
Level-based heuristics and hill
climbing for the antibandwidth
maximization problem

J Scott, Y Hu

November 2011

 Technical Report
RAL-TR-2011-019

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Level-based heuristics and hill climbing for the antibandwidth

maximization problem

Jennifer Scott1 and Yifan Hu2

ABSTRACT

The antibandwidth maximization problem is the dual of the well-known bandwidth minimization

problem. In this paper, we consider the feasibility of adapting heuristic algorithms for the bandwidth

minimization problem to the antibandwidth maximization problem. In particular, using an inexpensive

level-based heuristic we obtain an initial ordering that we refine using a hill-climbing algorithm. This

approach performs well on matrices coming from a range of practical problems with an underlying

mesh. Comparisons with existing approaches show that, on this class of problems, our algorithm can be

competitive with recently reported results in terms of quality while being significantly faster and applicable

to much larger problems.

Keywords: antibandwidth maximiziation, sparse matrices.

AMS(MOS) subject classifications: 65F30, 65F50

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, OX11 0QX, UK.

Email: jennifer.scott@stfc.ac.uk

Work supported by EPSRC grant EP/E053351/1.

2 AT&T Labs Research, 180 Park Avenue, Florham Park, New Jersey, NJ 07932, USA.

Email: yifanhu@research.att.com

Current reports available from http://www.numerical.rl.ac.uk/reports/reports.html.

October 26, 2011

1 Background and motivation

Since the 1960s, considerable attention has been paid to the design and development of algorithms for

minimizing the bandwidth of a sparse symmetric matrix A = {aij}. That is, finding a labelling (or

ordering) of the rows and columns of A that minimizes the maximum distance b from the diagonal

b = mini{maxj{|i− j| : aij 6= 0}}

(see, for example, [1], [5], [10], [11], [13]). Until relatively recently, much less attention has focused on the

antibandwidth maximization problem, which is the problem of finding a labelling of the rows and columns

of A that maximizes the minimum distance ab from the diagonal

ab = maxi{minj{|i− j| : i 6= j and aij 6= 0}}.

In terms of graphs, the antibandwidth problem is to label the nodes of the graph such that the length

of the shortest edge is maximized (that is, the labelling difference of the end nodes among all edges is

maximized). This problem was introduced by Leung et al. [9] in 1984 in connection with multiprocessor

scheduling problems. It is also referred to as the dual bandwidth problem [19] or the separation problem

[9]. It arises in a number of practical applications. For example, if the nodes represent sensitive facilities

or chemicals, there may be a desire to locate them as far from each other as possible (or at least, further

apart than some specified distance). Another example is the radio frequency assignment problem in which

the nodes correspond to transmitters and the edges are between interfering transmitters; the objective is

to assign the frequencies so that those for the interfering transmitters are as different as possible.

Like the bandwidth minimization problem, the antibandwidth maximization problem is NP-Complete

[9]. In the literature, theoretical results have been presented for some special graphs, including paths,

cycles, rectangular grids, special trees and complete bipartite graphs (see, for example, [15] and the

references therein). Recently, there has been an interest in developing algorithms for computing solutions

for general graphs that are close to the optimal. In particular, Hu, Kobourov and Veeramoni [6]

have developed an algorithm GSpectral (Greedy Spectral) that is based on computing the eigenvector

corresponding to the largest eigenvalue of the Laplacian associated with the matrix and then using a greedy

refinement algorithm. They have applied this to the maximum differential graph colouring problem and

report results for some small examples. Duarte, Mart́ı, Resende and Silva [3] have proposed a linear integer

programming formulation and several heuristics based on GRASP (Greedy Randomized Adaptive Search

Procedure) with path relinking. They report some high-quality computational results for general matrices,

although the run-times for their relatively modest-sized test problems (matrices of order less than 9000)

are quite high (typically several minutes for their fastest approach applied to their largest problems). Thus

we would like to develop alternative algorithms for the antibandwidth problem that are significantly faster

while retaining good quality. This paper is the first step in achieving this aim.

Many algorithms for reducing the bandwidth of a sparse symmetric matrix A make extensive use of

the adjacency graph G of A. This is an undirected graph that has a node for each row (or column) of

the matrix and node i is a neighbour of node j if aij (and by symmetry aji) is an entry (nonzero) of A.

An important and well-known example of a bandwidth reduction algorithm that uses G is the Cuthill-

McKee algorithm [1] and its many variants, including the Gibbs-Poole-Stockmeyer algorithm [5]. The

Cuthill-McKee algorithm constructs a level set structure of G and labels the nodes according to these

levels. In this paper, we consider the feasibility of modifying this approach to obtain a practical algorithm

for increasing the antibandwidth of A. We find that on its own this is not generally sufficient to yield large

antibandwidths but that, when combined with a suitable refinement algorithm, we are able to compute

high-quality orderings for problems that arise from a range of applications with an underlying mesh.

