that is, Feynman graphs that do not contain
loops. Loop corrections to processes described in earlier sections arise at higher orders of
perturbation theory. For instance, the graph in Fig. 24 is an example of a loop correction
to fermion pair production.

Figure 24: Loop correction to fermion pair production.

In this section we address loop effects. The part of the theory that deals with these
effects is renormalization. We give an introduction to the idea of renormalization and
its physical implications, discussing two specific examples: i) the renormalization of the
electric charge; ii) the electron’s anomalous magnetic moment. In Sec. 8 we continue
the discussion by introducing further concepts and including both electromagnetic and
strong interactions.

7.1 General principles

While the treatment given so far specifies interaction processes at tree level, the method
of renormalization is required to treat processes including loops.

A symptom that renormalization is required is that Feynman graphs with loops may
give rise to integrals containing divergences from high-momentum regions. Renormal-
ization allows one to give meaning to the occurrence of these ultraviolet divergences.

Ultraviolet power counting provides the basic approach to renormalization. For a
Feynman graph involving a loop integral of the form

∫
d
4
k
N(k)

M(k)
, (7.1)

consider the superficial degree of divergence defined as

D =
powers of k in N

powers of k in M
. (7.2)

If D ≥ 0, the integral is ultraviolet divergent. A first way of characterizing a theory
as “renormalizable” is that the number of ultraviolet divergent amplitudes is finite.
This is the case for instance with QED. There are 3 ultraviolet divergent amplitudes in
QED, depicted in Fig. 25. QCD has a few more, due to the more complex structure of
interactions seen in Sec. 6, but still a finite number. In a renormalizable theory there can
of course be infinitely many Feynman graphs that are ultraviolet divergent, but they are
so because they contain one of the few primitively divergent amplitudes as a subgraph.
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(a)

(c)

(b)

Figure 25: Ultraviolet divergent amplitudes in QED: (a) photon self-energy; (b) electron
self-energy; (a) electron-photon vertex.

The main point about renormalizability is that it implies that all the ultraviolet
divergences can be absorbed, according to a well-prescribed procedure specified below,
into rescalings of the parameters and wave functions in the theory. For a given quantity
φ, the rescaling is of the form

φ→ φ0 = Z φ , (7.3)

where φ0 and φ are respectively the unrenormalized and renormalized quantities, and
Z is a calculable constant, into which the divergence can be absorbed. Here Z is the
renormalization constant, possibly divergent but unobservable. Once the rescalings are
done and the predictions of the theory are expressed in terms of renormalized quantities,
all physical observables are finite and free of divergences.

This leads to a characterization of the renormalization program which we can formu-
late as a sequence of steps as follows.

• Compute the divergent amplitudes, by prescribing a “regularization method”. Ex-
amples of regularization methods are a cut-off Λ on the ultraviolet integration
region, where the result diverges as we let Λ → ∞, or, as we will see in explicit
calculations later, dimensional regularization.

• Assign parameter and wave-function rescalings to eliminate divergences. In the
case of QED, these involve the electromagnetic potential A, the electron wave
function ψ and mass m, and the coupling e. Using traditional notation for the
QED renormalization constants Zi, the rescalings can be written as

A→ A0 =
√
Z3 A ,

ψ → ψ0 =
√
Z2 ψ ,

m→ m0 =
Zm

Z2

m ,

e→ e0 =
Z1

Z2

√
Z3

e . (7.4)
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Here Z3 and Z2 are the respectively the renormalization constants for the photon
and electron wave function, Z1 is the vertex renormalization constant and Zm is
the electron mass renormalization constant.

• Once the rescalings are done, all physical observables are calculable, i.e., unam-
biguously defined in terms of renormalized quantities, and free of divergences.

Theories for which this program succeeds in giving finite predictions for physical quan-
tities are renormalizable theories. Non-renormalizable theories are theories in which one
cannot absorb all divergences in a finite number of Z: for instance, as we go to higher
orders new divergences appear and an infinite number of Z is needed.

The above program, while it appears quite abstract at first, gives in fact testable,
measurable effects. In the next few subsections we see specific examples of this.

A further, general point is that gauge invariance places strong constraints on renor-
malization, implying relations among the divergent amplitudes of the theory, and thus
among the renormalization constants. Here is an example for the case of QED. Gauge in-
variance establishes the following relation between the electron-photon vertex Γµ dotted
into the photon momentum q

µ and the electron propagators S,

q
µΓµ = S

−1(p+ q)− S
−1(p) . (7.5)

Eq. (7.5), pictured in Fig. 26, is referred to as the Ward identity and is valid to all orders.
Using the renormalization constants Z1 and Z2 defined by the rescalings in Eq. (7.4),

Γµ =
1

Z1

γ
µ + . . . , S(p) =

Z2

/p −m
+ . . . , (7.6)

we have
1

Z1

/q =
1

Z2

[(/p + /q −m)− (/p −m)] . (7.7)

Thus in the abelian case
Z1 = Z2 (QED) . (7.8)

As a result, the rescaling relation in Eq. (7.4) defining the renormalized coupling in QED
becomes

e
2 = Z3e

2
0 . (7.9)

That is, the renormalization of the electric charge is entirely determined by the renor-
malization constant Z3, associated with the photon wave function, and does not depend
on any other quantity related to the electron.

p
q = −

p p+q

q

p+q

Figure 26: Relation between electron-photon vertex and electron propagators.
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In the non-abelian case the relation (7.8) does not apply. However, it is still valid
that non-abelian gauge invariance sets constraints on renormalization, leading to other,
more complex relations among the renormalization constants. We will see examples of
this in Sec. 8.3.

In the rest of this section we describe specific calculations of renormalization at one
loop.

7.2 The gauge boson self-energy

Let us consider the gauge boson self-energy. This is one of the divergent amplitudes
shown in Fig. 25. The Feynman graphs contributing to the self-energy through one loop
are given in Fig. 27 for the photon and gluon cases. In the photon case one has the
fermion loop graph only, while in the gluon case one has in addition gluon loop and
ghost loop graphs.

Because of the relations (7.8),(7.9), in the QED case the calculation of the gauge
boson self-energy is all that is needed to determine the renormalization of the coupling.
So the result of this subsection will be used in Subsec. 7.3 to discuss the renormalized
electric charge.

+QCD:

QED: = +

= +

+

Figure 27: (top) Photon and (bottom) gluon self-energy through one loop.

We now compute the fermion loop graph in Fig. 28. As shown in Fig. 27, in the QED
case the fermion loop is all that contributes to the self-energy, while in the QCD case
this gives one of the required contributions.

ν
q k

q+k
aµ, bν,

πi ( q )=
a b

µ

Figure 28: Fermion loop contribution to the gauge boson self-energy.
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The graph in Fig. 28 is given by

iπ
ab
µν(q) = −g2 Tr(T a

T
b)
∫

d
4
k

(2π)4
Tr[γµ(/k + /q +m)γν(/k +m)]

(k2 −m2 + i0+)((k + q)2 −m2 + i0+)
. (7.10)

This expression is written in general for the non-abelian case. In this case the color-
charge factor is evaluated from Eqs. (6.21),(6.22) and equals

Tr(T a
T

b) =
1

2
δ
ab

. (7.11)

The QED case is obtained from Eq. (7.10) by taking

g
2 −→ e

2 = 4πα ,

Tr(T a
T

b) −→ 1 . (7.12)

The integral in Eq. (7.10) is ultraviolet divergent. By superficial power counting in the
loop momentum k, the divergence is quadratic. Gauge invariance however requires that
πµν be proportional to the transverse projector gµνq

2 − qµqν , that is,

πµν =
(
gµνq

2 − qµqν

)
Π(q2) . (7.13)

This reduces the degree of divergence by two powers of momentum. As a result, the
divergence in Eq. (7.10) is not quadratic but logarithmic.

We need a regularization method to calculate the integral (7.10) and parameterize
the divergence. We take the method of dimensional regularization. This consists of
continuing the integral from 4 to d = 4− 2ε dimensions by introducing the dimensionful
mass-scale parameter µ so that

g
2 d

4
k

(2π)4
−→ g

2(µ2)ε
d
4−2ε

k

(2π)4−2ε
. (7.14)

In dimensional regularization a logarithmic divergence d4k/k4 appears as a pole at ε = 0
(i.e., d = 4). We thus identify ultraviolet divergences in the integral (7.10) by identifying
poles in 1/ε.

By carrying out the calculation in dimensional regularization, the result for πµν is

π
ab
µν(q) = −

(
gµνq

2 − qµqν

)
Tr(T a

T
b)

g
2

4π2
Γ(ε)

∫ 1

0
dx

(
4πµ2

m2 − x(1− x)q2

)ε

2x(1− x)

≡
(
gµνq

2 − qµqν

)
Π(q2) . (7.15)

We can interpret the different factors in this result. As mentioned above, the first factor
on the right hand side, consistent with the gauge-invariance requirement (7.13), implies
that the gauge boson self-energy is purely transverse,

(
gµνq

2 − qµqν

)
q
µ =

(
gµνq

2 − qµqν

)
q
ν = 0 . (7.16)

Owing to the transversality of the self-energy, loop corrections do not give mass to gauge
bosons in QED and QCD. The factor Tr(T a

T
b) in Eq. (7.15) is the non-abelian charge
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factor, which just reduces to 1 in the QED case according to Eq. (7.12). Next, g2/(4π2)
is the coupling factor, which becomes e2/(4π2) = α/π in the QED case (7.12). The Euler
gamma function Γ(ε) contains the logarithmic divergence, i.e., the pole at ε = 0 (d = 4)
in dimensional regularization:

Γ(ε) =
1

ε
− CE +O(ε) , CE ≃ .5772 . (7.17)

The first factor in the integrand of Eq. (7.15) results from the regularization method,
depending on the ratio between the dimensional-regularization scale µ2 and a linear
combination of the physical mass scales m2 and q

2. The last factor in the integrand,
2x(1− x), depends on the details of the calculated Feynman graph.

We can extract the ultraviolet divergent part of the self-energy by computing the
integral in Eq. (7.15) at q2 = 0. Higher q2 powers in the expansion of Π(q2) give finite
contributions. We have

Π(0) = −Tr(T a
T

b)
g
2

4π2
Γ(ε)

∫ 1

0
dx

(
4πµ2

m2

)ε

2x(1− x)

≃ −Tr(T a
T

b)
g
2

4π

1

3π

1

ε
+ . . . , (7.18)

where in the last line we have used the expansion (7.17) of the gamma function and
computed the integral in dx. Specializing to the QED case according to Eq. (7.12) gives

Π(0) ≃ − α

3π

1

ε
+ . . . (QED) . (7.19)

We will next use the results in Eqs. (7.15),(7.19) to discuss the renormalization of the
electromagnetic coupling.

7.3 Renormalization of the electromagnetic coupling

Suppose we consider a physical process occurring via photon exchange, and ask what the
effect is of the renormalization on the photon propagator. Fig. 29 illustrates this effect
by multiple insertions of the photon self-energy,

D0 → D = D0 +D0πD0 +D0πD0πD0 + . . . , (7.20)

where D0 is the photon propagator given in Fig. 8 and π is the photon self-energy
computed in Eq. (7.15). We can sum the series in Eq. (7.20) by applying repeatedly
the transverse projector in π and using that longitudinal contributions vanish by gauge
invariance, and we get

D0 → D = D0
1

1 + Π(q2)
. (7.21)

Then the effect of renormalization in the photon exchange process amounts to

e
2
0

q2
−→ e

2
0

q2

1

1− Π(q2)
, (7.22)
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+

+

+

+

Figure 29: Effect of renormalization in a photon exchange process.

where q is the photon momentum.
Let us now rewrite the denominator on the right hand side of Eq. (7.22) by separating

the divergent part and the finite part in Π. According to the discussion around Eq. (7.18),
this can be achieved by

1− Π(q2) = [1− Π(0)]
[
1−

(
Π(q2)− Π(0)

)]
+O(α2) . (7.23)

Therefore Eq. (7.22) gives

e
2
0

q2
−→ e

2
0

q2

1

1− Π(q2)

≃ 1

q2

e
2
0

1− Π(0)︸ ︷︷ ︸
e2≡Z3e20

1

1− [Π(q2)− Π(0)]︸ ︷︷ ︸
q2−dependence

. (7.24)

In the last line of Eq. (7.24) we have underlined two distinct effects in the result we
obtain from renormalization. The first is that the strength of the coupling is modified
to

e
2
0

1− Π(0)
≡ e

2
, (7.25)

from which, by comparison with Eq. (7.9), we identify the renormalization constant Z3:

Z3 ≃ 1 + Π(0)

= 1− α

3π

1

ε
+ . . . , (7.26)

where in the last line we have used the explicit result for Π(0) in Eq. (7.19). The
coupling e in Eq. (7.25) is the physical coupling, that is, the renormalized coupling. This
is obtained from the unrenormalized one, e0, via a divergent, but unobservable, rescaling,
according to the general procedure outlined below Eq. (7.3).

The second effect in Eq. (7.24) is that the coupling acquires a dependence on the
momentum transfer q2, controlled by the finite part of the self-energy, Π(q2) − Π(0).
This dependence is free of divergences and observable. The q2-dependence of the elec-
tromagnetic coupling is a new physical effect due to loop corrections. Using the explicit
expression for Π in Eq. (7.15), we obtain that for low q

2

Π(q2)− Π(0) → 0 for q
2 → 0 , (7.27)
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and for high q2

Π(q2)− Π(0) ≃ α

3π
ln

q
2

m2
for q

2 ≫ m
2
. (7.28)

Thus e2 in Eq. (7.25) is the value of the coupling at q2 = 0; the coupling increases as q2

increases. Substituting Eqs. (7.25),(7.28) into Eq. (7.24) and rewriting it in terms of the
fine structure, we have for large momenta

α(q2) =
α

1− (α/(3π)) ln(q2/m2)
. (7.29)

The q2-dependence of the coupling is referred to as running coupling. We will discuss
this topic further in Sec. 8.

The result for the electromagnetic coupling that we have just found can be viewed as
summing a series of perturbative large logarithms for q2 ≫ m

2. By expanding Eq. (7.29)
in powers of α, we have

α(q2) =
α

1− (α/(3π)) ln(q2/m2)

= α

(
1 +

α

3π
ln

q
2

m2
+ . . .+

α
n

(3π)n
lnn q

2

m2
+ . . .

)
. (7.30)

This is the simplest example of a conceptual framework referred to as resummation in
QED and QCD. The point is that if the result (7.24) for the physical process is expressed
in terms of an expansion in powers of α, as in Eq. (7.30), perturbative coefficients to
higher orders are affected by large logarithmic corrections. On the other hand, one
obtains a well-behaved perturbation series, without large higher-order coefficients, if the
result is expressed in terms of the effective charge α(q2).

7.4 Vertex correction and anomalous magnetic moment

In this section we study the one-loop vertex correction of Fig. 30. In particular we
compute its contribution to the electron’s magnetic moment,

µ = g
e

2m
S , (7.31)

where S is the spin operator and g is the gyromagnetic ratio. This computation gives

g = gDirac +
α

π
+O(α2) , gDirac = 2 , (7.32)

where gDirac = 2 is the prediction from the Dirac equation and α/π is the correction
from the graph in Fig. 30. Higher order corrections arise from multi-loop graphs. The
deviations from the Dirac value are referred to as the electron’s anomalous magnetic
moment.

Let us consider first the Dirac equation coupled to electromagnetism, Eq. (3.20),
and write the magnetic interaction term explicitly. We can recast Eq. (3.20) in the
two-component notation of Subsec. 2.4, including the electromagnetic coupling, as

E

(
χ

φ

)
=
(

m σ · (p− eA)
σ · (p− eA) −m

) (
χ

φ

)
. (7.33)
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p

q

p

Figure 30: One-loop vertex correction in QED.

Now substitute the bottom equation in (7.33) into the top equation, use the Pauli σ
matrix relation

σ · a σ · b = a · b+ i σ · a ∧ b , (7.34)

and take the nonrelativistic limit E ≃ m, in which φ ≪ χ. We then obtain that the
action of the hamiltonian on the spinor ψ can be written as

Hψ ≃
(
(p− eA)2 − e

2m
B · 2S

)
ψ , (7.35)

where B = ∇∧A is the magnetic field and S is the spin operator given in terms of the
σ matrices in Eq. (2.57). We recognize that the second term in the right hand side of
Eq. (7.35) is the magnetic interaction

−µ ·B , with µ =
e

2m
2S . (7.36)

That is, the Dirac equation prediction for the gyromagnetic ratio g in Eq. (7.31) is

gDirac = 2 . (7.37)

Let us consider now the vertex function Γν(p, p′) represented at one loop in Fig. 30.
We can determine the general structure of the vertex function based on relativistic in-
variance and gauge invariance. Because Γν(p, p′) transforms like a Lorentz vector, we
can write it as a linear combination of γν , pν , p′ν , or equivalently

Γν(p, p′) = A γ
ν +B(p+ p

′)ν + C(p− p
′)ν , (7.38)

where A, B and C are scalar functions of q2 only (q = p
′ − p).

Gauge invariance requires
qνΓ

ν = 0 . (7.39)

By dotting qν into Eq. (7.38), the term in B gives zero, and the term in A gives zero
once it is sandwiched between ū(p′) and u(p). Thus C = 0. We can further show that
the following identity holds,

ū(p′)γνu(p) =
1

2m
ū(p′)(p+ p

′)νu(p) +
i

m
ū(p′) Σνρ

qρ u(p) , (7.40)

where Σ is given in Eq. (2.28), Σνρ ≡ (i/4) [γν , γρ]. This implies that the term in (p+p′)ν

in Eq. (7.38) can be traded for a linear combination of a term in γν and a term in Σνρ
qρ.

Therefore the vertex function can be decomposed in general as

Γν(p, p′) = F1(q
2) γν +

i

m
F2(q

2) Σνρ
qρ , (7.41)
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where the scalar functions F1(q
2) and F2(q

2) are the electron’s electric and magnetic
form factors. At tree level, Γν = γ

ν , thus F1 = 1 and F2 = 0. In general, F1 and F2

receive radiative corrections from loop graphs and are related to the electron’s charge
and magnetic moment,

F1(0) = Q , (7.42)

F2(0) =
g − 2

2
, (7.43)

where Q is the electron’s charge in units of e and g is the electron’s magnetic moment in
units of (e/(2m))S where S is the electron spin. F1(0) is 1 to all orders, that is, radiative
corrections to F1 vanish at q2 = 0. We next compute the correction to F2(0) at one loop.

To this end, consider the one-loop graph in Fig. 30. This is given by

ū(p′)ieΓν
u(p) = e

3
∫

d
4
k

(2π)4
ū(p′) γλ (/k + /q +m) γν (/k +m) γλ u(p)

[(k + q)2 −m2 + iε] [k2 −m2 + iε] [(p− k)2 + iε]
. (7.44)

The integral in Eq. (7.44) can be handled starting with the following Feynman’s param-
eterization of the three denominators in the integrand,

1

[(k + q)2 −m2 + iε] [k2 −m2 + iε] [(p− k)2 + iε]

=
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

2 δ(x1 + x2 + x3 − 1)

[x1 ((k + q)2 −m2) + x2 (k2 −m2) + x3 (p− k)2 + iε]3

=
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

2 δ(x1 + x2 + x3 − 1)

(k̃2 −K + iε)3
, (7.45)

where in the last line we have set k̃ = k + x1q − x3p, K = m
2(1− x3)

2 − q
2
x1x2.

Next change integration variable k → k̃ in Eq. (7.44), and note that the numerator
in the integrand can be rewritten according to

γ
λ (/k + /q +m) γν (/k +m) γλ (7.46)

= γ
ν [k̃2 − 2q2(1− x1)(1− x2) + 2m2(4x3 − 1− x

2
3)]− 4miΣνρ

qρx3(1− x3) .

Then Eq. (7.44) can be recast in the form

ū(p′)Γν
u(p) = −ie2ū(p′)

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 2 δ(x1 + x2 + x3 − 1)

×
∫

d
4
k̃

(2π)4

[
γ
ν k̃

2 − 2q2(1− x1)(1− x2)− 2m2(1− 4x3 + x
2
3)

[k̃2 −K]3

+
i

m
Σνρ

qρ
−4m2

x3(1− x3)

[k̃2 −K]3

]
u(p) . (7.47)

Comparing Eq. (7.47) with the general decomposition in Eq. (7.41), we see that the two
terms in the second and third line of Eq. (7.47) give one-loop integral representations for,
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respectively, the form factors F1(q
2) and F2(q

2). Let us concentrate on the calculation
of F2:

F2(q
2) = −ie2

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 2 δ(x1 + x2 + x3 − 1)

×
∫

d
4
k̃

(2π)4
−4m2

x3(1− x3)

[k̃2 −K]3
. (7.48)

While the integral for F1 in Eq. (7.47) has divergences that need regularization, the
integral (7.48) for F2 is finite. Let us compute the result for q2 = 0.

The integration over the four-momentum k̃ in Eq. (7.48) can be done by using the
transformation of variables k̃0 → −eiπ/2k̃0 in the integral over the time component of
the momentum. This yields the result

∫
d
4
k̃

(2π)4
1

[k̃2 −K]3
= − i

32π2K
. (7.49)

Then we have (e2 = 4πα)

F2(0) =
α

π

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 δ(x1 + x2 + x3 − 1)

m
2
x3(1− x3)

(1− x3)2m2

=
α

π

∫ 1

0
dx3

∫ 1−x3

0
dx2

x3

1− x3

=
α

π

∫ 1

0
dx3(1− x3)

x3

1− x3
=

α

2π
. (7.50)

We thus obtain that the one-loop contribution to the electron’s anomalous magnetic
moment g − 2 = 2F2(0) is given by

g − 2 = 2F2(0) =
α

π
. (7.51)
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8 Renormalization group

Let us discuss renormalization from the standpoint of the renormalization group. We
have seen that renormalization introduces dependence on a renormalization scale µ in
loop calculations. As the value of µ is arbitrary, physics must be invariant under changes
in this scale. This invariance is expressed in a precise manner by the renormalization
group. We will see that by studying the dependence on the renormalization scale µ we
gain insight into the asymptotic behavior of the theory at short distances.

8.1 Renormalization scale dependence and evolution equations

In this section we illustrate how the relation between renormalized and unrenormalized
quantities, applied to a given physical quantity G, can be used to to study the dependence
on the renormalization scale µ and to obtain renormalization group evolution equations.

Renormalizability implies that the divergent dependence in the unrenormalized quan-
tity G0 can be factored out in the renormalization constant Z, provided we re-express
renormalized G in terms of the renormalized coupling and renormalization scale µ,

G0(pi, α0) = ZG(pi, α, µ) . (8.1)

Here pi is the set of physical momenta on which G depends, α is the renormalized
coupling and α0 is the unrenormalized coupling. Because the left hand side in Eq. (8.1)
does not depend on µ,

d

d lnµ2
G0 = 0 , (8.2)

we have

d

d lnµ2
(ZG) = 0 =⇒ ∂G

∂ lnµ2
+
∂G

∂α

∂α

∂ lnµ2
+
∂ lnZ

∂ lnµ2
G = 0 . (8.3)

By defining

β(α) =
∂α

∂ lnµ2
, (8.4)

γ(α) =
∂ lnZ

∂ lnµ2
, (8.5)

we can rewrite Eq. (8.3) as
[

∂

∂ lnµ2
+ β(α)

∂

∂α
+ γ(α)

]
G(pi, α, µ) = 0 , (8.6)

where β(α) and γ(α) are calculable functions of α.
Suppose we measure G at a physical mass-scale Q. Let us rescale by Q the arguments

in G and set
G(pi, α, µ) = F (xi, t, α) , (8.7)

where

xi =
pi

Q
, t = ln

Q
2

µ2
. (8.8)

- 105 -



In this notation Eq. (8.6) can be written as

[
− ∂

∂t
+ β(α)

∂

∂α
+ γ(α)

]
F (t, α) = 0 , (8.9)

where from now on we will not write explicitly the dependence on the rescaled physical
momenta xi in F .

