
Introduction Dense Sparse positive definite Sparse indefinite

An introduction to the world of sparse direct
solvers

Jennifer Scott, STFC Rutherford Appleton Laboratory

AT&T December 2011

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Numerical Analysis Group at RAL

Based at the Rutherford Appleton Laboratory in rural Oxfordshire
(about 15 miles south of Oxford).

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Numerical Analysis Group at RAL

Small research group: Jennifer Scott (leader), Iain Duff, Nick
Gould, Mario Arioli, Sue Thorne, Jonathan Hogg, John Reid
(Honorary Scientist).

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

HSL

A key activity of the NA Group is the development, maintenance
of the mathematical software library HSL.

HSL began as Harwell Subroutine Library in 1963.

Collection of portable, fully documented and tested Fortran
packages (some Matlab and C interfaces).

Each package performs a basic numerical task (eg solve linear
system, find eigenvalues) and is designed to be incorporated into
programs.

Since 1970s, a key strength of HSL and one for which is
internationally known is sparse matrix computations.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse matrices: brief introduction

Problem: we wish to solve

Ax = b

where A is

LARGE

s p a r s e

What is sparse? A is sparse if

many entries are zero

it is worthwhile to exploit these zeros.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse matrices: applications

Many application areas in science, engineering, and finance eg.

computational fluid dynamics

chemical engineering

circuit simulation

economic modelling

fluid flow

oceanography

linear programming

structural engineering ...

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Circuit simulation

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Reservoir modelling

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Economic modelling

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Structural engineering

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Acoustics

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Chemical engineering

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Linear programming

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Solving sparse linear systems

Two main classes of methods:

Direct methods are usually variants of Gaussian elimination
and involve explicit factorization eg PAQ = LU

L, U lower and upper triangular matrices
P, Q are permutation matrices
Solution process completed by (easy) triangular solves
Ly = Pb and Uz = y then x = Qz

Iterative methods eg conjugate gradients, GMRES,
BiCGSTAB, MINRES ...

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Direct methods

Advantages:

High accuracy.

Robust. Can be used as black box solvers .

Solving for multiple right-hand sides almost as cheap as one
right hand side.

Disdvantages:

Memory required grows more rapidly than problem size.

Difficult to code efficiently. (Massive) parallelism very hard.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Iterative methods

Advantages

Need only a small number of arrays of length n.

Easy to code.

Speed depends on matrix-vector products ... parallelise.

Can choose accuracy.

Disdvantages

Lack of robustness.

Require preconditioner but how to choose? Highly problem
dependent. Difficult in parallel.

May want to solve for many right hand sides.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Today’s talk

Today we are interested in direct solvers.

But note that direct methods are often used to compute
preconditioners for iterative solvers eg ILU.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Phases of a direct solvers

Sparse direct solvers have a number of distinct phases, typically

ORDER: preorder the matrix to exploit structure

ANALYSE: analyse matrix structure to produce data
structures for factorization

FACTORIZE: perform numerical factorization

SOLVE: use factors to solve one or more systems

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Effect of ordering

extr1 Block form

A+A
T Unsymmetric

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Outline of rest of talk

We will focus on the factorization phase (generally most expensive
part of a direct solver).

How to efficiently solve Ax = b on multicore machines

Dense positive-definite systems

Sparse positive-definite systems

Sparse indefinite systems

Concluding remarks

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Solving systems in parallel

We want to solve

Medium and large problems (more than 1010 flops)

On desktop machines (multicore)

Shared memory, complex cache-based architectures

I have an 8-core machine...

...I want to go (nearly) 8 times faster

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Solving systems in parallel

We want to solve

Medium and large problems (more than 1010 flops)

On desktop machines (multicore)

Shared memory, complex cache-based architectures

I have an 8-core machine...

...I want to go (nearly) 8 times faster

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Dense systems

Let’s start with dense systems.