Furthermore, our approach is fast and thus potentially practical for larger problems than can be tackled

by either the GSpectral or GRASP approaches.

The rest of this paper is organised as follows. We begin (Section 2) by briefly recalling the Cuthill-

McKee algorithm and then considering how it might be modified for the antibandwidth problem. In

1

Section 3, we look at modifying the hill-climbing algorithm of Lim, Rodrigues and Xiao [10] to improve

a given ordering. Our proposed algorithms are used to reorder a set of test matrices and our results are

compared with those of Duarte et al [3]. We summarise our findings and discuss future work in Section 4.

We end this section by introducing our test problems. Our first set consists of the 24 two-dimensional

meshes that are used by Duarte et al. [3]. They are constructed as the Cartesian product of two paths and

optimal solutions for the antibandwidth problem are known by construction (see [15]). Our second set (see

Table 1.1) is taken from the University of Florida Sparse Matrix Collection [2] and comes from the DNVS,

HB and AG-Monien groups. The order n ranges from 54 to 201822. For problems with an unsymmetric

sparsity structure, we work with A+AT . The algorithms we propose are primarily designed for problems

with underlying meshes and this has influenced our choice of test examples, although we emphasize that

most of these do not have a regular rectangular grid structure (see, for example, Figures 1.1 and 1.2).

Some of the smaller problems were chosen because they appear in the paper by Duarte et al. [3].

Table 1.1: Test problems. n and nz denote the order of the matrix and the number of entries in the

matrix. ∗ indicates the problem was used in [3].

Problem n nz Description

HB/curtis54∗ 54 291 Stiff ordinary differential equation

HB/dwt 234 234 834 2D structural engineering problem

HB/saylr1 238 1128 14 × 17 grid

AG-Monien/grid1 252 952 2D finite-element problem

HB/nos7 330 4617 9 × 9 × 9 grid

HB/can 445∗ 445 3809 Finite-element mesh from aircraft design

HB/nos5 468 5172 3D finite-element approximation of building

HB/662 bus∗ 662 2474 Model of power system network

HB/nos6∗ 675 3255 Poisson’s equation in L-shaped region

HB/saylr3 1000 3750 3D finite-element problem from reservoir simulation

HB/sherman4∗ 1104 3786 3D finite-element problem from oil reservoir modelling

AG-Monien/netz4504 1961 5156 2D finite-element problem

HB/lshp2614 2614 17980 Triangular finite-element mesh on 2D L-shaped region

AG-Monien/grid2 3276 12864 2D finite-element problem

HB/saylr4 3564 22316 33 × 6 × 18 grid

HB/sherman3 5005 20033 3D finite-element problem from oil reservoir modelling

AG-Monien/ukerbe1 5891 15704 2D finite-element problem

AG-Monien/big dual 30269 89858 2D finite-element problem

DNVS/ship 001 34920 3777036 3D finite-element model of ship structure

AG-Monien/brack2 62631 733118 3D finite-element problem

DNVS/shipsec8 114919 3303533 3D finite-element model of ship structure

DNVS/fcondp2 201822 11294316 3D finite-element model of oil production platform

The implementations of our algorithms used in this paper are written in Fortran 95; all experiments

are performed on a single core of an Intel Xeon E5620 using the gfortran compiler (version 4.4.3) with the

-O3 option.

2 Level-based approach to antibandwidth problem

In this section, we first recall the Cuthill-McKee algorithm for bandwidth reduction and then consider

how it may be adapted for the antibandwidth problem.

2

Figure 1.1: Finite-element mesh for problem AG-Monien/ukerbe1.

Figure 1.2: Finite-element mesh for problem AG-Monien/big dual.

3

2.1 The Cuthill-McKee algorithm

Given a starting node s, the Cuthill-McKee algorithm proceeds by relabelling the nodes of the adjacency

graph G by order of increasing distance from s. The algorithm is outlined in Figure 2.1. Here the degree

of a node i is defined as the number of neighbours it has (that is, the number of nodes j 6= i for which

aij 6= 0). If G has more than one component, the procedure is repeated from a starting node in each

component.

Algorithm 1: Cuthill-McKee

Label s as node 1; l1 = {s}; i = 1

do k = 2, 3, . . . until i = n

lk = {}
do for each v ∈ lk−1 in label order

do for each neighbour u of v that has not been labelled,

in order of increasing degree

add u to lk; i = i + 1; label u as node i

end do

end do

end do

Figure 2.1: Cuthill-McKee ordering algorithm

Ordering the nodes in this way groups them into level sets, that is, nodes at the same distance from

the starting node. Since nodes in level set lk can have neighbours only in level sets lk−1, lk, and lk+1, the

reordered matrix is block tridiagonal with blocks corresponding to the level sets. It is therefore desirable

that the level sets be small, which is likely if there are many of them. The level-set structure rooted at

s is denoted by L(s) = {l1, l2, ..., lh}. Algorithms for finding a good starting node are usually based on

finding a pseudo-diameter of G (a pair of nodes that are a maximum distance apart or nearly so). Much

effort has gone into efficiently finding a pseudo-diameter; algorithms are generally based either on using

level sets (see, for example, [5] and [16] and the references therein) or using the Fiedler vector [14].

