
Technical Report

RAL-TR-2005-001

Council for the Central Laboratory of the Research Councils

March 2005

J. K. Reid and J. A. Scott

Reducing the total bandwidth of a sparse
unsymmetric matrix

c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be

addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the

use of information contained in any of their reports or in any communication about their tests or

investigations.

RAL-TR-2005-001

Reducing the total bandwidth of a sparse

unsymmetric matrix1,2

by

J. K. Reid and J. A. Scott

Abstract

For a sparse symmetric matrix, there has been much attention given to algorithms for reducing

the bandwidth. As far as we can see, little has been done for the unsymmetric matrix A, which has

distinct lower and upper bandwidths l and u. When Gaussian elimination with row interchanges

is applied, the lower bandwidth is unaltered while the upper bandwidth becomes l + u. With

column interchanges, the upper bandwidth is unaltered while the lower bandwidth becomes l+u.

We therefore seek to reduce min(l, u) + l + u, which we call the total bandwidth.

We consider applying the reverse Cuthill-McKee algorithm to A+AT , to the row graph of A,

and to the bipartite graph of A. We also propose a variation that may be applied directly to A.

When solving linear systems, if the matrix is preordered to block triangular form, it suffices

to apply the band-reducing method to the blocks on the diagonal. We have found that this is

very beneficial on matrices from actual applications.

Finally, we have adapted the node-centroid and hill-climbing ideas of Lim, Rodrigues and

Xiao to the unsymmetric case and found that these give further worthwhile gains.

Numerical results for a range of practical problems are presented and comparisons made with

other possibilities, including the recent lexicographical method of Baumann, Fleishmann and

Mutzbauer.

Keywords: matrix bandwidth, sparse unsymmetric matrices, Gaussian elimination.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 The work of the second author was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

April 25, 2005.

1 Introduction

If Gaussian elimination is applied without interchanges to an unsymmetric matrix A = {aij} of

order n, each fill-in takes place between the first entry of a row and the diagonal or between

the first entry of a column and the diagonal. It is therefore sufficient to store all the entries

in the lower triangle from the first entry in each row to the diagonal and all the entries in the

upper triangle from the first entry in each column to the diagonal. This simple structure allows

straightforward code using static data structures to be written. We will call the sum of the

lengths of the rows the lower profile and the sum of the lengths of the columns the upper

profile.

We will also use the term lower bandwidth for l = maxaij 6=0(i − j) and the term upper

bandwidth for u = maxaij 6=0(j − i). For a symmetric matrix, these are the same and are called

the semi-bandwidth. A particularly simple data structure is available by taking account only

of the bandwidths and has the merit that the structure remains after the application of row

interchanges, though the upper bandwidth increases to l + u. With column interchanges, the

upper bandwidth is unaltered while the lower bandwidth becomes l + u. We therefore seek to

reduce min(l, u)+ l+u, which we call the total bandwidth. For a band linear equation solver to

be efficient, the matrix needs to be preordered so that its total bandwidth is small. In this paper,

we consider algorithms for reducing the total bandwidths of matrices with unsymmetric sparsity

patterns. We consider band methods rather than profile methods because the upper profile alters

when row interchanges are applied and the lower profile alters when column interchanges are

applied.

Many algorithms for reducing the bandwidth of a sparse symmetric matrix A have been

proposed and most make extensive use of the adjacency graph of the matrix. This has a node for

each row (or column) of the matrix and node i is a neighbour of node j if aij (and by symmetry

aji) is an entry (nonzero) of A. An important and well-known example of an algorithm that uses

the adjacency graph is that of Cuthill and McKee (1969), which orders the nodes of the adjacency

graph by increasing distance from a chosen starting node. Ordering the nodes in this way groups

them into ‘level sets’, that is, nodes at the same distance from the starting node. Since nodes in

level set l can have neighbours only in level sets l−1, l, and l+1, the reordered matrix is block

tridiagonal with blocks corresponding to the level sets. It is therefore desirable that the level sets

be small, which is likely if there are many of them. The number of level sets is dependent on the

choice of starting node. Therefore, algorithms for finding a good starting node are usually based

on finding a pseudo-diameter (pair of nodes that are a maximum distance apart or nearly so), see

for example Gibbs, Poole and Stockmeyer (1976) and Reid and Scott (1999) and the references

therein. George (1971) found that the profile may be reduced if the Cuthill-McKee ordering is

reversed. The reverse Cuthill-McKee (RCM) algorithm and variants of it remain in common use.

For example, an implementation is available within MATLAB as the function symrcm and RCM

is included as an option within the package mc60 from the mathematical software library HSL

(2004).

In this paper, we consider how variants of the Cuthill-McKee algorithm can be used to order

unsymmetric matrices for small total bandwidths. In Section 2, we discuss three undirected

graphs that can be associated with an unsymmetric matrix A. We then propose in Section 3 an

unsymmetric variant of RCM. In Section 4, we look at using a modified version of the hill-climbing

algorithm of Lim, Rodrigues and Xiao (2004) to improve a given ordering and, in Section 5, we

1

propose a variant of the node centroid algorithm of Lim et al. (2004) for the unsymmetric case.

In Section 6, we consider permuting A to block triangular form and applying the band reducing

algorithms to the diagonal blocks. In Section 7, we examine the effect of row interchanges.

