
Intro Dense Sparse Conclusions

A DAG-based sparse Cholesky solver for multicore
architectures

Jonathan Hogg
John Reid

Jennifer Scott

CSC09 Monterey Bay October 2009

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Outline of talk

How to efficiently solve Ax = b on multicore machines

Introduction

Dense systems

Sparse systems

Future directions and conclusions

Today A is positive definite.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Solving systems in parallel

Haven’t we been solving linear systems in parallel for years?
Yes — large problems on distributed memory machines

We want to solve

Medium and large problems (more than 1010 flops)

On desktop machines

Shared memory, complex cache-based architectures

2–8 cores now in all new machines.

Soon 16–64 cores will be standard.

Traditional MPI methods work, but can we do better?

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Faster

I have an 8-core machine...

...I want to go (nearly) 8 times faster

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

The dense problem

Solve
Ax = b

with A

Symmetric and dense

Positive definite (indefinite problems require pivoting)

Not small (order at least a few hundred)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Pen and paper approach

Factorize A = LLT then solve Ax = b as

Ly = b

LTx = y

Algorithm:

For each column k :

Lkk =
√

Akk (Calculate diagonal element)
For rows i > k: Lik = AikL

−1
kk (Divide column by diagonal)

Update trailing submatrix
A(k+1:n)(k+1:n) ← A(k+1:n)(k+1:n) − L(k+1:n)kL

T
(k+1:n)k

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Pen and paper approach

Factorize A = LLT then solve Ax = b as

Ly = b

LTx = y

Algorithm:

For each column k :

Lkk =
√

Akk (Calculate diagonal element)
For rows i > k: Lik = AikL

−1
kk (Divide column by diagonal)

Update trailing submatrix
A(k+1:n)(k+1:n) ← A(k+1:n)(k+1:n) − L(k+1:n)kL

T
(k+1:n)k

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Serial approach

Exploit caches
Use algorithm by blocks

Same algorithm, but submatrices not elements

10× faster than a naive implementation

Built using Basic Linear Algebra Subroutines (BLAS)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Cholesky by blocks

Factorize diagonal

Factor(col)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Cholesky by blocks

Solve column block

Solve(row, col)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Cholesky by blocks

Update block

Update(row, source col, target col)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Parallelism mechanisms

MPI Designed for distributed memory, requires substantial
changes

OpenMP Designed for shared memory

pthreads POSIX threads, no Fortran API

ITBB Intel Thread Building Blocks, no Fortran API

Coarrays Not yet widely supported

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Parallelism mechanisms

MPI Designed for distributed memory, requires substantial
changes

OpenMP Designed for shared memory

pthreads POSIX threads, no Fortran API

ITBB Intel Thread Building Blocks, no Fortran API

Coarrays Not yet widely supported

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Parallelism mechanisms

MPI Designed for distributed memory, requires substantial
changes

OpenMP Designed for shared memory

pthreads POSIX threads, no Fortran API

ITBB Intel Thread Building Blocks, no Fortran API

Coarrays Not yet widely supported

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Traditional approach

Just parallelise the operations

Solve(row,col) Can do the solve in parallel

Update(row,scol,tcol) Easily split as well

What does this look like...

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Traditional approach

Just parallelise the operations

Solve(row,col) Can do the solve in parallel

Update(row,scol,tcol) Easily split as well

What does this look like...

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Parallel right looking

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Approach used by Buttari, Dongarra, Kurzak, Langou, Luszczek,
Tomov (2006)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Approach used by Buttari, Dongarra, Kurzak, Langou, Luszczek,
Tomov (2006)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Approach used by Buttari, Dongarra, Kurzak, Langou, Luszczek,
Tomov (2006)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Approach used by Buttari, Dongarra, Kurzak, Langou, Luszczek,
Tomov (2006)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Task DAG

Factor(col) Akk = LkkLT
kk

Solve(row, col) Lik = AikL−T
kk

Update(row, scol, tcol)
Aij ← Aij − LikLT

jk

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Task DAG

Factor(col) Akk = LkkLT
kk

Solve(row, col) Lik = AikL−T
kk

Update(row, scol, tcol)
Aij ← Aij − LikLT

jk

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Profile

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Results

Performance using 8 threads (dgemm peak is 72.8 Gflop/s)

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Speedup for dense case

n Speedup

500 3.2
2500 5.7

10000 7.2
20000 7.4

New dense DAG code HSL MP54 available
in HSL2007.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Speedup for dense case

n Speedup

500 3.2
2500 5.7

10000 7.2
20000 7.4

New dense DAG code HSL MP54 available
in HSL2007.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse case?

So far, so dense. What about sparse factorizations?

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse matrices

Sparse matrix is mostly zero — only track non-zeros.

Factor L is denser than A.

Extra entries are known as fill-in.

Reduce fill-in by preordering A.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Direct methods

Generally comprise four phases:

Reorder Symmetric permutation P to reduce fill-in.

Analyse Predict non-zero pattern. Build elimination tree.