2.2 Level-based approach for antibandwidth problem

In their paper, Miller and Pritikin [12] establish tight bounds for the maximum antibandwidth for various

classes of graphs. Further bounds were recently presented by Raspaud et al. [15]. In particular, Raspaud

et al. showed that for a 2-dimensional m × k mesh with m ≥ k ≥ 2 the lower bound on the maximum

antibandwidth proved by Miller and Pritikin is precise, that is, the maximum antibandwidth for such

problems is

ab =

⌈
k(m− 1)

2

⌉
. (2.1)

Miller and Pritikin describe how this bound can be achieved. Nodes i and j with coordinates (p, q) and

(p′, q′) in the mesh are neighbours if and only if p = p′ and |q − q′| = 1 or q = q′ and |p − p′| = 1.

Miller and Pritikin set the origin (0, 0) to a corner of the mesh and define X = {(p, q) : p + q is odd} and

Y = {(p, q) : p+q is even}. X is ordered lexicographically and then Y is ordered lexicographically. This is

equivalent to choosing the starting node s to be a corner of the mesh, constructing the level-set structure

L(s), and then taking the level sets in the order {l2, l4, ..., lh, l1, l3, ..., lh−1} (here h is assumed to be even)

and ordering nodes in each level set in turn, in natural order.

For a 3-dimensional m×m×m mesh Török and Vrt’o [18] show that

ab =
4m3 − 3m2

8
+O(m). (2.2)

Their algorithm for labelling the nodes to achieve this optimal value (up to the third order term) again

labels the even numbered level sets and then the odd numbered level sets, starting from a corner.

4

Choosing to start at a corner of the mesh is equivalent to selecting the starting node to be an end point

of a diameter of G. This suggests that for more general problems we should select s to be an end point

of a pseudodiameter, construct L(s) and use the level sets to guide the relabelling. In the Cuthill-McKee

algorithm, at each stage the list of candidate nodes for the next label comprises the unlabelled neighbours

of the nodes that have already been labelled. Thus a node and its neighbours receive labels that are close

to each other, yielding a narrow bandwidth. For the antibandwidth problem, we need to do the opposite,

that is, if a node has been labelled, avoid labelling its neighbours for as long as possible. The approach

of Miller and Pritikin does exactly that for mesh problems because none of the nodes in each of the level

sets lr has neighbours in the same level set (the neighbours all belong to the level sets lr−1 and lr+1). For

more general problems, we will have neighbours belonging to the same level set and so we need to use a

strategy to avoid labelling these neighbours too soon. Our algorithm is outlined in Figure 2.2.

Algorithm 2: Level-based antibandwidth (LB)

Input: starting node s, rooted level-set structure L(s) = {l1, l2, ..., lh}.
Initialise: sweep = 0; flag(1 : n) = 0; i = 0.

do until i = n

sweep = sweep + 1

do r = 1, ..., h

do for each unlabelled u ∈ lr
if (flag(u) = sweep) cycle

i = i + 1; label u as node i

Set flag(v) = sweep for each unlabelled neighbour v of u

end do

end do

end do

Figure 2.2: Level-based antibandwidth ordering algorithm

Algorithm 2 has a number of sweeps, or passes, through the level-set structure. On each sweep, a flag

is used to indicate whether or not a node that has yet to be labelled is a candidate for labelling during

that sweep. Initially, all flags are set to zero. When a node u is labelled, all the neighbours v of u that are

unlabelled are flagged with the current sweep number; these nodes are not candidates for labelling until

the next sweep. Note that nodes in level set lr can only have neighbours in lr−1, lr and lr+1. For the mesh

problems of Miller and Pritikin, Algorithm 2 reduces to ordering the even numbered level sets and then

the odd numbered level sets.

The success of Algorithm 2 depends on the choice of the starting node s and the sizes of the level sets.

The rationale for choosing s to be an endpoint of a pseudodiameter is that it will tend to lead to a long

thin level-set structure that is hopefully also well-balanced in the sense that (with the exception of the

first and last few levels) the levels each have a similar number of entries. We want to avoid having L(s)

with one level set (or a small number of level sets) lr with more entries than the other sets. If the nodes of

such an lr are neighbours, this leads to labelling the nodes of lr consecutively after all the nodes in the sets

lq with q 6= r have been labelled, resulting in an antibandwidth of 1, even though with the new labelling

minj{|i− j| : i 6= j and aij 6= 0}

is significantly larger than 1 for all i 6= n − k for small k. To help assess the quality of our labelling, we

introduce the average antibandwidth to be

av ab =
1

n

∑
i

minj{|i− j| : i 6= j and aij 6= 0}. (2.3)

Note this definition considers upper and lower triangular entries and thus maximizing av ab is not the

dual of minimizing the profile of A (which would involve maximizing the sum of the minimum distance

from the diagonal in the lower triangular part of A).