Eq. (8.9) is the renormalization group evolution equation, which we can solve with
boundary condition F (0, α) at t = 0, i.e., µ = Q. To do this, we first write the solution
for the case γ = 0 and then generalize this solution to any γ.

For γ = 0 we have

[
− ∂

∂t
+ β(α)

∂

∂α

]
F (t, α) = 0 (γ = 0) . (8.10)

Now observe that if we construct α(t) such that

t =
∫ α(t)

α

dα
′

β(α′)
, (8.11)

then any F of the form
F (t, α) = F (0, α(t)) (8.12)

satisfies the equation and the boundary condition.
Eq. (8.11) defines α(t) as an implicit function. To verify that Eq. (8.12) is solution,

note first that the boundary condition at t = 0 is

t = 0 , α(0) = α =⇒ F = F (0, α) . (8.13)

Next evaluate the derivative of Eq. (8.11) with respect to t,

1 =
1

β(α(t))

∂α(t)

∂t
, (8.14)

and with respect to α,

0 =
1

β(α(t))

∂α(t)

∂α
− 1

β(α)
. (8.15)

Then the differential operator in Eq. (8.10) applied to F (0, α(t)) gives

[
− ∂

∂t
+ β(α)

∂

∂α

]
F (0, α(t))

= − ∂F

∂α(t)



∂α(t)

∂t︸ ︷︷ ︸
β(α(t))

− β(α)
∂α(t)

∂α︸ ︷︷ ︸
β(α(t))/β(α)


 = 0 , (8.16)

where in the last line we have used Eqs. (8.14),(8.15).
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In the general case γ 6= 0, the solution to Eq. (8.9) is obtained from the γ = 0 answer
(8.12) by multiplication by the exponential of a γ integral, as follows

F (t, α) = F (0, α(t)) exp

[∫ α(t)

α
dα

′ γ(α
′)

β(α′)

]

= F (0, α(t)) exp
[∫ t

0
dt

′
γ(α(t′))

]
. (8.17)

In the second line in Eq. (8.17) we have made the integration variable transformation
using Eq. (8.11). We can verify that Eq. (8.17) is solution by a method similar to that
employed above for the case γ = 0.

Eq. (8.17) indicates that once ultraviolet divergences are removed through renormal-
ization, all effects of varying the scale in F from µ to Q can be taken into account by
i) replacing α by α(t), and ii) including the t-dependence given by the exponential factor
in γ. The latter factor breaks scaling in t, modifying the “engineering” dimensions of
F by γ-dependent terms. For this reason γ is referred to as anomalous dimension. By
expanding the exponential factor in powers of the coupling, we see that this factor sums
terms of the type (αt)n to all orders in perturbation theory. Eq. (8.17) thus provides a
second example, besides that seen in Eq. (7.30) for the electric charge, of perturbative
resummation of logarithmic corrections to all orders in the coupling, giving rise to an
improved perturbation expansion, in which coefficients of higher order are free of large
logarithms.

In QCD the e+e− annihilation cross section σ(e+e− → hadrons) is an example of
the γ = 0 case in Eq. (8.12), while deep-inelastic scattering structure functions are an
example of the γ 6= 0 case in Eq. (8.17).

8.2 RG interpretation of the photon self-energy

Let us revisit the analysis of the photon self-energy in Sec. 7 from the standpoint of the
renormalization group. The divergent part of the renormalization constant Z3 computed
in Eq. (7.26) determines the QED β function at one loop.

According to Eq. (8.4), the variation of the coupling α with the energy scale µ is
governed by the β function, calculable as a function of α. In dimensional regularization,
from

α

(
µ
2
)ε

= Z3 α0 , (8.18)

by using Eq. (7.26) we have

∂α

∂ lnµ2
= −ε

(
1− α

3π

1

ε

)
α0

(
µ
2
)−ε

=
1

3π
α
2
. (8.19)

The leading term of the QED β function at small coupling is given by (Fig. 31),

β(α) = bα
2 +O(α3) ,

b =
1

3π
. (8.20)
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Inserting the result (8.20) into Eq. (8.4) gives the differential equation

∂α

∂ lnµ2
= bα

2
. (8.21)

This can be solved by

dα

α2
= b

dµ
2

µ2
=⇒ − 1

α(q2)
+

1

α
= b ln

q
2

q20
, (8.22)

which gives

α(q2) =
α

1− bα ln(q2/q20)
, b = 1/(3π) , (8.23)

that is, the result (7.29) derived directly in Subsec. 7.3.

α

β

Figure 31: Small-coupling approximation to the β function in QED.

To sum up, we have found from the analysis of electric charge renormalization in
Sec. 7.3 and in this section that as a result of loop graphs the electromagnetic coupling
is energy-dependent. We can regard this result as illustrating the breaking of scale
invariance as an effect of the quantum corrections taken into account by renormalization.
We start at tree level with a coupling that is scale invariant. Then we include loops.
This implies introducing an unphysical mass scale, such as the renormalization scale
µ, to treat quantum fluctuations at short distances, or high momenta. At the end of
the calculation in the renormalized theory, the unphysical mass scale disappears from
physical quantities. But an observable, physical effect from including loop corrections
remains in the fact that scale invariance is broken. The physical coupling depends on
the energy scale at which we probe the interaction. The renormalization group provides
the appropriate framework to describe this phenomenon, in which the rescalings (7.4) of
the couplings and wave functions, necessary to compensate variations in the arbitrary
renormalization scale, are governed by universal functions, respectively the β and γ

functions (8.4),(8.5) of the theory.

8.3 QCD β function at one loop

We now extend the discussion to the case of renormalization in QCD at one loop, and
determine the one-loop β function.

In the QCD case we assign rescaling relations analogous to those in Eq. (7.4) for the
abelian theory. For wave function and mass renormalization we set

A→ A0 =
√
Z3 A ,
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ψ → ψ0 =
√
Z2 ψ ,

c→ c0 =
√
Z̃3 c ,

m→ m0 =
Zm

Z2

m . (8.24)

where, in addition to the renormalization constants of the abelian case, we introduce Z̃3

for ghost renormalization. For renormalization of quark-gluon, ghost-gluon and gluon
self-coupling vertices we set

Z2

√
Z3g0 = Z1 g ,

Z̃3

√
Z3g0 = Z̃1 g ,

Z
3/2
3 g0 = Z1,3 g ,

Z
2
3g

2
0 = Z1,4 g . (8.25)

As noted in Sec. 6.2, non-abelian gauge invariance requires that the vertices have equal
couplings. This implies relations among the different Z in Eq. (8.25), as follows

Z̃1

Z̃3

=
Z1

Z2

=
Z1,3

Z3

=

√
Z1,4

Z3

. (8.26)

In the non-abelian theory, unlike QED, in general one has Z1 6= Z2. The relations in
Eq. (8.26) can be seen as non-abelian generalizations of the QED result Z1 = Z2 given
in Eq. (7.8).

We can define the renormalized coupling from the quark-gluon vertex. The analogue
of Eq. (8.18) for the QCD case is

αs

(
µ
2
)ε

=
Z

2
2

Z2
1

Z3 αs0 . (8.27)

Each of the renormalization constants Zi has a perturbation series expansion, with the
coefficients of the expansion being ultraviolet divergent. In dimensional regularization
the ultraviolet divergences appear as poles at ε = 0, so that the Zi have the form

Zi = 1 + αs
1

ε
ci + finite , (8.28)

where the coefficients ci of the divergent terms are to be calculated. By using Eqs. (8.27)
and (8.28), the β function is given by

β(αs) =
∂αs

∂ lnµ2

= −εαB

(
µ
2
)−ε

[1− 2(Z1 − 1) + 2(Z2 − 1) + (Z3 − 1)]

= 2α2
s(c1 − c2 −

1

2
c3) . (8.29)
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(3)

(1)

(2)

Figure 32: One-loop corrections to (1) quark-gluon vertex; (2) quark self-energy; (3)
gluon self-energy.

The Feynman graphs contributing to c1, c2 and c3 are the one-loop graphs for, re-
spectively, the quark-gluon vertex renormalization, quark self-energy renormalization,
and gluon self-energy renormalization, and they are shown in Fig. 32. The calculation
of these graphs proceeds similarly to the calculation done in Sec. 7.2 for the fermion
loop contribution. By computing these graphs, working in Feynman gauge ξ = 1 (as in
Fig. 19), we obtain the results for the renormalization constants Zi,

Z1 = 1− αs

4π

1

ε
(CF + CA) , (8.30)

Z2 = 1− αs

4π

1

ε
CF , (8.31)

Z3 = 1 +
αs

4π

1

ε
(
5

3
CA − 4

3
NfTF ) , (8.32)

where Nf is the number of quark flavors (Sec. 6.1), and the color charge factors are given
in Sec. 6.3,

CA = N = 3 , CF =
N

2 − 1

2N
=

4

3
, TF =

1

2
. (8.33)

Note from the expression for Z3 that the second term in the bracket in Eq. (8.32) is
the term computed in Sec. 7.2 from the fermion loop graph, which, in the abelian limit
NfTF → 1, gives the QED contribution −α/(3πε) of Eq. (7.26).

From Eqs. (8.30)-(8.32) we read the coefficients ci to be put into Eq. (8.29) to deter-
mine the β function. We obtain

β(αs) = 2α2
s(c1 − c2 −

1

2
c3) = 2

α
2
s

4π

(
−CF − CA + CF − 1

2

5

3
CA +

1

2

4

3
NfTR

)

=
α
2
s

4π

(
−11

3
CA +

4

3
NfTR

)
= − α

2
s

12π
(11N − 2Nf ) . (8.34)
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Eq. (8.34) shows that for Nf < 11N/2 the β function in the non-abelian case has negative
sign at small coupling (Fig. 33),

β(αs) = −β0α2
s +O(α3

s) , (8.35)

where

β0 =
1

12π
(11N − 2Nf ) . (8.36)

This behavior of the β function is opposite to the behavior of the β function in QED,
Eq. (8.20) (Fig. 31).

α

β

Figure 33: Small-coupling approximation to the β function in QCD.

The behavior of the β function in Eqs. (8.35),(8.36) implies that QCD is asymp-
totically free, i.e., weakly coupled at short distances. By inserting Eq. (8.35) into the
renormalization group evolution equation,

∂αs

∂ lnµ2
= β(αs) ≃ −β0α2

s , (8.37)

and solving Eq. (8.37), we obtain

αs(q
2) =

αs(µ
2)

1 + β0 αs(µ2) ln q2/µ2
, (8.38)

where β0 is given in Eq. (8.36). Eq. (8.38) expresses the q2-dependence of the QCD
running coupling at one loop. The QCD coupling decreases logarithmically as the mo-
mentum scale q2 increases. This property is the basis for the perturbative calculability
of scattering processes due to strong interactions at large momentum transfers.

8.4 The QCD scale Λ

From Eq. (8.38) we also see that QCD becomes strongly coupled in the infrared, low-
momentum region. This behavior is opposite to that in QED. In the QED case, taking
q0 ∼ m in Eq. (8.23), withm the electron mass, we have strong coupling in the ultraviolet
region for

q
2 ∼ m

2
e
3π/α

, (8.39)

corresponding to enormously high energies.
In the QCD case, calling Λ the mass scale at which the denominator in Eq. (8.38)

vanishes, we have

1 + β0 αs(µ
2) ln

Λ2

µ2
= 0 =⇒ Λ2 = µ

2
e
−1/(β0αs(µ2))

. (8.40)
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In QED and QCD we thus get the different pictures in Fig. 34 for the scale, referred to
as the Landau pole, at which the coupling becomes strong.

QED

q2q2

α α

QCD

Figure 34: Landau pole pictures in QCD and in QED.

The scale Λ in Eq. (8.40) is renormalization-group invariant, i.e., it is independent of
µ. Under transformations

µ
2 −→ µ

′2 = µ
2
e
t
,

αs(µ
2) −→ αs(µ

′2) =
αs(µ

2)

1 + β0αs(µ2)t
, (8.41)

we have

Λ2 −→ µ
′2
e
−1/(β0αs(µ′2))

,

= µ
2
e
t
e
−(1+β0αs(µ2)t)/(β0αs(µ2)) = µ

2
e
t
e
−1/(β0αs(µ2))

e
−t = Λ2

. (8.42)

The scale Λ is a physical mass scale of the theory of strong interaction. Its measured
value is about 200 MeV.

(b)

α α

β β

(a)

Figure 35: (a) Trivial and (b) nontrivial ultraviolet fixed points of the β function.

The running coupling (8.38) can be equivalently expressed in terms of Λ,

αs(q
2) =

αs(µ
2)

1 + β0 αs(µ2) [ln(q2/Λ2)− 1/(β0 αs(µ2))]

=
1

β0 ln(q2/Λ2)
. (8.43)
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The rewriting (8.43) of Eq. (8.38) makes it manifest that the running coupling αs does
not depend on the choice of the renormalization scale µ.

Remark. The zero of the QCD β function at the origin, sketched in Fig. 35a, is
responsible for the theory being weakly coupled at short distances. This behavior is
referred to as a trivial ultraviolet fixed point. A behavior such as that in Fig. 35b
(nontrivial ultraviolet fixed point), leading to strong coupling at short distances, is in
principle possible but not realized in nature as far as we know. This is the reason why
renormalization can be understood perturbatively and Feynman graphs provide a very
effective method to investigate physical theories of fundamental interactions.
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1 Abelian and non-Abelian local gauge theories

The Standard Model is based on a product of groups SU(3)c×SU(2)L×U(1)Y , describing

QCD, the chiral SU(2)L electroweak sector and the hypercharge U(1)Y sector in which QED

is embedded. The first two of these groups are non-abelian, and are based on non-commuting

group generators. The final group is abelian. We shall review in what follows how such gauge

theories can be constructed from the principle of local gauge invariance, beginning with the

simplest case of QED, and generalising this recipe to the construction of the non-abelian

SU(N) theories.

1.1 QED Lagrangian from local gauge invariance

The QED Lagrangian can be defined more fundamentally by demanding local gauge in-

variance. The Dirac Lagrangian

LDirac = iψ̄γ
µ
∂µψ −mψ̄ψ , (1.1)

has an obvious invariance under the global gauge transformation

ψ(x) → ψ
′

(x) = e
iα
ψ(x) , ψ̄(x) → ψ̄

′

(x) = e
−iα

ψ̄(x) , (1.2)

where the phase iα is independent of spacetime position x. Each term is simply multiplied

by eiαe−iα = 1. Local gauge invariance corresponds to demanding invariance with phases

iα(x) which are chosen independently at each spacetime point.

ψ(x) → ψ
′

(x) = e
iα(x)

ψ(x) , ψ̄(x) → ψ̄
′

(x) = e
−iα(x)

ψ̄(x) . (1.3)

One now finds that local gauge invariance does not hold since

iψ̄(x)γµ∂µψ(x) → iψ̄(x)e−iα(x)
γ
µ
∂µ[e

iα(x)
ψ(x)]

= iψ̄(x)γµ∂µψ(x)− ψ̄(x)γµψ(x)[∂µα(x)] . (1.4)

The ∂µα(x) term violates the local gauge invariance. The resolution is that one needs to

replace the ordinary derivative ∂µ by the covariant derivative Dµ. To ensure local gauge

invariance one needs to ensure that under a gauge transformation Dµψ(x) transforms in

exactly the same way as ψ(x) itself. It is in this sense that one has a “covariant derivative”.
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Dµψ(x) → D
′

µψ
′

(x) = e
iα(x)(Dµψ(x)) . (1.5)

This transformation rule holds if we define the covariant derivative

Dµ ≡ ∂µ + ieAµ , (1.6)

where under a local gauge transformation the gauge field Aµ transforms as

Aµ → A
′

µ = Aµ −
1

e
∂µα(x) . (1.7)

The gauge transformation of Aµ is exactly the same as the classical EM transformation, but

the idea will be that the covariant derivative Dµ and gauge fields Aµ can provide a general

recipe for constructing general non-abelian gauge theories. Having changed ∂µ to Dµ, and

adding in the “kinetic energy” term −1
4
FµνF

µν one has the QED Lagrangian

LQED =
1

4
FµνF

µν + iψ̄γ
µ
Dµψ −mψ̄ψ

=
1

4
FµνF

µν + iψ̄γ
µ
∂µψ − eψ̄γ

µ
ψAµ −mψ̄ψ . (1.8)

Crucially Fµν can be defined in terms of the commutator of covariant derivatives, Dµ. This

involves introducing a “gauge comparator” and is analogous to parallel transport in General

Relativity. The definition is

[Dµ, Dν ]ψ ≡ ieFµνψ . (1.9)

In the case of abelian QED one finds the classical EM result

Fµν = ∂µAν − ∂νAµ . (1.10)

How does this generalise to non-Abelian gauge groups ?

1.2 The Non-Abelian Recipe Book

Local gauge transformations will be of the form

ψ(x) → ψ
′

(x) = U(x)ψ(x) , ψ̄(x) → ψ̄
′

(x) = ψ̄(x)U−1(x) . (1.11)

Here U(x) denotes an element of the gauge group G chosen independently at each spacetime

point. In the case of QED G = U(1) the group of 1 × 1 unitary (MM
† = I) matrices

(complex phases). We shall be interested in the non-Abelian Lie groups SU(N) of N × N

unitary matrices with detU = 1. An element of such a Lie Group will have the form
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U(x) = exp(i
N2−1∑

j=1

αj(x)Tj) . (1.12)

Here the sum is over the N2−1 generators of the Lie group. These satisfy the Lie Algebra

[Ti, Tj ] = icijkTk . (1.13)

Here the cijk are the real structure constants of the group. Abelian groups have commuting

generators and so for the U(1) of QED cijk = 0. For SU(2) the generators involve the three

Pauli matrices Ti = σi/2 and the structure constants are cijk = ǫijk, whilst for SU(3) the

generators involve the eight Gell-Mann λ matrices Ti = λi/2. The spin-
1
2
matter fields are N -

plets in the fundamental representation of the gauge group, For instance (chiral) leptonic

doublets of neutrinos and electrons in electroweak SU(2)L
(
νe

e

)
, (1.14)

or quark colour triplets (red, green and blue, RGB) in SU(3) QCD.

ψ(x) =




ψR(x)

ψG(x)

ψB(x)


 . (1.15)

The gauge fields are linear combinations of the generators of the gauge group

Aµ =
N2−1∑

i=1

A
i
µTi . (1.16)

One defines the covariant derivative

D
µ = (∂µ + igAµ) . (1.17)

Here g is the gauge coupling. For local gauge invariance one requires that

D
µ
ψ(x) → D

′µ
ψ

′

(x) = U(x)[Dµ
ψ(x)] , (1.18)

and hence Aµ transforms as

Aµ → A
′

µ = U(x)AµU
−1(x)− i

g
U(x)[∂µU

−1(x)] . (1.19)
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The locally gauge invariant Lagrangian is then obtained by replacing ∂µ → Dµ in the free

Dirac Lagrangian

L = iψ̄γ
µ
Dµψ −mψ̄ψ

The non-Abelian expression for Fµν follows from

[Dµ, Dν ]ψ(x) = igFµνψ(x) (1.20)

which yields

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

= ∂µAν − ∂νAµ + igA
i
µA

j
ν [Ti, Tj ]

= ∂µAν − ∂νAµ − gA
i
µA

j
νcijkTk .

One can easily check that under a local gauge transformation

Fµν → F
′

µν = U(x)FµνU
−1(x) , (1.21)

and so the kinetic energy term

−1

4
Tr[FµνF

µν ] , (1.22)

is locally gauge invariant since the trace is cyclic.

Tr[F
′

µνF
′µν ] = Tr[UFµνU

−1
UF

µν
U

−1] = Tr[FµνF
µν ] (1.23)

−1

4
Tr[FµνF

µν ] = −1

4
F

i
µνF

jµνTr[TiTj ] . (1.24)

Defining the generators so that Tr[TiTj] =
1
2
δij one arrives at the kinetic energy term

−1

8
F

i
µνF

iµν
. (1.25)
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1.3 The Lagrangian of QCD

Quantum Chromodynamics (QCD) is a non-abelian gauge theory of interacting quarks and

gluons. The gauge group is SU(Nc), and there are N2
c − 1 gluons. Experimental indications

are that Nc = 3. The Lagrangian density is

LQCD = ψ̄(iγµ∂µ −m)ψ − gs(ψ̄γ
µ
Taψ)G

a
µ −

1

8
G

a
µνG

µν
a . (1.26)

Here a = 1, 2, 3, . . . , 8, and Ta are the generators of SU(3), Ta = λa/2, where λa (a =

1, 2, . . . , 8) are the Gell-Mann λ-matrices. They satisfy the Lie algebra

[Ta, Tb] = ifabcTc (1.27)

The quark fields carry colour, R, G, B, and transform as a triplet in the fundamental repre-

sentation

ψ(x) =




ψR(x)

ψG(x)

ψB(x)


 (1.28)

LQCD is invariant under local SU(3) gauge transformations

ψ(x) → U(x)ψ = e
iTaαa(x)ψ(x) . (1.29)

The field strength tensor Ga
µν contains the abelian (QED) result and an extra term pro-

portional to the structure constants fabc which are responsible for three and four-point

self-interactions of gluons, not present for photons in QED.

G
a
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abc
G

b
µG

c
ν . (1.30)

For QCD (but not QED) one also needs to include unphysical ghost particles. These are

scalar Grassmann (anti-commuting) fields needed to cancel unphysical polarization states

for the gluons. The required Fadeev-Popov extra term in LQCD is

Lghost = η̄
a(−∂2δac − gs∂

µ
f
abc
G

b
µ)η

c
. (1.31)

In both QED and QCD one needs also to include a gauge fixing term if inverse propagators

are to be defined.

Lgauge−fixing =
1

2ξ
(∂µGa

µ)
2 (1.32)

There is only one other gauge-invariant structure that we could add involving the dual field

strength tensor G̃a
µν ,
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Lθ =
θg

2
s

64π2
G̃

a,µν
G

ρσ
a (1.33)

This is a total derivative and so produces no effects at the perturbative level. However, if

θ 6= 0 non-perturbative effects would induce a CP-violating electric dipole moment for the

neutron, experimental constraints on this provide a bound |θ| < 3.10−10.

2 Glashow’s Model SU(2)L×U(1)Y

We begin by defining a weak isospin doublet containing a left-handed electron and electron

neutrino

χL =

(
νL

eL

)
≡
(
ν

e

)

L

. (2.1)

With an adjoint

χ̄L =

(
νL

eL

)
. (2.2)

We shall introduce a weak isospin quantum number T 3. The upper and lower members of

the doublet have T 3 = ±1
2
, respectively.

These row and column matrices are acted on by isospin generators in the form of 2×2 Pauli

matrices

τ
1 =

(
0 1

1 0

)
, τ

2 =

(
0 −i
i 0

)
, τ

3 =

(
1 0

0 −1

)
. (2.3)

The generators 1
2
τ
i satisfy the SU(2) Lie Algebra

[
1

2
τ
i
,
1

2
τ
j] = iǫijk

1

2
τ
k
. (2.4)

The isospin raising and lowering operators are τ± = 1
2
(τ 1 ± iτ

2).