Numerical results for a range of practical problems are presented in Section 8.

We end this section by briefly discussing a recently published algorithm for reducing the

bandwidth of an unsymmetric matrix. Baumann, Fleishmann and Mutzbauer (2003) reduce the

lower and upper bandwidths and profiles by making the pattern of each row and column define

a binary number, then alternate between ordering the rows in decreasing order and ordering

the columns in decreasing order. They show that this converges to a limit and call it a ‘double

ordering’. Since only the leading entries of the rows or columns affect the bandwidths and

profiles, we have implemented an efficient variant in which no attempt is made to order the rows

or columns with the same leading entry. We call this a relaxed double ordering (RDO) and

include results for it in Section 8.

Unfortunately, there are huge numbers of double orderings and Baumann et al. (2003) have

no strategy for choosing a good one. For example, a Cuthill-McKee ordering produces a relaxed

double ordering regardless of the starting node, since the leading entries of the rows (or columns)

form a monotonic sequence. There is scope for the double ordering to reduce the profile of an

RCM ordering, but our experience is that the improvement is slight and is often at the expense

of the bandwidths (see Section 8.2).

2 Undirected graphs for unsymmetric matrices

In this section, we consider three adjacency graphs that can be associated with an unsymmetric

matrix A. In each case, RCM (reverse Cuthill-McKee) will be employed to reduce the semi-

bandwidth of the graph and this permutation will be used to reorder A.

2.1 Using A + AT

For a matrix whose structure is nearly symmetric, an effective strategy is to find a symmetric

permutation that reduces the bandwidth of the structure of the symmetric matrix A + AT . The

MATLAB function symrcm applies RCM to the adjacency graph of A + AT . If the symmetric

permutation is applied to A, the lower and upper bandwidths are no greater than the semi-

bandwidth of the permuted A + AT . Of course, the same algorithm may be applied to a matrix

that is far from symmetric and the same results apply, but the effectiveness is uncertain. It is

likely to be helpful to permute A to make it more symmetric. We will judge this by its symmetry

index, which is the number of off-diagonal entries aij for which aji is also an entry divided by the

total number of off-diagonal entries. Permuting a large number of off-diagonal entries onto the

diagonal reduces the number of unmatched off-diagonal entries, which in turn generally increases

the symmetry index (see, for example, Duff and Koster, 1999 and Hu and Scott, 2005). The HSL

routine mc21 can be used to compute a matching that corresponds to a row permutation of A

that puts entries onto the diagonal.

2

2.2 Bipartite graph

The bipartite graph of A has a node for each row and a node for each column and row node i is

connected to column node j if aij is a entry. It is straightforward to see that this is actually the

adjacency graph of the 2n × 2n symmetric matrix

Â =

[

0 A

AT 0

]

. (2.1)

Starting the Cuthill-McKee algorithm with any node, the level sets are alternately sets of rows

and sets of columns. If we start from a row node and perform the corresponding symmetric

permutation on the matrix (2.1), we find the matrix



























0 A11

AT
11 0 AT

21

A21 0 A22

AT
22 0 AT

23

A32 0 A33

AT
33 0 AT

34

.



























(2.2)

where Alm is the submatrix of A corresponding to the rows of row level set l and columns of

column level set m.

If we permute the rows of A by the row level sets and the orderings within them, and permute

the columns by the column level sets and the orderings within them, we find the block bidiagonal

form
















A11

A21 A22

A32 A33

A43 A44

.

















, (2.3)

which is also the submatrix of (2.2) consisting of block rows 1, 3, . . . and block columns 2, 4,

We illustrate with a small reordered example in Figure 2.1. Here there are four row level sets, of

sizes 1, 3, 2, 2, and three column level sets, of sizes 3, 2, 3.

× × ×

× × ×

× × ×

× ×

× × × ×

× × ×

× ×

× ×

Figure 2.1: A matrix with rows and columns reordered using the permutations obtained by applying

Cuthill-McKee to its bipartite graph.

3

This example has entries on the whole of the diagonal, which will not necessarily be the case.

However, if the matrix is structurally nonsingular, the diagonal will always intersect each of the

blocks. This is because the leading k columns must be of full structural rank and similarly for

the leading k rows.

The semi-bandwidth of the reordered matrix (2.2) is at most one less than the largest sum of

the sizes of two adjacent level sets, that is, one less than the largest sum of the sizes of a row level

set and an adjacent column level set. The corresponding results for the reordered unsymmetric

matrix (2.3) are that the lower bandwidth is at most one less than the sum of the sizes of two

adjacent column level sets and the upper bandwidth is at most one less than the sum of the sizes

of two adjacent row level sets. Note, however, that all these bounds are pessimistic; they do

not take account of the ordering of the nodes within each level set (and RCM does well in this

respect) and, in the case (2.3), of the position of the matrix diagonal within the blocks.

2.3 Row graph

Another alternative is to consider the row graph (Mayoh, 1965) of A, which is defined to be the

adjacency graph of the symmetric matrix AAT , where matrix multiplication is performed without

taking cancellations into account (so that, if a coefficient of AAT is zero as a result of numerical

cancellation, it is still considered to be an entry). The nodes of the row graph correspond to the

rows of A and nodes i and j (i 6= j) are neighbours if and only if there is at least one column k of

A for which aik and ajk are both entries. The row graph has been used by Scott (1999, 2000) to

order the rows of unsymmetric matrices prior to solving the linear system using a frontal solver.

