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Co-authors

In this talk, we discuss work mainly on projects at

CERFACS

The main people involved in this work are:

Mario Arioli , Luc Giraud, Serge Gratton, Azzam Haidar,
Xavier Pinel, Jean-Christophe Rioual, Xavier Vasseur
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Task is to solve

Ax = b

where the dimension ofA may be106 or greater.

In our caseA is normally from the discretization of a

three-dimensional PDE.
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Outline

Direct methods

Hybrid methods

Static pivoting

Domain decomposition

Helmholtz equation in geophysics
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Direct methods

Grid dimensions Matrix order Work to factorize Factor storage

k × k k2 k3 k2 log k

k × k × k k3 k6 k4

O complexity of direct method on 2D and 3D grids.
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Hybrid methods

COMBINING DIRECT AND ITERATIVE METHODS

(can be thought of as sophisticated preconditioning)
Multigrid
Using direct method as coarse grid solver.

Domain Decomposition
Using direct method on local subdomains and “direct” preconditioner on
interface.

Block Iterative Methods

Direct solver on sub-blocks.

Partial factorization as preconditioner

Factorization of nearby problem as a preconditioner
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Direct methods ... static pivoting

A sparse direct methodnormally consists of three phases

Analysis (determine ordering and data structures)

Numerical factorization (A −→ LDL
T )

Solution phase (obtain solution using sparse triangular

solves)

When the matrix is positive definite this works well but
in the indefinite casesubsequent numerical pivoting may
mean that the initial analysis is not respected.
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Static Pivoting

The default action for general matrices is to use some form ofthreshold
pivoting in the numerical factorization phase.

An alternativeis to useStatic Pivoting , by replacing potentially small
pivotspk by

pk + τ

and maintaining the same pivoting strategy as advocated in the analysis.

This is even more important in the case of parallel implementation
where static data structures are often preferred
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Static Pivoting

Several codes use (or have an option for) this device:

SuperLU (Demmel and Li)

PARDISO (Gärtner and Schenk)

MA57 (Duff and Pralet)

MUMPS (Amestoy, Duff, L’Excellent, and Koster)

mumps.enseeiht.fr mumps@cerfacs.fr
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Static Pivoting

We thus have factorized

A + E = LDLT

where|E| ≤ τI

The four codes then have anIterative Refinement option

The problem is that this sometimes does not converge
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Static Pivoting

Choosingτ

Increaseτ =⇒ increase stability of decomposition

Decreaseτ =⇒ better approximation of the original matrix, reduces||E||
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Static Pivoting

Choosingτ

Increaseτ =⇒ increase stability of decomposition

Decreaseτ =⇒ better approximation of the original matrix, reduces||E||

Trade-off

≈ 1 =⇒ huge error||E||.
≈ ε =⇒ big growth in preconditioning matrix

Conventional wisdom is to choose

τ = O(
√

ε)
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Static pivoting

Number Factorization time Size of

delayed tiny seconds the factors

Matrix Order Entries num static num static num static

BRAINPC2 27607 96601 14267 12932 0.18 0.11 656765 322971

BRATU3D 27792 88627 90052 8429 34.2 9.24 11484379 5569194

CONT-201 80595 239596 71296 27470 5.51 1.94 8820367 4304559

CONT-300 180895 562496 183306 67864 21.1 6.08 23838606 10714425

cvxqp3 17500 62481 30519 6277 9.73 3.08 4740141 2301836

DTOC 24993 34986 29478 9790 29.1 0.41 4714248 187639

mario001 38434 114643 15463 10305 0.28 0.23 817056 575373

NCVXQP1 12111 40537 12463 3619 2.69 1.29 2235743 1327920

NCVXQP5 62500 237483 16703 8402 25.7 23.0 13365963 11205204

NCVXQP7 87500 312481 195973 31043 195. 71.6 37683838 19367210

SIT100 10262 34094 2710 1388 0.13 0.11 483383 417147

stokes128 49666 295938 18056 12738 1.14 1.06 3437116 2753749

stokes64 12546 74242 4292 3106 0.33 0.29 736428 577581
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Component-wise backward error