One can then write an isospin triplet of weak currents

J
i
µ = χ̄Lγµ

1

2
τ
i
χL (i = 1, 2, 3) . (2.5)

Putting in row vectors, column vectors and matrices, we have explicitly on multiplying out

J
1
µ =

1

2
(ēLγµνL + ν̄LγµeL)

J
2
µ =

i

2
(ēLγµνL − ν̄γµeL)

J
3
µ =

1

2
(ν̄LγµνL − ēLγµeL) . (2.6)
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The charge raising and lowering V-A currents can be written in terms of J1
µ and J2

µ

J
±
µ = χ̄Lγµτ

±
χL = J

1
µ ± iJ

2
µ . (2.7)

The isospin triplet of currents have corresponding charges

T
i =

∫
d
3
x J

i
0(x) , (2.8)

and these satisfy an SU(2) algebra

[T i
, T

j ] = iǫijkT
k
. (2.9)

To construct a combined weak and electromagnetic theory we will also require the electro-

magnetic current

J
em
µ = Q(ēLγµeL + ēRγµeR) , (2.10)

where Q denotes the charge of the particle (in this case an electron) in units of e ≈ 0.303

(α = e
2
/4π is the fine structure constant). So Q = −1 for e−. In terms of the net charge

of interacting particles J3
µ and J

em
µ are neutral currents, whereas J1

µ and J
2
µ are charged

currents. J
3
µ does not involve eR whereas electromagnetism does, and so to have a gauge

theory involving both weak and electromagnetic interactions we must add an extra current

J
Y
µ to J3

µ. The simplest approach is to write

J
em
µ = J

3
µ +

1

2
J
Y
µ , (2.11)

then putting in the expressions for Jem
µ and J3

µ we have

J
Y
µ = −χ̄LγµχL − 2ēRγµeR

= −ν̄LγµνL − ēLγµeL − 2ēRγµeR . (2.12)

In virtue of the above identity between Jem
µ , J3

µ and JY
µ the corresponding charges, Q (electric

charge in units of e), T 3 (third component of weak isospin) and Y (termed hypercharge)

satisfy

Q = T
3 +

Y

2
. (2.13)

This is identical to the Gell-Mann Nishijima relation obtained in the quark model of hadrons.

The 1
2
coefficient in front of JY

µ is purely conventional. T 3, Q and Y may be read off from the

coefficients of the ν̄LγµνL, ēLγµeL and ēRγµeR terms in J3
µ, J

em
µ and JY

µ above. The charge

assignments (T, T 3
, Q, Y ) for the particles in the model are

νL = (
1

2
,
1

2
, 0,−1)

eL = (
1

2
,−1

2
,−1,−1)

eR = (0, 0,−1,−2) (2.14)
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Each generation of leptons will have a similar weak isospin doublet with the same quantum

numbers, (
νe

e
−

)

L

,

(
νµ

µ
−

)

L

,

(
ντ

τ
−

)

L

. (2.15)

We have an SU(2)L × U(1)Y structure where the generators of U(1)Y commute with those

of SU(2)L. This implies that members of an isospin doublet must have the same hypercharge.

We have the following commutation relations for the generators T i, Q, Y (i = 1, 2, 3)

[T i
, Y ] = 0 , [Q, Y ] = 0 , [Q, T i] = iǫ3ijT

j
, (2.16)

so Q, T 3, Y , form a mutually commuting set of generators, but only two are independent

because of the relation Q = T
3 + Y

2
. The maximum number of independent mutually com-

muting generators defines the rank of the group. SU(2)L × U(1)Y has rank 2.

Notice that U(1)Y is chiral since e−L and e−R have different hypercharges whereas the electro-

magnetic charges are the same. To complete the specification of an SU(2)L × U(1)Y guage

theory invariant under local gauge transformations, we need to introduce suitable vector

fields to couple to these currents.

QED is based on the interaction −eJemµ
µ Aµ of the electromagnetic current Qψ̄γµψ with the

photon field Aµ. This leads to a term in the Lagrangian ψ̄γ
µ(i∂µ + eAµ)ψ. Analogously

we introduce an isotriplet of vector gauge bosons W i
µ, (i = 1, 2, 3), to gauge the SU(2)L

symmetry with coupling g and a vector boson Bµ to gauge the U(1)Y symmetry with coupling

g
′

/2. The interaction (analogous to QED) will be −gJ iµ
W

i
µ− g

′

2
J
Y µ
Bµ, leading to the lepton-

gauge boson portion of L ,

χ̄Lγ
µ[i∂µ − g

(
1

2

)
~τ · ~Wµ −

g
′

2
(−1)Bµ]χL + ēR[i∂µ −

g
′

2
(−2)Bµ]eR . (2.17)

The (1
2
), (−1), (−2) in brackets are, respectively, the weak isospin of the doublet χL, Y (eL),

and Y (eR). The notation ~τ · ~Wµ is shorthand for τ iW i
µ = τ

1
W

1
µ + τ

2
W

2
µ + τ

3
W

3
µ . The full

lepton-gauge boson Lagrangian will contain
∑

l=eµτ L(l), a sum over the three generations.

The SU(2)L and U(1)Y gauge transformations under which L(l) is invariant are

χL → χ
′

L = exp[−ig~τ
2
· ~∆+ i

1

2
g

′

Λ]χL

eR → e
′

R = exp(ig
′

Λ)eR
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~Wµ → ~W
′

µ = Wµ + g~∆× ~Wµ + ∂µ
~∆

Bµ → B
′

µ = Bµ + ∂µΛ . (2.18)

Here Λ(x) specifies the local U(1)Y gauge transformations and ~∆(x) = (∆1(x),∆2(x),∆3(x))

the local SU(2)L gauge transformations. Explicitly W i′

µ = W
i
µ + gǫijk∆

j
W

k
µ + ∂µ∆

i

Separating off the interaction piece of L(l) we have

LI = χ̄Lγ
µ[−g1

2
~τ · ~Wµ +

1

2
g

′

Bµ]χL + ēRγ
µ
g

′

BµeR . (2.19)

We want to decompose this into a charged current (exchange of electrically charged W
±)

and a neutral current (exchange of electrically neutral Z0.)

LI = LCC + LNC . (2.20)

Consider the ~τ · ~Wµ term in LI . We have

1

2
(~τ · ~Wµ) =

τ
1

2
W

1
µ +

τ
2

2
W

2
µ +

τ
3

2
W

3
µ

=
1√
2
(τ+W+

µ + τ
−
W

−
µ ) +

τ
3

2
W

3
µ . (2.21)

Here we have defined the charged vector fieldsW±
µ = 1√

2
(W 1

µ ∓W 2
µ). TheW

3
µ term is neutral

and so belongs in LNC . We therefore have

LCC = χ̄Lγ
µ[− g√

2
(τ+W+

µ + τ
−
W

−
µ ]χL

= − g√
2
[J+

µ W
+µ + J

−
µ W

−µ] . (2.22)

So the V − A charge raising and lowering currents of Eq.(2.7) couple to the charged W
±
µ

fields. The rest of LI gives us

LNC = χ̄Lγ
µ[−g

2
τ
3
W

3
µ + g

′

Bµ]χL + ēRγ
µ
g

′

BµeR

= −gJ3
µW

3µ − g
′

2
J
Y
µ B

µ
. (2.23)

The next step is to identify the physical neutral vector fields Zµ and Aµ. We therefore write

W
3
µ and Bµ as an orthogonal mixture of Zµ and Aµ.

(
W

3
µ

Bµ

)
=

(
cos θw sin θw

− sin θw cos θw

)(
Zµ

Aµ

)
(2.24)

The angle θw is the weak mixing angle. So in terms of Zµ and Aµ

LNC = −gJ3
µ[cos θwZ

µ + sin θwA
µ]− g

′

2
J
Y
µ [− sin θwZ

µ + cos θwA
µ] . (2.25)
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We must have that Jem
µ = J

3
µ + 1

2
J
Y
µ is coupled to Aµ with strength e, so we need

LNC = −eAµ(J3
µ +

1

2
J
Y
µ ) + . . . (2.26)

So both J3
µA

µ and 1
2
J
Y
µ A

µ terms must have coefficient −e implying that

g sin θw = g
′

cos θw = e , (2.27)

or equivalently
1

g2
+

1

g
′2
=

1

e2
. (2.28)

We then have

L = −eJem
µ A

µ + Z
µ[−g cos θwJ3

µg
′

sin θwJ
3
µ + g

′

sin θwJ
em
µ ] , (2.29)

where JY
µ has been eliminated using JY

µ = 2(Jem
µ − J

3
µ). The terms in the square bracket

coefficient of Zµ can then be written as
[
−g cos

2
θw

cos θw
J
3
µ − g

sin2
θw

cos θw
J
3
µ + g

sin2
θw

cos θw
J
em
µ

]
(2.30)

where g
′

= g sin θw/ cos θw has been used. Then setting sin2 +cos2 = 1 we get

LNC = −eJem
µ A

µ − g

cos θw
[J − µ

3 − sin2
θwJ

em
µ ] . (2.31)

So finally assembling all this we have

LI = − g√
2
[J+

µ W
+µ + J

−
µ W

−µ]− eJ
em
µ A

µ − g

cos θw
[J3

µ − sin2
θwJ

em
µ ]Zµ

. (2.32)

Expressing the currents in terms of the full fermion fields ν, e we obtain

LI = − g√
2
[ν̄γµ

1

2
(1− γ5)eW

+µ + ēγµ
1

2
(1− γ5)νW

−µ] + e(ēγµeA
µ)

− g

2 cos θw

[
ν̄γµ

1

2
(1− γ5)ν − ēγµ

1

2
(1− γ5)e+ 2 sin2

θ
w
ēγµ

]
Z

µ
. (2.33)

From the coefficients of the l̄lV terms (l = e, ν, V = A(γ),W±
, Z) multiplied by i we obtain

the fermion-gauge boson vertex factors given in the Appendix.

2.1 Kinetic Energy Terms for Glashow’s Model

To complete the Glashow model Lagrangian we need SU(2)L × U(1)Y gauge invariant the

kinetic energy terms for the vector boson fields. In QED we have the kinetic energy term
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−1
4
FµνF

µν with Fµν = ∂µAν−∂νAµ. The relevant terms for theW i
µ fields (LW ) and Bµ (LB)

are

LW = −1

4
~Wµν · ~W µν = −1

4

∑

i

( ~Wµν)
i
( ~W µν)

i
, (2.34)

where
~Wµν = ∂µ

~Wν − ∂ν
~Wµ − g ~Wν × ~Wν , (2.35)

and

( ~Wµν

i
= ∂µW

i
ν − ∂νW

i
µ − gW

k
µW

l
νǫikl . (2.36)

Explicitly in terms of the fields W i
µ (i = 1, 2, 3) which gauge SU(2)L. For the U(1)Y field Bµ

one has the Abelian field strength tensor Bµν = ∂µBν − ∂νBµ, and the kinetic energy term

LB = −1

4
BµνB

µν
. (2.37)

These terms can of course be rewritten in terms of the physical fields W+
,W

−
, Zµ, Aµ.

W
1
µ =

1√
2
(W+

µ +W
−
µ )

W
2
µ =

i√
2
(W−

µ −W
+
µ )

W
3
µ = cos θwZµ + sin θwAµ

Bµ = cos θwAµ − sin θwZµ . (2.38)

Having so rewritten LW and LB we can pick out the (∂µV )V V and V V V V cross terms in

the physical fields. The Feynman Rules are in momentum space so i∂µV should be replaced

by pµV , where pµ is the momentum of the vector boson V. We have therefore generated

the three and four-point self-interactions of W±, Z and γ. The relevant Feynman Rules are

given in the Appendix.

We now have all the Feynman rules for the Glashow model Lagrangian

L =
∑

l=e,µ,τ

L(l) + LW + LB . (2.39)

Notice that there are no mass terms. If we want to have an SU(2)L×U(1)Y gauge invariant

theory we cannot have them! For instance a mass term for the field Bµ would be 1
2
M

2
BBµB

µ.

Under the local gauge transformation in Eq.(2.18) Bµ → B
′

µ = Bµ + ∂µΛ it is obvious

that 1
2
M

2
BBµB

µ 6= 1
2
M

2
BB

′

µB
′µ. Similarly for a term involving M2

W = M
2
W
~Wµ

~W
µ under an

SU(2)L gauge transformation. This comment would apply in QED and forbid the photon

mass term 1
2
M

2
γAµA

µ, of course this is not a problem since we know experimentally that

Mγ = 0 and that photons are massless particles. A Dirac mass term for the leptons is also
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disallowed since mψ̄ψ = m(ψ̄RψL + ψ̄LψR), written in terms of chiral L and R components.

This is gauge invariant in QED which is L/R symmetric, but in the chiral SU(2)L × U(1)Y

theory ψR and ψL have different gauge transformations in Eq.(2.18). Simply adding mass

terms by brute force would lead to a sick theory. For masless vector bosons, e.g a photon

in QED, one only has transverse polarization degrees of freedom, gauge invariance implies

the absence of the longitudinal (L) modes. For massive W bosons one could consider the

scattering of longitudinally polarized W pairs, W+
L W

−
L → W

+
L W

−
L . The propagator for a

massive vector boson of virtuality q2 involves (gµν−qµqν/M2
W )/(q2−M2

W ). The longitudinally

polarized W bosons are described by polarization vectors with ǫLµ → qµ
MW

as q2 → ∞, so the

propagator approaches a constant at large q2. This implies that the longitudinally polarized

W scattering grows like the square of the c.m. energy and unitarity is violated since at most

a logarithmic growth is required. We therefore need to generate mass more subtly. One

possibility is to exploit the so-called Higgs mechanism suggested by Peter Higgs in 1964 and

motivated by the generation of Cooper pairs in superconductivity, involving the concept of

spontaneous symmetry breaking.

3 The Higgs Mechanism for SU(2)L × U(1)Y

We begin by defining the SU(2)L × U(1)Y covariant derivative

Dµ = ∂µ +
i

2
g~τ · ~Wµ + ig

′ Y

2
Bµ . (3.1)

We introduce an SU(2)L doublet of complex scalar Higgs fields

Φ =

(
φ
+

φ
0

)
. (3.2)

The doublet has weak isospin T = 1
2
and hypercharge Y = 1 leading to electromagnetic

charges +1, 0, for the T 3 = ±1
2
upper and lower members of the doublet (recallQ = T

3+Y/2).

In terms of real scalar fields φi one has

φ
+ =

φ1 + iφ2√
2

, φ
0 =

φ3 + iφ4√
2

. (3.3)

We then add to the massless Glashow model Lagrangian of Eq.(2.39) the scalar contribution

LΦ = (DµΦ)
†
D

µΦ− V (Φ) . (3.4)

The conjugate Φ† contains the antiparticles (φ−
φ̄
0).
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The most general SU(2)L × U(1)Y invariant and renormalisable scalar potential V (Φ) is

V (Φ) = −µ2(Φ†Φ) + λ(Φ†Φ)
2
. (3.5)

We arrange that LΦ contains a +µ2Φ†Φ term. Notice that an ordinary scalar mass term

would be−µ2Φ†Φ, but we want V (Φ) to be bounded below so there will be an SU(2)L×U(1)Y
invariant manifold of minima lying below V (Φ) = 0, and we obtain the “wine-bottle” or

“mexican hat” potential. LΦ is invariant under the SU(2)L × U(1)Y gauge transformations

Φ → Φ
′

= exp[−ig~τ
2
·∆− i

g
′

2
]Λ . (3.6)

V (Φ) has minima specified by

dV

d(Φ†Φ)
= 0 ⇒ −µ2 + 2λ(Φ†Φ) = 0 (3.7)

so that the degenerate minima are specified by

Φ†Φ|min =
µ
2

2λ
, (3.8)

or in terms of real scalar fields φi

1

2
(φ2

1 + φ
2
2 + ψ

2
3) =

µ
2

2λ
. (3.9)

We need to spontaneously break SU(2)L × U(1)Y by picking the vacuum from the set of

minima of the potential V . We shall choose the vacuum expectation values (vev’s) of the

fields φ1, φ2 and φ4 to be zero

〈0|φ1|0〉 = 〈0|φ2|0〉 = 〈0|φ4|0〉 = 0 . (3.10)

We assign a non-zero vev v to the field φ3

〈0|φ3|0〉2 = v
2 =

µ
2

λ
. (3.11)

Of course, we should be able to pick the vacuum direction completely arbitrarily, but in order

for the photon to remain massless, as it must do after the spontaneous symmetry breaking

we need to give a non-zero vev to an neutral field. To do things generally we should only

assign charges and other quantum numbers after performing the symmetry breaking. We

shall proceed with these particular choices.

We now expand Φ around this chosen vacuum, setting φ3 = H + v, where H is the neutral

scalar Higgs field. It is possible to choose a special gauge, the unitary gauge, in which

Φ =
1√
2

(
0

H + v

)
. (3.12)
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That is the “Goldstone” fields with zero vevs, φ1, φ2, φ4 can be eliminated. To see this

we can apply the local gauge transformation exp(i~τ · ~θ(x)/v) to this unitary gauge form to

obtain

Φ
′

=
1√
2
exp


 i~τ · ~θ(x)

v



(

0

H + v

)
. (3.13)

Expanding the exponential to O(θ) we find

Φ
′

=
1√
2

(
1 + iθ3/v i(θ1 − iθ2)/v

i(θ1 + iθ2)/v 1− iθ3/v

)
.

=
1√
2

(
θ2 + iθ1

v +H − iθ3

)
. (3.14)

So we see that the unitary gauge field of Eq.(3.12) is a gauge transformation of a general

Φ with four independent scalar fields. The idea is that the three originally massless gauge

fields W±
, Z

0 will become massive and acquire three extra longitudinal polarization degrees

of freedom by “eating” the three unphysical Goldstone bosons. Notice that the above gauge

transformation accordingly uses only three of the four possible SU(2)L×U(1)Y gauge trans-

formation parameters. λ = 0, ~∆ = −2~θ
v
. In practice the unitary gauge is unsuited for

calculations. One will need to add extra Feynman rules for the Goldstone bosons, analogous

to the extra Feynman rules for Fadeev Popov ghost particles in QCD.

We can now evaluate LΦ in unitary gauge explicitly and exhibit the spontaneously generated

mass terms for W± and Z0. From Eq.(3.1) we find

DµΦ =

(
∂µ + i

g
2
W

3
µ + i

g
′

2
Bµ i

g
2
(W 1

µ − iW
2
µ)

i
g
2
(W 1

µ + iW
2
µ) ∂µ − i

g
2
W

3
µ + i

g
′

2
Bµ

)(
0

H + v

)

=

( ig
2
(W 1

µ − iW
2
µ)(H + v)

(∂µ − ig
2
W

3
µ + ig

′

2
Bµ)(H + v)

)

=

( ig√
2
W

+
µ (H + v)

(∂µ − i
2
(g cos θw + g

′

sin θw)Zµ)(H + v)

)
. (3.15)

Notice that the photon field Aµ is no longer involved, only W±
µ and Zµ. The photon will

therefore not acquire a 1
2
M

2
AµA

µ mass term. The masslessness of the photon is guaran-

teed by the U(1)em gauge invariance of the Lagrangian. U(1)em is a residual symmetry

. SU(2)L × U(1)Y has been spontaneously broken to U(1)em, and the originally massless

W
±
, Z

0 gauge bosons have acquired masses in the process.

We finally obtain in the unitary gauge

LΦ = (DµΦ)
†
D

µΦ + µ
2Φ†Φ− λ(Φ†Φ)

2
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=
1

2
∂µH∂

µ
H +

1

4
g
2(H2 + 2vH + v

2)W+
µ W

−µ

+
1

8
(g2 + g

′2)(H2 + 2vH + v
2)ZµZ

µ

− µ
2
H

2 − λ

4
(H4 + 4vH3) . (3.16)

We have used the relation (g cos θw + g
′

sin θw)
2
= g

2 + g
′2. The masses of W± and Z can

now be read off by identifying the terms M2
WW

+
µ W

−µ and 1
2
M

2
ZZµZ

µ in Eq.(3.16). We find

MW =
1

2
gv (3.17)

MZ =
1

2
(g2 + g

′2)
1/2
v =

1

2

gv

cos θw
. (3.18)

For the Higgs scalar we identify the overallH2 term (1
2
µ
2−3

2
λv

2)H2 coming from µ2

2
(H + v)2−

λ
4
(H + v)4, and recalling that µ2 = λv

2 we obtain the H2 coefficient −1
2
M

2
H = −µ2 so that

MH =
√
2µ. There are also VVH, VVHH and HHH, HHHH Higgs self-interactions. The

corresponding Feynman rules and vertex factors are contained in the Appendix.

An immediate consequence of the above vector boson masses is that

MW

MZ

= cos θw . (3.19)

This is often referred to as the “weak ∆I = 1
2
rule” and is connected with our choice of a

Higgs doublet to perform the spontaneous symmetry breaking.

Notice that from the measured fine structure constant α = e
2
/4π and the vector boson

masses MW and MZ we can determine sin2
θw, v and g, but not µ. This means that the

Higgs mass MH is not determined directly by other experimentally measured parameters.

We shall return a little later to a discussion of the number of independent Standard Model

parameters.

3.1 Yukawa terms for lepton masses

To give charged leptons a mass one adds a so-called Yukawa term to the Lagrangian, LY (l),

where l = e, µ, τ labels the lepton. We have for instance for an electron

LY (e) = −Ge[χ̄LΦeR + ēRΦ
†
χL] . (3.20)
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This is SU(2)L × U(1)Y invariant. Ge is the Yukawa coupling. On spontaneous symmetry

breaking we have in the unitary gauge

Φ =
1√
2

(
0

H + v

)
, (3.21)

substituting this into LY (e) one has

LY (e) = −Ge√
2
(v +H)(ēLeR + ēReL)

= −Ge√
2
(H + v)ēe = −Gev√

2
(ē)− Ge√

2
(ēeH) . (3.22)

From which we can identify the electron mass me = Gev/
√
2, and the lepton-Higgs coupling

g(Hēe) = me/v = gme/(2MW ). Notice that the νL upper element of the doublet does not

appear since in unitary gauge the upper entry in Φ is zero, and so as required we do not

generate a neutrino mass term or interaction with the Higgs. We see that the coupling

between leptons and the Higgs is proportional to the lepton mass, so τ signatures involving

the heaviest mass lepton will be important for Higgs searches at colliders. Similarly for

quarks bb̄, and tt̄ signatures will be important. The vertex factor and Feynman rule for the

Yukawa term is contained in the Appendix.

3.2 Electroweak quark sector

So far we have just considered the lepton sector. We also need to include a Lagrangian

L(q) to describe electroweak quark interactions. We have six quarks (three generations)

u, d, s, c, b, t. Qu = Qc = Qt = 2
3
, and Qd = Qs = Qb = −1

3
. We can construct SU(2)L

isospin doublets analogous to the leptonic case

χ
f
L =

(
Uf

Df

)
f = 1, 2, 3 (3.23)

Here U1 = u, U2 = c, U3 = t and D1 = d,D2 = s,D3 = b. However experimentally

one observes n → pe
−
ν̄e and also Λ → pe

−
ν̄e decays, corresponding to d → u and s →

u transitions. This implies that the weak interaction eigenstates are mixtures of flavour

eigenstates. We therefore replace the above χf
L by

χ
f
L =

(
Uf

D
′

f

)
, f = 1, 2, 3 , (3.24)

where D
′

f is a flavour rotated mixture

D
′

f =
∑

f
′
=1,2,3

Vff ′Df
′ . (3.25)
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Here V is a 3× 3 unitary matrix (V V † = 1) called the Cabibbo-Kobayashi-Maskawa CKM

matrix. For two generations we have the Cabibbo model

D
′

1 = cos θcd+ sin θcs

D
′

2 = − sin θcd+ cos θcs . (3.26)

Here θc is the Cabibbo angle, and experimentally one finds θc ≈ 13 degrees or cos θc ≈ 0.97.

