CQP: a Fortran 90 module for Large-Scale Convex Quadratic Programming

Nick Gould

STFC Rutherford Appleton Laboratory

with

Dominique Orban (Montreal) & **Daniel Robinson** (Northwestern)

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \tfrac{1}{2} x^T H x + g^T x \text{ subject to } A x = b \text{ and } x \geq 0$

OPTEC Workshop on Large Scale Convex Quadratic Programming Leuven, Belgium, 25th November 2010

Problem

- **QP:** minimize $\frac{1}{2}x^THx + g^Tx$ subject to Ax = b & $x \ge 0$
- assume that A has full row rank & $H \succeq 0$
- aim to (approximately) satisfy criticality conditions

$$Ax_* = b \& x_* \ge 0$$
 (primal feasibility)

$$g + Hx_* - A^T y_* - z_* = 0 \& z_* \ge 0$$
 (dual feasibility)

$$x_* \cdot z_* = 0$$
 (complementary slackness)

or to deduce that the problem is infeasible

- problem non degenerate ⇒ ∃ solution s.t. max(x_{*,i}, z_{*,i}) > 0
 ∀i (⇔ a strictly complementary solution)
- problem degenerate \iff not non-degenerate!
- aim is to find highly-accurate solutions even when QP is degenerate

Summary of the talk

- introduction
- non-degenerate and degenerate examples
- Taylor vs Puiseux
- trajectories
- algorithms
- CQP
- conclusions

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 2/19

Generic path following strategy

Given $(x_0, z_0) > 0$ and y_0 , trace the (infeasible) trajectory

$$v(\mu) = (x(\mu), y(\mu), z(\mu))$$

where

$$egin{array}{rcl} Ax(\mu)-b&=&\mu[Ax_0-b]\ g+Hx(\mu)-A^Ty(\mu)-z(\mu)&=&\mu[g+Hx_0-A^Ty_0-z_0]\ x(\mu)\cdot z(\mu)&=&c(\mu) \end{array}$$

with $c(1) = x_0 \cdot z_0$ and c(0) = 0 as μ decreases from 1 to 0

• usually achieve this using a suitably safeguarded Newton (i.e., Taylor series-based) iteration

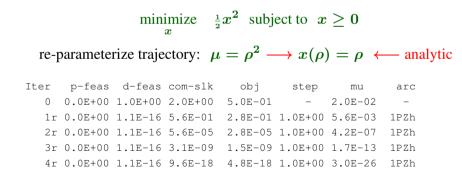
OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 1/19

Example 2 - degenerate QP

Example 1 - non-degenerate QP

$\mathop{\mathrm{minimize}}_{x} {}_{\frac{1}{2}}x^2 \mathrm{subject \ to} x \geq 2$							
traject	ory ($c(\mu$	$) = \mu$):	$x(\mu) =$	=1+	$1+\mu$	← anal	ytic for $\mu \geq 0$
Iter	p-feas	d-feas	com-slk	obj	step	mu	arc
0	0.0E+00	1.0E+00	2.0E+00	4.5E+00	-	2.0E-02	-
1r	0.0E+00	0.0E+00	1.3E-02	2.0E+00	1.0E+00	1.3E-04	1TZh
2r	0.0E+00	4.4E-16	1.8E-04	2.0E+00	1.0E+00	1.8E-06	1TZh
3r	0.0E+00	0.0E+00	1.8E-06	2.0E+00	1.0E+00	2.4E-09	1TZh
4r	0.0E+00	4.4E-16	2.4E-09	2.0E+00	1.0E+00	1.2E-13	1TZh
5r	0.0E+00	4.4E-16	1.2E-13	2.0E+00	1.0E+00	3.9E-20	1TZh

Example 2 again



What is the difference?