We can obtain an ordering for the rows of A by applying the RCM algorithm to AAT . This

will ensure that rows with entries in common are nearby, that is, the first and last entry of each

column will not be too far apart. If the columns are now ordered according to their last entry,

the lower bandwidth will be small and the upper bandwidth will not be large.

A potential disadvantage of computing and working with the pattern of AAT is that it can

be costly in terms of time and memory requirements. This is because AAT may contain many

more entries than A. It fails completely if A has a full column (AAT is full), but such a matrix

cannot be permuted to have small lower and upper bandwidths.

3 Unsymmetric RCM

Any reordering within a Cuthill-McKee level set of Section 2.2 will alter the positions of the

leading entries of the columns of a submatrix Aii or the rows of a submatrix Aji, j = i + 1. It

will make exactly the same change to the profile of the matrix (2.2) as it does to the sum of the

upper and lower profiles of the matrix (2.3). If it reduces the bandwidth of the matrix (2.2),

it will reduce either the upper or lower bandwidth of the matrix (2.3); however, the converse is

not true: it might reduce the upper or lower bandwidth of the matrix (2.3) without reducing the

bandwidth of the matrix (2.2). It follows that it may be advantageous for bandwidth reduction

to develop a special-purpose code for the unsymmetric case, rather than giving the matrix (2.1)

to a general-purpose code such as mc60 for reducing the bandwidth of a symmetric matrix. We

have developed a prototype unsymmetric bandwidth reduction code of this kind. Again the

level sets are alternately sets of rows and set of columns but our unsymmetric Cuthill-McKee

4

algorithm bases its decisions on the total bandwidth of the unsymmetric matrix A instead of on

the bandwidth of the matrix (2.2); results are included in Section 8.2, see Tables 8.4 and 8.5.

The profile and bandwidth are likely to be reduced if the rows of each level set are ordered

according to their leading entries. This happens automatically with the Cuthill-McKee algorithm

since each level set l is formed by taking the nodes that have not already been included in a level

set and are neighbours of the first node of level set l−1, then those that have not already been

included in a level set and are neighbours of the second node of level set l−1, and so on. This

was done for the example in Figure 2.1.

Reversing the Cuthill-McKee ordering may reduce the profile. It is reduced if the column

index of the trailing entry in a row is lower than the column index of the trailing entry in an

earlier row. There is an example in block A22 of Figure 2.1.

4 Hill-climbing to improve a given ordering

In this and the next section, we consider algorithms that are not based on level sets in a graph

and are therefore completely different.

Lim et al. (2004) propose a hill-climbing algorithm for reducing the semi-bandwidth of a

symmetric matrix. An entry aij in a reordered matrix A with semi-bandwidth b is called critical

if |i − j| = b. For each critical entry aij in the lower-triangular part, an interchange of i with

k < i or j with k > j is sought that will reduce the number of critical entries. For example, a94

is critical in Figure 4.2 and the semi-bandwidth is reduced from 5 to 4 by interchanging column

0 × ×

× 0 0 ×

× 0 0 × ×

× 0 0 0 × × ×

× 0 0 0 ×

× 0 0 0 ×

× 0 0 0

× × × 0 0 0

× 0 0 0

Figure 4.2: A symmetric matrix ordered by Cuthill-McKee.

4 with column 5 and row 4 with row 5. As a column is moved backwards, its first entry is moved

away from the diagonal while its last entry is moved nearer. If the distance of the first entry

from the diagonal is d, we can therefore limit the choice of k to the range j < k < j + b − d.

Similarly, if the distance of the last entry in row i from the diagonal is l, we limit the choice of

k to the range i − b + l < k < i. Each interchange while the semi-bandwidth is b reduces the

number of critical entries by one. If the number of critical entries becomes zero, we recommence

the algorithm for semi-bandwidth b − 1 and continue until none of the critical entries for the

current semi-bandwidth can be interchanged to reduce their number. Note that this hill-climbing

algorithm cannot increase the semi-bandwidth.

We have adapted this idea to reduce the lower and upper bandwidths of an unsymmetric

matrix. If the lower bandwidth is l and the upper bandwidth is u, we call an entry aij in the

5

lower triangle for which i − j = l a critical lower entry and an entry aij in the upper triangle

for which j − i = u a critical upper entry. We have found it convenient to alternate between

making row interchanges while the column permutation is fixed and making column interchanges

while the row permutation is fixed. While making row interchanges to reduce the number of

critical upper entries, we seek to exchange a row i containing a critical upper entry with another

row so that the number of critical upper entries is reduced by one while the lower bandwidth is

not increased. If the distance between the leading entry in the row and the diagonal is d, we limit

our search to rows in the range i− l + d ≤ k < i. For example, we do not exchange rows 3 and 4

in Figure 2.1 since this would increase the lower bandwidth.

Similarly, while making row interchanges to reduce the number of critical lower entries, we

seek to exchange a row i containing a critical lower entry with another row so that the number

of critical lower entries is reduced by one while the upper bandwidth is not increased.

One complete iteration of our hill-climbing algorithm consists of row hill-climbing (using row

interchanges to first reduce the lower bandwidth as much as possible and then to reduce the upper

bandwidth as much as possible), followed by column hill-climbing (using column interchanges to

first reduce the upper bandwidth as much as possible and then to reduce the lower bandwidth as

much as possible). We continue until a complete iteration fails to reduce one of the bandwidths

or the total number of critical entries.