5

To verify that the LB algorithm performs as expected for mesh problems, in Table 2.2 we present results

for the 2-dimensional mesh problems used by Duarte et al. The starting node s is computed using the

modified GPS algorithm of Reid and Scott [16]. The optimal solution is also given. We see that, in each

case, the LB algorithm computes the optimal antibandwidth or is within two of the optimal. Moreover,

for each mesh the reordering time was less than 10−3 seconds.

Table 2.2: Antibandwidths for 2-dimensional mesh problems computed using the LB algorithm.

Problem LB Optimal Problem LB Optimal

mesh9x9 36 36 mesh130x7 451 452

mesh50x2 49 49 mesh120x8 476 476

mesh34x3 49 50 mesh110x9 490 491

mesh25x4 47 48 mesh100x10 494 495

mesh20x5 47 48 mesh50x20 489 490

mesh10x10 44 45 mesh40x25 486 488

mesh17x6 47 48 mesh60x17 501 502

mesh13x8 47 48 mesh34x30 494 495

mesh15x7 49 49 mesh80x13 513 514

mesh12x9 49 49 mesh70x15 517 518

mesh11x11 55 55 mesh90x12 533 534

mesh12x12 66 66 mesh33x33 528 528

Table 2.3 reports results for the practical examples described in Table 1.1 and in the upper part of

Figures 2.3 to 2.7 the sparsity patterns for some of the problems are plotted both before and after reordering

using the level-based algorithm. With the exception of problems AG-Monien/grid1 and AG-Monien/grid2

which have initial antibandwidths of 12 and 197, respectively, the initial antibandwidth is 1. We see

that, for some of the problems with regular grids of square or cubic elements (such as HB/saylr1 and

HB/nos7), ab and av ab are increased substantially by relabelling and the level-based ordering gives the

optimal (or close to optimal) antibandwidths (from equation (2.1), the optimal ab for HB/saylr1 is 112

and from (2.2) for HB/nos7 it is approximately 334). However, for other examples (including the DNVS

problems, HB/dwt 234 and HB/nos5), while the average distance between the diagonal and nearest off-

diagonal entry increases (so that the average antibandwidth increases), the antibandwidth remains small.

For some of these latter examples, towards the end of the relabelling, we have to give consecutive labels

to nodes that are close to each other in the level-set structure; we can see this in Figure 2.6 for problem

AG-Monien/big dual. In the case of HB/lshp2614, the grid comprises triangular elements and, in general,

for some r a node has neighbours in each of the level sets lr−1, lr, and lr+1 and so we do not have the even

and then the odd level set labelling that is possible for square elements. These results show that using the

level-based algorithm is not sufficient on its own and it leads us, in the next section, to look for a local

search algorithm that may be used to refine the level-based ordering.

We remark that, in the Cuthill-McKee algorithm, the unlabelled neighbours u of v ∈ lk−1 are labelled

in order of increasing degree. We tried modifying Algorithm 2 so that the nodes within each level set were

preordered by increasing degree. We found that this did not, in general, improve the antibandwidth and,

for some problems, it gave poorer results.

3 Hill climbing for refinement

Lim et al [10] propose a hill-climbing algorithm for reducing the bandwidth of a symmetric matrix. This

local search strategy was adapted for unsymmetric matrices by Reid and Scott [17]. In this section, we

propose using hill climbing for the antibandwidth problem.

The idea behind hill climbing is that at each step a search is made for a non-critical node to swap with

6

Table 2.3: The antibandwidth (ab) and average antibandwidth (av ab) after the level-based algorithm.

The initial average antibandwidth is also given.

Problem ab av ab

Initial After LB

HB/curtis54 4 1.148E+00 1.211E+01

HB/dwt 234 2 2.974E+00 3.143E+01

HB/saylr1 111 1.000E+00 1.132E+02

AG-Monien/grid1 116 8.225E+01 1.190E+02

HB/nos7 330 1.000E+00 3.401E+02

HB/can 445 5 1.189E+00 8.084E+01

HB/nos5 7 2.368E+00 7.995E+01

HB/662 bus 29 4.513E+01 2.455E+02

HB/nos6 329 1.000E+00 3.304E+02

HB/saylr3 1 3.171E+02 5.318E+02

HB/sherman4 257 5.585E+02 6.870E+02

AG-Monien/netz4504 671 1.869E+01 9.668E+02

HB/lshp2614 14 1.000E+00 6.509E+02

AG-Monien/grid2 1626 9.093E+02 1.631E+03

HB/saylr4 1726 1.682E+00 1.738E+03

HB/sherman3 30 2.111E+03 2.888E+03

AG-Monien/ukerbe1 2054 5.718E+01 2.959E+03

AG-Monien/big dual 57 3.541E+00 1.204E+04

DNVS/ship 001 1 1.000E+00 5.644E+02

AG-Monien/brack2 11 1.918E+02 9.317E+03

DNVS/shipsec8 3 1.000E+00 3.886E+03

DNVS/fcondp2 5 1.000E+00 8.185E+03

7

Figure 2.3: HB/nos7 (upper left), after reordering using the level-based algorithm (upper right), after hill

climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

Figure 2.4: HB/sherman4 (upper left), after reordering using the level-based algorithm (upper right), after

hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

8

Figure 2.5: HB/lshp2614 (upper left), after reordering using the level-based algorithm (upper right), after

hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

Figure 2.6: AG-Monien/big dual (upper left), after reordering using the level-based algorithm (upper

right), after hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower

right).

9

Figure 2.7: AG-Monien/brack2 (upper left), after reordering using the level-based algorithm (upper right),

after hill climbing applied to the initial ordering (lower left) and to the level-based ordering (lower right).

a critical node. For the antibandwidth problem, i is defined to be critical if

mink{|i− k| : i 6= k and aik 6= 0} = ab. (3.1)

If i is critical, we look for a non-critical j such that symmetrically permuting i and j (that is, swapping

rows i and j and columns i and j) leaves both i and j non-critical. Since for the antibandwidth problem

we need to move entries away from the diagonal, candidates for swapping must be sufficiently far apart.

In particular, if row i has a lower critical entry for the current antibandwidth (that is, there is some k < i

such that i− k = ab) and j lies in the range

i− 2 ∗ ab ≤ j ≤ i− 1

swapping i and j will not lead to an increase in the antibandwidth. Thus j is only a swap candidate if it

lies outside this range. Similarly, if row i has an upper critical entry, to be a swap candidate j must lie

outside the range

i + 1 ≤ j ≤ i + 2 ∗ ab.

If j is a candidate for swapping with i, it is necessary to check the entries in both rows i and j to see if a

swap is possible. A swap is not acceptable if one or more of the following holds:

1. aij 6= 0 and |i− j| = ab.

2. There exists l such that ail 6= 0 and |l − j| ≤ ab.

3. There exists k such that akj 6= 0 and |k − i| ≤ ab.

If one of these holds, swapping i and j either decreases the antibandwidth or the number of critical nodes

is not reduced. Each accepted swap while the antibandwidth is ab reduces the number of critical entries

10

by one. If the number of critical entries becomes zero, we restart with antibandwidth ab + 1 and repeat

the process until none of the critical entries for the current antibandwidth can be swapped to reduce

their number. The algorithm is summarized in Figure 3.1. Note that hill climbing cannot decrease the

antibandwidth but may decrease the average antibandwidth.

Algorithm 3: HC

outer: do

Form the set Vc of critical nodes

do until Vc is empty

if there are nodes i ∈ Vc and j /∈ Vc such that

swapping i and j leaves both non-critical then

swap i and j and remove i from Vc

else

exit outer

end if

end do

end do outer

Figure 3.1: hill-climbing algorithm

The differences between hill climbing for the bandwidth reduction problem and the antibandwidth

problem are (a) the definition of a critical node and (b) the checks that are needed for finding a suitable

swap. For bandwidth reduction it is sufficient to keep track of the first and last entries in each row. For the

antibandwidth problem the checking is more expensive since we must check each of the entries in rows i

and j (unless the entries are in order of increasing column index but maintaining this ordering after a swap

is also expensive). In our implementation, if i is critical, we swap i with the first suitable j that we find:

there is no attempt to find the ‘best’ j (that is, the j that maximizes mink{|i − k| : i 6= k and ajk 6= 0}
and mink{|j − k| : j 6= k and aik 6= 0}. This is partly because of the additional cost that locating the

best j at each stage incurs but also because finding the best j does not necessarily lead to the best final

antibandwidth. When looking for a swap, we search the rows in reverse order since we found this generally

yielded better results.

In Table 3.1, we report results for hill climbing applied to the initial ordering and to the level-based

ordering; in the lower part of Figures 2.4 to 2.6 the sparsity patterns after hill climbing are plotted for

a subset of our test problems. As already noted, for some of the grid problems, the level-based ordering

gives the optimal (or close to optimal) antibandwidths and so hill climbing cannot improve them further.

Comparing columns 2 and 4 of Table 3.1, we see that, with the exception of HB/lshp2614, applying

HC to the level-based ordering gives a larger antibandwidth than applying it to the initial ordering.