• use a **Puiseux** rather than Taylor approximation to the trajectory

$\begin{array}{ll} \underset{x}{\text{minimize}} & \frac{1}{2}x^2 & \text{subject to} & x \geq 0 \\ \text{trajectory:} & x(\mu) = \sqrt{\mu} & \longleftarrow \text{ not analytic at } 0 \end{array}$

Iter	p-feas	d-feas	com-slk	obj	step	mu	arc
0	0.0E+00	1.0E+00	2.0E+00	5.0E-01	-	2.0E-02	-
1r	0.0E+00	0.0E+00	4.5E-01	2.3E-01	1.0E+00	4.5E-03	1TZh
2r	0.0E+00	0.0E+00	1.2E-01	5.8E-02	1.0E+00	1.2E-03	1TZh
3r	0.0E+00	0.0E+00	2.9E-02	1.5E-02	1.0E+00	2.9E-04	1TZh
4r	0.0E+00	0.0E+00	7.5E-03	3.8E-03	1.0E+00	7.5E-05	1TZh
5r	0.0E+00	0.0E+00	1.9E-03	9.6E-04	1.0E+00	1.9E-05	1TZh
6r	0.0E+00	3.5E-18	4.9E-04	2.4E-04	1.0E+00	4.9E-06	1TZh
18r	0.0E+00	0.0E+00	3.1E-11	1.6E-11	1.0E+00	1.7E-16	1TZh
19r	0.0E+00	0.0E+00	7.8E-12	3.9E-12	1.0E+00	2.2E-17	1TZh
20r	0.0E+00	6.4E-22	1.9E-12	9.7E-13	1.0E+00	2.7E-18	1TZh
21r	0.0E+00	3.2E-22	4.8E-13	2.4E-13	1.0E+00	3.4E-19	1TZh

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 6/19

Non-degenerate QP

For simplicity

- suppose v_0 is a strictly feasible primal-dual interior point
- consider the (weighted) central path $v(\mu)$ as $\mu \to 0_+$:

$$egin{array}{rcl} Ax(\mu)-b&=&0\ g+Hx(\mu)-A^Ty(\mu)-z(\mu)&=&0\ x(\mu)\cdot z(\mu)&=&\mu x_0\cdot z_0 \end{array}$$

Then $v(\mu)$ is analytic at 0 whenever QP is non-degenerate

 \implies Taylor series-based methods work

- always works for **linear** programming
- higher-order Taylor approximations are possible by differentiating central path equations

Degenerate QP

For simplicity

- suppose v_0 is a strictly feasible primal-dual interior point
- consider the re-parameterized central path $v(\rho)$ as $\rho \to 0_+$:

$$egin{array}{rcl} Ax(
ho)-b &=& 0 \ g+Hx(
ho)-A^Ty(
ho)-z(
ho) &=& 0 \ x(
ho)\cdot z(
ho) &=&
ho^2x_0\cdot z_0 \end{array}$$

Then $v(\rho)$ has an analytic extension at 0 even if QP is degenerate

(Stoer, Wechs & Mizuno, 1998)

- \implies Taylor series-based methods work for this parameterization
 - higher-order Taylor approximations are possible by differentiating re-parameterized central path equations
 - returning to the original μ parametrization leads to a **Puiseux** series

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 9/19

Approximating the trajectory

Locally approximate the trajectory $v(\mu)$, where

$$egin{array}{rcl} Ax(\mu)-b&=&\mu[Ax_0-b]\ g+Hx(\mu)-A^Ty(\mu)-z(\mu)&=&\mu[g+Hx_0-A^Ty_0-z_0]\ x(\mu)\cdot z(\mu)&=&c(\mu) \end{array}$$

by $v_k(\mu)$, where

$$Ax_k(\mu) - b = (\mu/\mu_k)[Ax_k - b] \ g + Hx_k(\mu) - A^Ty_k(\mu) - z_k(\mu) = (\mu/\mu_k)[g + Hx_k - A^Ty_k - z_k] \ x_k(\mu) \cdot z_k(\mu) = c_k(\mu)$$