5 Node centroid ordering

The hill-climbing algorithm of the previous section is essentially a local search and is very

dependent on the initial order that it is given. To generate other initial orderings, Lim et al.

(2004) propose an algorithm that they call ‘node centroid’. For the graph of a symmetric matrix,

they define Nλ(i) to the set of neighbours j of node i for which |i− j| is at least λb, where b is the

bandwidth and λ ≤ 1 is a parameter for which they recommend a value of 0.95. They refer to

such neighbours as λ-critical. w(i) is then defined as the average node index over i∪Nλ(i) and

the nodes are ordered by increasing w(i). This will tend to move a row with a λ-critical entry in

the lower triangle but no λ-critical entry in the upper triangle forward; hopefully, its new leading

entry will be nearer the diagonal than the old one was and its trailing entry will not have moved

out so much that it becomes critical. Similar arguments apply to a row with a λ-critical entry

in the upper triangle but no λ-critical entry in the lower triangle, which will tend to be moved

back.

Lim et al. (2004) apply a sequence of major steps, each of which consists of two iterations of

node centroid ordering followed by one iteration of hill-climbing and report encouraging results

for the DWT set of symmetric problems from the Harwell-Boeing Sparse Matrix Collection (Duff,

Grimes and Lewis, 1989).

We have adapted this idea to the unsymmetric case by again alternating between permuting

the rows while the column permutation is fixed and permuting the columns while the row

permutation is fixed. Suppose the lower bandwidth is l and the upper bandwidth is u. While

permuting the rows, only the leading and trailing entries of the rows are relevant since they will

still have these properties after the row permutation. If the leading or trailing entry of row i is

λ-critical it is desirable to move the row. If its leading entry is in column li and its trailing entry

is in column ui, the gap between the upper band and the trailing entry is u + i− ui and the gap

6

between the lower band and the leading entry is li − (i − l) = li − i + l. If we move the row

forward to become row i + δ, the gaps become u + i + δ − ui and li − i − δ + l. If l > u, it would

seem desirable to make the gap at the trailing end greater than the gap at the leading end. We

choose a parameter α > 1 and aim for the gap at the trailing end to be α times greater than the

gap at the leading end, that is,

u + i + δ − ui = α(li − i − δ + l), (5.4)

or

δ =
(ui − i − u) + α(li − i + l)

1 + α
. (5.5)

Similar calculations for l = u and l < u lead us to conclude that a desirable position for the row

is given by the equation

w(i) =



















i + (ui−i−u)+α(li−i+l)
1+α

if l > u,

i + (ui−i−u)+(li−i+l)
2 if l = u,

i + α(ui−i−u)+(li−i+l)
1+α

if l < u.

(5.6)

For other rows, we set w(i) = i. We sort the rows in increasing order of w(i), i = 1, 2, . . . , n. In

our numerical experiments (see Section 8), we found that a suitable value for α is 2.

Similar considerations apply to ordering the columns with the row order fixed. We apply a

sequence of up to ten major steps, each consisting of two iterations of the node centroid row

ordering followed by row hill-climbing, then two iterations of the node centroid column ordering

followed by column hill-climbing. We continue while the total bandwidth ceases to decrease.

6 The block triangular form

In the symmetric case, it may be possible to preorder the matrix A to block diagonal form

















A11

A22

A33

A44

. . .

















. (6.7)

In this case, each block may be permuted to band form and the overall matrix is a band matrix;

the profile is the sum of the profiles of the blocks and the bandwidth is the greatest bandwidth

of a block.

The unsymmetric case is not so straightforward because we need also to exploit the block

triangular form
















A11

A21 A22

A31 A32 A33

A41 A42 A43 A44

.

















, (6.8)

where the blocks All, l = 1, 2, ..., N , are all square. A matrix that can be permuted to this form

with N > 1 diagonal blocks is said to be reducible; if no block triangular form other than the

7

trivial one with a single block (N = 1) can be found, the matrix is irreducible. The advantage

of the block triangular form (6.8) is that the corresponding set of equations Ax = b may be solved

by the block forward substitution

Aiixi = bi −
i−1
∑

j=1

Aijxj, i = 1, 2, . . . , N. (6.9)

There is no fill in the off-diagonal blocks, which are involved only in matrix-by-vector

multiplications. It therefore suffices to permute each diagonal block Aii to band form. We

will take the upper and lower profiles to be the sums of the upper and lower profiles of the

diagonal blocks and the upper and lower bandwidths to be the greatest of the upper and lower

bandwidths of the diagonal blocks.

We will assume that each diagonal block has entries on its diagonal since most algorithms for

finding the block triangular form begin with a permutation that places entries on the diagonal.

Therefore, permuting entries onto the diagonal is not available as a strategy for improving the

symmetry index (see Section 2.1).

7 The effect of interchanges

If row interchanges are needed for stability reasons during the factorization of an unsymmetric

matrix A with lower bandwidth l and upper bandwidth u, it may be readily verified that the

lower bandwidth remains l but the upper bandwidth may increase to l + u. Thus, we can take

advantage of l being less than u. If l is greater than u, we may factorize AT instead of A or

use column interchanges instead of row interchanges. In both cases, one triangular factor has

bandwidth min(l, u) and the other has bandwidth l + u. We therefore introduce the term total

bandwidth for the sum min(l, u) + l + u. For a reducible matrix, we take the total bandwidth

to be the greatest total bandwidth of a diagonal block of its block triangular form.