This illustrates the importance of providing the hill-climbing algorithm with a good initial ordering. As

expected, hill climbing applied to the level-based ordering can decrease av ab, although the amount by

which it decreases is typically less than 5 percent. We observe that the sparsity patterns that we get by

applying hill climbing to the initial ordering and the level-based ordering can be very different, even when

the value of ab is not too different (for example, AG-Monien/big dual in Figure 2.6)

Ordering times are given in Table 3.2. These are wall-clock times in seconds computed using the

Fortran subroutine system clock. We note that for some examples, the reported time is zero since the

actual time taken is less than 10−3 seconds. From Table 3.2, it is clear that the level-based algorithm is

very fast but for the largest problems using hill-climbing adds a significant overhead.

In practice, for bandwidth reduction, the reverse Cuthill-McKee algorithm is used in place of the

Cuthill-McKee algorithm. Reversing the ordering leaves the bandwidth unchanged but can reduce the

profile [4]. For the antibandwidth problem, reversing the LB ordering leaves the antibandwidth and the

average antibandwidth unchanged. However, if hill climbing is then applied, the final antibandwidth and

average antibandwidth are generally not the same. In our experiments, we found for the majority of our

11

Table 3.1: The antibandwidth (ab) and average antibandwidth (av ab) after hill climbing is applied to the

initial ordering (HCi), after the level-based algorithm (LB) and after hill-climbing follows the level-based

algorithm (LB+HC).

ab av ab

Problem HCi LB LB+HC Initial HCi LB LB+HC

HB/curtis54 8 4 8 1.148E+00 1.209E+01 1.211E+01 1.231E+01

HB/dwt 234 50 2 80 2.974E+00 8.479E+01 3.143E+01 9.856E+01

HB/saylr1 45 111 111 1.000E+00 6.840E+01 1.132E+02 1.132E+02

AG-Monien/grid1 70 116 116 8.225E+01 8.878E+01 1.190E+02 1.190E+02

HB/nos7 105 330 330 1.000E+00 1.598E+02 3.401E+02 3.401E+02

HB/can 445 46 5 52 1.189E+00 6.425E+01 8.084E+01 8.089E+01

HB/nos5 32 7 49 2.368E+00 5.087E+01 7.995E+01 7.518E+01

HB/662 bus 125 29 163 4.513E+01 2.095E+02 2.455E+02 2.450E+02

HB/nos6 146 329 329 1.000E+00 2.086E+02 3.304E+02 3.304E+02

HB/saylr3 175 1 627 3.171E+02 5.152E+02 5.318E+02 7.496E+02

HB/sherman4 168 257 815 5.585E+02 6.972E+02 6.870E+02 9.630E+02

AG-Monien/netz4504 344 671 671 1.869E+01 6.288E+02 9.668E+02 9.668E+02

HB/lshp2614 343 14 337 1.000E+00 4.608E+02 6.509E+02 6.430E+02

AG-Monien/grid2 591 1626 1626 9.093E+02 9.053E+02 1.631E+03 1.631E+03

HB/saylr4 469 1726 1726 1.682E+00 7.526E+02 1.738E+03 1.738E+03

HB/sherman3 693 30 3509 2.111E+03 2.697E+03 2.888E+03 4.146E+03

AG-Monien/ukerbe1 1264 2054 2054 5.718E+01 2.043E+03 2.959E+03 2.959E+03

AG-Monien/big dual 5760 57 6645 3.541E+00 9.043E+03 1.204E+04 1.222E+04

DNVS/ship 001 244 1 319 1.000E+00 3.472E+02 5.644E+02 5.347E+02

AG-Monien/brack2 3480 11 4984 1.918E+02 5.759E+03 9.317E+03 8.826E+03

DNVS/shipsec8 1664 3 2246 1.000E+00 2.337E+03 3.886E+03 3.630E+03

DNVS/fcondp2 2921 5 4020 1.000E+00 4.097E+03 8.185E+03 7.681E+03

12

Table 3.2: Times (in seconds) for hill climbing applied to the initial ordering (HCi), for the level-based

algorithm (LB) and for hill-climbing following the level-based algorithm (LB+HC).

Problem HCi LB LB+HC

HB/curtis54 0.000 0.000 0.000

HB/dwt 234 0.000 0.000 0.000

HB/saylr1 0.001 0.000 0.000

AG-Monien/grid1 0.001 0.000 0.000

HB/nos7 0.002 0.000 0.000

HB/can 445 0.002 0.001 0.001

HB/nos5 0.003 0.001 0.001

HB/662 bus 0.001 0.000 0.000

HB/nos6 0.002 0.000 0.000

HB/saylr3 0.002 0.000 0.011

HB/sherman4 0.002 0.000 0.006

AG-Monien/netz4504 0.003 0.000 0.000

HB/lshp2614 0.018 0.001 0.001

AG-Monien/grid2 0.030 0.001 0.001

HB/saylr4 0.018 0.001 0.001

HB/sherman3 0.038 0.001 0.403

AG-Monien/ukerbe1 0.020 0.001 0.000

AG-Monien/big dual 0.378 0.007 0.128

DNVS/ship 001 40.38 0.075 15.62

AG-Monien/brack2 3.472 0.030 5.912

DNVS/shipsec8 49.37 0.107 193.6

DNVS/fcondp2 89.90 0.266 102.3

test cases the hill climbing results for the reverse LB ordering were poorer than for the LB ordering and

so we do not recommend using the reverse ordering.