The full three generation CKM matrix has the following |Vij| structure for the magnitudes

of the elements

V =




|Vud| = 0.97 |Vus| = .23 |Vub| ≈ 0

|Vcd| = 0.24 |Vcs| = 0.97 |Vcb| = 0.06

|Vtd| ≈ 0 |Vts| ≈ 0 |Vtb| ≈ 1


 . (3.27)

The matrix involves 4 parameters- 3 angles and 1 complex phase. The presence of this com-

plex phase enables CP violation to occur.

In analogy with the leptonic isotriplet of currents one then defines the quark isotriplet

J
fi
µ = χ̄

f
Lγµ

1

2
τiχ

f
L (i = 1, 2, 3) . (3.28)

As before i = 1, 2 are charged currents, and Jf3
µ is a neutral current.

J
f3
µ =

1

2
(ŪfLγµUfL − D̄

′

fLγµD
′

fL)

=
1

2
(ŪfL − D̄fLγµDfL) . (3.29)

Notice that D
′

fL the rotated flavour mixture has been replaced by DfL in the final line. This

follows from the unitarity property V V † = 1. It has the important consequence that flavour

changing neutral current processes are forbidden. We can now determine the electromagnetic

quark currents

J
f(em)
µ =

(
2

3

)
ŪfRγmuUfR +

(
2

3

)
ŪfLγmuUfL +

(−1

3

)
D̄fRγmuDfR +

(−1

3

)
D̄fLγmuDfL .

(3.30)

Here the (2
3
), (−1

3
) in brackets denote the electric charges of the quarks. If we define the

hypecharge current JfY
µ in the same way as for the leptons, so that Jf(em)

µ = J
f3
µ + 1

2
J
fY
µ ,

then we can infer that

J
fY
µ =

(
1

3

)
(ŪfLγmuUfL + D̄fLγmuDfL) +

(
4

3

)
ŪfRγmuUfR +

(−2

3

)
D̄fRγmuDfR . (3.31)

Again the (1
3
) etc. numbers in brackets refer to the hypercharges of the particles. One can

then read off for each generation Uf , Df the charges (T, T 3
, Q, Y ))

UL = (
1

2
,
1

2
,
2

3
,
1

3
)
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DL = (
1

2
,−1

2
,−1

3
,
1

3
)

UR = (0, 0,
2

3
,
4

3
)

DR = (0, 0,−1

3
,−2

3
) (3.32)

So analogous to L(l) for leptons one obtains the quark electroweak lagrangian L(∐)

L(q) =
∑

f=1,2,3

(χ̄f
Lγ

µ
[
i∂µ −

1

2
~τ · ~Wµ −

(
1

3

)
Bµ

]
χ
f
L

= +ŪfRγ
µ

[
i∂µ −

g
′

2

(
4

3

)
Bµ

]
UfR + D̄fRγ

µ

[
i∂µ −

g
′

2

(−2

3

)
Bµ

]
DfR) . (3.33)

To give masses to the quarks we shall require a corresponding quark Yukawa term LY (q).

LY (q) =
∑

f=1,2,3

−[χ̄f
LG

D
ff

′ΦDf
′
R + χ̄

f
LG

U
ff

′Φc
Uf

′
R + h.c.]. (3.34)

Here the GU
ff

′ and GD
ff

′ are the matrix of quark Yukawa couplings. To give a mass to the

upper UfL members of the chiral doublet one needs to use the conjugate scalar field

Φc =

(
φ̄
0

−φ−

)
. (3.35)

After spontaneous symmetry breaking one has in unitary gauge

Φc =

(
H + v

0

)
. (3.36)

In this way one generates a quark mass matrix and qq̄H interactions. We shall not pursue

the details any further.

3.3 SM Lagrangian and independent parameter count

Assembling all the pieces we have discussed we can now arrive at the Glashow-Weinberg-

Salam Standard Model Lagrangian

LSM = LW + LB +
∑

l=e,µ,τ

L(l) +
∑

l=e,µ,τ

LY (l) + L(q) + LY (q) + LΦ + LQCD + . . . . (3.37)

The ellipsis denotes further gauge-fixing and ghost contributions. The Stndard Model as

specified by this Lagrangian has been shown to be renormalisable by ‘t Hooft and Veltman.

The unitarity problem for W+
L W

−
L → W

+
L W

−
L scattering is also cured. It is solved by extra

diagrams involving virtual Higgs exchange which now appear due to the WWH interaction
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terms.

It is interesting to count how many of the parameters in the Standard Model are independent.

There are fifteen parameters overall if we ignore the quark sector, which may be divided into

couplings: e(α), g, g
′

, Ge, Gµ, Gτ . Masses: MW , MZ ,MH ,me,mµ,mτ . Higgs sector parame-

ters µ2
, λ (v2 = µ2

λ2 ), and last but not least the weak mixing angle sin2
θw. There are clearly

many relations between the parameters, such as MW = 1
2
gv or e = g sin θw for instance. It

turns out that there are in fact seven independent parameters which if specified can then

predict all fifteen. One can choose for instance the set g, g
′

, Ge, Gµ, Gτ , µ
2
, λ. Alternatively

α,MW ,MZ ,MH ,me,mµ,mτ or α, sin2
θw,MH , v, Ge, Gµ, Gτ are possible sets.

Including the electroweak quark sector adds the CKM matrix V (three angles and one com-

plex phase) and mass matrices m(U),M(D), (mu,mc,mt,md,ms,mb) making 4+3+3 = 10

extra parameters. Including QCD we have in addition ΛQCD and the QCD θ-parameter

involved in the strong CP problem. So overall there are 19 independent free parameters in

SU(3)c × SU(2)L × U(1)Y .

A model with at least 19 undetermined parameters, in which the particular representa-

tions containing fermions and scalars are not compellingly motivated, and with a mysterious

replication of three generations, does not seem a likely candidate for a complete theory of

everything, even though it has proved consistent with experiment in essentially every detail

checked. The remaining ingredient to be discovered is of course the Higgs, experimental

evidence for which is keenly anticipated at the LHC.
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4 Appendix of Feynman rules

The following pages summarize the Feynman Rules in unitary gauge for one generation

of leptons. All the Lagrangian terms needed to derive the vertex factors for the different

interactions are contained in these lecture notes.
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Feynman Rules in the Unitary Gauge (for one Generation of
Leptons)

Propagators:

All propagators carry momentum p.

W
µ ν −i (gµν − pµ pν/M

2
W )/(p2 −M

2
W )

Z
µ ν −i (gµν − pµ pν/M

2
Z)/(p

2 −M
2
Z)

A
µ ν −i gµν/p2

e
i (γ · p+me)/(p

2 −m
2
e)

ν
i γ · p/p2

H
i/(p2 −m

2
H)
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Three-point gauge-boson couplings:

All momenta are incoming

Aρ

W
−
µ W

+
ν

p3

p1 p2
i g sin θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)

Zρ

W
−
µ W

+
ν

p3

p1 p2
i g cos θW ((p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gρµ)
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Four-point gauge-boson couplings:

W
−
ρ W

+
σ

W
−
µ W

+
ν

i g
2 (2gµρ gνσ − gµν gρσ − gµσ gνρ)

Zρ Zσ

W
−
µ W

+
ν

i g
2 cos2 θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Aρ Aσ

W
−
µ W

+
ν

i g
2 sin2

θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)

Zρ Aσ

W
−
µ W

+
ν

i g
2 cos θW sin θW (2gµν gρσ − gµρ gνσ − gµσ gνρ)
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Three-point couplings with Higgs scalars:

H H

− 3
2
i g m

2
H/MW

H

e e

− 1
2
i g me/MW

H

W
−
µ W

+
ν

i g MW gµν

H

Zµ Zν

i (g/ cos2 θW ) MW gµν
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Four-point couplings with Higgs scalars:

H H

H H

− 3
4
i g (m2

H/M
2
W )

H H

W
−
µ W

+
ν

1
2
i g

2
gµν

H H

Zµ Zν

1
2
i (g2/ cos2 θW ) gµν

- 145 -



Fermion interactions with gauge bosons:

W
−
µ

e ν

− i

(
g/2

√
2
)
γµ (1− γ

5)

Aµ

e e

+ i g sin θW γµ

Zµ

e e

+ 1
4
i (g/ cos θW ) γµ

(
1− 4 sin2

θW − γ
5
)

Zµ

ν ν

− 1
4
i (g/ cos θW ) γµ (1− γ

5)
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Phenomenology

August 10, 2011

P. Richardson,
IPPP, Durham University.

1 Introduction

Historically the lecture notes for the phenomenology course have consisted of the slides
presented in the lectures. These notes are intended to provide additional information,
and more mathematical detail, on the more theoretical aspects of the course which don’t
change from year to year. The recent experimental results, which as the LHC experiments
take more and more data change from day-to-day, will continue to be presented solely on
the slides used in the lectures.

The course will focus primarily, and unapologetically, on hadron collider, and specifi-
cally LHC, phenomenology. In order to study hadron collisions we need to understand the
basics of cross section calculations, Quantum Chromodynamics (QCD) and jets which we
will first consider in the simpler environment of e+e− and lepton-hadron collisions before
we go on to study hadron–hadron collisions. This occupies the first three lectures of the
course. The next two lectures consider the electroweak and Higgs sector of the Standard
Model. Lectures six and seven consider possible physics beyond the Standard Model.
The final lecture looks at the physics of Monte Carlo event generators which are now an
essential tool in all aspects of modern collider physics.

Unfortunately there is no single good book on modern phenomenology. Two old
classics but now a bit dated are:

• Quarks and Leptons Halzen and Martin [1];

• Collider Physics Barger and Phillips [2].

Two good books, although mainly focused on QCD and probably at a bit too high a level
for this course, are:

• QCD and Collider Physics Ellis, Stirling and Webber [3];

• Quantum Chromodynamics Dissertori, Knowles and Schmelling [4];

and of course the classic on Higgs physics

• The Higgs Hunter’s Guide Gunion, Haber, Kane and Dawson [5].

In addition the recent reviews:

• Towards Jetography [6] which provides a good primer on jet physics;

• General-purpose event generators for LHC physics [7] which gives a detailed descrip-
tion of the physics of Monte Carlo event generators;

are good sources of additional information.
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2 e+e− Annihilation

Historically this course would spend a significant amount of time looking at e+e− anni-
hilation. It is less relevant for current experiments but the results from LEP are still
important and it is worth discussing as the simplest type of collisions. If we consider
what happens when electrons and positrons collide, then the most likely thing is that
some hadrons are produced. However, none of the Lagrangians or Feynman rules you’ve
learnt involve hadrons. This is the key issue in most collider physics, we can calculate
things for quarks and gluons but we observe hadrons.

2.1 Leading Order

We will start by studying one of the simplest possible processes, e+e− annihilation via the
exchange of a photon or Z0 boson, as shown in Fig. 1. This process can produce either

e
+

e
−

ℓ+, ν̄

ℓ−, ν

γ/Z0 e
+

e
−

q

q̄

γ/Z0

Figure 1: Feynman diagrams for e+e− annihilation into leptons and quarks.

quarks or leptons. Unfortunately due to quark confinement we cannot observe free quarks
directly, instead quarks and antiquarks will produce hadrons with unit probability. Much
of what we will study in this course will be concerned with the question, given we observe
hadrons how do we infer what was going on in the fundamental process involving quarks?

We will start with the simplest example, given quarks and antiquarks produce quarks
with unit probability we can measure the cross section for the process e+e− → qq̄, which
we can calculate perturbatively, by measuring the cross section for e+e− → hadrons. This
is the basis of most collider phenomenology, we want to measure things using hadrons
that we can calculate using quarks. The total cross section for e+e− annihilation into
hadrons is the simplest such observable.

Using the techniques you have learnt in the other courses you can now calculate the
total cross section for e+e− annihilation. In reality it is more common to study the ratio

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (1)

as this reduces experimental uncertainties. At low energies this process is dominated by
photon exchange so we can neglect the Z0 boson. In this limit

σ(e+e− → µ
+
µ
−) =

4πα2

3s
, (2)

where s is the centre-of-mass energy of the collision squared. The cross section for the
production of quarks is

σ(e+e− → hadrons) =
4πα2

3s

∑

q

e
2
qNC , (3)
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Figure 2: The ratio R ≡ σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

as a function of energy taken from Ref. [8].

where eq is the charge of the quark in units of the positron charge and the sum runs over
all quarks for which the centre-of-mass energy

√
s > 2mq, where mq is the mass of the

quark. Remember we must sum over all the quantum numbers of the quarks so the cross
section is multiplied by number of colours, Nc. Therefore for centre-of-mass energies much
less than the mass of the Z

0 boson,
√
s ≪ Mz,

R =
∑

q

e
2
qNC . (4)

The experimental measurement of this ratio is shown in Fig. 2 as a function of energy
showing the thresholds for the production of the charm and bottom quarks. Below
the charm threshold there are three active quarks down (ed = −1

3
), up (eu = 2

3
) and

strange (es = −1
3
) giving R = 2. Above the charm (ec =

2
3
) threshold R = 10

3
while above

the bottom (eb = −1
3
) threshold R = 11

3
.

2.2 Higher Order Corrections

When we draw Feynman diagrams we are performing a perturbative expansion in the (hope-
fully) small coupling constant. Unfortunately the strong coupling often isn’t very small,
at the Z0 mass, αS(MZ) = 0.118. We therefore need to consider higher orders in the
perturbative expansion. There are always two types of correction:

• real gluon emission;

• virtual gluon loops.
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2.2.1 Real Emission

There are two possible diagrams for gluon emission, see Fig. 3. The matrix element, only

e+

e
−

q

q̄

g
γ/Z0 e+

e
−

q

q̄

γ/Z0

g

Figure 3: Feynman diagrams for e+e− → qq̄g.

considering photon exchange for simplicity, is

M = e
2
eqgst

a
ij v̄(pb)γµu(pa)

−gµν

q2
(5)

ūi(p1)

[
γσ

p16 +p36
(p1 + p3)2

γν − γν
p26 +p36

(p2 + p3)2
γσ

]
vj(p2)ǫ

σ
a(p3),

where pa,b are the 4-momenta of the incoming electron and positron, respectively. The out-
going quark, antiquark and gluon have 4-momenta p1,2,3, respectively. The total momen-
tum of the system q = pa+pb = p1+p2+p3. The gluon has colour index a = 1, . . . , N2

C−1
whereas the quark/antiquark have colour indices i, j = 1, . . . , NC .

Summing/averaging over spins and colours

|M|2 = 4e2e2qg
2
sNc

s
CF

(p1 · pa)2 + (p1 · pb)2 + (p2 · pa)2 + (p2 · pb)2
p1 · p3p2 · p3

. (6)

The colour algebra gives a colour factor

N2
C
−1∑

a

t
a
ij

(
t
a
ij

)∗
= t

a
ijt

a
ji =

1

2
δ
aa =

1

2
(N2

C − 1) = NCCF , (7)

where the colour charges in the fundamental (quarks and antiquarks) and adjoint (gluons)
representations are

CF ≡ 1

2NC
(N2

C − 1) and CA ≡ NC , (8)

respectively.
The three-body phase space is

dΦn(pa + pb; p1, p2, p3)

= δ
4 (pa + pb − p1 − p2 − p3)

d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

=
1

8(2π)9
p1dp1d cos θdφp2dp2d cosβdα

1

p3
δ(
√
s− p1 − p2 − p3),

where θ and φ are the polar and azimuthal angles, respectively, of the outgoing quark
with respect to the beam direction. The polar and azimuthal angles of the antiquark with
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respect to the quark direction are β and α, respectively. We have integrated over p3 using
the δ-function and assumed that the outgoing particles are massless.

Using momentum conservation

|~p3| = |~p1 + ~p2| =
√

p21 + p22 + 2p1p2 cosβ. (9)

Therefore the integral over the remaining δ-function is
∫

d cosβδ(
√
s− p1 − p2 − p3) =

p3

p1p2
, (10)

so

dΦn(pa + pb; p1, p2, p3) =
1

8(2π)9
dp1d cos θdφdp2dα (11)

=
s

16(2π)7
dx1dx2

d cos θdφdα

2(2π)2
,

where xi ≡ 2pi/
√
s. Momentum and energy conservation requires that x1 + x2 + x3 = 2.

The total cross section is

σ =
1

2s

s

16(2π)3

∫
dx1dx2

d cos θdφdα

2(2π)2
|M |2, (12)

=
4πα2e2qNc

3s
CF

αS

2π

∫
dx1dx2

x2
1 + x2

2

(1− x1)(1− x2)
.

The contribution from the Z0 boson is the same except for σ0. This is divergent at the
edge of phase space as x1,2 → 1 so that the total cross section is σ = ∞!

This is a common feature of all perturbative QCD calculations. Configurations which
are indistinguishable from the leading-order result are divergent. Physically there are two
regions where this happens.

1. Collinear limit: If we take x1 → 1 at fixed x2 or x2 → 1 at fixed x1. We can see
what happens physically by considering the dot product of the antiquark and gluon
4-momenta, i.e.

2p2 · p3 =
sx2x3

2
(1− cos θ23) = s(1− x1) ⇒ (1− cos θ23) =

2(1− x1)

x2x3

→ 0. (13)

So the limit x1 → 1, where the matrix element diverges, corresponds to the angle
between the antiquark and gluon θ23 → 0, i.e. collinear emission of the gluon from
the antiquark. Similarly the limit x2 → 1 corresponds to collinear emission of the
gluon from the quark.

2. Soft limit: x1,2 → 1 at fixed 1−x1

1−x2
. We can consider what happens in this limit by

considering the energy of the gluon

Eg =

√
s

2
x3 =

√
s

2
(1− x1 + 1− x2) → 0, (14)

i.e. the matrix element diverges in the soft limit, when the energy of the gluon is
small.
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These are both universal features of QCD matrix elements. In these limits QCD matrix
elements factorize, i.e. the matrix element including the emission of a soft or collinear
gluon can be written as the convolution of the matrix element before the emission and a
universal term describing collinear or soft emission.

Collinear Limit If we first consider collinear emission we take the momentum of the
gluon p3 parallel to p2 (θ23 = 0). We can therefore define

p2 = (1− z)p̄2, p3 = zp̄2, with p̄
2
2 = 0, (15)

where p̄2 is the momentum of the antiquark before the gluon radiation and z is the
fraction of the original antiquark’s momentum carried by the gluon. In this limit the
matrix element factorizes

|Mqq̄g|2 = |Mqq̄|2 ×
g2s

p2 · p3
× CF

1 + (1− z)2

z
. (16)

As does the phase space

dx1dx2 −→
1

4
z(1− z)dzdθ223. (17)

Putting this together

σ = σ0

∫
dθ223
θ223

dzCF
αS

2π

1 + (1− z)2

z
= σ0

∫
dθ223
θ223

dz
αS

2π
P̂q→gq(z). (18)

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting function is a universal
probability distribution for the radiation of a collinear gluon in any processes producing
a quark. The splitting functions are:

P̂g→gg(z) = CA

[
1− z

z
+

z

1− z
+ z(1− z)

]
; P̂q→qg(z) = CF

1 + z2

1− z
; (19)

pg→qq̄(z) = TR

[
z
2 + (1− z)2

]
; P̂q→gq(z) = CF

1 + (1− z)2

z
;

where z is the fraction of the momenta carried by the first outgoing particle and TR = 1
2
.

Soft Limit In the limit that Eg → 0 the matrix element for the process factorizes

Mqq̄g = Mqq̄gst
a
ij

(
p1

p1 · p3
− p2

p2 · p3

)
· ǫA(p3), (20)

the eikonal current. The matrix element squared therefore factorizes in this case

|Mqq̄g|2 = |Mqq̄|2g2sCF
2p1 · p2

p1 · p3p2 · p3
. (21)

The phase space is

dx1dx2 −→
2

s
EgdEgd cos θ. (22)
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So in the soft limit

σ = σ0

∫
CF

αS

2π

dEg

Eg
d cos θ

2(1− cos θqq)

(1− cos θqg)(1− cos θqg)
, (23)

the dipole radiation pattern a universal probability distribution for the emission of a soft
gluon from any colour-connected pair of partons.1

2.2.2 Virtual Corrections

There are three diagrams involving virtual gluon loops, see Fig. 4. This contribution is

e+

e
−

q

q̄

g
γ

e+

e
−

q

q̄

γ
g

e+

e
−

q

q̄

g
γ

Figure 4: Virtual loop corrections to e+e− → qq̄.

also divergent, but negative. This will cancel the real divergence to give a finite answer.
To show this we need to regularize both the real and virtual cross sections and add them
together. The result should be finite when we remove the regularization. The standard
way of doing this is to work in d = 4 − 2ǫ dimensions where to regularize these infrared
divergences ǫ < 0. In this case

σreal = σ0CF
αS

2π
H(ǫ)

(
4

ǫ2
+

3

ǫ
+

19

2
− π

2 +O(ǫ)

)
,

σvirtual = σ0CF
αS

2π
H(ǫ)

(
− 4

ǫ2
− 3

ǫ
− 8 + π

2 +O(ǫ)

)
,

where H(0) = 1. The sum

σtotal = σreal + σvirtual = σ0CF
3αS

4π
, (24)

is finite as ǫ → 0. So finally combining this correction with the leading-order result

R(e+e−) = R0(e
+
e
−)
(
1 +

αs

π

)
. (25)

Measuring R(e+e−) is one way of measuring the strong coupling giving2

αS(mZ) = 0.1226± 0.0038. (26)

The second and third order corrections, and the results for the next-to-leading-order
corrections including quark masses are also known.

This is the simplest example of an observable which we can calculate using perturba-
tion theory involving quarks and gluons, but measure experimentally using hadrons. We
now need to go on and consider more complicated observables.

1Strictly this is only universal at the amplitude level, not as a probability distribution.
2Taken from the Ref. [8].

- 157 -



3 Running Coupling

q

q̄

gg g

q

q̄

Figure 5: Example virtual corrections contributing to the evolution of the strong coupling
constant.

In addition to the infrared, soft and collinear, divergences we saw in the calculation of
σ(e+e− → hadrons) it is possible to have ultraviolet divergences. The virtual corrections
shown in Fig. 5 are divergent in the ultraviolet. These, and other similar corrections, lead
to the strong coupling being renormalized to absorb the ultraviolet singularities. The
renormalisation procedure introduces an unphysical renormalisation scale µ.

The leads to:

1. diagrams are dependent on µ;

2. αS is replaced by the running coupling αS(µ);

3. although we can’t calculate the coupling we can calculate how it changes with scale:

µ
2dαS

dµ2
≡ β(αS) = −β0α

2
S + . . . β0 =

11Nc − 4TRnf

12π
, (27)

where nf is the number of active quark flavours.

For β0 > 0 the coupling displays asymptotic freedom, i.e. αS(µ) → 0 as µ → ∞ which
allows us to perform perturbative calculations at high energies where the coupling is small.

It is standard to quote the value of αS(MZ). The value at other scales can by found by
solving the evolution equation. Recent experimental measurements of the strong coupling
evolved to the Z0 mass and the running of coupling are shown in Fig. 6.

It is common to define a scale ΛQCD so that

αs(µ) =
4π

β0 ln
(

µ2

Λ2
QCD

) [1 + . . .] . (28)

In general there is a choice of precisely how we perform the renormalisation, which leads
to both renormalisation scale and scheme dependence. Physical observables don’t depend
on µF or the renormalisation scheme, but fixed order perturbative calculations do.

3.1 Event Shapes

If we consider the e
+
e
− annihilation events shown in Fig. 7 we see a collimated bunch of

hadrons travelling in roughly the same direction as the original quarks or gluons. Often
you can “see” the jets without some fancy mathematical definition. We will come back
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Figure 6: Measurements of the strong coupling at the Z0 mass and the running of the
coupling taken from Ref. [8].

and consider jets in more detail when we consider hadron–hadron collisions later in the
course, in Section 6.

