
logo

Dense Sparse positive-definite Sparse indefinite

Designing sparse direct solvers for multicore
architectures

Jonathan Hogg
Jennifer Scott

IMA Conference on Numerical Linear Algebra and
Optimization, 13 September 2010

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Outline of talk

How to efficiently solve Ax = b on multicore machines

(A symmetric)

Dense positive-definite systems

Large sparse positive-definite systems

Large sparse indefinite systems

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Dense positive-definite systems

Factorize A = LLT using simple block algorithm:

For k = 1, 2, ...:

Akk = LkkLT
kk (Factor)

For i > k: Lik = AikL−T
kk (Triangular Solve)

For i , j > k: Aij ← Aij − LikLT
jk (Update)

What do we need to synchronise?

Consider each block operation as a task.

Tasks have dependencies.
Represent implicitly as a Directed Acyclic Graph (DAG).

Approach of Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov ’06

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Dense positive-definite systems

Factorize A = LLT using simple block algorithm:

For k = 1, 2, ...:

Akk = LkkLT
kk (Factor)

For i > k: Lik = AikL−T
kk (Triangular Solve)

For i , j > k: Aij ← Aij − LikLT
jk (Update)

What do we need to synchronise?

Consider each block operation as a task.

Tasks have dependencies.
Represent implicitly as a Directed Acyclic Graph (DAG).

Approach of Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov ’06

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Dense positive-definite systems

Factorize A = LLT using simple block algorithm:

For k = 1, 2, ...:

Akk = LkkLT
kk (Factor)

For i > k: Lik = AikL−T
kk (Triangular Solve)

For i , j > k: Aij ← Aij − LikLT
jk (Update)

What do we need to synchronise?

Consider each block operation as a task.

Tasks have dependencies.
Represent implicitly as a Directed Acyclic Graph (DAG).

Approach of Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov ’06

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Task DAG (4 blocks)

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Speedup for dense case

Results on machine with 2 Intel E5420 quad core processors.

n Speedup

500 3.2
2500 5.7

10000 7.2
20000 7.4

Dense DAG code HSL MP54 available in HSL 2007.

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Sparse case?

How to generalise to sparse factorizations?

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Nodal matrix

Hold set of contiguous cols of sparse L with (nearly) same pattern
as a dense trapezoidal matrix, referred to as nodal matrix.

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Nodal matrix

Divide nodal matrix into block columns

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Nodal matrix

Divide each block column into (square) dense blocks

Basic operation unit is the block.

Tasks are performed using these blocks

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Tasks in sparse positive-definite case

Express sparse Cholesky factorization using 4 basic operations

factor block. Computes dense Cholesky factor Ldiag of block on
diagonal.

solve block. Performs triangular solve of off-diagonal block Ldest by
Cholesky factor Ldiag of block on its diagonal.

Ldest ⇐ LdestL
−T
diag

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Tasks in sparse positive-definite case

Express sparse Cholesky factorization using 4 basic operations

factor block. Computes dense Cholesky factor Ldiag of block on
diagonal.

solve block. Performs triangular solve of off-diagonal block Ldest by
Cholesky factor Ldiag of block on its diagonal.

Ldest ⇐ LdestL
−T
diag

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Tasks in sparse positive-definite case

update internal
Within node, performs update

L
r

L
c

L
dest

Ldest ⇐ Ldest − LrL
T
c

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Tasks in sparse DAG

update between

Ldest

node

col

r(dest,node,col)

c(dest,node,col)

buffer

1. Form outer product LrL
T
c into a buffer.

2. Distribute results into destination block Ldest .

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Storage of nodal matrix

Use full storage on diagonal to allow use of efficicent BLAS
and LAPACK

Store each block by rows contiguously ... removes
discontinuities at row block boundaries and facilitates update
tasks.

1
4 5
7 8 9

10 11 12 25
13 14 15 27 28
16 17 18 29 30

19 20 21 31 32
22 23 24 33 34

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0, a task is stacked.

Each cache keeps small stack of tasks that are intended for use by
threads sharing this cache.