for which $c_k(\mu_k) = x_k \cdot z_k$, as μ decreases from μ_k to 0

• different c_k give different trajectories \implies choice important

Puiseux series

Taylor series representation of the re-parameterized central path

$$v(
ho) = \sum_{i\geq 0} v^{[i]} rac{(
ho-
ho_k)}{i!}$$

about $(
ho_k, v_k)$ where $\mu_k =
ho_k^2$ becomes the **Puiseux** series

$$v(\mu) = \sum_{i\geq 0} v^{[i]} rac{(\sqrt{\mu}-\sqrt{\mu_k})^i}{i!}$$

Coefficients $v^{[i]}$ found by solving a sequence of **primal-dual** systems

$$\left(egin{array}{ccc} H & -A^T & -I \ A & 0 & 0 \ Z_k & 0 & X_k \end{array}
ight) \left(egin{array}{c} x^{[i]} \ y^{[i]} \ z^{[i]} \end{array}
ight) = r_i(v^{[0]},\ldots,v^{[i-1]})$$

for easily-determined rhs $r_i(v^{[0]},\ldots,v^{[i-1]})$, where $v^{[0]}=v_k$

 ${\mbox{\circ}}$ odd-order coefficients ${\mbox{\rightarrow}}$ 0 in non-degenerate case

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 10/19

Choice of the complementarity function I

Choice of c_k for which $c_k(\mu_k) = x_k \cdot z_k$ and

$$x_k(\mu) \cdot z_k(\mu) = c_k(\mu)$$

leads to different trajectories:

1. linear interpolation to the central path

$$c_k(\mu) = rac{\mu}{\mu_k} x_k \cdot z_k + \left(1 - rac{\mu}{\mu_k}
ight) \sigma_k rac{x_k^T z_k}{n} e$$

with $0 \leq \sigma_{\min} \leq \sigma_k \leq \sigma_{\max} < 1$

(Zhang, 1994)

- interpolates $x_k \cdot z_k$ and $\sigma_k (x_k^T z_k / n) e$
- Taylor coefficients may diverge for degenerate QP
- may prefer Puiseux $\mu = \rho^2$ alternative

Choice of the complementarity function II

2. quadratic interpolation to the solution

$$c_k(\mu) = rac{\mu}{\mu_k} x_k \cdot z_k + \mu \left(1 - rac{\mu}{\mu_k}
ight) \left(rac{x_k^T z_k}{n} e - x_k \cdot z_k
ight)$$

(Zhao & Sun, 1999, Potra & Stoer, 2009)

- interpolates $x_k \cdot z_k$ and 0 but crucially ensures bounded c'(0) \implies bounded leading Taylor coefficient
- may prefer Puiseux $\mu = \rho^2$ alternative

(Potra & Stoer)

• simpler Puiseux variant

$$rac{
ho^2}{\mu_k} x_k \cdot z_k + rac{
ho^2}{\mu_k} \left(\sqrt{\mu_k} -
ho
ight) \left(rac{x_k^T z_k}{n} e - x_k \cdot z_k
ight) \; .$$

also possible

(Zhao & Sun)

OPTEC Workshop on Large Scale OP 25th November 2010 - p. 13/19

More sophisticated algorithm

- apply the basic algorithm for a variety of Taylor and/or Puiseux series and complementarity functions
 - coefficients for lower-order series automatically available from highest-order one
- pick the one that gives the smallest complementarity
- to ensure convergence, include 1st-order Taylor-Zhang
 - polynomial algorithm
- to ensure fast convergence, include ℓ th-order Puiseux-Zhao-Sun
 - ultimately Q-order (l + 1)/2
 improved polynomial bound
- (Zhao & Sun, 1999, Potra & Stoer, 2009) (Potra & Stoer)

(Zhang, 1994, Billups & Ferris, 1996)

• for non-degenerate problems ℓ th-order Taylor-Zhao-Sun gives ultimately Q-order $\ell+1$

