
The challenge of the solve phase of a multicore
solver

Jonathan Hogg
Jennifer Scott

Rutherford Appleton Laboratory

IMA Numerical Linear Algebra and Optimization,
Birmingham, 13 September 2010

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Sparse Direct Solvers

Solve Ax = b using a Cholesky factorization:

PAPT = LLT

Where A is...

I Large

I Sparse

I Positive Definite

Variants for more general matrices — LDLT , LU.

2 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Sparse Direct Solvers

Four phases:

Ordering Reduce fill-in (AMD, MeTiS, SCOTCH, ...)

Analyse Construct data structures, plan computation

Factorize Numerical computation

Solve Triangular solves with L and LT

Traditionally: Factorize phase by far the most time consuming:

1 Factorize = 50-100 Solves

3 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Multicore. Oh dear.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
ti

m
e
 i
n
 P

h
a
se

Problem Index

Factorize
Solve

Factorize parallel. Solve serial.

4 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

So? Just parallelize the solve!

Lots of ways of doing this:

I Threaded BLAS/OpenMP do loops

I Assembly tree parallelism

I DAG-based methods

Regardless of how we did this...
...only a 2–3 times speedup

5 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

So? Just parallelize the solve!

Lots of ways of doing this:

I Threaded BLAS/OpenMP do loops

I Assembly tree parallelism

I DAG-based methods

Regardless of how we did this...
...only a 2–3 times speedup

5 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

So? Just parallelize the solve!

Lots of ways of doing this:

I Threaded BLAS/OpenMP do loops

I Assembly tree parallelism

I DAG-based methods

Regardless of how we did this...
...only a 2–3 times speedup

5 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

So? Just parallelize the solve!

Lots of ways of doing this:

I Threaded BLAS/OpenMP do loops

I Assembly tree parallelism

I DAG-based methods

Regardless of how we did this...
...only a 2–3 times speedup

5 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

So? Just parallelize the solve!

Lots of ways of doing this:

I Threaded BLAS/OpenMP do loops

I Assembly tree parallelism

I DAG-based methods

Regardless of how we did this...
...only a 2–3 times speedup

5 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Not much better...

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
ti

m
e
 i
n
 P

h
a
se

Problem Index

Factorize
Solve

Factorize and solve parallel.

6 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Why?

Typically:

Flops Cache Misses

Factor > 98% 60–80%
Solve < 2% 20–40%

Speedup on a single quad-core: < 1.30
Speedup on two quad-cores: < 3.00

Solve is memory bound.

Multicore = more cores, same memory bandwidth.

7 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Is this a problem?

Yes.
Lots of use cases for multiple sequential solves following a factorize.

Iterative Refinement classical case. Use multiple solves to reduce
the error.

Mixed Precision precondition high precision iterative methods with
low precision factorization.

Preconditioning in general often uses incomplete factorizations.

Interior-point Methods multiple correctors and often aggressive
iterative refinement.

8 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Can we fix it?

Need to exploit the cache.
or

Need to trade off more computation for less memory bandwidth.

Combined factor-solve?

Compression?

9 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Can we fix it?

Need to exploit the cache.
or

Need to trade off more computation for less memory bandwidth.

Combined factor-solve?

Compression?

9 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Can we fix it?

Need to exploit the cache.
or

Need to trade off more computation for less memory bandwidth.

Combined factor-solve?

Compression?

9 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Combined factor-solve

Forward substitution can be done at same time as factorization.
(data is already in cache!)

Well established in out-of-core solvers.

Halves time for first solve

But... doesn’t help on subsequent solves.

10 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Compression

Two theoretical limits:

Compression ratio How much bandwidth do we save?

Decompression rate How many extra cycles does this take?

Will never go faster by more than the compression ratio.

Exploit two levels of compression:

Algorithm specific We have deliberately introduced extra zeros to
make the factorize go faster, does removing them
help?

Generic Use a generic compression algorithm such as gzip,
bzip2, LZO...

11 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Compression

Two theoretical limits:

Compression ratio How much bandwidth do we save?

Decompression rate How many extra cycles does this take?

Will never go faster by more than the compression ratio.

Exploit two levels of compression:

Algorithm specific We have deliberately introduced extra zeros to
make the factorize go faster, does removing them
help?

Generic Use a generic compression algorithm such as gzip,
bzip2, LZO...

11 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Compression ratios

LZO LZO
nemin = 32 nemin = 32 nemin = 1 nemin = 1

size size CR size CR size CR
1. 579 333 1.74 283 2.04 269 2.14
2. 981 567 1.73 489 2.01 463 2.12
3. 315 283 1.11 292 1.08 269 1.17
4. 407 328 1.24 342 1.19 303 1.34
5. 10829 10310 1.05 10304 1.05 10009 1.08

(size is storage for L in Megabytes)

1. CEMW/tmt sym
2. Schmid/thermal2
3. GHS psdef/crankseg 1
4. DNVS/shipsec1
5. GHS psdef/audikw 1

12 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

In practice...

Not even getting close to theoretical maxima.

4 cores 8 cores CR
without with ratio without with ratio

1. 0.44 0.38 1.16 0.30 0.27 1.11 1.74
2. 0.76 0.67 1.13 0.53 0.48 1.10 1.73
3. 0.19 0.19 1.00 0.11 0.11 1.00 1.11
4. 0.25 0.24 1.04 0.15 0.14 1.07 1.24
5. 6.90 6.92 1.00 3.61 3.59 1.01 1.05

(times in seconds)

13 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Are architectures improving?

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

S
p

e
e
d

u
p

Problem Index

Factor on Nehalem
Solve on Nehalem

Factor on Harpertown
Solve on Harpertown

14 / 15

Conclusions

I Multicore is not SMP

I Memory-bound operations are a problem

I Solve phase of direct methods now significant

I No easy fix

Any questions?
Any solutions?

15 / 15

Challenges of the solve phase on multicore J.D.Hogg and J.A.Scott

Time distribution, all phases.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
ti

m
e
 i
n
 P

h
a
se

Problem Index

Ordering
Analysis

Factorize
Solve

1 / 1

	Appendix