3.1 Relaxed hill climbing

In the hill-climbing algorithm, i and j are swapped only if the swap leaves both i and j non-critical. We

have investigated whether it can be advantageous to perform a swap even if it results in j becoming critical.

The idea is, if hill climbing has stalled (that is, no further swaps can be made to reduce the number of

critical entries), we allow a swap that leaves the number of critical entries unchanged in the hope that

such a move will lead to later swaps that do reduce the critical entries. We refer to this variant as relaxed

hill climbing. Note that when implementing this variant care has to be taken to avoid getting into a cycle

of swaps that give no gains. Furthermore, the relaxed strategy is only employed once the standard hill

climbing strategy has stalled (using it from the start led to much poorer results). Results for relaxed hill

climbing are given in Table 3.3 (the problems for which the relaxed strategy gave no gain are omitted). We

found that the antibandwidth increased for only a few of our test problems and, in general, the additional

cost of performing extra searches and swaps for relaxed hill climbing was not beneficial.

3.2 The effect of random initial permutations

Finally, we have looked at using the algorithms after applying random symmetric permutations to the given

matrix. The results are shown in Table 3.4. It is indeed the case that, if hill climbing is applied directly,

better antibandwidths can often be found in this way. However, as we would expect, for many problems,

the antibandwidth obtained from the level-based algorithm is not very sensitive to the initial ordering.

Where the best and the worse LB antibandwidths differ it is because the pseudodiameter computed by the

13

Table 3.3: A comparison of the antibandwidths computed using the standard and relaxed hill-climbing

strategies.

Problem standard relaxed

HB/can 445 52 56

HB/nos5 49 54

HB/lshp2614 337 351

AG-Monien/brack2 4984 5453

modified GPS algorithm is different and hence the level set structure is not the same or, in some cases,

tie-breaking when selecting the nodes within each level can have an effect.

Table 3.4: Best and worse antibandwidths using the given ordering and nine random permutations; where

only one number is reported, the best and worse are the same. HCp is the antibandwidth after hill climbing

is applied to the permuted matrix.

Problem HCp LB LB+HC

HB/curtis54 [5,8] [4,6] [7,8]

HB/dwt 234 [36,50] 2 [48,80]

HB/saylr1 [42,54] [111,112] [111,112]

AG-Monien/grid1 [43,70] 116 116

HB/nos7 [104,131] 330 330

HB/can 445 [40,53] [1,5] [47,55]

HB/nos5 [32,43] [3,7] [43,49]

HB/662 bus [87,125] [4,29] [126,163]

HB/nos6 [114,146] 329 329

HB/saylr3 [154,193] 1 [625,627]

HB/sherman4 [158,187] [257,258] [815,817]

AG-Monien/netz4504 [308,438] 671 671

HB/lshp2614 [315,359] [11,16] [337,423]

AG-Monien/grid2 [537,662] [1624,1626] [1624,1626]

HB/saylr4 [441,580] [1724,1726] [1724,1726]

HB/sherman3 [557,755] [29,30] [2016,3509]

AG-Monien/ukerbe1 [971,1264] 2054 2054

AG-Monien/big dual [5267,6267] [31,259] [6526,6645]

DNVS/ship 001 [188,244] 1 319

AG-Monien/brack2 [3025,3480] [11,44] [4984,5313]

DNVS/shipsec8 [1552,1664] [1,3] [2220,2279]

DNVS/fcondp2 [2703,3035] [1,8] [3815,4074]

4 Concluding remarks and future directions

So far, we have only presented results for our proposed level-based algorithm with hill-climbing refinement

(LB+HC). In Table 4.1, we compare our computed antibandwidths with those obtained using GSpectral

of Hu et al. [6] and the best reported results of Duarte et al. for their GRASP algorithm. In some

cases, our approach is successful in computing antibandwidths that are competitive with (or are larger

than) those from GSpectral and GRASP but for other problems one or both of the latter gives better

results. As expected, the LB+HC algorithm works well on the mesh-based problems but less well on

problems from other application areas. However, in all cases, the LB+HC algorithm significantly increases

14

the antibandwidth compared to the initial ordering and the computational times are very much less than

those given in Duarte et al. The time taken by GSpectral is milli-seconds for the problems in Table 4.1

but when tested on DNVS/ship 001, the greedy refinement failed to converge in 90 minutes and thus it is

not a practical method for large problems.

Table 4.1: A comparison of the antibandwidth computed using GSpectral, the GRASP approach and the

LB+HC algorithm.