An alternative to defining jets is to define a more global measure of the event which
is sensitive to the structure of the event. We need a number of properties to achieve this,
the most important of which is infrared safety, i.e. if there is soft or collinear emission
the answer doesn’t change. Formally if a parton splits into two collinear partons

p → zp + (1− z)p, (29)

or if a soft parton is emitted with momentum

p → 0, (30)

the result should not change.
After the total cross section, the simplest infrared safe observable is the thrust

T = max
~̂n

∑
i |~pi · ~̂n|∑
i |~pi|

, (31)

where the sum is over all the final-state particles and the direction of the unit vector ~̂n,
the thrust axis, is chosen to maximize the projection of the momenta of the final-state
particles along that direction.

For a two-jet pencil-like event all the particles lie along the thrust axis giving T = 1.
For a totally spherical event the thrust can be calculated by taking a spherical distribution
of particles in the limit of an infinite number of particles giving T = 1

2
. For three partons
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Figure 7: Example two and three jet e+e− events.

the thrust axis will lie along the direction of the most energetic parton, by momentum
conservation there is an equal contribution to the thrust from the other partons giving
T = max{x1, x2, x3}.

In order to calculate the differential cross section with respect to the thrust for e+e− →
qq̄g we can start from the differential cross section in Eqn. 12. In many cases when we
wish to introduce a new quantity into a differential cross section it is easier to insert the
definition using a δ-function rather than performing a Jacobian transform, in this case we
use

1 =

∫
dTδ(T −max{x1, x2, x3}), (32)

to give
dσ

dT
= σ0CF

αS

2π

∫
dx1dx2

x2
1 + x2

2

(1− x1)(1− x2)
δ(T −max{x1, x2, x3}), (33)

where σ0 is the leading-order cross section for e+e− → qq̄. This expression can be evalu-
ated in each of the three phase-space regions shown in Fig. 8. First in the region where
x1 > x2,3

dσ

dT

∣∣∣∣
x1>x2,3

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
T 2 + x2

2

(1− T )(1− x2)
(34)

= σ0CF
αS

2π

1

1− T

∫ T

2(1−T )

dx2
T 2 + 1

(1− x2)
− (1 + x2),

where we have used the δ-function to integrate over x1 and the limits on x2 are given by
x2 = x1 = T for the upper limit and T = x1 = x3 = 2 − x1 − x2 = 2 − T − x2 for the
lower limit. Performing the integral gives

dσ

dT

∣∣∣∣
x1>x2,3

= σ0CF
αS

2π

1

1− T

[
(T 2 + 1) ln

(
2T − 1

1− T

)
+ 4− 7T +

3

2
T

2

]
. (35)

- 160 -



0 1
0

1

x1

x2

x1 > x2,3

x2 > x1,3

x3 > x1,2

Figure 8: Phase space for e+e− → qq̄g. The requirement that x3 ≤ 1 ensures that
x1 + x2 ≥ 1 by momentum conservation so that physical phase space is the upper half
plane.

The same result is obtained in the region x2 > x1,3 due to the symmetry of the formulae
under x1 ↔ x2.

In the final region we can take the integrals to be over x2,3 and use the δ-function to
eliminate the integral over x3 giving

dσ

dT

∣∣∣∣
x3>x1,2

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
(2− T − x2)

2 + x2
2

(T + x2 − 1)(1− x2)
, (36)

= σ0CF
αS

2π

∫ T

2(1−T )

dx2
1

T

[
(2− T − x2)

2 + x
2
2

] [ 1

T + x2 − 1
+

1

1− x2

]
,

= σ0CF
αS

2π

2

T

[
(2− 2T + T

2) ln

(
2T − 1

1− T

)
+ 2T − 3T 2

]
,

where after the integral over x3, x1 = 2−x2−T and the limits are calculated in the same
way as before.

Putting the results from the three regions together gives

dσ

dT
= σ0CF

αS

2π

[
2

T (1− T )
(3T (T − 1) + 2) ln

(
2T − 1

1− T

)
+

3(3T − 2)(T − 2)

1− T

]
. (37)

This result clearly diverges as T → 1, indeed in this limit

1

σ0

dσ

dT

T→1−→ −CF
αS

2π

[
4

(1− T )
ln (1− T ) +

3

1− T

]
. (38)

We can use this result to define a two- and three-jet rate so that the three jet rate is

R3(τ) =

∫ 1−τ

1
2

1

σ0

dσ

dT
τ→0−→ CF

αS

2π
2 ln2

τ, (39)
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Figure 9: Thrust distribution at various centre-of-mass energies compared with Monte
Carlo simulations, taken from Ref. [9].

and the two jet rate

R2(τ) = 1− R3(τ)
τ→0−→ 1− CF

αS

2π
2 ln2 τ. (40)

Similar logarithmically enhanced terms appear at all orders in the perturbative expansion
giving an extra ln2

τ at every order in αS, i.e.

R2(τ) ≡
∫ 1

1−τ

dT
1

σ

dσ

dT

τ→0∼ 1− CF
αS

2π
2 ln2

τ +
(
CF

αS

2π

)2
2 ln4 τ + . . . (41)

Although αS is small, ln2
τ in large so the perturbative expansion breaks down. The

solution is to resum the large αn
S ln

2n
τ terms to all orders giving the Sudakov Form Factor

R2(τ)
τ→0∼ exp

[
−CF

αS

2π
2 ln2 τ

]
. (42)

This is finite (zero) at τ = 0, i.e. the probability for no gluon radiation is zero. In general
the Sudakov form factor gives the probability of no radiation

P (no emission) = exp
[
−P̂naive(emission)

]
. (43)

An example of the experimental measurement of the thrust distribution is shown in
Fig. 9 compared to various Monte Carlo simulations which include resummation of these
large logarithmic contributions..
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4 Deep Inelastic Scattering

Historically measurements of deep inelastic scattering were very important for establish-
ing the nature of QCD. Nowadays they are mainly important for the measurement of
the parton distribution functions we need to calculate all cross sections for processes
with incoming hadrons. As the proton isn’t fundamental at sufficiently high energies the
scattering is from the constituent quarks and gluons.

θkµ
k′µ

xpµ

pµ

qµ = (k − k′)µ



W

Figure 10: Deep inelastic scattering kinematics.

In deep inelastic scattering processes it is conventional to use the kinematic variables
shown in Fig. 10. The struck parton carries a fraction x of the four-momentum of the
incoming hadron. The four-momentum of the exchanged boson is q and the virtuality of
the boson Q2 = −q2. Using momentum conservation

xp+ q = p
′
, (44)

where p′ is the 4-momentum of the scattered quark. Therefore (xp + q)2 = 0 giving

x = Q2

2p·q
. Similarly the mass of the hadronic system is W 2 = (p + q)2. By definition

(k + p)2 = 2k · p = s and therefore y= p·q
p·k

= Q2

xs
.

Deep inelastic scattering has Q2 ≫ M2 (deep) and W 2 ≫ M2 (inelastic), where M is
the proton mass. Historically the observation and understanding of DIS was one of the
key pieces of evidence for quarks. On general grounds the cross section has the form

d2σ

dxdQ2
=

4πα2

xQ4

[
y
2
xF1(x,Q

2) + (1− y)F2(x,Q
2)
]
, (45)

which parameterizes the cross section in terms of two unknown structure functions,
F1,2(x,Q

2). If we consider that the proton is a bound state of partons we can calcu-
late these structure functions.

Suppose that the probability of a given type of quark carrying a fraction η of the
proton’s momentum is fq(η) the cross section for hadron scattering can be written in
terms of those for partonic scattering

d2σ(e+ proton)

dxdQ2
=
∑

q

∫ 1

0

dηfq(η)
d2σ(e+ q(ηp))

dxdQ2
. (46)
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Figure 11: The reduced cross section, which is equivalent to F2 up to some small correc-
tions, measured by the H1 and ZEUS experiments from Ref. [10].

Taking the outgoing parton to be on-shell:

(q + ηp)2 = 2ηp · q −Q
2 = 0 ⇒ η = x.

Therefore
d2σ(e+ proton)

dxdQ2
=
∑

q

fq(x)
d2σ(e+ q(xp))

dQ2
. (47)

The differential cross section for e±(k)+ q(p) → e±(k′)+ q(p′) via photon exchange which
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dominates at low Q2 for neutral current scattering is

d2σ(e+ q(xp))

dQ2
=

2πα2e2q

Q4

[
1 + (1− y)2

]
, (48)

where eq is the charge of the quark.
So in the naive parton model

2xF1(x) = F2(x), (49)

F2(x) = x

∑

q

e
2
qfq(x),

are functions of x only, Bjorken scaling. Bjorken scaling works reasonably well, see Fig. 11,
but the quantum corrections, lead to scaling violations.

e−

q

e−

q

e−

q

e−

q

e−

q

e−

q

Figure 12: Real and virtual corrections to DIS.

If we consider the O(αS) corrections we have the following divergent contributions:

1. soft gluon, Eg → 0;

2. gluon collinear to the final-state quark;

3. gluon collinear to the initial-state quark;

4. the virtual matrix element has a negative divergence;

corresponding to the diagrams shown in Fig. 12.
The contributions from (1), (2) and (4) are indistinguishable from the tree-level con-

figuration and the divergences cancel between the real and virtual corrections. However
(3) has momentum fraction η > x and (4) η = x so the initial-state divergences don’t
cancel.

Just as with final-state radiation in the collinear limit it can be shown that

dσq→qg → dσq→q ×
αS

2π
CF

1 + z2

1− z

dt

t

dz

z
. (50)

Here we have the unregularized DGLAP splitting function P̂q→qg, it is singular as z → 1.
The virtual contribution contains a compensating singularity at exactly z = 1. The
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regularized splitting function is defined to be the sum of real and virtual contributions3

Pqq(z) = CF
1 + z2

1− z
+ CF δ(1− z)

{
3

2
−
∫ 1

0

dz′
2

1− z′

}
, (51)

≡ CF

(
1 + z2

(1− z)+
+

3

2
δ(1− z)

)
.

The total contribution is

F2(x,Q
2) = x

∑

q

e
2
q

∫ 1

x

dη

η
fq(η)

[
δ

(
1− x

η

)
(52)

+
αS

2π
Pqq

(
x

η

)∫

0

dt

t
+ R̄qq

(
x

η

)]
,

where R̄qq

(
x
η

)
is a calculable finite correction.

The integral over t is infrared divergent, comes from long timescales and should be part
of the hadronic wavefunction. We therefore introduce a factorization scale µF and absorb
contributions with t < µF into the parton distribution function so that fq(η) becomes
fq(η, µ

2
F ).

F2(x,Q
2) = x

∑

q

e
2
q

∫ 1

x

dη

η
fq(η, µ

2
F )

[
δ

(
1− x

η

)
(53)

+
αS

2π
Pqq

(
x

η

)
ln

Q2

µ2
F

+Rqq

(
x

η

)]
.

The finite piece is dependent on exactly how we define the parton distribution function, the
factorization scheme dependence. Physical cross sections are independent of µF , however
at any finite order in perturbation theory they do depend on the factorization scale.

Recall that in perturbation theory we cannot predict αS(MZ) but we can predict its
evolution, Eqn. 27. Similarly for the PDFs

µ
2
F

∂fq(x,mu2
F )

∂µ2
F

=
αS(µ

2
F )

2π

∫ 1

x

dy

y
fq(y, µ

2
F )Pqq

(
x

y

)
+ . . . (54)

5 Hadron Collisions

In hadron collisions QCD processes dominate due to strength of the strong coupling. The
cross sections for electroweak processes, W±, Z0 and Higgs production are much smaller.
The values of x and Q

2 probed in hadron collisions and examples of the cross sections for
various processes are shown in Fig. 13. In this section we will look at some of the basics

3The +-prescription is defined by convolution with a well defined function, g(z), such that

∫ 1

0

dz [f(z)]
+
g(z) =

∫ 1

0

dzf(z) [(g(z)− g(1))] .
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Figure 13: The values of x and Q2 probed in hadron collisions and examples of the cross
sections for various processes taken from Ref. [11].

of the production of the Z0 boson, as a simple example of a hadron–hadron process, in
the next section we will go on and study the physics of jets.

The calculation of the cross section for the production of an s-channel resonance in
hadron–hadron collisions is described in more detail in Appendix A.3.1 where the cross
section is given in Eqn. 126. The only dependence of the cross section on the rapidity of
the Z0 boson is via the PDFs, i.e. the rapidity distribution of Z0 contains information on
the PDFs of the partons a and b. The higher the mass of the produced system the more
central it is, see Fig. 13. The Z0 boson is centrally produced in both pp̄ and pp collisions.
The experimental results, for example those from the Tevatron shown in Fig. 14, are in
good agreement with the theoretical predictions.

At leading order the transverse momentum of the gauge boson is zero. As before we
have include real and virtual corrections, as shown in Fig. 15. In the same way as DIS the
initial-state singularities must be factorized into the PDFs. At low transverse momentum
we need to resum the multiple soft emissions whereas, as with the e+e− event shapes, at
large p⊥ the fixed-order approach is more reliable. The transverse momentum of the Z0

boson at the Tevatron is shown in Fig. 16.
In hadron-hadron collisions we would like at least next-to-leading order (NLO) cal-

culations. This is the first order at which we have a reliable calculation of the cross
section. If possible we would like next-to-next-to-leading order (NNLO) calculations but
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Figure 15: Real and virtual corrections to the production of the Z0 boson.

that is much harder and takes a long time, e.g. e+e− → 3 jets was calculated at: LO in
1974 [15]; NLO in 1980 [16]; NNLO in 2007 [17]. Calculating NNLO corrections is still
extremely challenging in hadron collisions, only the Drell-Yan process and gg → H are
known. However, we need higher order calculations because while the factorization scale
uncertainty is significantly less at NLO when compared to leading order it can still be
significant, see for example the scale uncertainty on the rapidity of the Z0 boson shown
in Fig. 17.

6 Jets

While we can often see the jets in an event when we look at an event display we need
a precise definition to perform quantitative analyzes.4 Jets are normally related to the
underlying perturbative dynamics, i.e. quarks and gluons. The purpose of a jet algorithm
is to reduce the complexity of the final state, combining a large number of final-state
particles to a few jets, i.e.

{pi} jet algorithm−→ {jl}. (55)

We need a number of properties to achieve this (Snowmass accord):

4This section is based on the excellent review Towards Jetography [6].
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Figure 16: Transverse momentum of the Z0 boson measured by the D0 experiment at the
Tevatron, taken from Ref. [13].

Figure 17: Rapidity distribution of the Z0 boson for the LHC at
√
s = 14TeV, taken

from Ref. [14].

• simple to implement in experimental analyzes and theoretical calculations;

• defined at any order in perturbation theory and gives finite cross sections at any
order in perturbation theory (i.e. infrared safe);

• insensitive to hadronization effects.
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The most important of these properties is infrared safety, as with the event shapes we
considered earlier. Provided the jet algorithm is infrared safe there are a range of different
approaches.

The two main types of jet algorithm are:

1. cone algorithms;

2. sequential recombination algorithms.

There is a long history to this subject with: theorists and e+e− experimentalists generally
preferring recombination algorithms for their better theoretical properties; hadron collider
experimentalists preferring cone algorithms for their more intuitive picture and because
applying many experimental corrections was easier. However, with the start of the LHC
we have converged on a specific recombination algorithm.

6.1 Cone Algorithms

The simplest, oldest, and most intuitively appealing idea is a cone algorithm. The most
widely used algorithms are iterative cone algorithms where the initial direction of the cone
is determined by a seed particle, i. The sum of the momentum of all the particles with a
cone of radius R, the jet radius, in the azimuthal angle φ and rapidity5 y is then used as
a new seed direction and the procedure iterated until the direction of the resulting cone
is stable. In this approach the momenta of all the particles j such that

∆R
2
ij = (yi − yj)

2 + (φi − φj)
2
< R

2
, (56)

are summed. As these algorithms are almost exclusively used in hadron–hadron collisions
it is normal to use the kinematically variables defined in Appendix A.1.

While this may seem simple there are a lot of complications in the details of the
algorithm in particular: what should be used as the seeds; what happens when the cones
obtained from two different seeds share particles, overlap. The details of the treatment of
these issues can lead to problems with infrared safety, which can often be very subtle.

Consider a simple approach where we take all the particles to be seeds. If we have
two partons separated in (y, φ) by twice the cone radius then two jets, with the direction

a) Seed particles b) Jet Cones

Figure 18: Example of cone jets.

5Or sometimes pseudorapidity η.
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given by that of the original partons, are formed as shown in Fig. 18. However if there is
an additional soft gluon emission between the two jets, as shown in Fig. 19, depending on
the approach we can get only one jet, i.e. the algorithm is unsafe. A simple solution was

a) Seed particles b) Search cones c) Cone jets

Figure 19: Example of cone jets with additional soft radiation.

to use the midpoint between all the seeds as a seed, the midpoint algorithm. This solves
the problem at this level but similar problems appear for higher multiplicities. The final
solution, for the only known infrared safe cone algorithm, SISCone, is to avoid the use of
seeds and treat overlapping jets carefully.

6.2 Sequential Recombination Algorithms

In this approach jets are constructed by sequential recombination. We define a distance
measure between two objects dij, in hadron collisions we must also define a distance
measure diB with respect to the beam direction. There are two variants of the algorithm
the inclusive where all jets are retained and exclusive where only jets above the cut-off
value of the jet measure dcut, the jet resolution scale, are kept. The algorithm proceeds
as follows:

1. the distance measure is computed for each pair of particles, and with the beam
direction in hadronic collisions, and the minimum found;

2. if the minimum value is for a final-state merging in the exclusive approach the
particles i and j are recombined into a pseudoparticle if dij ≤ dcut, while in the
inclusive algorithm they are always recombined;

3. otherwise if a beam merging is selected in the in inclusive approach the particle is
declared to be a jet, while in the exclusive approach it is discarded if diB ≤ dcut;

4. in the inclusive approach we continue until no particles remain, while in the exclusive
approach we stop when the selected merging has min{diB, dij} ≥ dcut.

In the inclusive approach the jets are all those selected from merging with the beam,
whereas in the exclusive approach the jets are all the remaining particles when the iteration
is terminated.
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The choice of the distance measure, and to a lesser extent the recombination proce-
dure,6 defines the algorithm.

The earliest JADE algorithm for e+e− collisions uses the distance measure

dij = 2EiEj (1− cos θij) , (57)

where Ei,j are the energies of the particles and θij the angle between them. In e
+
e
− colli-

sions we have to use the exclusive algorithm and it is conventional to use a dimensionless
measure yij = dij/Q

2, where Q is the total energy in the event. While this choice can
easily be proved to be safe in the soft and collinear limits there are problems with the
calculation of higher order corrections.

Therefore a class of kT algorithms was developed in which the distance measure was
chosen to be the relative transverse momentum of the two particles in the collinear limit,
i.e.

dij = min{E2
i , E

2
j }θ2ij ≃ k

2
⊥ij for θij → 0. (58)

In e+e− collisions the conventional choice is

dij = 2min{E2
i , E

2
j } (1− cos θij) . (59)

In hadron collisions it is best to use a choice which is invariant under longitudinal boosts
along the beam direction. The standard choice is

dij = min{p2i,⊥, p2j,⊥}
∆R

2
ij

R2
, (60)

where R is the “cone-size” and pi,⊥ is the transverse momentum of particle i with respect
to the beam direction. The standard choice for the beam distance is diB = p2i,⊥. There are
other definitions, particularly of the distance dij, which are invariant under longitudinal
boosts but that in Eqn. 60 is the most common choice.

In general there is a whole class of measures defined by

dij = min{p2pi,⊥, p2pj,⊥}
∆R2

ij

R
, (61)

and diB = p
2p
i,⊥.

The parameter p = 1 for the kT algorithm and 0 for the Cambridge/Aachen algorithm.
Recently a new approach, the anti-kT algorithm, with p = −1, was proposed which

favours clustering with hard collinear particles rather than clusterings of soft particles,
as in the kT and Cambridge/Aachen algorithms. The anti-kT algorithm is still infrared
safe and gives “conical“ jets due to the angular part of the distance measure and is the
algorithm preferred by both general-purpose LHC experiments.

6.3 Jet Cross Sections

All cone jet algorithms, expect from SISCone, are not infrared safe. The best ones typi-
cally fail in processes where we consider extra radiation from three-parton configurations
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Process Last meaningful order Known at
JetClu MidPoint

Atlas cone CMS cone
inclusive jet cross section LO NLO NLO (→ NNLO)
W

±
/Z

0 + 1-jet cross section LO NLO NLO
3-jet cross section none LO NLO
W±/Z0 + 2-jet cross section none LO NLO
jet masses in 3-jet and none none LO
W±/Z0 + 2-jet events

Table 1: Comparisons of various cone algorithms for hadron–hadron processes. Adapted
from Ref. [6].

while some already fail when we consider radiation from two-parton configurations, see
the summary in Table 1.

Examples of the jets, and their areas, formed using different algorithms on a sample
parton-level event are shown in Fig. 20. As can be seen the kT and Cambridge/Aachen
algorithms tend to cluster many soft particles giving jets with an irregular area whereas
the jets produced by the cone and anti-kT algorithms are more regular making applying
corrections for pile-up and underlying event contamination easier.

In order to study jet production in hadron collisions we need to understand both
the jet algorithm and the production of the partons which give rise to the jets. The
spin/colour summed/average matrix elements are given in Table 2. Many of these matrix
elements have t-channel dominance, typically t → 0 ⇐⇒ p2⊥ → 0. As a consequence the
parton–parton scattering cross section grows quickly as p⊥ → 0 an effect which is further
enhanced by the running of αs when using µR = p⊥ as the renormalisation scale. An
example of the p⊥ spectrum of jets for different rapidities measured using the midpoint
cone-algorithm is shown in Fig. 21.

6.4 Jet Properties

In general the computation of jet properties in hadron–hadron collisions is extremely
complicated, however for some quantities we can get estimates of various effects. The
simplest of these is to estimate the change in the p⊥ between a parton and the jet it
forms.

We can start by considering the change due to perturbative QCD radiation. Suppose
we have a quark with transverse momentum p⊥ which radiates a gluon such that the
quark carries a fraction z of its original momentum and the gluon a fraction 1 − z, as
shown in Fig. 22. In this case after the radiation the centre of the jet will be the parton
with the highest transverse momentum after the branching, i.e. the quark if z > 1− z or
the gluon if z < 1− z. If the other parton is at an angular distance greater θ > R it will

6In practice the so-called “E-scheme” where the four-momenta of the particles are added to give the
pseudoparticle’s four-momentum is almost always used.
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qq′ → qq′
4
9
ŝ2+û2

t̂2

qq̄ → q′q̄′
4
9
t̂2+û2

ŝ2

qq̄ → gg
32
27

t̂2+û2

t̂û
− 8

3
t̂2+û2

ŝ2

qg → qg
ŝ2+û2

t̂2
− 4

9
ŝ2+û2

ŝû

gg → qq̄
1
6
t̂2+û2

t̂û
− 3

8
t̂2+û2

ŝ2

gg → gg
9
2

(
3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

)

qq̄ → gγ
8
9
t̂2+û2+2ŝ(ŝ+t̂+û)

t̂û

qg → qγ −1
3
ŝ2+û2+2t̂(ŝ+t̂+û)

ŝû

Table 2: Spin and colour summed/averaged matrix elements for 2 → 2 parton scat-
tering processes with massless partons taken from Ref. [3]. A common factor of
g4 = (4παs)

2 (QCD), g2e2e2q (photon production) has been removed.

p⊥

zp⊥

(1− z)p⊥

Figure 22: Kinematics of jet branching

no longer be in the jet and the jet will have a smaller transverse momentum

δp⊥ = (1− z)p⊥ − p⊥ =− zp⊥ 1− z >z (62)

δp⊥ = zp⊥ − p⊥ =− (1− z)p⊥ z >1− z

than the original parton.
We can use the splitting probabilities given in Eqn. 18 to compute the average trans-

verse momentum loss

〈p⊥〉q = −CFαS

2π
p⊥

∫ 1

R2

dθ2

θ2

∫ 1

0

dz
1 + z2

1− z
min{1− z, z}, (63)

= −CFαS

2π
p⊥ ln

(
1

R2

)[∫ 1
2

0

1 + z2

1− z
z +

∫ 1

1
2

1 + z2

1− z
1− z

]
,

= −CFαS

π
p⊥ ln

(
1

R

)[
2 ln 2− 3

8

]
.

