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New parallel sparse direct solvers for engineering applications

Jonathan Hogg and Jennifer Scott1

ABSTRACT

At the heart of many computations in engineering lies the need to efficiently and accurately solve large

sparse linear systems of equations. Direct methods are frequently the method of choice because of their

robustness, accuracy and their potential for use as black-box solvers. In the last few years, there have been

many new developments and a number of new modern parallel general-purpose sparse solvers have been

written for inclusion within the HSL mathematical software library (http://www.hsl.rl.ac.uk/). In

this paper, we introduce and briefly review these solvers for symmetrically structured sparse systems. We

describe the algorithms used, highlight key features (including bit-compatibility and out-of-core working),

and then, using problems arising from a range of engineering applications, we illustrate and compare their

performances. We demonstrate that modern direct solvers are able to accurately solve systems of order

106 in less than 10 minutes on an 8-core machine.
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1 Background and motivation

The efficient solution of linear systems of equations is the cornerstone of a wide range of problems in

computational science and engineering. In many cases, particularly when discretizing continuous problems,

the system is large and the associated matrix A is sparse. Furthermore, for many applications, the matrix

is symmetrically structured; sometimes, such as in some finite-element applications, A is positive definite,

while in other cases, it is indefinite.

Consider the sparse linear system

Ax = b,

where the n × n matrix A and the right-hand side b are given and it is required to find the solution x.

This is normally done using either a direct method or an iterative method, with the use of the latter being

generally dependent upon the existence of a suitable preconditioner for the particular problem being solved.

Most sparse direct methods are variants of Gaussian elimination and involve the explicit factorization of A

(or, more usually, a permutation of A) into the product of lower and upper triangular matrices L and U .

In the symmetric case, for positive-definite problems U = LT (Cholesky factorization) or, more generally,

U = DLT , where D is a (block) diagonal matrix. Forward elimination

Ly = b

followed by backward substitution

Ux = y

completes the solution process for each given right-hand side b. Such methods are important because

of their generality and robustness. Indeed, black-box direct solvers are frequently the method of choice

because finding and implementing a good preconditioner for an iterative method can be expensive in

terms of developer time, with no guarantee that it will significantly outperform a direct method. For

the ‘tough’ linear systems arising from some applications, direct methods are currently the only feasible

solution methods as no reliable preconditioner is available. However, for some problems, especially large

three-dimensional applications, iterative methods have to be employed because of the memory demands

of direct methods, which generally grow rapildy with problem size.

The first general-purpose sparse direct solvers were developed in the late 1960s and early 1970s. Since

then, as computer architectures have changed and evolved, there has been constant interest in the design

and development of new and efficient direct algorithms and accompanying software packages. The HSL

mathematical software library [22] (formerly the Harwell Subroutine Library) has a particularly rich history

of providing sparse direct solvers and, in recent years, a number of new shared memory parallel solvers

have been added to the Library, the majority designed for sparse symmetric systems. As well as being

more efficient than existing HSL codes for solving large problems, they address a number of additional

issues. One is an out-of-core solver designed to deal with very large problems where the factors are unable

to fit in memory. Another implements a new task-based parallel paradigm that allows high performance

on modern multicore machines. Finally, the latest solver focuses on achieving bit-compatible results when

run on any number of threads (bit-compatibility is the ability to get bit-identical results on different runs

of the code and essentially requires that all operations are executed in the same relative order). The aim of

this paper is to describe the key features of our new symmetric solvers and to illustrate and compare their

performances on problems from engineering applications on commodity desktop hardware. It is assumed

throughout that the matrix A is symmetric.

For ease of reference, we end this section by summarising the new solvers from the HSL library that

are used in this study. Each of these solvers can be run in parallel using OpenMP.
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HSL MA77 [29]: Solves very large sparse symmetric positive-definite and indefinite systems using a

multifrontal algorithm; its key features are out-of-core working and an option to input the matrix A

as a sum of (unassembled) finite elements.

HSL MA86 [20]: Solves sparse symmetric indefinite systems using a task-based algorithm; designed for

multicore architectures.

HSL MA87 [17]: Solves sparse symmetric positive-definite systems using a task-based algorithm; designed

for multicore architectures.