Matrix Num pivoting strategy Static pivoting strategy

it. 0 it. 1 it. 0 it. 1 it. 2

BRAINPC2 1.6e-15 1.0e-15 2.1e-08 5.7e-15 9.8e-16

BRATU3D 2.0e-09 1.7e-16 9.2e-06 2.2e-11 1.7e-16

CONT-201 8.8e-11 1.6e-16 1.0e-05 9.4e-09 4.9e-09

CONT-300 7.6e-11 1.9e-16 2.1e-05 2.7e-09 2.5e-09

cvxqp3 5.2e-11 2.7e-16 8.5e-06 1.2e-12 3.4e-16

DTOC 2.1e-16 2.7e-20 8.3e-07 2.1e-13 1.9e-15

mario001 6.3e-15 1.3e-16 3.1e-08 2.5e-13 1.3e-16

NCVXQP1 4.6e-14 1.7e-17 4.9e-13 3.2e-15 2.6e-17

NCVXQP5 2.0e-11 2.0e-16 2.0e-08 6.7e-11 2.7e-14

NCVXQP7 9.6e-10 2.2e-16 4.9e-06 1.4e-12 2.2e-16

SIT100 4.4e-15 1.4e-16 2.0e-08 5.8e-15 1.5e-16

stokes128 1.1e-14 5.5e-16 4.2e-14 2.0e-15 1.7e-15

stokes64 4.3e-15 1.5e-15 1.6e-13 2.3e-14 2.2e-14
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FGMRES

Arioli, Duff and Gratton have shown that usingFGMRESrather than
iterative refinement results in abackward stable methodthat converges for
really quite poor factorizations ofA.
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Numerical experiments
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Domain decomposition

Two PhD theses at CERFACS

Jean-Christophe Rioual
Solving linear systems for semiconductor device simulations on
parallel distributed computers

CERFACS report: TH/PA/02/49

and

Azzam Haidar
On the parallel scalability of hybrid linear solvers for large 3D
problems

CERFACS report: TH/PA/08/93

www.cerfacs.fr/algor/
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Domain decomposition
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Domain Decomposition

(

Aii AiΓ

AΓi A
(i)
ΓΓ

)

where

Aii : is the local subproblem,

AiΓ : is the boundary of the local problem, and

A
(i)
ΓΓ : is the contribution to the stiffness matrix entries from variables

on the artificial interface (Γi) around theith subregion.

resulting in a contribution to the Schur complement of

S(i) = A
(i)
ΓΓ − AΓiA

−1
ii AiΓ,

called a local Schur (complement).
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Hybrid approach

We will use a direct method on the subproblemsAii

and

an iterative one (perhaps) on the Schur complement

MUMPS is used as the direct code
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Non-overlapping Domain Decomposition

Algebraic Additive Schwarz preconditioner[ L.Carvalho, L.Giraud, G.Meurant - 01]
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From Two to Three Dimensions

The main difference lies in the interface problem (Schur complement). In
2D theinterface/interior ratio is smallwhile in 3D there are severe
problems in computing and storing the preconditioner.

Therefore, we must seek acheaperalternative.

Two main ideas (used by Giraud and Haidar)

Sparsify the preconditioner

Setskl = 0 if skl < ξ(|skk| + |sll|)

Use 32-bit arithmetic
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Diffusion Problem
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Runs on System X

3D heterogeneous diffusion problem with43 ∗ 106 on 1000 processors

Graphs show effect ofsparsification

Even though more iterations are required, the sparsified versions are
faster as the time per iteration and preconditioner setup require less
time
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Diffusion Problem
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64−bit calculation
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3D heterogeneous diffusion problem

64−bit calculation

mixed arithmetic calculation

32−bit calculation

3D heterogeneous diffusion problem with43 ∗ 106 on 1000 processors

Graphs show effect of usingmixed precision

Although the number of iterations slightly increases, the mixed
approach is fastest down to a level commensurate with the problem
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Diffusion Problem
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3D heterogeneous diffusion problem with size varying from5.3 to
74 ∗ 106 degrees of freedom