The loss of transverse momentum can be calculated for gluon jets in the same way using
the gluon splitting functions giving

〈p⊥〉g = −αS

π
p⊥ ln

(
1

R

)[
CA

(
2 ln 2− 43

96

)
+ TRnf

7

48

]
. (64)
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taken from Ref. [6].

These calculations give

〈p⊥〉q
p⊥

= −0.43αS ln
1

R
,

〈p⊥〉g
p⊥

= −1.02αS ln
1

R
.

So for a jet with R = 0.4 quark and gluon jets will have 5% and 11% less transverse
momentum than the parent parton, respectively. These results are subject to significant
finite R and higher order corrections. The result will also depend on the precise details of
the recombination scheme, for example SISCONE has a different recombination scheme
where the centre of the cone is the direction of the sum of the partons and we require one
parton to fall outside the cone.

While this gives the perturbative energy loss by the jet there are other effects which
can change the transverse momentum of the jet. In particular the jet can also lose energy
in the hadronization process and can gain energy from the underlying event.

While these effects cannot be calculated from first principles we can use some simple
models to gauge the size of the effects.

One model for the effect of hadronization on event shapes in e
+
e
− collisions, due to

Dokshitzer and Webber, is to perform a perturbative calculation and instead of stopping
the calculation at some small energy scale µI because the strong coupling becomes non-
perturbative continue the calculation into the infrared regime with a model of the strong
coupling in this regime which does not diverge. They define

A(µI) =
1

π

∫ µI

0

dk⊥αS(k⊥). (65)

This model can also be used to assess the size of the hadronization corrections for the jet
transverse momentum. The hadronization is modelled by soft gluons with k⊥ ∼ ΛQCD.
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In this case the transverse momentum loss is

δp⊥ = zp⊥ − p⊥ = −(1− z)p⊥. (66)

As before the transverse momentum loss is

〈p⊥〉q = −CF

2π
p⊥

∫
dθ2

θ2

∫
dzαS

1 + z2

1− z
(1− z). (67)

As we are dealing with soft gluons z ∼ 1 so 1+ z2 ≃ 2. In this case we will not use a fixed
value of αS but need to evaluate it at the scale of the transverse momentum of the gluon
with respect to the quark k⊥ = p⊥(1 − z)θ. We also transform the integration variables
to use k⊥ and θ giving

〈p⊥〉q = −2CF

π

∫ 1

R

dθ

θ2

∫ µI

0

dk⊥αS(k⊥) = −2CFA
R

. (68)

Using the coefficients from fits to the e+e− thrust distribution

〈δp⊥〉q ∼ −0.5GeV

R
, 〈δp⊥〉g ∼ −1GeV

R
. (69)

The hadronization correction has a 1
R
dependence on the size of the jet, unlike the ln 1

R

dependence of the perturbative radiation.
We can estimate the underlying event contribution by assuming there is ΛUE energy

per unit rapidity due to soft particles from the underlying event giving a correction to the
transverse momentum of

〈δp⊥〉 = ΛUE

∫

η2+φ2<R2

dη
dφ

2π
= ΛUE

R2

2
. (70)

This is a useful estimate although strictly the area of the jet is only πR2 for the anti-kT
algorithm.

An example of the various contributions to the shift between the partonic and jet
transverse momentum is shown in Fig. 23.

7 Electroweak Physics

The Standard Model has 18 parameters (assuming massless neutrinos):

• 6 quark and 3 charged lepton masses;

• 3 quark mixing angles and 1 phase;

• 1 strong coupling;

• 1 electromagnetic coupling and 3 boson masses, mW , mZ , mh.
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All observables are a function of these 18 parameters. In principle we could choose 18 well-
measured observables and define them to be the fundamental parameters of the theory,
e.g.

α, GF , αS, MZ , Mh, mf ,

and calculate everything else in terms of them.
For the electroweak part of the theory we need mt, mh and three other parameters to

specify everything, neglecting the masses of the other Standard Model fermions. Every-
thing else can then be calculated from these parameters, e.g.

cos θW =
mW

mZ

, e = g sin θW .

The current values of the electroweak parameters are

mW = 80.41GeV, mZ = 91.188GeV, sin2
θW = 0.231,

α(mZ) =
1

128.89
, GF = 1.16639× 10−5GeV−2

.

It is common to include the Fermi constant, GF =
√
2g2

8m2
W

, from the effective theory of weak

interactions at low energies as a parameter.
Different choices for the input parameters give different values for the calculated pa-

rameters.

1. input: α(mZ), GF , sin
2
θW , extracted:

g =
4πα(mZ)

sin2
θW

= 0.6497, mW =
g√

4
√
2GF

= 79.98GeV, mZ =
mW

cos θW
= 91.20GeV;

2. input: mW , GF , sin
2
θW extracted:

mZ =
mW

cos θW
= 91.695GeV, g =

√
4
√
2GFmW = 0.653, α(mZ) =

g2 sin2
θW

4π
= 1/127.51;

3. input: mZ , α(mZ), sin
2
θW extracted:

mW =
mZ

cos θW
= 79.97GeV, g =

4πα(mZ)

sin θW
= 0.6497;

4. input: mZ , mW , GF extracted:

sin2
θW = 1

(
mW

mZ

)2

= 0.2224, g =

√
4
√
2GFmW = 0.653, α(mZ) =

g2 sin2
θW

4π
= 1/132.42.

This is due to the quantum corrections.
It was the great triumph of the LEP/SLD and Tevatron physics programmes that the

quantum corrections to the theory were probed. The normal choice of input parameters
is:
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1. α = 1/137.035999679(94) the fine-structure constant at q2 = 0 is accurately mea-
sured, however the error on its evolution to q2 = m2

Z has greater uncertainty due to
hadronic corrections;

2. GF = 1.166367(5) × 105GeV−2 is very accurately measured in muon decay
µ− → e−νµν̄e;

3. mZ = 91.1876± 0.0021GeV from the LEP1 lineshape scan;

as these are the most accurately measured.

7.1 Quantum Corrections to Masses

+ + + . . .

Figure 24: Example quantum corrections to the gauge boson propagator.

We have already considered the running of the coupling and corrections to cross sec-
tions and other observables. However masses are also renormalized in the Standard Model.
If we consider the propagator for a massive gauge boson we get corrections of the form
shown in Fig. 24. If we omit the Lorentz structures this gives a propagator

D(q2) =
i

q2 −m2
+

i

q2 −m2
iΠ(q2)

i

q2 −m2

+
i

q2 −m2
iΠ(q2)

i

q2 −m2
iΠ(q2)

i

q2 −m2
+ . . . ,

where Π(q2) is the gauge boson self energy. This is a geometric progression, summing the
series gives

D(q2) =
i

q2 −m2

1

1− Π(q2)
q2−m2

=
i

q2 −m2 − Π(q2)
. (71)

If the particle can decay to the particles in the loop there is an imaginary part of the self
energy Π(q2) which is related to the width of the particle

ImΠ(q2) = −iqΓ(q). (72)

The real part of the self energy correction renormalizes the particle’s mass giving

D(q2) =
i

q2 −m2
R(q) + iqΓ(q)

. (73)

As we have defined to the mass of the Z0 boson to be a fundamental parameter δm2
Z = 0,

by definition.
The dominant corrections to the W mass come from top-bottom and Higgs loop cor-

rections, as shown in Fig. 25.
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The correction to the W± boson mass is

δm
2
W ∼ 4s2W

1− 2s2W

GF

8π2
√
2
m

2
W × c

2
W

s2W

NC

(
m

2
t −m

2
b

)

− 4s2W
1− 2s2W

GF

8π2
√
2
m

2
W ×m

2
W

11

3

(
ln

M
2
h

m2
W

− 5

6

)
.

7.2 Electroweak Observables

A number of observables are used in the electroweak fit performed by the LEP Electroweak
Working Group (LEPEWWG):

1. the Z0 mass and width mZ , ΓZ ;

2. the hadronic cross section at the Z0 pole σ(had) ≡ 12πΓ(e+e−)Γ(had)
m2

Z
Γ2
Z

;

3. the ratio of the hadronic to leptonic partial widths of the Z0, Rℓ ≡ Γ(had)
ℓ+ℓ−

, and the
ratio of the bottom, Rb ≡ Γ(bb̄)/Γ(had), and charm, Rc ≡ Γ(cc̄)/Γ(had), quark
partial widths to the hadronic partial width of the Z

0;

4. the forward-backward asymmetry for e+e− → f̄ f

A
0,f
fb =

σF − σB

σF + σB

, (74)

for charged leptons, A0,ℓ
fb , bottom A

0,b
fb , and charm A

0,c
fb quarks;

5. the couplings of the fermions to the Z0 can be extracted from the forward-backward
asymmetry in polarized scattering at SLD

A
FB
LR (f) =

σ
f
LF − σ

f
LB − σ

f
RF + σ

f
RB

σ
f
LF + σ

f
LB + σ

f
RF + σ

f
RB

=
3

4
Af . (75)

The couplings for the bottom, Ab, and charm, Ac, quarks can be extracted from
these measurements. There are a number of possible ways of extracting Aℓ;

6. sin2
θ
lept
eff (Qfb) is extracted from the hadronic charge asymmetry;

7. the W mass, mW , and width, ΓW are measured in a range of ways;

8. the top quark mass, mt, is measured at the Tevatron.

The results of the precision electroweak fit are in good agreement with the experimental
results, as shown in Fig. 26, and for example shows that there are 3 massless neutrinos
which couple to the Z boson.
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Figure 26: The lineshape of the Z boson and results of the precision electroweak fit taken
from the LEPEWWG.

7.2.1 W mass measurements

One of the most important quantities in electroweak sector in the mass of the W± boson.
The first measurements of the W mass were in hadronic collisions. The QCD backgrounds
and resolution means that the hadronicW± decay mode cannot be used. The mass cannot
be directly reconstructed using the leptonic mode due to the unobserved neutrino. Instead
the transverse mass

M
ℓν2
⊥ = 2pℓ⊥E/⊥(1− cosφℓ,miss), (76)

where pℓ⊥ is the transverse momentum of the observed lepton, E/⊥ is the missing transverse
energy and φℓ,miss is the azimuthal angle between the lepton and the direction of the
missing transverse energy, is used.

The maximum value of the transverse mass is M ℓν2
⊥ ≤ m2

W and can be used to extract
the W± mass. This approach was used by the UA1 and UA2 experiments for the original
W mass measurements and the recent results at the Tevatron, for example Fig. 27. The
endpoint is smeared by the non-zero p⊥ and width of the W boson.

A major result of the LEP2 programme was the study of the production of pairs of
electroweak gauge bosons, W+W− and Z0Z0. The mass of the W can be extracted in
two ways:

1. measuring the cross section near the threshold

σ ∼ G2
Fm

2
W

2π

√
1− 4m2

W

s
, (77)

which is clean theoretical but limited by statistics, see Fig. 28;
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Figure 27: The transverse mass of the W at the Tevatron taken from Ref. [19].

2. reconstructing the mass from the W decay products above threshold.

7.2.2 ρ parameter

In principle we should compare the full predictions of the Standard Model, or any model of
new physics, with all the electroweak observables. However it is often useful, particularly
in new physics models as corrections from new particles can lead to large corrections, to
consider the ρ parameter. Naively

ρ =
m2

W

m2
Z cos2 θW

= 1, (78)

connects the Z0 and W± masses with the weak mixing angle. The dominant loop correc-
tions to it from self energies give

∆ρ =
3GFm

2
W

8
√
2π2

[
m2

t

m2
W

− sin2
θW

cos2 θW

(
ln

m2
H

m2
W

− 5

6

)
+ . . .

]
.

This relates mW , mt, and mH . For a long time, mt was most significant uncertainty in
this relation; by now, mW has more than caught up.

8 Higgs Boson

So far we have concentrated on the particles from the Standard Model we have already
seen, however there is one remaining SM particle which hasn’t been discovered, the Higgs
Boson.

The SM contains spin-1 gauge bosons and spin- 1
2
fermions. Massless fields ensure

gauge invariance under SU(2)L ×U(1)Y and renormalizability. While we could introduce
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Figure 28: Cross section for the pair production of W+W− close to threshold from the
LEPEWWG.

mass terms “by hand”, i.e.

L ∝ m
2
AA

µ
Aµ +mf (Ψ̄RΨL + Ψ̄LΨR), (79)

this violates gauge invariance. Under the gauge transformation, Aµ → Aµ + 1
g
∂µθ, the

mass term AµAµ gives terms proportional to the gauge transformation parameter θ, i.e.
the gauge boson mass term is not gauge invariant. As the fields ΨL and ΨR transform
differently under SU(2)L under the gauge transformation of the left-handed fermion field
the fermion mass term is not gauge invariant.

Adding these mass terms by hand is obviously a bad idea. Instead we add a complex
scalar doublet under the SU(2)L gauge group which introduces an additional four degrees
of freedom. This scalar field can be coupled gauge invariantly to the gauge bosons, i.e.

LΦA = (DµΦ)(DµΦ). (80)

A gauge-invariant interaction term with fermions can also be included7

LΦΨ = gfΨ̄LΦΨR + h.c.. (81)

In addition we need the Higgs potential

V(Φ) = λ
(
Φ†Φ

)2
+ µ

2Φ†Φ. (82)

7While we can use Φ to couple to the down-type fermions we need to use iσ2Φ
∗ to couple to the

up-type fermions in a gauge invariant manner.
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Figure 29: The Higgs boson potential.

For µ2 < 0 this potential has an infinite number of equivalent minima,

|Φ| =
√

−µ2

2λ
≡ v√

2
, (83)

as shown in Fig. 29. We expand around one of these minima giving one radial and three
circular modes. The circular modes are “gauged away” −→ “eaten” by gauge bosons to
give them mass via the vacuum expectation value (vev) the minimum of the potential.

From the structure above:

(DµΦ)
2 −→ g2v2

4
WµW

µ −→ M2
W = g2v2

4
;

gfΨ̄LΦΨR −→ gf
v√
2
Ψ̄LΦΨR −→ mf =

gfv√
2
;

λ(|Φ|2 − v2/2)2 −→ λv2H2 −→ M2
H = 2λv2.

This gives a fixed relation between the mass of the particles and their coupling to (sur-
viving) scalar Higgs boson.

8.1 Unitarity

While in the Standard Model introducing the Higgs boson is the only way to give mass
to the particles in a gauge invariant manner there are other arguments for the existence
of the Higgs boson and it is interesting to ask what would happen if the Higgs boson did
not exist.

W−
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W−

W+

γ

W−

W+

W−
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Z0

W−

W+

W−

W+

γ

W−

W+

W−

W+

Z0

W−

W+

W−

W+

Figure 30: Feynman diagrams for WW scattering via gauge boson exchange.

If we consider W+W− → W+W− scattering, via the Feynman diagrams shown in
Fig. 30, in the high energy limit the matrix element is

M = g
2 s

8M2
W

(
1− 4M2

W

s

)
(1 + cos θ). (84)

- 184 -



So without the Higgs boson the cross section

σ ∼ s

M4
W

, (85)

for s ≫ MW .

W−

W+

W−

W+

H

W−

W+

W−

W+

H

Figure 31: Higgs boson contributions to WW scattering.

This violates unitarity, so we need something to cancel the bad high energy behaviour
of the cross section. We can arbitrarily invert a particle to cure this. This particle must
be a scalar, suppose it has coupling, λ, to W+W−. This gives a contribution, via the
Feynman diagrams in Fig. 31,

M = λ
2

[
− s

8M4
W

(1 + cos θ)− M2
H

4M4
W

{
s

s−M2
H

+
t

t−M2
H

}]
. (86)

This cancels the bad high energy behaviour if λ = gMW , i.e. the Higgs coupling to theW±

boson. If we repeat the same procedure for WW → ZZ we need a coupling gZZH ∝ gmZ

and for WW → f f̄ we need a coupling gff̄H ∝ gmf , i.e. the Higgs boson couplings to
the Z0 boson and Standard Model fermions.

So even if there was no Higgs boson we are forced to introduce a scalar interaction that
couples to all particles proportional to their mass. There must be something Higgslike in
the theory!

8.2 Higgs Searches

As with all searches for Higgs searches we want:

• channels with a high signal rate;

• and a low background rate.

Unfortunately the channels with the highest signal rate often have the largest back-
grounds. We need to be able to trigger on a given signal. Good mass resolution for
the mass of the Higgs boson and its decay products can help to suppress backgrounds.
We should also try and measure things that are well understood theoretically.

In order to consider the signals we need to understand how the Higgs boson is produced
and then decays in hadron–hadron collisions.

The analytic results for the partial widths for various Higgs boson decay modes are
given in Table 3 and the branching ratios are plotted as a function of the mass of the
Higgs boson in Fig. 32. For mH < 2mW the Higgs boson is quite narrow, ΓH = O(MeV),
while for mH > 2mW the Higgs boson becomes obese, ΓH(mH = 1TeV) ≈ 0.5 TeV.
At large mH the decay into vector boson pairs, W

+
W

− and Z
0
Z

0, is dominant with
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Decay mode Partial Width, Γ

H → f f̄
GFMH

8π
√
2
· 2m2

fNc

(
1− 4m2

f

m2
H

) 3
2

H → W+W− GFMH

8π
√
2
·m2

H

(
1− 4m2

W

m2
H

+
12m4

W

m4
H

)(
1− 4m2

W

m2
H

) 1
2

H → ZZ
GFMH

8π
√
2
·m2

H
m2

W

2m2
Z

(
1− 4m2

Z

m2
H

+
12m4

Z

m4
H

)(
1− 4m2

Z

m2
H

) 1
2

H → γγ
GFMH

8π
√
2
·m2

H

(
α
4π

)2 ·
(
4
3
NcQ

2
t

)2
(2mt > mH)

H → gg
GFMH

8π
√
2
·m2

H

(
αs

4π

)2 ·
(
2
3

)2
(2mt > mH)

H → V V ∗ more complicated, but important for mH . 2mV

Table 3: Partial widths for various Higgs decay modes.
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Figure 32: Branching ratios for the Higgs boson as a function of the Higgs boson mass,
taken from Ref. [20], calculation by M. Spira.
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ΓH→WW : ΓH→ZZ ≈ 2 : 1, while for small mH the decay into bottom quark pairs is
dominant,

As the Higgs boson likes to couple to heavy objects (top, W , Z) there are a range of
important Higgs production processes where the Higgs boson couples to heavy particles.
The Feynman diagrams for the important processes are shown in Fig. 33 while the cross

Gluon Fusion

W±, Z0

Higgs-Strahlung

Quark-associated

W±, Z0

W±, Z0

Weak vector boson fusion (VBF)

Figure 33: Feynman diagrams for important Higgs boson production processes.

sections for the important processes are shown in Fig. 34 as a function of the Higgs boson
mass.

The important search channels depend on the collider energy. At the Tevatron typical
channels include:

• gg → H → W+W− → ℓℓ′+E/⊥ this is the “golden plated” channel because although
there is no mass peak the background can be reduced by using quantities, such as
the angle between the leptons, which differ in the signal and background due to the
different W boson production mechanisms;

• qq̄ → ZH → ℓℓbb̄ the key ingredient for this process is the b-tagging efficiency and
mass resolution for jets in order to suppress the QCD backgrounds;

• qq̄′ → WH → ℓνbb̄ has similar features to qq̄ → ZH → ℓℓbb̄;

• qq̄′ → ZH → E/⊥ + bb̄ the key feature is again the b-tagging efficiency and mass
resolution for jets in order to suppress the QCD backgrounds;

• qq̄′ → W±H → W±W+W− in this case there is the possibility of same sign lepton
production which has a low background together with the decay of remaining W to
hadrons in order to increase the cross section.

Typical channels at the LHC include:

• gg → H → ZZ → 4µ, 2e2µ which is the “Golden plated” channel for mH > 140
GeV, the key ingredient is the excellent resolution of the Z mass peak from the
leptonic decay;
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Figure 34: Higgs production cross sections at hadron colliders taken from Ref. [20],
calculation by M. Spira.

• gg → H → W+W− → ℓℓ′ + E/⊥ is similar to the Tevatron analysis but with better
statistics due to the larger production cross section;

• gg → H → γγ is good for low mass, mH . 120 GeV, Higgs bosons although the
branching ratio is small, the key ingredient is the mass resolution for photon pairs
and a veto on photons from π0 decays;

• VBF→ H → ττ is a popular mode where the key ingredient is that QCD back-
grounds are reduced by requiring a rapidity gap between the two tagging jets;

• VBF→ H → WW as for VBF→ H → ττ ;

• VBF→ H → bb̄ is in principle similar to the other VBF modes but it is hard to
trigger on pure QCD-like objects (jets).

8.3 Extended Higgs Sectors

Adding a single Higgs doublet is the simplest choice for the Higgs sector. As we have yet
to observe the Higgs boson it is possible to have a more complicated Higgs sector. There
is some tension in the Standard Model between the value of the Higgs mass preferred by
precision electroweak fits (MH ∼ 100GeV) and the experimental limit (MH > 114GeV).
Many theoretically attractive models like SUSY naturally have a larger Higgs sector.
However, we need to be careful to respect constraints from flavour changing neutral cur-
rents (FCNC) and the electroweak precision data.

8.3.1 The Two Higgs Doublet Model

The simplest extension to the Standard Model is the Two Higgs Doublet Model (THDM).
In this model there are two Higgs doublets. There are a number of variants on the
model depending on whether or not CP is conserved and how the Higgs bosons couple
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to the fermions. The most interesting variant (called Type-II) is that which occurs (in a
constrained variant) in SUSY models. In the general version of the Type-II model there
are ∼ 10 new parameters, whereas in the constrained SUSY version there are only two
mA0 and tanβ. There are indirect constraints from rare processes, e.g. kaon and bottom
mixing and decays, precision EW data and cosmology.

As there are two doublets there as two vevs: v1,2. They are constrained by the re-
quirement

v
2
1 + v

2
2 = v

2 ≈ (246GeV)2, (87)

in order to give the correct gauge boson masses as in the Standard Model. There is an
additional parameter tan β = v2/v1. In the Type-II mode the H1 doublet gives mass to
up-type fermions while the H2 doublet gives mass to down-type fermions. Both doublets
couple and give mass to the gauge bosons. After electroweak symmetry breaking there are
five scalar boson mass eigenstates, two neutral scalars h0, H0, one neutral pseudoscalar A0,
and two charged scalars H±. The coupling of all the Higgs bosons to the vector bosons are
reduced. The couplings to the fermions are enhanced (up-type) and suppressed (down-
type) as tan β increases. At tree level the masses are related by

m
2
H± = m

2
A0 +m

2
W , m

2
H0 +m

2
h0 = m

2
A0

+m
2
Z . (88)

At tree level in SUSY mh0 ≤ MZ however there are large quantum corrections (mh0 .

140GeV).

9 Beyond the Standard Model Physics

As discussed in Section 7 the Standard Model has 18 free parameters, although in principle
we should also include the Θ parameter of QCD. We now need more parameters to
incorporate neutrino masses. Despite the excellent description of all current experimental
data there are still a number of important questions the Standard Model does not answer.

• What are the values of these parameters?

• Why is the top quark so much heavier that the electron?

• Why is the Θ parameter so small?