Most band solvers, including GBTRF of LAPACK (Anderson, Bai, Bischof, Blackford, Demmel,

Dongarra, Du Croz, Greenbaum, Hammarling, McKenney and Sorensen, 1999), simply hold

explicitly any zeros with the fixed bandwidth form with lower bandwidth l and upper bandwidth

l+u and perform explicit operations for them. An exception is the code ma65 of HSL (2004). This

works within the fixed bandwidth form, but avoids many of the operations on explicit zeros. It

ignores entries outside a profile defined by the indices of the row and column ends, which are held

in the n-vectors rowend and colend. It requires that the diagonal entries are held (rowend(i) ≥ i,

colend(j) ≥ j) and begins by increasing colend to be monotonic thus

do j = 2,n

colend(j) = max(colend(j-1),colend(j))

end do

This involves little loss of efficiency since the corresponding entries are almost certain to fill-in

during factorization. The vector colend is static thereafter. The vector rowend is not static,

however. If two rows are interchanged, the corresponding components of rowend need to be

interchanged and the row end of each non-pivot row may need to be increased before elimination

operations are applied to it. The row operations associated with a pivot are performed one by

one, and are skipped if the size of the multiplier is less that a threshold with default value zero.

8

Thus advantage is taken of zeros in the pivot column, but not of zeros within the pivot row since

that would add the overheads of indirect addressing.

8 Numerical experiments

In this section, we first describe the problems that we use for testing the algorithms discussed in

this paper and then present numerical results.

8.1 Test problems

Table 8.1: The test problems.

Identifier Order Number of Symmetry

entries index

4cols† 11770 43668 0.0159

10cols
† 29496 109588 0.0167

bayer01 57735 277774 0.0002

bayer03 6747 56196 0.0031

bayer04 20545 159082 0.0016

bayer09 3083 21216 0.0212

circuit 3 12127 48137 0.7701

ethylene-1† 10673 80904 0.2973

extr1 2837 11407 0.0042

hydr1 5308 23752 0.0041

icomp
† 69174 301465 0.0001

impcol d 425 1339 0.0567

lhr34c 35152 764014 0.0015

lhr71c 70304 1528092 0.0015

poli large 15575 33074 0.0035

radfr1 1048 13299 0.0537

rdist1 4134 94408 0.0588

rdist2 3198 56934 0.0456

rdist3a 2398 61896 0.1404

Zhao2 33861 166453 0.9225

The test problems are listed in Table 8.1. Each arises from a real engineering or industrial

application. Problems marked with a † are chemical process engineering problems that were

supplied to us by Mark Stadtherr of the University of Notre Dame. The remaining problems are

available through the University of Florida Sparse Matrix Collection (Davis, 1997); further details

may be found at www.cise.ufl.edu/research/sparse/matrices/. Most of the test problems

were chosen on the grounds of being highly unsymmetric because working with the symmetrized

matrix A + AT will be satisfactory for near-symmetric matrices. We include one near-symmetric

matrix to illustrate this.

In Table 8.2, we give details of the block triangular form for each of our test matrices. The

number of 1×1 and 2×2 blocks (n1 and n2) as well as the number of larger blocks (n>2) and the

total number of entries in the off-diagonal blocks (noff) are given. The size (m) of the largest

diagonal block Akk, the number of entries (me) and average number of entries per row (avg(me))

in Akk and its symmetry index (si) are given, as well as the number of entries in the matrix

9

Table 8.2: Details of the block triangular form for our test problems. n1 and n2 are the numbers of 1× 1

and 2×2 blocks; n>2 is the number of larger blocks; noff is the total number of entries in the off-diagonal

blocks. For the largest diagonal block Akk , m is the order, me is the number of entries, avg(me) is the

average number of entries per row, si is the symmetry index, and me(AkkAT
kk) is the number of entries in

AkkAT
kk .

Identifier n1 n2 n>2 noff Largest block Akk

m me avg(me) si me(AkkAT
kk)

4cols 0 0 1 0 11770 43668 3.71 0.0159 210026

10cols 0 0 1 0 29496 109588 3.72 0.0167 527124

bayer01 8858 0 3 28228 48803 240222 4.92 0.0812 1236678

bayer03 1772 2 6 19575 4776 33555 7.02 0.1066 252236

bayer04 6349 19 10 56096 13762 93750 6.81 0.0976 690982

bayer09 1466 2 7 8476 1364 9562 7.01 0.0808 71842

circuit 3 4520 0 1 9593 7607 34024 4.47 0.5579 76178

ethylene-1 2137 0 7 12865 8336 65375 7.84 0.3000 203920

extr1 424 0 1 464 2413 10519 4.35 0.0935 34118

hydr1 968 0 6 1420 2370 11738 4.95 0.0730 47946

icomp 44988 2 2061 215880 185 741 4.00 0.1187 2554

impcol d 226 0 1 551 199 562 2.82 0.0275 1350

lhr34c 3519 0 14 47924 7663 173683 22.7 0.3982 7733752

lhr71c 7038 0 28 95912 7663 173683 22.7 0.4225 773752

poli large 15450 12 4 17266 90 286 3.18 0.1633 680

radfr1 97 0 1 969 951 12233 12.9 0.4751 34032

rdist1 198 0 1 3959 3936 90251 22.9 0.4821 280538

rdist2 198 0 1 2968 3000 53768 17.9 0.4868 164284

rdist3a 98 0 1 2252 2300 59546 25.9 0.4500 188612

Zhao2 0 0 1 0 33861 166453 4.92 0.9225 549692

AkkA
T
kk. We note that 4cols, 10cols, and Zhao2 are irreducible while a number of problems