Problem GSpectral GRASP LB+HC

HB/curtis54 9 12 8

HB/dwt 234 77 51 80

HB/can 445 62 85 55

HB/662 bus 164 220 163

HB/nos6 212 328 329

HB/sherman4 274 261 817

A disadvantage of our current approach is that it is a simple two step approach: given an initial

ordering, it computes a level-based ordering and then refines it using hill climbing. While this gives good

results for many of the test problems that have an underlying mesh, it does not always work well on more

general classes of problems. This suggests that we need to develop further antibandwidth algorithms for

non-mesh problems. In a future study, we plan to explore other techniques that are designed for bandwidth

reduction to see if the ideas involved can be modified for the antibandwidth problem. In particular, we

will look at using a node-centroid algorithm [10, 17] combined with hill climbing and a multilevel approach

(see [7] for a multilevel algorithm for reducing the profile of a symmetric matrix).

Finally, in this paper our aim is to maximize the antibandwidth and we aim to do this using a level-based

ordering. If the goal is to maximize the average antibandwidth, a different ordering may be beneficial. In

the literature on profile minimization, an ordering based on the Fiedler vector has been shown to lead to

better results compared to the level-based reverse Cuthill-McKee algorithm [8]. We have experimented

with using the Fiedler vector to maximize the average antibandwidth; preliminary results show that for

some of our test problems this can work well. We plan to investigate this further.

Acknowledgements

We gratefully acknowledge the use of the University of Florida Sparse Matrix Collection, maintained and

made available by Tim Davis and Yifan Hu.

References

[1] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceedings

of the 24th National Conference of the ACM, Brandon Systems Press, 1969.

[2] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw.,

(2011). to appear.

[3] A. Duarte, R. Mart́ı, M. Resende, and R. Silva, GRASP with path relinking heuristics for the

antibandwidth problem, Networks, (2011). doi: 10.1002/net.20418.

[4] A. George, Computer implementation of the finite-element method, Report STAN CS-71-208, Ph.D

Thesis, Department of Computer Science, Stanford University, 1971.

[5] N. Gibbs, W. Poole, and P. Stockmeyer, An algorithm for reducing the bandwidth and profile

of a sparse matrix, SIAM J. Numerical Analysis, 13 (1976), pp. 236–250.

15

[6] Y. Hu, S. Kobourov, and S. Veeramoni, On maximum differential graph coloring, in Proceedings

of the 18th international conference on graph drawing (GD’10), Springer-Verlag, 2011, pp. 274–286.

[7] Y. Hu and J. Scott, A multilevel algorithm for wavefront reduction, SIAM J. Sci. Comput., 23

(2001), pp. 1352–1375.

[8] G. Kumfert and A. Pothen, Two improved algorithms for envelope and wavefront reduction, BIT,

37:3 (1997), pp. 559–590.

[9] J. Y.-T. Leung, O. Vornberger, and J. Witthoff, On some variants of the bandwidth

minimization problem, SIAM J. on Computing, 13 (1984), pp. 650–667.

[10] A. Lim, B. Rodrigues, and F. Xiao, A centroid-based approach to solve the bandwidth minimization

problem, Proceedings of the 37th Hawaii international conference on system sciences, IEEE, (2004).

[11] R. Mart́ı, M. Laguna, F. Glover, and V. Campos, Reducing the bandwidth of a sparse matrix

with tabu search, European J. of Operational Research, 135 (2001), pp. 211–220.

[12] Z. Miller and D. Pritikin, On the separation number of a graph, NETWORKS, 19 (1989), pp. 651–

666.

[13] E. P. nana, I. Plana, V. Campos, and R. Mart́ı, GRASP and path relinking for the matrix

bandwidth minimization, European J. of Operational Research, 153 (2004), pp. 200–210.

[14] G. Paulino, I. Menezes, M. Gattass, and S. Mukherjee, A new algorithm for finding a

pseudoperipheral vertex or the endpoints of a pseudodiameter in a graph, Communications in Numer.

Meth. Engng, 10 (1994), pp. 913–926.

[15] A. Raspaud, H. Schröder, O. Sýkora, L. Török, and I. Vrt’o, Antibandwidth and cyclic

antibandwidth of meshes and hypercubes, Discrete Mathematics, 309 (2009), pp. 3541–2552.

[16] J. Reid and J. Scott, Ordering symmetric sparse matrices for small profile and wavefront, Inter.

Journal on Numerical Methods in Engineering, 45 (1999), pp. 1737–1755.

[17] , Reducing the total bandwidth of a sparse unsymmetric matrix, SIAM J. Matrix Analysis and

Applications, 28 (2006), pp. 805–821.

[18] L. Török and I. Vrt’o, Antibandwidth of three-dimensional meshes, Discrete Mathematics, 310

(2010), pp. 505–510.

[19] L. Yixen and Y. Jinjiang, The dual bandwdith problem for graphs, J. of Zhengzhou University, 35

(2003), pp. 1–5.

16

	RAL-TR-2011-019-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2011-019-report.pdf