There is goodscalabilityalthough the number of iterations grows with
the number of subdomains

Two ways to overcome this problem are:
Coarse grid correction
Two-level parallelism
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Effect of coarse grid correction
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Use as many degrees of freedom in the coarse space as subdomains

Work of Carvalho, Giraud, Le Tallec (2001)
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Convection-diffusion problem
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3D heterogeneous convection-diffusion problem with27 ∗ 106 on 1000
processors

Graphs show effect ofsparsification

Even though more iterations are required, the sparsified versions are
faster as the time per iteration and preconditioner setup require less
time.

Roughly the same as for the pure diffusion problem
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Industrial Problem

Structural mechanics problem from Samtech (Pralet)

Aircraft fuselage

6.5 million degrees of freedom
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Fuselage Problem
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Fuselage problem of 6.5 million dof mapped on 16 processors

Runs on IBM JS21 at CERFACS

The sparse preconditioner setup is four times faster than the dense one (19.5 v.s. 89 seconds)

In term of global computing time, the sparse algorithm is about twice as fast

The accuracy of the hybrid solver is comparable to that of thedirect solver
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Scalability of Fuselage Problem
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Fixed problem size: increasing the # of subdomains=⇒ an increase in the # of iterations

Attractive speedups can be observed

The sparsified variant is the most efficient
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Two levels of parallelism on Fuselage

# total Algo # # processors/ # iterative

processors subdomains subdomain iter loop time

1-level parallel 16 1 147 77.9
16 processors

2-level parallel 8 2 98 51.4

1-level parallel 32 1 176 58.1

32 processors 2-level parallel 16 2 147 44.8

2-level parallel 8 4 98 32.5

1-level parallel 64 1 226 54.2

2-level parallel 32 2 176 40.1
64 processors

2-level parallel 16 4 147 31.3

2-level parallel 8 8 98 27.4

Reduce the number of subdomains=⇒ reduce the number of iterations

Though the subdomain size increases, the time for the iterative loop decreases because:

- The number of iterations decreases

- Each subdomain is handled in parallel
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Domain decomposition without the mesh

Quite recently, Azzam Haidar has been experimenting with matrices which
are givenas a sparse algebraic data structure without any information
about the original problem or the grid. We now show his results from two
industrial problems:AMENDE andAUDI, the first from CEA-CESTA and
the second from the PARASOL project.

Their characteristics are:

Problem Application order number entries

Amende Electromagnetics 6,994,683 58,477,383

Audi Structures 943,695 39,297,771
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Amende Problem .. 32 processors
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Amende problem of 6.99M dof mapped on 32 processors

Sparse algorithm is twice as fast

Global sparse conditioner performs well

Accuracy of hybrid solver is comparable with direct solver
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Amende Problem .. 128 processors
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Amende problem of 6.99M dof mapped on 128 processors

Sparse algorithm is similar to dense

Dense preconditioner works well because local Schurs are small

Global sparse conditioner is good numerically but slower
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AUDI Problem .. 16 processors
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Audi problem of 0.9M dof mapped on 16 processors

For very smallξ convergence only marginally affected but memory
savings are substantial

For largerξ memory is reduced but convergence is poor

Sparsified versions require more iterations but are faster

Accuracy of hybrid solver is comparable with direct solver
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Helmholtz Equation in Geophysics

Work with

Serge Gratton
Xavier Vasseur
and
Xavier Pinel

at CERFACS

Technical Report: CERFACS:TR/PA/07/03 and RAL-TR-2007-002
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Helmholtz problem

Helmholtz equation in thefrequency domain:

−∆u − ω2

v2
u = g in Ω

with radiation boundary conditions[k =
ω

v
: wavenumber]:

∂u

∂n
− i k u = 0 or

∂u

∂n
− i k u − i

2 k

∂2u

∂2τ
= 0 on δΩ

or with Perfectly Matched Layer (PML)[Berenger, 1994]

Notation:

ω = 2π f is the angular frequency,v the velocity of the wave,u the pressure
of the wave,g represents the source term
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Helmholtz problem with PML formulation