(including circuit 3 and the rdist examples) have only one block of order greater than 1. Most

of the remaining problems have fewer than 10 blocks of order greater than 1; the main exception

is icomp, which has 2061 such blocks of which 8 are of size over 30. As expected, the matrix

AkkA
T
kk contains many more entries than Akk. We also note that, for the reducible examples, the

symmetry index of Akk is usually larger than that of the original matrix.

8.2 Test results

We first present results for applying the mc60 implementation of the RCM algorithm to the

following matrices: (i) A + AT , (ii) B + BT , where B = PA is the permuted matrix after

employing mc21 to put entries on the diagonal, (iii) AAT and (iv) the matrix Â given by (2.1).

In each case, the ordering is then applied to A (as described in Section 2). The total bandwidth

(defined in Section 7) for each ordering and for the initial ordering is given in Table 8.3. Results

are also given for the relaxed double ordering (RDO), see end of Section 1. A blank entry in the

B+BT column indicates the matrix A has no zeros on the diagonal and, in these cases, mc21 is not

applied. We see that applying mc21 prior to the reordering with RCM can significantly reduce the

bandwidths but narrower bandwidths are achieved by working with either the row graph (AAT)

or the bipartite graph (Â). For the majority of our test examples, the RDO orderings are much

10

Table 8.3: The total bandwidth for the RDO and RCM ordering algorithms.

Identifier Initial RDO RCM

A + AT B + BT AAT Â

4cols 13305 4768 846 460 565

10cols 30532 13855 1052 546 572

bayer01 157073 45332 52201 4117 2232 2236

bayer03 17744 3660 7873 1074 651 651

bayer04 61436 14880 18502 7133 3813 3902

bayer09 8796 1977 3124 688 427 430

circuit 3 36231 10979 17658 20584 10441 11157

ethylene-1 10664 8301 7797 5114 5093

extr1 7798 1610 2575 298 171 169

hydr1 14377 2726 5800 559 337 334

icomp 56862 43801 1429 1262 1262

impcol d 496 153 241 219 123 117

lhr34c 57141 13924 27428 5332 3296 3771

lhr71c 58291 18181 27064 5802 3620 3771

poli large 46466 6400 16849 6381 6316

radfr1a 1200 95 970 142 71 98

rdist1 4446 195 3421 336 223 215

rdist2 3470 146 2380 370 169 165

rdist3a 2610 229 1858 570 225 250

Zhao2 86377 34409 1476 1464 1476

poorer, although they are a significant improvement on the initial ordering.

Table 8.4 shows the effect of applying ordering algorithms to the diagonal blocks of the block

triangular form (6.8). As already noted, the construction of the block triangular form ensures

that there are no zeros on the diagonal, so we do not preorder using mc21. Apart from this, the

algorithms featured in Table 8.3 are featured here too. We have experimented with running RDO

after RCM applied to AAT ; the results are in parentheses in column 6 of Table 8.4. Column 8

shows the result of applying our unsymmetric RCM code (see Section 3) to the diagonal blocks.

We have highlighted the narrowest bands and those within 3 per cent of the narrowest. This

margin is based on our experience with all the algorithms that an individual result quite often

changes of about 3 per cent if we randomly permute the rows and columns of A before applying

the algorithm. As expected, the larger symmetry index for the diagonal blocks of the block

triangular form results in an improvement in the performance of RCM applied to A + AT but in

all cases it is better to use the other RCM variants. There appears to be little to choose between

RCM applied to the row graph, RCM applied to the bipartite graph, and our unsymmetric RCM

algorithm; for some of the examples, each produces the narrowest total bandwidth. Although

RDO does improve the bandwidths for a number of problems (including icomp and poli large),

for others the results are significantly worse (for example, 4cols and bayer01) and so we do not

recommend its use.

So far, the reported results have not included hill climbing. In Table 8.5 we present results

for applying the different RCM variants to the block triangular form followed by applying both

hill climbing alone (denoted by RCM + HC) and the node centroid algorithm plus hill climbing

(denoted by RCM + NC + HC). For the node centroid algorithm we have experimented with

11

Table 8.4: The total bandwidth for the RDO and RCM ordering algorithms applied to the diagonal blocks

of the block triangular form.