We want to solve
Ax = b

where the n × n matrix A is

symmetric and dense

positive definite (indefinite problems require pivoting)

not small (order at least a few hundred)

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Pen and paper approach

Factorize A = LLT then solve Ax = b as

Ly = b

LTx = y

Algorithm:

For each column k :

Lkk =
√
Akk (Calculate diagonal element)

For rows i > k: Lik = AikL
−1
kk (Divide column by diagonal)

Update trailing submatrix
A(k+1:n)(k+1:n) ← A(k+1:n)(k+1:n) − L(k+1:n)kL

T
(k+1:n)k

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Pen and paper approach

Factorize A = LLT then solve Ax = b as

Ly = b

LTx = y

Algorithm:

For each column k :

Lkk =
√
Akk (Calculate diagonal element)

For rows i > k: Lik = AikL
−1
kk (Divide column by diagonal)

Update trailing submatrix
A(k+1:n)(k+1:n) ← A(k+1:n)(k+1:n) − L(k+1:n)kL

T
(k+1:n)k

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Serial approach

Aim to exploit caches

Work with blocks

Same algorithm, but submatrices not elements

Factor: Ak = LkkL
T
kk

Solve: Lik = AikL
−1
kk

Update: Aij ← Aij − LikL
T
kj

10× faster than a naive implementation

Built using Level 3 Basic Linear Algebra Subroutines (BLAS)
eg gemm for the update operations

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Cholesky by blocks

Factorize diagonal

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Cholesky by blocks

Solve column block

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Cholesky by blocks

Update block

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Simple approach to parallelism

Parallel right-looking algorithm
red is factor; blue is solve; green is update

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Used by (eg) Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov (’06)

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Used by (eg) Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov (’06)

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

DAGs

What do we really need to synchronise?

Represent each block operation (Factor, Solve, Update) as a task.

Tasks have dependencies.

Represent this as a directed graph

Tasks are vertices

Dependencies are directed edges

It is acyclic — hence have a Directed Acyclic Graph (DAG).

Used by (eg) Buttari, Dongarra, Kurzak, Langou, Luszczek, Tomov (’06)

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Task DAG

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Task DAG

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Profile for DAG approach

Using DAG approach, white space (idle time) mostly disappears.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Performance in Gflop/s for dense case

8 core machine, peak performance of gemm is 72.8

threads 1 2 4 8 speedup

n = 500 5.6 8.6 13.4 17.7 3.2
2500 7.6 14.5 26.9 43.5 5.7

10000 8.6 17.1 33.6 61.9 7.2
20000 8.8 17.7 35.1 65.5 7.4

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse case?

So far, so dense. What about sparse factorizations?

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse matrices

Sparse matrix is mostly zero — only track non-zeros.

Factor L is denser than A.

Extra entries are known as fill-in.

Reduce fill-in by preordering A.

Aim: Organise computations to use dense kernels on submatrices.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Nodal matrices

Assuming null rows have been removed, a block column of L is
stored as a dense submatrix

Sparse L is made up of many of these dense block columns

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Tasks in sparse DAG:
factor(diag): performs dense Cholesky factorization of the block
diag on diagonal

Ldiag = LtL
T
t

solve(dest, diag): performs triangular solve of off-diagonal block
dest by Cholesky factor Lt of block diag on its diagonal

Ldest ⇐ LdestL
−T
t

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Tasks in sparse DAG:
factor(diag): performs dense Cholesky factorization of the block
diag on diagonal

Ldiag = LtL
T
t

solve(dest, diag): performs triangular solve of off-diagonal block
dest by Cholesky factor Lt of block diag on its diagonal

Ldest ⇐ LdestL
−T
t

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse DAG

Basic idea: Extend DAG-based approach to the sparse case by
adding new type of task to perform sparse update operations.

Tasks in sparse DAG:
factor(diag): performs dense Cholesky factorization of the block
diag on diagonal

Ldiag = LtL
T
t

solve(dest, diag): performs triangular solve of off-diagonal block
dest by Cholesky factor Lt of block diag on its diagonal

Ldest ⇐ LdestL
−T
t

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Tasks in sparse DAG

update internal: performs update within nodal matrix,

L
r

L
c

L
dest

Ldest ⇐ Ldest − LrL
T
c

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Tasks in sparse DAG

update between: performs update between nodal matrices ie.

Ldest ⇐ Ldest − LrL
T
c

where Ldest belongs to one nodal matrix and Lr and Lc belong to
another.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

update between

Ldest

node

col

r(dest,node,col)

c(dest,node,col)

buffer

1. Form outer product LrL
T
c into buffer.

2. Distribute results into destination block Ldest .

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, release factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, release solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, release factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, release solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, release factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, release solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Dependency count

During analyse, calculate number of tasks to be performed for each
block of L.