Ω is divided into two sets:ΩI andΩPML

PDE with variable coefficients must now be solved:










−ω2 u
v2(x,y,z) − 1

ξx(x)
∂
∂x

( 1
ξx(x)

∂u
∂x

) − 1
ξy(y)

∂
∂y

( 1
ξy(y)

∂u
∂y

) − 1
ξz(z)

∂
∂z

( 1
ξz(z)

∂u
∂z

) = g

u = 0 onδΩ = δΩPML

Variable complex-valued coefficients only inΩPML:

ξd(δ) = 1 in ΩI and ξd(δ) = 1 + i
ηd(δ)

ω
in ΩPML

for d = x, y, z and whereηd is called aPML function.

PML function[Operto et al., 2004]

ηd(δ) = cPML cos(
π

2LPML
δ) in ΩPML

whereLPML is the width of the PML andcPML is a real positive
number.
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Discretized problem

Ω is always box shaped

Second-orderfinite differencediscretization methods on non-uniform
grids

Seven-point discretization inthree dimensions

Accuracy requirement for second order discretization:k h ≤ π

6
for 12

points per wavelength

This leads to alarge complex sparselinear system (symmetric in case
of radiation boundary conditions)
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State of the art solution schemes

Sparse multifrontal direct methods :

• Very robust but requires too much storage for large-scale problems

Multigrid methods :

• Multigrid as asolveron theoriginalHelmholtz problem [Elman et al,
2001].

• Geometricmultigrid preconditioner on a complexshiftedHelmholtz
operator [Erlangga, Oosterlee, Vuik, 2006].
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Hybrid preconditioner

We use atwo-level gridto avoid both smoothing and coarse grid
correction difficulties and simultaneously to benefit from the robustness
and computational efficiency of modern sparse direct solvers.

We thus use adirect methodon thenearby problemfrom a not too
coarse grid frommultigrid applied to the original Helmholtzequation.

Multigrid is nota convergent method but acts as a preconditioner for
the original (unshifted) Helmholtz operator

Eigenspectrum ofAC−1 is clustered around1 with the isolated
eigenvalues captured usingKrylov subspacemethods
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Numerical results

Constant wavenumber: Runs on the CERFACS IBM JS21

Two-grid preconditioned FGMRES(5)

k Grid It Time (s) Mem. (Mb) Proc

Fac. Fac.

30 643 10 3.94 529 2

45 963 11 33.24 3323 3

60 1283 12 73.38 11359 16

90 1923 13 696.21 62970 32

Smoother: Gauss-Seidel

Direct method: MUMPS

Robustnessof the two-grid approach with respect to the wavenumberk
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Where are the challenges ?

Heterogeneous velocity field:13.5 × 10 × 15 km
3, f = 10 Hz, h = 12.5m.

Problem size of1.16 × 109 unknowns to be solved for multiple sources
(around500to 1000in practice) !

Indefinite complex-valued problem known as difficult for iterative
methods !
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Geometric two-grid preconditioner

Two-grid preconditioner

One cycle of a two-grid method is used as a preconditioner

Krylov "smoother" as in [Elman, 2001] and [Adams, 2007]:
preconditionedGMRES(2)

Trilinear interpolation and adjoint as restriction

GMRES(m) as coarse grid solver to solveonly approximatelythe
coarse grid systems: preconditionedGMRES(10)

Outer Krylov subspace method

Flexible GMRES [Saad, 1993]:FGMRES(5)
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Geometric two-grid preconditioner

Stopping criterion:
‖r̄(it)‖2

‖r̄(0)‖2
≤ 10−1 with a maximum of 100 iterations

of GMRES(10) for thecoarse grid

Stopping criterion:
‖r(it)‖2

‖r(0)‖2
≤ 10−6 with zero initial guess

Three-dimensional benchmark problems

Both homogeneous and heterogeneous velocity fields

PML formulation with 15 points on each side of the domain

Experiments performed on BG/L and BG/P
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Homogeneous velocity field on BG/P
Weak scalability experiments [fixed local problem size per core]