Identifier Initial RDO RCM

A + AT AAT (+RDO) Â A

4cols 13305 4768 846 460 (1001) 565 504

10cols 30532 13855 1052 546 (1600) 572 528

bayer01 146387 34581 3483 1768 (3056) 1823 1776

bayer03 14314 3617 740 527 (547) 500 506

bayer04 41245 9019 1746 1003 (1846) 939 944

bayer09 4039 529 385 279 (433) 248 275

circuit 3 22795 4776 1903 1330 (1394) 1321 1297

ethylene-1 24996 4967 323 179 (432) 184 230

extr1 7211 1660 240 145 (266) 149 148

hydr1 7068 1640 198 129 (112) 134 129

icomp 536 148 183 151 (140) 153 140

impcol d 582 70 98 79 (82) 67 59

lhr34c 22984 4397 982 669 (2171) 720 721

lhr71c 22972 5135 991 741 (2173) 727 720

poli large 256 84 97 91 (79) 84 77

radfr1a 621 132 130 88 (93) 85 93

rdist1 341 155 346 188 (193) 189 192

rdist2 267 103 276 121 (143) 117 120

rdist3a 6888 1789 293 192 (186) 168 185

Zhao2 86377 34409 1471 1454 (2196) 1467 1424

using values of λ in the range [0.8, 1] and values of α in the range [1.5, 2.5]. Our experience was

that the results were not very sensitive to the precise choice of λ and for most examples 0.85 gave

results that were within 3 per cent of the best. For α, we found that a value of 2 gave slightly

better results that either 1.5 or 2.5. We therefore used λ = 0.85 and α = 2 for the results in

Table 8.5.

Again, the narrowest total bandwidths (and those within 3 per cent of the narrowest) are

highlighted. Comparing the results in columns 2 to 5 of Table 8.5 with the corresponding results

in Table 8.4, we see that hill climbing (which never increases the total bandwidth) can lead to

some significant improvements. For some problems, for example bayer09, the savings are over

20 per cent. However, looking also at columns 6 to 9, it is clear that for all but problem Zhao2,

the smallest bandwidths are achieved by using RCM combined with both the node centroid and

the hill-climbing algorithms. The largest improvements resulting from using the node centroid

algorithm are to the orderings obtained using RCM applied to A + AT ; for some problems

(including the bayer and the lhr examples) the reductions resulting from including the node

centroid algorithm are more than 30 per cent. However, for many of our examples, one of the

other variants generally produces orderings with a smaller total bandwidth.

8.3 Comparisons with a general sparse solver

We end this section by reporting on using our band-reducing orderings with the HSL band solver

MA65. Comparisons are made with the general-purpose sparse direct solver MA48. MA48 uses

sparse Gaussian elimination for solving unsymmetric systems. During the last decade it has

12

Table 8.5: The total bandwidth after hill climbing and the node centroid. RCM + HC denotes RCM

followed by hill climbing; RCM + HC + NC denotes RCM followed by hill climbing and the node centroid

algorithm. All are applied to the diagonal blocks of the block triangular form.

Identifier RCM + HC RCM + NC + HC

A + AT AAT Â A A + AT AAT Â A

4cols 718 435 549 481 502 395 458 443

10cols 902 498 553 479 625 448 462 447

bayer01 3241 1739 1742 1756 2243 1659 1675 1659

bayer03 668 446 445 452 411 381 384 377

bayer04 1507 899 917 868 941 856 822 809

bayer09 276 206 212 215 184 162 173 167

circuit 3 1715 1228 1227 1123 1356 1065 1074 1095

ethylene-1 271 172 173 216 174 169 162 203

extr1 190 119 120 131 130 115 119 116

hydr1 133 101 101 120 89 91 91 89

icomp 93 139 130 84 89 93 72 75

impcol d 66 61 56 55 50 51 49 52

lhr34c 850 626 591 601 546 558 528 533

lhr71c 862 626 598 576 540 572 557 540

poli large 56 70 70 66 54 50 61 52

radfr1a 57 63 72 76 58 58 57 58

rdist1 148 133 156 158 123 121 124 119

rdist2 112 93 111 120 92 89 90 88

rdist3a 155 160 161 184 139 138 139 139

Zhao2 1471 1454 1467 1420 1473 1446 1462 1442

been very widely used and has been incorporated into a number of commercial packages; indeed,

it has become a benchmark against which other sparse direct solvers are frequently compared.

The analyse phase of MA48 first permutes the matrix to block triangular form and then, for

each submatrix of the block diagonal, selects a pivot sequence using a Markowitz criterion for

maintaining sparsity and threshold partial pivoting for numerical stability. This pivot sequence

is then passed to the factorization phase. A number of factorizations may follow a single call to

the analyse phase. Full details are given in Duff and Reid (1996).

In Table 8.6 we present times for the factorization phases of MA65 and MA48. MA65 is used with

our unsymmetric RCM algorithm followed by the node centroid algorithm plus hill climbing (see

final column of Table 8.5). The experiments were performed on a single Xeon 3.06 GHz processor

of a Dell Precision Workstation 650 with 4 GBytes of RAM. The NAG Fortran 95 compiler was

used with the compiler optimization flag -O. All reported timings are CPU times, measured using

the Fortran 95 routine cpu time and are given in seconds. For the problems with a factorization

time of less than 1 second, the factorization phase was called repeatedly until the accumulated

time was at least 1 second; the average factorization time is reported. We see that, for all the

problems in the top half of the table, MA48 is significantly faster than MA65. However, for many

of the problems below impcol d, MA65 is the faster code. Looking again at Table 8.2, it appears

that MA48 performs very well on the highly unsymmetric and very sparse blocks while MA65 is

more suited to factorizing blocks that are denser and have a larger symmetry index.