• Is there enough CP-violation to explain why we are here, i.e. the matter-antimatter
asymmetry of the universe?

• What about gravity?

While these are all important questions there is no definite answer to any of them.
There are however a large number of models of Beyond the Standard Model (BSM)

physics which motivated by trying to address problems in the Standard Model. Given the
lack of any experimental evidence of BSM physics the field is driven by theoretical and
ascetic arguments, and unfortunately fashion.
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All models of BSM physics predict either new particles or differences from the Standard
Model, otherwise they cannot be distinguished experimentally from the Standard Model.
There are a number of ways of looking for BSM effects:

Collider Experiments if the theory contains new particles these should be produced
in collider experiments and decay to give Standard Model particles, currently the
searches at the energy frontier are at the LHC general-purpose detectors ATLAS
and CMS;

Precision Experiments measure something predicted by the Standard Model to very
high accuracy and compare the results with the theoretical prediction, examples
include the LEP/SLD precision measurements at the Z0 pole and the anomalous
magnetic moment, g − 2, of the muon;

Rare Decays or Processes measure the cross section or decay rate for some process
which the Standard Model predicts to be small (or zero). Examples include: neutron
electric dipole moment experiments, proton decay experiments, neutrino mixing
experiments, rare B and kaon decay and CP-violation experiments (BELLE, BaBar,
NA48/62, LHCB).

In many ways these approaches are complimentary. Some effects, e.g CP-violation,
are best studied by dedicated experiments but if the result of these experiments differs
from the SM there should be new particles which are observable at collider experiments.

We will consider the collider signals of BSM physics in detail but only look at the
constraints from low-energy physics as we look at various models. The most important
low energy constraints are flavour changing neutral currents and proton decay. Often
other constraints, e.g. from astrophysics and cosmology are also considered.

9.1 Models

We will briefly review some of the more promising models and then look at the implica-
tions of these models for collider physics taking a pragmatic view looking at the different
possible signatures rather than the details of specific models.

There are a wide range of models: grand unified theories; Technicolor; supersymme-
try; large extra dimensions; small extra dimensions; little Higgs models; unparticles . . ..
Depending on which model builder you talk to they may be almost fanatical in their belief
that one of these models is realized in nature.

9.1.1 Grand Unified Theories

The first attempts to answer the problems in the Standard Model were Grand Unified
Theories (GUTs.) The basic idea is that the Standard Model gauge group SU(3)c ×
SU(2)L × U(1)Y is the subgroup of some larger gauge symmetry. The simplest group is
SU(5), which we will consider here, other examples include SO(10). SU(5) has 52−1 = 24
generators which means there are 24 gauge bosons. In the Standard Model there are 8
gluons and 4 electroweak gauge bosons (W±, W 0, B0 ⇒ W±, γ, Z0). Therefore there

are 12 new gauge bosons X
± 4

3 and Y
± 1

3 . The right-handed down type quarks and left
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handed leptons form a 5̄ representation of SU(5). The rest of the particles form a 10
representation of the gauge group

gluons

W±




d

d

d

ec

ν̄e




R

X, Y




0 uc −uc −u −d

uc 0 uc −u −d

uc −uc 0 −u −d

u u u 0 −ec

d d d ec 0




L

. (89)

In this model there are two stages of symmetry breaking. At the GUT scale the
SU(5) symmetry is broken and the X and Y bosons get masses. At the electroweak
scale the SU(2) × U(1) symmetry is broken as before. There are three problems with
this theory: the couplings do not unify at the GUT scale; why is the GUT scale higher
than the electroweak scale; and proton Decay. We will come back to the first two of these
questions.

d̄

u

e+
u

d π0

XProton

Figure 35: Proton Decay in a Grand Unified theory.

Proton Decay Grand unified theories predict the decay of the proton via the exchange
of the X and Y bosons, as shown in Fig. 35. We would expect this decay rate to go like

Γ(p → π
0
e
+) ∼ M5

p

M4
X

, (90)

where MX is the mass of the X boson and Mp the mass of the proton, on dimensional
grounds.

There are limits on the proton lifetime from water Čerenkov experiments. The decay
of the proton will produce an electron which is travelling faster than the speed of light
in water. This will give Čerenkov radiation, just as the electron produced in the weak
interaction of a neutrino does. This is used to search for proton decay. As there is no
evidence of proton decay there is limit of

τP ≥ 1.6× 1032 years (91)

on the proton lifetime. This means MX > 1016−17GeV which is larger than preferred by
coupling unification. Proton decay gives important limits on other models.
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Figure 36: Quantum correction to the Higgs mass from a fermion loop.

9.1.2 Hierarchy Problem

The vast majority of new physics models are motivated by considering the hierarchy
problem, i.e. why is the electroweak scale is so much less than the GUT or Planck (where
gravity becomes strong) scales? It is more common to discuss the technical hierarchy
problem which is related to the Higgs boson mass. If we look at the Higgs mass there
are quantum corrections from fermion loops such as that shown in Fig. 36. This gives a
correction to the Higgs mass,

δM
2
Hf = i

|gf |2
4

∫
d
4
k

(2π)4
tr [(k6 +p6 +mf )(k6 +mf)][
(k + p)2 −m2

f

] [
k2 −m2

f

] , (92)

where p is the four-momentum of the Higgs boson, k the four-momentum flowing in the
loop, gf the coupling of the Higgs boson to the fermion and mf the fermion mass. We
need to introduce an ultra-violet cut-off, Λ, to regularize the integral giving

δM
2
Hf =

|gf |2
16π2

[
−2Λ2 + 6m2

f ln (Λ/mf)
]
. (93)

So either the Higgs mass is the GUT/Planck scale or there is a cancellation

M
2
H = M

2
Hbare + δM

2
H , (94)

of over 30 orders of magnitude to have a light Higgs boson.
This worries a lot of BSM theorists, however there are values of the Higgs boson mass

for which the Standard Model could be correct up to the Planck scale. The Higgs boson
mass is m2

H = λv2. There are two constraints on the mass: the coupling should be
perturbative, λ . 1; the vacuum must be non-trivial, λ → 0 is forbidden. As can be seen
in Fig. 37 there is an island of stability in the middle where the Standard Model can be
valid to the Planck scale.

Many solutions to the hierarchy problem have been proposed. They come in and
out of fashion and occasionally new ones are proposed. Examples include: Technicolor;
supersymmetry; extra dimensions; and little Higgs models.

9.1.3 Technicolor

Technicolor is one of the oldest solutions to the hierarchy problem. The main idea is
that as the problems in the theory come from having a fundamental scalar particle they
can be solved by not having one. The model postulates a new set of gauge interactions
Technicolor, which acts on new technifermions. We think of this interaction like QCD,
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Figure 37: Region of stability for the Standard Model Higgs boson.

although different gauge groups have been considered. The technifermions form bound
states, the lightest being technipions. Using the Higgs mechanism these technipions give
the longitudinal components of theW± and Z bosons, and hence generate the gauge boson
masses. There must also be a way to generate the fermions masses, Extended Technicolor.
It has proved hard to construct realistic models which are not already ruled out. For
many years Technicolor fell out of fashion, however following the introduction of little
Higgs models there has been a resurgence of interest and the new walking Technicolor
models look more promising.

9.1.4 Supersymmetry

If there is a scalar loop in the Higgs propagator, as shown in Fig. 38. We get a new

H0 H0

S

Figure 38: New scalar boson loop in the Higgs boson propagator.

contribution to the Higgs mass,

δM
2
HS =

λs

16π2

(
Λ2 − 2M2

S ln (Λ/MS)
)
, (95)

where MS is the mass of the new scalar particle. If there are two scalars for every fermion,
with the same mass and λs = |gf |2 the quadratic dependence cancels. Theorists like to
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SM particle Spin SUSY particle Spin
Electron 1/2 Selectron 0
Neutrino 1/2 Sneutrino 0

Up 1/2 Sup 0
Down 1/2 Sdown 0
Gluon 1 Gluino 1/2
Photon 1 Photino 1/2

Z 1 Zino 1/2 Neutralinos
Higgs 0 Higgsino 1/2
W+ 1 Wino 1/2 Charginos
H+ 0 Higgsino 1/2

Table 4: Particle content of the Minimal Supersymmetric Standard Model.

have symmetries to explain cancellations like this, Supersymmetry (SUSY). For every
fermionic degree of freedom there is a corresponding bosonic degree of freedom: all the
SM fermions have two spin-0 partners; all the SM gauge bosons have a spin- 1

2
partner.

The full particle content of the theory is given in Table 4. In SUSY models we need to
have two Higgs doublets to give mass to both the up- and down-type quarks in a way
which is invariant under the supersymmetric transformations.

There are major two reasons, in addition to the solution of the hierarchy problem, to
favour SUSY as an extension of the SM.

Coleman-Mandula theorem If we consider any extension to the Poincaré group any
new generators which transform as bosons lead to a trivial S-matrix, i.e. scattering
only through discrete angles. Later Haag, Lopuszanski and Sohnius showed that
SUSY is the only possible extension of the Poincaré group which doesn’t give a
trivial S-matrix.

SUSY coupling unification In SUSY GUTS the additional SUSY particles change the
running of the couplings and allow the couplings to truly unify at the GUT scale, as
shown in Fig. 39. However, with increasingly accurate experimental measurements
of the strong coupling this is no longer quite true.

In the modern view of particle physics we construct a theory by specifying the particle
content and symmetries. All the terms allowed by the symmetries are then included in
the Lagrangian. If we do this in supersymmetric models we naturally get terms which do
not conserve lepton and baryon number. This leads to proton decay as shown in Fig. 40.
Proton decay requires that both lepton and baryon number conservation are violated. The
limits on the proton lifetime lead to very stringent limits on the product of the couplings
leading to proton decay.

λ
′
11k · λ′′

11k . 2 · 10−27
. (96)

Only natural way for this to happen is if some symmetry requires that one or both
couplings are zero. Normally a multiplicatively conserved symmetry R-parity

Rp = (−1)3B+L+2S
, (97)
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Figure 39: Coupling constant unification in the Standard and Minimal Supersymmetric
Standard Models.

ūd

e+
u

u π0

s̃∗RProton

Figure 40: Proton decay in supersymmetric models.

such that Standard Model Particles have Rp = +1 and SUSY particles have Rp = −1, is
introduced which forbids both terms.

Alternatively symmetries can be imposed which only forbid the lepton or baryon
number violating terms. The simplest SUSY extension of the Standard Model has Rp

conservation and is called the Minimal Supersymmetric Standard Model (MSSM). The
multiplicative conservation of R-parity has two important consequences: SUSY particles
are only pair produced; the lightest SUSY particle is stable, and therefore must be neutral
on cosmological grounds. It is therefore a good dark matter candidate.

So far we haven’t dealt with the biggest problem in SUSY. Supersymmetry requires
that the SUSY particles have the same mass as their Standard Model partner and the
SUSY partners have not been observed. SUSY must therefore be a broken symmetry in
such a way that the Higgs mass does not depend quadratically on the ultraviolet cut-off,
called soft SUSY breaking. This introduces over 120 parameters into the model. Many
of these parameters involve either flavour changing or CP-violating couplings and are
constrained by limits on flavour changing neutral currents.

Flavour Changing Neutral Currents In the Standard Model the only interactions
which change change the quark flavour are those with the W± boson. So any processes
which change the flavour of the quarks, but not the charge, Flavour Changing Neutral
Currents (FCNCs), must be loop mediated.

There are two important types: those which change the quark flavour with the emission
of a photon, i.e. b → sγ; those which give meson-antimeson mixing, e.g. B − B̄ mixing.

- 195 -



d

s̄

s

d̄

K0
K̄0u, c, t u, c, t

Figure 41: Feynman diagram for neutral kaon mixing in the Standard Model.
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Figure 42: Feynman diagrams for the decay of the neutral kaon to µ
+
µ
− and γγ in the

Standard Model.

Both are important in the Standard Model and in constraining possible new physics
models.

In the Standard Model flavour changing neutral currents are suppressed by the Glashow-
Iliopoulos-Maiani (GIM) mechanism. If we consider neutral Kaon mixing, as shown in
Fig. 41, and the rare Kaon decays K0

L → µ+µ− and K0
L → γγ, as shown in Fig. 42.

Considering only two generations for simplicity all these diagrams go like

1

M2
W

m2
u −m2

c

M2
, (98)

times a factor due to the Cabibbo mixing angle where M is the largest mass left after
the removal of one W propagator, i.e. MW for K0 − K̄0 mixing and K0

L → µ+µ−, and
mc for K0

L → γγ. This suppression is called the GIM mechanism and explains why
Γ(K0

L → µ+µ−) ∼ 2 × 10−5Γ(K0
L → γγ). The current experimental results are in good

agreement with the SM. This often proves a problem in BSM physics as there are often
new sources of FCNCs.

In SUSY theories the SUSY partners also give contributions to FCNCs, as shown in
Fig. 43. In this case the diagrams proportional to the mass difference of the squarks.

d

s̄

s

d̄

K0
K̄0ũ, c̃, t̃ ũ, c̃, t̃

χ̃−

χ̃+

Figure 43: An example supersymmetric contribution to neutral kaon mixing.

Provide the SUSY breaking masses are flavour independent this is not a problem, as the
mass differences are the same as the SM. It is also not a problem if there is no flavour
mixing in the model. In general both these things are possible and must be considered.

SUSY Breaking What are the 120 SUSY breaking parameters? In general there are:
SUSY breaking masses for the scalars; SUSY breaking masses for the gauginos; A terms
which mix three scalars; mixing angles and CP-violating phases. We need a model of
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Figure 3.0.1: Examples of mass spectra in mSUGRA, GMSB and AMSB models fortan � = 3, sign� > 0. The other parameters are m0 = 100 GeV, m1=2 = 200 GeV formSUGRA; Mmess = 100 TeV, Nmess = 1, � = 70 TeV for GMSB; and m0 = 200 GeV,m3=2 = 35 TeV for AMSB.with the high luminosity available at Tesla. It is vital to have highly polarised elec-trons and it is very desirable to have polarised positrons as well. It is assumed thatpolarisations of P� = 80% for electrons and P+ = 60% for positrons are achievable.A proper choice of polarisations and center of mass energy helps disentangle the var-ious production channels and suppress background reactions. Electron polarisation isessential to determine the weak quantum numbers, couplings and mixings. Positronpolarisation provides additional important information [4]: (i) an improved precisionon parameter measurements by exploiting all combinations of polarisation; (ii) an in-creased event rate (factor 1.5 or more) resulting in a higher sensitivity to rare decaysand subtle e�ects; and (iii) discovery of new physics, e.g. spin 0 sparticle exchange. Ingeneral the expected background is dominated by decays of other supersymmetric par-ticles, while the Standard Model processes like W+W� production can be kept undercontrol at reasonably low level.The most fundamental open question in SUSY is how supersymmetry is brokenand in which way this breaking is communicated to the particles. Here three di�erentschemes are considered: the minimal supergravity (mSUGRA) model, gauge mediated(GMSB) and anomaly mediated (AMSB) supersymmetry breaking models. The phe-nomenological implications are worked out in detail. The measurements of the sparticleproperties, like masses, mixings, couplings, spin-parity and other quantum numbers,

Figure 44: Examples of the mass spectra in different SUSY breaking models.

where these parameters come from in order to do any phenomenological or experimental
studies. We therefore use models which predict these parameters from physics at higher
energy scales, i.e. the GUT or Planck scale. In all these models SUSY is broken in a
hidden sector. The models differ in how this SUSY breaking is transmitted to the visible
sector, i.e. the MSSM particles.

SUGRA SUSY breaking is transmitted via gravity. All the scalar (M0) and gaug-
ino (M1/2) masses are unified at the GUT scale. The A and B terms are also universal.
The known value of MZ is used to constrain the µ and B parameters leaving tan β = v1/v2

as a free parameter. There are five parameters which give the mass spectrum: M0, M1/2,
tan β, sgnµ, A. The gluino mass is correlated with M1/2 and slepton mass with M0.

GMSB In gauge mediated SUSY breaking (GMSB) the flavour-changing neutral cur-
rent problem is solved by using gauge fields instead to gravity to transmit the SUSY
breaking. The messenger particles, X , transmit the SUSY breaking. The simplest choice
is a complete SU(5) 5 or 10 of particles transmitting the SUSY breaking to preserve
the GUT symmetry. The fundamental SUSY breaking scale . 1010GeV is lower than
in gravity mediated models. The gaugino masses occur at one-loop, Mg̃ ∼ αsNXΛ while
the scalar masses occur at two-loop, Mq̃ ∼ α2

s

√
NXΛ, where Λ is the breaking scale and

NX the number of messenger fields. The true LSP is the almost massless gravitino. The
lightest superpartner is unstable and decays to gravitino and can be neutral, e.g. χ̃0

1, or
charged, e.g. τ̃1.

AMSB The superconformal anomaly is always present and can give anomaly mediated
SUSY breaking (AMSB). This predicts the sparticle masses in terms of the gravitino mass,
M3/2. The simplest version of the model predicts tachyonic particles so another SUSY
breaking mechanism is required to get a realistic spectrum, e.g. adding universal scalar
masses (M0). The model has four parameters M0, M3/2, tan β and sgnµ. In this model
the lightest chargino is almost degenerate with the lightest neutralino.
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The mass spectrum in the models is different, as shown in Fig. 44. The main differences
are: the mass splitting between gluino and electroweak gauginos; the mass splitting of
the squarks and sleptons; and the nature of the LSP.

Muon g-2 Another important low energy constraint on BSM physics is the anomalous
magnetic moment of the muon. The magnetic moment of any fundamental fermion is

µ = g

(
e

2m

)
S, (99)

where g is the g-factor, m the mass and S the spin of the particle. The Dirac equation
predicts g = 2. However there are quantum corrections, as shown in Fig. 45, which lead
to an anomalous magnetic moment, g − 2.

γγ

µ−

µ
+

Figure 45: Vertex correction contributing to the anomalous muon magnetic moment in
the Standard Model.

There are also quark loops in the photon propagator, as shown in Fig. 46. This is a low
energy process so we can not use perturbative QCD. Instead we must use the measured
e+e− total cross section and the optical theorem to obtain the corrections which leads to
an experimental error on the theoretical prediction. In many BSM theories, for example

γ γ

Figure 46: Quark loop in the photon propagator which contributes to the anomalous
muon magnetic moment in the Standard Model.

in SUSY, there are additional corrections from diagrams, such as that shown in Fig. 47.

µ̃

µ̃

χ̃
0
i

γ

µ+

µ−

Figure 47: Example of a SUSY correction to the muon magnetic moment.

The original experimental result disagreed with the SM at 2.6σ, but there was an error
in the sign in one of the terms in the theoretical calculation reducing the significance to
about 1.4σ. However if you measure enough quantities some of them should disagree with
the prediction by more the 1 sigma (about 1/3), and some by 2 sigma (4.6%) or 3 sigma
(0.3%). This is why we define a discovery to be 5 sigma (6 × 10−5%), so this is nothing
to worry about.
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Figure 48: Standard Model Feynman diagrams for Bs → µ
+
µ
−.

Rare B decays There is an amazing consistency of the current flavour physics mea-
surements. However, many new physics models can have a similar pattern in their flavour
sector, the new physics model must have this otherwise it is experimentally excluded.
However, there can still be new physics in rare processes (like B

+ → τ
+
ντ ) and CP-

asymmetries. One promising examples is the decay Bs → µ+µ−. There are two Standard
Model contributions from box and penguin diagrams as shown in Fig. 48. Both of these
are suppressed by VtbV

∗
ts giving a Standard Model branching ratio

BR
(SM)
Bs,d→µµ ≈ 10−9

. (100)

This gives a simple leptonic final state with minor theoretical uncertainties but a huge
background so the mass resolution is paramount, the expected mass resolution for the
LHC experiments is given in Table 5.

Exp. ATLAS CMS LHCb
σm (MeV) 77 36 18

Table 5: Expected mass resolution for Bs → µ
+
µ
−.

In the MSSM, however, the amplitude involves three powers of tan2 β, so that

BR
(MSSM)
Bs→µµ ∝ tan6

β, (101)

which leads to an enhancement over the SM value by up to three orders of magnitude.

9.1.5 Extra Dimensions

Many theorists believe there are more than 4 dimensions, for example string theories can
only exist in 10/11 dimensions. The hierarchy problem can be solved (redefined?) in
these models in one of two ways.

1. There is a large extra dimension with size ∼ 1mm. In this case

M
2
Planck ∼ M

n+2
R

n
, (102)

where MPlanck is the observed Planck mass, M is the extra-dimensional Planck mass
and R the radius of the additional n dimensions. In this case the Planck mass is of
order 1 TeV so there is no hierarchy problem. However the hierarchy in the sizes of
the dimensions must be explained.
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2. Small extra dimensions in which case the extra dimension is warped. The model
has two branes, we live on one and the other is at the Plank scale. The Higgs VEV
is suppressed by a warp factor, exp(−krcπ), where rc is the compactification radius
of the extra dimension, and k a scale of the order of the Planck scale.

We can consider what happens in extra-dimensional models by studying a scalar field
in 5-dimensions. In this case the equation of motion for the scalar field is

(
∂2

∂t2
−∇2

5 +m
2

)
Φ(x, y, z, x5, t) = 0, (103)

where

∇2
5 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂x2
5

(104)

is the 5-dimensional Laplace operator. If the 5-th dimension is circular we can Fourier
decompose the field,

Φ(x, y, z, x5, t) =
∑

n

Φn(x, y, z, t) exp(inx5/R). (105)

The equation of motion therefore becomes,

∑

n

(
∂2

∂t2
−∇2

4 +m
2 +

n2

R2

)
Φn(x, y, z, t). (106)

This gives a Kaluza-Klein (KK) tower of states with mass splitting ∼ 1/R. There are
a number of different models.

Large Extra Dimensions Only gravity propagates in the bulk, i.e. in the extra di-
mensions. We therefore only get Kaluza-Klein excitations of the graviton. In large extra
dimensional models the mass splitting between the KK excitations is small and all the
gravitons contribute to a given process. Phenomenologically there are deviations from
the SM prediction for SM processes.

Small Extra Dimensions Again only gravity propagates in the bulk so there are only
KK excitations of the graviton. In this case the mass splitting is large leading to resonant
graviton production.

Universal Extra Dimensions Another alternative is to let all the Standard Model
fields propagate in the bulk, Universal Extra Dimensions (UED). All the particles have
Kaluza-Klein excitations. It is possible to have a Kaluza-Klein parity, like R-parity in
SUSY. The most studied model has one extra dimension and a similar particle content to
SUSY, apart from the spins. There are also some 6-dimensional models.
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Figure 49: Drell-Yan mass spectrum including unparticle exchange taken from Ref. [21].

9.1.6 Little Higgs Models

In little Higgs models the Higgs fields are Goldstone bosons associated with breaking
a global symmetry at a high scale, ΛS. The Higgs fields acquire a mass and become
pseudo-Goldstone bosons via symmetry breaking at the electroweak scale. The Higgs
fields remain light as they are protected by the approximate global symmetry. The model
has heavy partners for the photon, Z0, W± bosons and the top quark as well as extra
Higgs bosons. The non-linear σ-model used for the high energy theory is similar to the
low energy effective theory of pions which can be used to describe QCD, or in Technicolor
models. This similarity with Technicolor models is one of the reasons for the resurgence
of Technicolor models in recent years.

The original Little Higgs models had problems with electroweak constraints. The
solution is to introduce a discrete symmetry called T-parity, analogous to R-parity in
SUSY models. This solves the problems with the precision electroweak data and provides
a possible dark matter candidate. This model has a much large particle content than
the original Little Higgs model and is more SUSY-like with a partner for each Standard
Model particle.