Factorize Using data structures built in analyse phase, perform
the numerical factorization.

Solve Using computed factors solve Ax = b.

Aim: Organise computations to use dense kernels on submatrices.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Elimination and assembly tree

The elimination tree provides partial ordering of the operations.

If U is a descendant of V , we must factorize U first.

To exploit BLAS, combine adjacent nodes whose cols have same
(or similar) sparsity structure.

Condensed tree is assembly tree.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Factorize phase

Existing parallel approaches usually rely on two levels of parallelism

Tree-level parallelism: assembly tree specifies only partial ordering
(parent processed after its children). Independent
subtrees processed in parallel.

Node-level parallelism: parallelism within operations at a node.
Normally used near the root.

Our experience: speedups less than ideal on multicore machines.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Factorize phase

Existing parallel approaches usually rely on two levels of parallelism

Tree-level parallelism: assembly tree specifies only partial ordering
(parent processed after its children). Independent
subtrees processed in parallel.

Node-level parallelism: parallelism within operations at a node.
Normally used near the root.

Our experience: speedups less than ideal on multicore machines.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Hold set of contiguous cols of L with (nearly) same pattern as a
dense trapezoidal matrix, referred to as nodal matrix.

Divide the nodal matrix into blocks and perform tasks on the
blocks.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Hold set of contiguous cols of L with (nearly) same pattern as a
dense trapezoidal matrix, referred to as nodal matrix.

Divide the nodal matrix into blocks and perform tasks on the
blocks.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Hold set of contiguous cols of L with (nearly) same pattern as a
dense trapezoidal matrix, referred to as nodal matrix.

Divide the nodal matrix into blocks and perform tasks on the
blocks.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Tasks in sparse DAG

factorize(diag) Computes dense Cholesky factor Ltriang of the
triangular part of block diag on diagonal. If block trapezoidal,
perform triangular solve of rectangular part

Lrect ⇐ LrectL
−T
triang

solve(dest, diag) Performs triangular solve of off-diagonal block
dest by Cholesky factor Ltriang of block diag on its diagonal.

Ldest ⇐ LdestL
−T
triang

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Tasks in sparse DAG

factorize(diag) Computes dense Cholesky factor Ltriang of the
triangular part of block diag on diagonal. If block trapezoidal,
perform triangular solve of rectangular part

Lrect ⇐ LrectL
−T
triang

solve(dest, diag) Performs triangular solve of off-diagonal block
dest by Cholesky factor Ltriang of block diag on its diagonal.

Ldest ⇐ LdestL
−T
triang

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Tasks in sparse DAG

update internal(dest, rsrc, csrc)
Within nodal matrix, performs update

Ldest ⇐ Ldest − LrsrcL
T
csrc

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Tasks in sparse DAG

update between(dest, snode, scol)
Performs update

Ldest ⇐ Ldest − LrsrcL
T
csrc

where Ldest is a submatrix of the block dest of an ancestor of
node snode

Lrsrc and Lcsrc are submatrices of contiguous rows of block
column scol of snode.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

update between(dest, snode, scol)

1. Form outer product LrsrcL
T
csrc into Buffer.

2. Distribute the results into the destination block Ldest .

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, store factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, store solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, store factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, store solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, store factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, store solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, store factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, store solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Task pool

Each cache keeps small stack of tasks that are intended for use by
threads sharing this cache.

Tasks added to or drawn from top of local stack. If becomes full,
move bottom half to task pool.

Tasks in pool given priorities:

1. factorize Highest priority
2. solve
3. update internal
4. update between Lowest priority

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Sparse DAG results

Results on machine with 2 Intel E5420 quad core processors.
Problem Time Speedup

cores 1 8

DNVS/thread 5.25 0.98 5.36
GHS psdef/apache2 30.1 5.07 5.94
Koutsovasilis/F1 37.8 6.05 6.24
JGD Trefethen/Trefethen 20000b 102 16.5 6.18
ND/nd24k 335 53.7 6.23

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Comparisons with other solvers, one thread

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Comparisons with other solvers, 8 threads

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Indefinite case

Sparse DAG approach very encouraging for multicore architectures.

BUT

Results reported so far, only for positive definite case.

Indefinite case is harder because of pivoting.

We use block column dependency counts and combine factor
and solve tasks.

Preliminary results: speed ups not quite so good.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Indefinite case

Sparse DAG approach very encouraging for multicore architectures.

BUT

Results reported so far, only for positive definite case.

Indefinite case is harder because of pivoting.

We use block column dependency counts and combine factor
and solve tasks.

Preliminary results: speed ups not quite so good.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver



Intro Dense Sparse Conclusions

Code availability

New sparse DAG code is HSL MA87.

To be included within HSL.

If you want to try it out, let us know.

J.D.Hogg and J.K. Reid and J.A.Scott A DAG-based sparse Cholesky solver


	Intro
	Dense
	Sparse
	Future directions and conclusions