During factorization, keep running count of outstanding tasks for
each block.

When count reaches 0 for block on the diagonal, release factorize
task and decrement count for each off-diagonal block in its block
column by one.

When count reaches 0 for off-diagonal block, release solve task and
decrement count for blocks awaiting the solve by one. Update
tasks may then be spawned.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Task pool

Each cache keeps small stack of tasks that are intended for use by
threads sharing this cache.

Tasks added to or drawn from top of local stack. If becomes full,
move bottom half to task pool.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Sparse positive-definite DAG results

New sparse Cholesky solver is HSL MA87.
The ratios of HSL MA87 factorize times on 2, 4 and 8 cores to its
factorize time on a single core.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Comparisons with other solvers on 8 threads

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Indefinite case

Sparse DAG approach very encouraging for our 8 core machine

BUT

So far, only considered positive definite case.

Saddle-point systems are common eg in optimization.(
H AT

A 0

)(
x
y

)
=

(
a
b

)
Such systems are indefinite and Cholesky factorization
A = LLT does not exist.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Indefinite case

Sparse DAG approach very encouraging for our 8 core machine

BUT

So far, only considered positive definite case.

Saddle-point systems are common eg in optimization.(
H AT

A 0

)(
x
y

)
=

(
a
b

)
Such systems are indefinite and Cholesky factorization
A = LLT does not exist.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Indefinite case

In positive definite case, factor task was

Ak = LkkL
T
kk .

In indefinite case, becomes

Ak = PkLkkDkL
T
kkP

T
k ,

where Pk is a permutation and Dk is (block) diagonal.

This involves pivoting (permuting large entries to the diagonal or
sub-diagonal positions).

1× 1 and 2× 2 pivots are used.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Implications

Searching for pivots involves all entries in block column.

The factor and solve tasks on the block column must be
combined.

Thus less scope for parallelism (parallelism less fine-grained).

A block column can only be factorized once its dependency
count reaches zero.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Further implications

Data structures from analyse have to be modified to
accommodate delayed pivots (those that fail stability test).

This results in more data movement/copying ... adds
overhead.

Code is even more complicated!

Our indefinite sparse solver is HSL MA86.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

HSL MA86 results for positive-definite problems

Factorize times for running positive-definite problems without and
with pivoting.

No pivoting Pivoting
Problem 1 8 1 8

Boeing/bcsstk38 0.069 0.168 0.087 0.144
Simon/olafu 0.202 0.174 0.244 0.152
ND/nd6k 18.3 3.02 20.6 3.94
ND/nd12k 80.0 12.3 88.5 15.2

Note: smaller block used for indefinite case and this benefits
smaller problems.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

HSL MA86 results: good news

Factorize times for indefinite problems on 1 and 8 cores.

Problem 1 8 speedup

Boeing/crystk03 1.29 0.36 3.58
Koutsovasilis/F2 2.57 0.57 4.51
Cunningham/qa8fk 4.23 0.88 4.79
Oberwolfach/t3dh 12.1 2.17 5.58
Schenk AFE/af shell10 72.8 11.7 6.22
Oberwolfach/bone010 590 88.3 6.68
PARSEC/Ga41As41H72 7290 1141 6.39

Conclude: very good results for some large problems

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

HSL MA86 results: tough problems

Many delayed pivots cause performance hit.

Problem num delay 1 8 speedup

GHS indef/sparsine 16 250 44.4 5.65
Schenk IBMA/c-62 28728 9.07 4.93 1.84
GHS indef/aug3d 144955 36.5 25.9 1.41

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Concluding remarks

Extended DAG approach from dense positive-definite systems
to sparse systems

Very good results for factorizing positive-definite matrices on
our 8-core machine

Also good results for large indefinite problems provided there
are few delayed pivots

For some tough indefinite problems, further work needed to
improve performance while maintaining stability.

Our DAG-based solvers are available as part of HSL 2011.

Jennifer Scott Sparse direct solvers



Introduction Dense Sparse positive definite Sparse indefinite

Thank you!

Reports available:
http://www.cse.scitech.ac.uk/nag/reports.shtml

Jennifer Scott Sparse direct solvers


	Introduction
	Dense
	Sparse positive definite
	Sparse indefinite