[PRACE Summer School, Stockholm, 2008 ]

1/h Grid # Cores Time (s) It Time/It Mem (GB)

1024 10243 1024 1687 58 29.08 170

2048 20483 8192 3718 127 29.28 1362

4096 40963 65536 9634 327 29.46 10892

Computations performed in single precision arithmetic

Velocity is homogeneous and equal to1500 m s−1

The wavenumberk is variable( k h = π/6)

Number of iterations (It) increaseslinearlywith k

The time per iteration is nearlyconstant

Memory required (Mem) is increased by a factor of8 as expected

A sparse indefinite linear system of more than68 billion unknownshas
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Homogeneous velocity field on BG/P

Strong scalability experiments [fixed global problem size]

[PRACE Summer School, Stockholm, 2008 ]

1/h Grid # Cores Time (s) It Time/It Mem (GB)

2048 20483 4096 7706 128 60.20 1341

2048 20483 8192 3719 127 29.28 1361

2048 20483 16384 1773 128 13.85 1382

2048 20483 32768 798 129 6.19 1404

Computations performed in single precision arithmetic

Velocity is homogeneous and equal to1500 m s−1

The wavenumberk is nowfixed: k h = π/6

Number of iterations (It) isalmost independentof the number of cores

The time per iteration is divided by a factor of2 as expected [factor
greater than 2 due to cache effects]
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Heterogeneous velocity field on BG/L

Experiments on BG/L (13.5 × 10 × 15 km3 domain).

Grid h (m) f (Hz) Processors It T (min)

295 × 227 × 327 50 2.5 16 39 25

567 × 431 × 639 25 5.0 128 83 47

1119 × 831 × 1247 12.5 10.0 1024 205 107

Computations performed in double precision arithmetic

Minimum and maximum velocity are1500 m s−1 and6000 m s−1

Number of iterations increasesstill linearly with the frequency
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Heterogeneous velocity on BG/P IDRIS

Experiments on BG/P (SEG/EAGE Overthrust domain20 × 20 × 5 km3 ).

Grid h (m) f (Hz) Processors It T (min)

863 × 863 × 231 24.21 7.5 64 37 2678

1690 × 1690 × 426 12.11 15.0 512 102 6362

3356 × 3356 × 829 6.05 30.0 4096 490 28601

Computations performed in double precision arithmetic

Minimum and maximum velocity are2200 m s−1 and6000 m s−1

Number of iterationsno longer increases linearlywith the frequency
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Heterogeneous velocity on BG/P IDRIS

Experiments on BG/P (SEG/EAGE salt domain8 × 8 × 4 km3 domain).

Grid h (m) f (Hz) Processors It T (min)

671 × 671 × 351 12.500 10 64 43 2797

1311 × 1311 × 671 6.250 20 512 101 6117

2597 × 2597 × 1317 3.125 40 4096 283 16492

Computations performed in double precision arithmetic

Minimum and maximum velocity are1500 m s−1 and4400 m s−1

Number of iterationsno longer increases linearlywith the frequency

The SIAM Conference on Applied Linear Algebra. October 26-29, 2009. Monterey, California. – p.49/56



Conclusions

We can solve reallylarge, realistic and computationally

challenging problems in important application areas.

A range of techniquesinvolving both sparse direct and a

range of sparse iterative solvers is required including

hybridmethods.
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Conclusions

THANK YOU

for your attention
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Heterogeneous velocity field on BG/L

13.5 × 10 × 15 km3, f = 2.5 Hz

Problem size of2.19 × 107 unknowns
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Heterogeneous velocity field on BG/L

13.5 × 10 × 15 km3, f = 5 Hz

Problem size of1.56 × 108 unknowns
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Heterogeneous velocity field on BG/L

13.5 × 10 × 15 km3, f = 10 Hz

Problem size of1.16 × 109 unknowns
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SEG/EAGE Overthrust velocity field on
BG/P

20 × 20 × 5 km3
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SEG/EAGE Salt velocity field on BG/P

8 × 8 × 4 km3
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