Basic algorithm

- approximate $v_k(\mu)$ by an ℓ th order Taylor or Puiseux series, $v_k^{(\ell)}(\mu)$
- for appropriate κ_c and κ_f find the smallest $\mu_k^{\min} \in [0, \mu_k]$:

$$[x_k^{(\ell)}(\mu) \cdot z_k^{(\ell)}(\mu)]_i \ge \kappa_c x_k^{(\ell)T}(\mu) \ z_k^{(\ell)}(\mu) \quad \text{for all} \quad i$$

and

$$[x_k^{(\ell)}(\mu)]^T z_k^{(\ell)}(\mu) \ge \kappa_f \left\| \left(egin{array}{c} A x_k^{(\ell)}(\mu) - b \ g + H x_k^{(\ell)}(\mu) - A^T y_k^{(\ell)}(\mu) - z_k^{(\ell)}(\mu) \end{array}
ight)
ight\|$$

for all $\mu \in [\mu_k^{\min}, \mu_k]$ — the \mathcal{N}_{∞}^- -neighbourhood (Zhang, Wright, ...) • find

$$\begin{split} \mu_{k+1} &\approx \arg\min_{\mu \in [\mu_k^{\min}, \mu_k]} x_k^{(\ell)T}(\mu) \, z_k^{(\ell)}(\mu) \\ \text{and set } v_{k+1} &= v_k^{(\ell)}(\mu_{k+1}) \end{split}$$

Credit where credit is due

- many of these ideas originated in linear complementarity during the 1990s and 2000s
 - usually first for monotone LCP
 - then generalised for sufficient LCP
- large number of papers, without exception theoretical and with no practical evaluation
- key players include Kojima, Mizuno, Noma, (Y&Z) Zhang, Billups, Ferris, Wright, Stoer, Wechs, Sturm, Liu, Potra, Zhao, Sun, ...

An implementation: CQP

Implemented as module CQP as part of GALAHAD

• fortran 2003 with many options

~

- general $x^{\mathrm{L}} \le x \le x^{\mathrm{U}}$ & $c^{\mathrm{L}} \le Ax \le c^{\mathrm{U}}$ allowed
 - infinite and/or duplicated bounds permitted ⇒
 free variables, one-sided constraints, equalities, etc
- choice of pre-scaling schemes
- dependent constraint removal & pre-solve
- choice of linear solver
- choice of complementarity function to define trajectory
- Taylor or Puiseux series of specified order
- can try lower orders as well
- optimal active-set indicators obtained
- crossover (coming)
- available without cost for non-incorporational use (beta at present)

galahad.rl.ac.uk

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 17/19

Summary

- highly accurate solution of degenerate QP is not possible by standard higher order methods
- degeneracy may be overcome by using a "square-root" Puiseux expansion based on an analytic re-parameterization
- polynomial and superlinear convergence is possible in all cases
- extends to classes of LCP
- higher order Puiseux expansions improve the number of factorizations required, but the time savings may be outweighed by the number of linear solves required
- GALAHAD solver CQP available
- also used as a heuristic in the nonconvex QP solver QPC

Dominant costs

- build Taylor/Puiseux approximations
 - factorize primal-dual matrix

$\int H$	$-A^T$	-I
	0	0
$\setminus Z_k$	0	X_k

- uses GALAHAD's linear equation über-solver SLS with access to MA57, out-of-core MA77, and parallel MA87 & PARDISO, etc
- solve ℓ systems with this to obtain coefficients
 - ratio of solves/factorize poor on multicore CPUs 🙁
- find the maximum stepsize in the \mathcal{N}^-_∞ -neighbourhood
 - find appropriate roots of 2n+1 univariate real polynomials each of degree 2ℓ
 - use efficient Sturm-sequence iteration using GALAHAD's ROOTS
- matrix-vector products with H, A and A^T

OPTEC Workshop on Large Scale QP, 25th November 2010 - p. 18/19