9.1.7 Unparticles

In these models a new sector at a high energy scale with a non-trivial infrared (IR) fixed
point is introduced. This sector interacts with the Standard Model via the exchange of
particles with a large mass scale leading to an effective theory

CUΛ
dBZ

−dU
U

Mk
U

OSMOU , (107)

where: dU is the scaling dimension of the unparticle operator OU ; MU is the mass scale
for the exchanged particles; OSM is the Standard Model operator; dBZ

is the dimension
of the operator in the high energy theory; k gives the correct overall dimension of the
interaction term. This leads to new operators which give deviations from the Standard
Model predictions for various observables.
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Figure 50: Jet p⊥ spectrum for various numbers of extra dimensions in the ADD model
taken from Ref. [22].

9.2 Beyond the Standard Model Signatures

Before we go on and consider the signals of models of new physics in great detail it is
worthwhile considering what we expect to see in general. Most models of new physics
predict either the existence of more particles than the Standard Model or new operators
which give deviations from the Standard Model predictions. The signatures of the model
depend on either how these particles are produced and decay or the type of deviations
expected. In any study of BSM physics the most important thing is to understand the
Standard Model backgrounds. Often the signal is at the tail of some distribution and the
limits of our ability to calculate or simulate it.

9.2.1 Deviations from the Standard Model

There can be deviations from what is expected in the Standard Model due to: compos-
iteness; exchanging towers of Kaluza-Klein gravitons in large extra dimension models;
unparticle exchange; . . . . This tends to give changes in the shapes of spectra. Therefore
in order to see a difference you need to know the shape of the Standard Model prediction.

Example I: High p⊥ jets One possible signal of compositeness is the production of
high p⊥ jets. At one point there was a disagreement between theory and experiment at
the Tevatron. However, this was not due to new physics but too little high-x gluon in
the PDFs. Now as well as looking in the p⊥ spectra at central rapidities where we expect
to see a signal of BSM physics we also look at high rapidity as a disagreement at both
central and high rapidities is more likely to be due to the parton distribution functions.
An example of the jet p⊥ spectrum at a range of rapidities is shown in Fig. 21.

Example II: Unparticles Many models predict deviations in the Drell-Yan mass spec-
tra, for example in an unparticle model with the exchange of virtual spin-1 unparticles,
see Fig. 49. However, we need to be careful as higher order weak corrections which can
also change the shape are often neglected.
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Figure 51: CDF results for monojet production taken from Fermilab wine and cheese
seminar by K. Burkett.

Example III: PDF uncertainty or new physics In the ADD model of large extra
dimensions there are changes in the shape of the jet p⊥ and dijet mass spectra due to the
exchange of KK towers of gravitons and their destructive interference with SM, as shown
in Fig. 50.

9.2.2 Monojets

There are a range of models which predict monojet signals with the production of a
quark or gluon which is recoiling against either: a stable neutral particle; a tower of KK
gravitons in large extra dimension models; unparticles; . . . .

Example IV: Mono-jets at the Sp̄pS In Ref. [23] the UA1 collaboration reported:
5 events with E⊥,miss > 40 GeV and a narrow jet; 2 events with E⊥,miss > 40 GeV and a
neutral EM cluster. They could “not find a Standard Model explanation”, and compared
their findings with a calculation of SUSY pair-production [24]. They deduced a gluino
mass larger than around 40 GeV. In Ref. [25], the UA2 collaboration describes similar
events, also after 113 nb−1, without indicating any interpretation as strongly as UA1. In
Ref. [26] S. Ellis, R. Kleiss, and J. Stirling calculated the backgrounds to that process
more carefully, and showed agreement with the Standard Model.

There are many different Standard Model electroweak backgrounds and a careful com-
parison shows they are currently in agreement with the Standard Model, see Fig. 51.

9.2.3 New Particle Production

In general there are two cases for models in which new particles are produced.

1. The model has only a few new particles, mainly produced as s-channel resonances.
Examples include: Z-prime models; little Higgs models; small extra dimension mod-
els, . . . .

2. The model has a large number of new particles. Examples include: SUSY; UED;
little Higgs models with T-parity, . . . .
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Figure 52: Example of resonant graviton production at the LHC for
√
s = 14GeV taken

from Ref. [27].

In the first type of model the main signal is the production of s-channel resonances while
in the second class of models the signals are more varied and complex.

9.2.4 Resonance Production

The easiest and cleanest signal in hadron collisions is the production of an s-channel
resonance which decays to e+e− or µ+µ−. Resonances in this and other channels are
possible in: Little Higgs models; Z ′ models; UED; Small Extra Dimensions. Backgrounds
can be remove using sideband subtraction.

Example V: Resonant Graviton Production The best channel, e+e−, gives a reach
of order 2 TeV depending on the cross section for the LHC running at

√
s = 14GeV. Other

channels µ+µ−, gg, and W+W− are possible. If the graviton is light enough the angular
distribution of the decay products can be used to measure the spin of the resonance. An
example of the dilepton mass spectrum in this model is shown in Fig. 52.

A lot of models predict hadronic resonances. This is much more problematic due
to the mass resolution which smears out narrow resonances and the often huge QCD
backgrounds. Although background subtraction can be used the ratio of the signal to
background is often tiny, for example Fig. 53 shows the measured Z → bb̄ peak at the
Tevatron. 53
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Figure 53: Dijet mass spectrum for bottom quark jets at the Tevatron taken from Ref. [28].

9.2.5 SUSY-like models

Most of the other models are “SUSY”-like, i.e. they contain: a partner of some kind
for every Standard Model particle; often some additional particles such as extra Higgs
bosons; a lightest new particle which is stable and a dark matter candidate.

A lot of new particles should be produced in these models. While some particles may be
stable,8 the the majority of these particles decay to Standard Model particles. Therefore
we expect to see: charged leptons; missing transverse energy from stable neutral particles
or neutrinos; jets from quarks, perhaps with bottom and charm quarks; tau leptons; Higgs
boson production; photons; stable charged particles. It is worth noting that seeing an
excess of these does not necessarily tell us which model has been observed.

The archetypal model containing large numbers of new particles which may be ac-
cessible at the LHC is SUSY. Other models are UED and the Little Higgs Model with
T-parity. However, in practice UED is mainly used as a straw-man model for studies
trying to show that a potential excess is SUSY.

Two statements which are commonly made are: the LHC will discover the Higgs
boson; the LHC will discover low-energy SUSY if it exists. The first is almost certainly
true, however the second is only partially true.

In hadron collisions the strongly interacting particles are dominantly produced. There-
fore in SUSY squark and gluino production has the highest cross section, for example via
the processes shown in Fig. 54.

8i.e. the decay length of the particle is such that the majority of the particles escape from the detector
before decaying. In practice this happens for lifetimes greater than 10−7s.
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Figure 54: Example SUSY particle production processes.

Figure 55: Example strong SUSY particle decays.

Figure 56: Example weak SUSY particle decays.

These particles then decay in a number of ways. Some of them have strong decays to
other strongly interacting SUSY particles, for example via the processes shown in Fig. 55.
However the lightest strongly interaction SUSY particle, squark or gluino, can only decay
weakly, as shown in Fig. 56. The gluino can only have weak decays with virtual squarks
or via loop diagrams. This is the main production mechanism for the weakly interacting
SUSY particles.

The decays of the squarks and gluinos will produce lots of quarks and antiquarks.
The weakly interacting SUSY particles will then decay giving more quarks and leptons.
Eventually the lightest SUSY particle which is stable will be produced. This behaves like
a neutrino and gives missing transverse energy. So the signal for SUSY is large numbers
of jets and leptons with missing transverse energy. This could however be the signal for
many models containing new heavy particles.
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Figure 57: Expected limits in SUSY parameter space for searches using jets and missing
transverse energy and jets, leptons and missing transverse energy for the LHC running at√
s = 14TeV taken from Ref. [29].

Figure 58: Expected limits in SUSY parameter space for searches using jets, leptons and
missing transverse energy for the LHC running at

√
s = 14TeV taken from Ref. [29].

All SUSY studies fall into two categories: search studies which are designed to show
SUSY can be discovered by looking for a inclusive signatures and counting events; mea-
surement studies which are designed to show that some parameters of the model, usually
masses, can be measured.

There is a large reach looking for a number of high transverse momentum jets and
leptons, and missing transverse energy, see Figs. 57 and 58. It is also possible to have the
production of the Z0 and Higgs bosons and top quarks. In many cases the tau lepton
may be produced more often than electrons or muons.

Once we observe a signal of SUSY there are various approaches to determine the
properties of the model. The simplest of these is the effective mass

Meff =

n∑

i=1

p
jet
⊥i+ 6ET , (108)
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Figure 59: Correlation of the Meff variable with the SUSY mass scale in various SUSY
models taken from Ref. [30].

which is strongly correlated with the mass of strongly interacting SUSY particles and can
be used to measure the squark/gluino mass to about 15%, see Fig. 59.

The analyzes we have just looked at are those that are used to claim the LHC will
discover SUSY but this is not really what they tell us. They don’t really discover SUSY.
What they see is the production of massive strongly interacting particles, this does not
have to be SUSY, it could easily be something else. In order to claim that a signal is SUSY
we would need to know more about it. SUSY analyzes tend to proceed by looking for
characteristic decay chains and using these to measure the masses of the SUSY particles
and determine more properties of the model.

Given most of the searches are essentially counting experiments it is important to
understand the Standard Model backgrounds which can be challenging, see Fig. 60.

A Kinematics and Cross Sections

A.1 Kinematics

The basic language of all phenomenology is that of relativistic kinematics, in particular
four-vectors. In hadron collisions because we do not know what fraction of the beam
momenta is transferred to the partonic system it is preferable to use quantities, such
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Figure 60: Backgrounds in inclusive SUSY searches.

as the transverse momentum, p⊥, with respect to the beam direction which are invariant
under longitudinal boosts along the beam direction to describe the kinematics. In addition
to the transverse momentum we use the rapidity, y, and massless pseudorapidity, η,

y =
1

2
ln

E + pz

E − pz

massless−→ η = − ln tan
θ

2
, (109)

because rapidity differences are invariant under longitudinal boosts. Particles with small
rapidities are produced at an angle close to 900 degrees to the beam direction while
particles with large positive (negative) rapidities are travelling in the forward (backward)
beam direction. The pseudorapidity is more often used experimentally as it is related to
the measured scattering angle.

The four-momentum can by written as

p
µ = (E, px, py, pz) = (m⊥ cosh y, p⊥ cosφ, p⊥ sinφ,m⊥ sinh y), (110)

where m2
⊥ = p2⊥ + m2. The one-particle phase-space element can also be rewritten in

terms of y and p⊥ as

d4p

(2π)4
δ(p2 −m

2)θ(E) =
d3p

(2π)22E
=

dyd2p⊥

2(2π)3
. (111)

A.2 Cross Sections

The starting point of all collider physics calculations is the calculation of the scattering
cross section. The cross section for a 2 → n scattering processes, a+ b → 1...n, is

dσ =
(2π)4

4
√

(pa · pb)2 −m2
am

2
b

dΦn(pa + pb; p1 . . . pn)|M|2, (112)
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where pa,b and pi=1,...,n are the momenta of the incoming and outgoing particles, respec-
tively. The matrix element squared |M|2 is summed/averaged over the spins and colours
of the outgoing/incoming particles. The n-particle phase-space element is

dΦn(pa + pb; p1 . . . pn) = δ
4

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

d3pi

(2π)32Ei
, (113)

where Ei is the energy of the ith particle. It is conventional to define s = (pa + pb)
2. For

massless incoming particles 4
√
(pa · pb)2 −m2

am
2
b = 2s.

Although modern theoretical calculations involve ever higher multiplicity final states
in these lectures we will primarily deal with 2 → 2 scattering processes in which case

dΦ2(pa + pb; p1, p2) = δ
4 (pa + pb − p1 − p2)

d3p1

(2π)32E1

d3p2

(2π)32E2
, (114)

= δ (Ea + Eb − E1 −E2)
1

(2π)64E1E2
|p1|2d|p1|d cos θdφ,

=
1

8π(2π)4
|p1|√
s
d cos θ,

where |p1| is the magnitude of the three-momenta of either of the outgoing particles and
θ and φ are the polar and azimuthal scattering angles, respectively. The cross section

dσ =
1

16πs

|p1|√
s
d cos θ|M|2. (115)

In is conventional to describe the scattering process in terms of the Mandelstam variables

s = (pa + pb)
2
, t = (pa − p1)

2
, u = (pa − p2)

2
. (116)

There are only two independent Mandelstam variables

s+ t + u = m
2
1 +m

2
2 +m

2
a +m

2
b

massless−→ 0. (117)

In terms of these variables

dσ =
1

16πs2
dt|M|2. (118)

A.3 Cross Sections in Hadron Collisions

In hadron collisions there is an additional complication as the partons inside the hadrons
interact. The hadron–hadron cross section is

dσAB =
∑

ab

∫ 1

0

dx1dx2fa/A(x1, µ
2
F )fb/B(x2, µ

2
F )σ̂ab(ŝ, µ

2
F , µ

2
R), (119)

where x1,2 are momentum fractions of the interacting partons with respect to the incoming
hadrons, ŝ = x1x2s, σ̂ab(ŝ, µ

2
F , µ

2
R) is the parton-level cross section for the partons a and b

to produce the relevant final state, fa/A(x, µ
2
F ) is the parton distribution function (PDF)

giving the probability of finding the parton a in the hadron A, and similarly for fb/B(x, µ
2
F ).

The factorization and renormalisation scales are µF and µR, respectively.
In hadron collisions we usually denote the variables for partonic process with ˆ, e.g.

ŝ, t̂ and û for the Mandelstam variables.
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A.3.1 Resonance production (2 → 1 processes)

The simplest example of a hadronic cross section is the production of an s-channel res-
onance, for example the Z0 or Higgs bosons. We assume that the incoming partons are
massless so that the 4-momenta of the incoming partons are:

pa,b = x1,2(E, 0, 0, ±E), (120)

where E is beam energy in the hadron–hadron centre-of-mass system of collider such that
s = 4E2. The Breit-Wigner cross section, e.g. for Z production, is

σ̂qq̄→Z0→µ+µ− =
1

N2
C

12πŝ

M2
Z

Γqq̄Γµ+µ−

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

. (121)

In the limit that the width is a lot less than the mass

1

(ŝ−M2
Z)

2 +M2
ZΓ

2
Z

≈ π

MZΓZ
δ(ŝ−M

2
Z), (122)

the narrow width limit. In this case the partonic centre-of-mass system is constrained to
have ŝ = M2

Z . The rapidity ŷ of the partonic system and ŝ are related to the momentum
fractions x1,2 by

ŝ = x1x2, s and ŷ =
1

2
ln

x1 + x2 + x1 − x2

x1 + x2 − x1 + x2
=

1

2
ln

x1

x2
. (123)

Inverting these relationships we obtain

x1,2 =

√
ŝ

s
e
±ŷ and ŷ =

1

2
ln

x2
1s

ŝ
≤ ln

2E√
ŝ
= ŷmax. (124)

This allows us to change the variables in the integration using

sdx1dx2 = dŝdŷ, (125)

giving the differential cross section

dσAB→Z0→µ+µ−

dŷ
=
∑

a,b=qq̄

x1fq/A(x1, µ
2
F )x2fq̄/B(x2, µ

2
F )

12π2

N2
CM

3
Z

Γqq̄Bµ+µ− . (126)

A.3.2 2 → 2 Scattering Processes

For most 2 → 2 scattering processes in hadron–hadron collisions it is easier to work in
terms of the rapidities y3, y4 and transverse momentum, p⊥, of the particles. We introduce
average (centre-of-mass) rapidity and rapidity difference,

ȳ = (y3 + y4)/2 and y
∗ = (y3 − y4)/2, (127)

which are related to the Bjorken x values by

x1,2 =
p⊥√
2

(
e
±y3 + e

±y4
)
=

p⊥

2
√
s
e
±ȳ cosh y∗. (128)
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Therefore

ŝ = M
2
12 = 4p2⊥ cosh y∗ and t̂, û = − ŝ

2
(1∓ tanh y∗) .

The partonic cross section, assuming all the particles are massless, is

σ̂ab→12 =
1

2ŝ

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

|Mab→12|2(2π)4δ4(pa + pb − p1 − p2), (129)

=
1

2ŝ2

∫
d2p⊥

(2π)2
|Mab→12|2 .

Therefore once we include the PDFs, sum over a, b, and integrate over x1,2 the hadronic
cross section is

σAB→12 =
∑

ab

∫
dy1dy2d

2p⊥

16π2s2

fa(x1, µF )fb(x2, µF )

x1x2
|Mab→12|2 ,

including the factor 1/(1 + δ12) for identical final-state particles.

B Flavour Physics

While most of the interactions in the Standard Model preserve the flavour of quarks and
leptons the interaction of fermions with the W boson can change the flavour of the quarks
and violate CP-conservation.

In order to understand the interactions of the quarks with the W boson we first need
to consider the generation of quark masses in the Standard Model. The masses of the
quarks come from the Yukawa interaction with the Higgs field

L = −Y
d
ijQ

I
Liφd

I
Rj − Y

u
ijQ

I
Liǫφ

∗
u
I
Rj + h.c., (130)

where Y u,d are complex 3 × 3 matrices, φ is the Higgs field, i, j are generation indices,
Qi

L are the left-handed quark doublets and, dIR and uI
R are the right down- and up-type

quark singlets. When the Higgs field acquires a vacuum expectation value 〈φ〉 = (0, v√
2
)

we get the mass terms for the quarks.
The physical states come from diagonalizing Y u,d using 4 unitary 3× 3 matrices, V u,d

L,R

M
f
diag = V

f
L Y

f
V

f†
R

v√
2
. (131)

The interaction of the W± and the quarks is given by

LW = − g√
2

[
d̄
I
Lγ

µ
W

−
µ u

I
L + ū

I
Lγ

µ
W

+
µ d

I
L

]
. (132)

The interaction with the mass eigenstates, fM
L = V

f
L f

I
L, is

LW = − g√
2

[
d̄
M
L γ

µ
W

−
µ V

†
CKMu

M
L + ū

M
L γ

µ
W

+
µ VCKMd

M
L

]
, (133)
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Figure 61: Unitary triangle.

where the Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡ V
u
LCV

d†
L =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 , (134)

is a 3× 3 unitary matrix.
The CKM matrix can be parameterized in terms of three mixing angles, (θ12, θ13, θ23)

and one phase, δ,

VCKM =




c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 , (135)

where sij = sin θij and cij = cos θij . As experimentally s13 ≪ s23 ≪ s12 ≪ 1 it is
convenient to use the Wolfenstein parameterization: s12 = λ; s23 = Aλ2; and s13e

iδ =
Aλ3 (ρ+ iη).
In which

VCKM =




1− 1
2
λ2 λ Aλ3 (ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1


 +O(λ4). (136)

If we assume that the neutrinos are massless there is no mixing for leptons. We now
know that the neutrinos have small masses so there is mixing in the lepton sector. The
analogy of the CKM matrix is the Maki-Nakagawa-Sakata (MNS) matrix UMNS.

A number of unitarity triangles can be constructed using the properties of the CKM
matrix. The most useful one is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (137)

which can be represented as a triangle as shown in Fig. 61. The area of all the unitary
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triangles is 1
2
J , where J is the Jarlskog invariant, a convention-independent measure of

CP-violation,
J = Im{VudVcsV

∗
usV

∗
cd}. (138)

There are a large number of measurements which constrain the parameters in the
unitarity triangle. They all measure different combinations of the parameters and over-
constrain the location of the vertex of the unitarity triangle.

The magnitudes of the CKM elements control the lengths of the sides:

1. |Vud| is accurately measured in nuclear beta decay;

2. |Vcd| can be measured using either semi-leptonic charm meson decays or using neu-
trino DIS cross sections;

3. |Vub| is measured using inclusive and exclusive semi-leptonic B meson decays to light
mesons B → Xuℓν̄ or B → πℓν̄;

4. |Vcb| is measured using inclusive and exclusive semi-leptonic B meson decays to
charm mesons B → XCℓν̄ or B → Dℓν̄.

The CKM matrix elements which give the length of the remaining side can only be
measured in loop-mediated processes. The most important of these, FCNCs, have already
been discussed in the context of BSM physics in Section 9.1.4. These also gives rise to
B − B̄ mixing and oscillations, via the Feynman diagrams shown in Fig. 62.

d

b̄

b

d̄

B
0

B̄0u, c, t u, c, t

s

b̄

b

s̄

B0
s B̄

0
su, c, t u, c, t

Figure 62: Feynman diagrams giving B
0 − B̄

0 and B
0
s − B̄

0
s oscillations.

The oscillation probability is

Poscillation =
e−Γt

2

[
cosh

(
∆Γt

2

)
+ cos (∆mt)

]
, (139)

where Γ is the average width of the mesons, ∆Γ is the width difference between the mesons
and ∆m is the mass difference of the mesons. For both Bd and Bs mesons the ∆m term
dominates. From the box diagram

∆mq = −
G

2
Fm

2
W ηBmBq

BBq
f
2
Bq

6π2
S0

(
m2

t

m2
W

)
(V ∗

tqVtb)
2
. (140)

The decay constant fBq
can be measured from leptonic decays Bq → ℓ+νℓ but BBq

comes
from lattice QCD results. The QCD correction ηB ∼ O(1).

The B-factories have studied B
0 − B̄

0 mixing in great detail giving

∆md = 0.507± 0.005ps−1
. (141)
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Figure 63: Examples of tree and penguin mediated processes, taken from Ref. [8].

It is important to measure both Bd− B̄d and Bs− B̄s mixing as some hadronic uncer-
tainties cancel in the ratio. The rate is ∝ |VtsV

∗
tb|2 due to the GIM mechanism. However,

the high oscillation frequency makes Bs − B̄s mixing tricky to observe. The Tevatron
observation relied on tagging the flavour of the B meson at production by observing an
associated kaon from the fragmentation. The final result is

∆ms = 17.77 ± 0.10(stat) ± 0.07(sys), (142)

|Vtd||Vts| = 0.2060 ± 0.0007(exp) ± 0.008(theo).

The only source of CP-violation in the Standard Model is the complex phase in the
CKM matrix. In order to see any effect we need at least two diagrams for the process
with different CP-phases. There are three possibilities: CP-violation in the decay (direct);
CP-violating in the mixing (indirect); CP-violation in the interference between decay and
mixing. Example amplitudes are shown in Fig. 63.

The simplest type of CP-violation is direct CP-violation. This is the only possible type
of CP-violation for charged mesons and is usually observed by measuring an asymmetry

Af± ≡ Γ(M− → f
−)− Γ(M+ → f

+)

Γ(M− → f−) + Γ(M+ → f+)

CP conserved−→ 0. (143)

If CP-symmetry holds, then |KL〉 = 1√
2
(|K0〉 + |K̄0〉) would be a CP-eigenstate with

|KL〉 = |K̄L〉. If we take |M〉 = |KL〉 and |f〉 = |π−e+νe〉 the corresponding CP-
asymmetry is ACP = (0.327 ± 0.012)%, which means that KL is not a CP-eigenstate
and there is CP-violation. There are many possible modes which measure different com-
inations of the angles in the unitarity triangle. The observed flavour and CP-violation is
consistent with the Standard Model, i.e. the description by the CKM matrix, see Fig. 64.

There is one final area of flavour physics which is important. The matter in the
universe consists of particles and not antiparticles. There are three Sakharov conditions
required for this to happen:

- 215 -



γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Figure 64: Experimental measurement of the unitarity triangle taken from Ref. [8].

1. baryon number violation;

2. C-symmetry and CP-symmetry violation;

3. interactions out of thermal equilibrium.

There are non-perturbative effects in the SM which violate baryon number. However, the
amount of CP-violation in the quark sector is not enough to give the observed matter-
antimatter asymmetry, there might be more in the lepton sector, otherwise we need a new
physics source of CP-violation.
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