We note that it is essential to the performance of MA65 that row operations associated with a

pivot are skipped if the multiplier is zero. We found that not reversing the unsymmetric Cuthill-

13

Table 8.6: Factorization times for MA48 and MA65.

Identifier MA48 MA65

4cols 0.069 0.220

10cols 0.206 0.610

bayer01 0.447 4.330

bayer03 0.030 0.103

bayer04 0.473 0.985

bayer09 0.004 0.010

circuit 3 0.008 0.298

ethylene-1 0.033 0.089

extr1 0.003 0.010

hydr1 0.011 0.016

impcol d 0.0002 0.0003

lhr34c 1.150 1.120

lhr71c 2.260 2.390

poli large 0.001 0.007

radfr1a 0.004 0.003

rdist1 0.093 0.049

rdist2 0.038 0.023

rdist3a 0.056 0.025

Zhao2 108.8 69.8

McKee ordering has little effect on the total bandwidth but can lead to much less skipping and

hence to a significant increase in the factorization time and operation count for MA65 (for some

of our problems the increase was greater than a factor of 10).

9 Concluding remarks

We have considered algorithms for reducing the lower and upper bandwidths l and u of an

unsymmetric matrix A, focusing on the total bandwidth, which we have defined as l+u+min(l, u),

because this is relevant for the storage and work when sets of banded linear equations are solved

by Gaussian elimination.

The least satisfactory results came from working with the lexicographical method of Baumann

et al. (2003) and with the matrix A + AT . In most cases, they gave inferior results, although

the use of the node centroid algorithm plus hill climbing dramatically improved the results of

applying reverse Cuthill-McKee ordering to A + AT .

We obtained good results by applying the reverse Cuthill-McKee algorithm to the matrices

AAT (whose graph is the row graph) and

[

0 A

AT 0

]

(whose graph is the bipartite graph). We

found similarly good results with an unsymmetric variation of reverse Cuthill-McKee that is

applied directly to A.

The results were improved by preordering A to block triangular form and applying one of these

three algorithms to the blocks on the diagonal. The rest of the matrix is used unaltered. The

bandwidths were further reduced by our unsymmetric node-centroid and hill-climbing algorithms.

We used our final orderings with the HSL variable band solver, MA65, and compared the

factorization times with those for the general purpose sparse direct solver MA48. Our results

14

suggest that for problems that are not highly unsymmetric and not very sparse, using a band

solver can be the faster approach.

10 Acknowledgements

We are grateful to Iain Duff of the Rutherford Appleton Laboratory and Yifan Hu of Wolfram

Research for helpful comments on a draft of this report.

References

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide,

Third Edition. SIAM, Philadelphia, 1999.

M. Baumann, P. Fleishmann, and O. Mutzbauer. Double ordering and fill-in for the LU

factorization. SIAM J. Matrix Analysis and Applications, 25, 630–641, 2003.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. in ‘Proceedings

of the 24th National Conference of the ACM’. Brandon Systems Press, 1969.

T. Davis. University of Florida Sparse Matrix Collection. NA Digest, 97(23), 1997. Full details

from www.cise.ufl.edu/research/sparse/matrices/.

I.S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the

diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications, 20, 889–901, 1999.

I.S. Duff and J.K. Reid. The design of MA48, a code for the direct solution of sparse unsymmetric

linear systems of equations. ACM Transactions on Mathematical Software, 22, 187–226,

1996.

I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM Transactions on

Mathematical Software, 15, 1–14, 1989.

A. George. Computer implementation of the finite-element method. Report STAN CS-71-208,

Ph.D Thesis, Department of Computer Science, Stanford University, 1971.

N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer. An algorithm for reducing the bandwidth and

profile of a sparse matrix. SIAM J. Numerical Analysis, 13, 236–250, 1976.

HSL. A collection of Fortran codes for large-scale scientific computation, 2004. See

http://hsl.rl.ac.uk/.

Y.F. Hu and J.A. Scott. Ordering techniques for singly bordered block diagonal forms for

unsymmetric parallel sparse direct solvers. Numerical Linear Algebra with Applications,

2005. To appear.

A. Lim, B. Rodrigues, and F. Xiao. A centroid-based approach to solve the bandwidth

minimization problem. Proceedings of the 37th Hawaii international conference on system

sciences, IEEE, 2004.

15

B.H. Mayoh. A graph technique for inverting certain matrices. Mathematics of Computation,

19, 644–646, 1965.

J.K. Reid and J.A. Scott. Ordering symmetric sparse matrices for small profile and wavefront.

Inter. Journal on Numerical Methods in Engineering, 45, 1737–1755, 1999.

J.A. Scott. A new row ordering strategy for frontal solvers. Numerical Linear Algebra with

Applications, 6, 1–23, 1999.

J.A. Scott. Row ordering for frontal solvers in chemical process engineering. Computers in

Chemical Engineering, 24, 1865–1880, 2000.

16

	Abstract
	1 Introduction
	2 Undirected graphs for unsymmetric matrices
	2.1 Using A + AT
	2.2 Bipartite graph
	2.3 Row graph
	3 Unsymmetric RCM
	4 Hill-climbing to improve a given ordering
	5 Node centroid ordering
	6 The block triangular form
	7 The e ect of interchanges
	8 Numerical experiments
	8.1 Test problems
	8.2 Test results
	8.3 Comparisons with a general sparse solver
	9 Concluding remarks
	10 Acknowledgements
	References