Tasks added to or drawn from top of local stack. If becomes full,
move bottom half to global task pool

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Sparse positive-definite DAG results

Speedups for factorize phase.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

S
p

e
e
d

u
p

Problem Index

2 cores
4 cores
8 cores

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Sparse positive-definite DAG results

The speed of factorize phase in Gflop/s on 8 cores.
(dgemm peak 72.8 Gflop/s)

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

G
fl
o
p

/s

Problem Index

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Sparse indefinite systems

Extra challenge: need to accommodate pivoting for stability

Do not want to restrict pivoting to within block on diagonal

diag

rect

Large entries in rect could cause problems.

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Implications

Cannot factorize the diagonal block independently of the
off-diagonal blocks.

The diagonal block and the off-diagonal blocks must all have
zero dependency counts.

Necessary to combine factor block and all solve block tasks
for a block column Lcol .

Separate kernel code written to perform this efficiently,
incorporating threshold partial pivoting with 1× 1 and 2× 2
pivots.

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Effects

Parallelism less fine-grained (large factorize col task replaces
smaller factor block and solve block tasks so we use smaller
default block size)

May need to expand storage determined during analyse

Lcol → Lnew
col

(Lnew
col includes delayed columns from child nodes)

More data movement/copying

Pivot search requires access by columns
(recall: block column stored by rows)

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Indefinite results: serial runs

Factorize times on single core. OOM indicates out of memory.

Problem MA57 HSL MA77 New code

Schenk IBMNA/c-56 0.404 0.130 0.163
Simon/olafu 0.559 0.234 0.244
Koutsovasilis/F2 4.48 2.42 2.57
Oberwolfach/t3dh 20.2 11.7 12.1
Schenk AFE/af shell10 100 76.2 72.8
Oberwolfach/bone010 877 637 590
PARSEC/Ga41As41H72 OOM 9241 7290

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Indefinite results: good news

Factorize times on 1 and 8 cores.

Problem 1 8 speedup

Boeing/crystk03 1.29 0.36 3.58
Koutsovasilis/F2 2.57 0.57 4.51
Cunningham/qa8fk 4.23 0.88 4.79
Oberwolfach/t3dh 12.1 2.17 5.58
Schenk AFE/af shell10 72.8 11.7 6.22
Oberwolfach/bone010 590 88.3 6.68
PARSEC/Ga41As41H72 7290 1141 6.39

Conclude: very good results for some large problems

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Indefinite results: tough problems

Many delayed pivots cause performance hit.

Problem num delay 1 8 speedup

GHS indef/sparsine 16 250 44.4 5.65
Schenk IBMA/c-62 28728 9.07 4.93 1.84
GHS indef/aug3d 144955 36.5 25.9 1.41

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Concluding remarks

Extended DAG approach from dense positive-definite systems
to sparse systems

Very good results for factorizing positive-definite matrices on
our 8-core machine

Also good results for large indefinite problems provided there
are few delayed pivots

For some tough indefinite problems, further work needed to
improve performance while maintaining stability.

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Positive-definite case: comparison with other solvers

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

T
im

e
/(

H
S

L_
M

A
8

7
 t

im
e
)

Problem Index

PARDISO
TAUCS
PaStiX

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Positive-definite case: speedup ratios

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

(H
S

L_
M

A
8

7
 s

p
e
e
d

u
p

)/
sp

e
e
d

u
p

Problem Index

PARDISO
TAUCS
PaStiX

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

logo

Dense Sparse positive-definite Sparse indefinite

Indefinite case: comparison with PARDISO

Wall-clock times for factorization phase on 8 cores.

Problem PARDISO New code

Schenk IBMNA/c-56 0.055 0.152
Boeing/crystk03 0.269 0.359
Cunningham/qa8fk 0.704 0.882
Schenk AFE/af shell10 13.2 11.7
Oberwolfach/bone010 174 88.3
GSH indef/sparsine 159 44.4
PARSEC/Ga41As41H72 3020 1141

J.D.Hogg and J.A.Scott Sparse solvers for multicore architectures

	Dense
	Sparse positive-definite
	Sparse indefinite