HSL MA97 [21]: Solves sparse symmetric positive-definite and indefinite systems using a multifrontal

algorithm, optionally using OpenMP for parallel computation; a key feature is bit-compatibility.

Key features of the new HSL sparse direct solvers.

Package Year Real/ Positive Indefinite Out-of Bit- Notes on parallelism

Complex definite -core compatible

HSL MA77 2006 Real X X X X Node-level parallelism only.

HSL MA86 2011 Both X Fast task-based parallelism.

HSL MA87 2009 Both X Fast task-based parallelism.

HSL MA97 2011 Both X X X Constrained tree and

node-level parallelism.

2 Sparse direct algorithms

Sparse direct methods solve systems of linear equations by factorizing the matrix A, generally employing

graph models to limit both the storage needed and work performed. Sparse direct solvers have a number

of distinct phases. Although the exact subdivision depends on the algorithm and software being used, a

common subdivision is given by:

1. An ordering phase that exploits the sparsity (non-zero) structure of A to determine a pivot sequence

(that is, the order in which the Gaussian eliminations will be performed). The choice of pivot sequence

significantly influences both memory requirements and the number of floating-point operations

required to carry out the factorization.

2. An analyse phase that uses the pivot sequence to establish the work flow and data structures for the

factorization. This phase generally works only with the sparsity pattern of A (this is the case for all

the solvers in this study).

3. A factorization phase that performs the numerical factorization. Following the analyse phase, more

than one matrix with the same sparsity pattern may be factorized.

4. A solve phase that performs forward elimination followed by back substitution using the stored

factors. The solvers in this study all allow the solve phase to solve for a single right-hand side or for

multiple right-hand sides on one call. Repeated calls to the solve phase may follow the factorization

phase. This is typically used to implement iterative refinement (see, e.g. [14]) to improve the accuracy

of the computed solution.

2.1 Selecting an ordering

During the past 30 years, considerable research has gone into the development of algorithms that generate

good pivot sequences. An important class of ordering methods is based upon the minimum degree

algorithm, first proposed in 1967 by Tinney and Walker [34]. Minimum degree and variants including
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approximate minimum degree (AMD) [1, 2] and multiple minimum degree [25], perform well on many small

and medium-sized problems (typically, those of order less than 50,000). However, nested dissection (a term

introduced by George and Liu [13]) has been found to work better for very large problems, particularly

those from three-dimensional discretizations (see, for example, the results in [15]). Many direct solvers now

offer a choice of orderings, including either their own implementation of nested dissection or an explicit

interface to the generalised multilevel nested-dissection routine METIS NodeND from the METIS graph

partitioning package [23, 24].

Heuristics have been suggested to automatically choose whether AMD or nested dissection is more

appropriate for a problem based on the size and sparsity of A [10]. This has been implemented by one of

the solvers (HSL MA97) in this study, while the others rely on the user to perform the ordering for them

(separate packages within HSL may be used to do this).

2.2 The analyse phase

The aim of the analyse phase of our sparse symmetric direct solvers is to determine the pattern of the

sparse Cholesky factor L such that

PAPT = LLT ,

where the permutation matrix P holds the elimination (pivot) order. The performance of most algorithms

used in the analyse phase can be enhanced by identifying sets of columns with the same (or similar) sparsity

patterns. The set of variables that correspond to such a set of columns in A is called a supervariable. In

problems arising from finite-element applications, supervariables occur frequently as a result of each node

of the finite-element mesh having multiple degrees of freedom associated with it.

After (optionally) determining supervariables, the analyse phase proceeds by building an elimination

tree. This is a graph that describes the structure of the Cholesky factor in terms of data dependence

between pivotal columns. This permits permutations of the elimination order that do not affect the number

of entries in L to be identified and allows fast algorithms to be used in determining the exact structure of

L. An extensive theoretical survey and treatment of elimination trees and associated structures in sparse

matrix factorizations is given in [26].

A supernode is a set of contiguous columns of L with the same sparsity structure below a dense (or

nearly dense) triangular submatrix. This trapezoidal matrix has zero rows corresponding to variables that

are eliminated later in the pivot sequence at supernodes that are not ancestors in the elimination tree.

This matrix can be compressed by holding only the nonzero rows, each with an index held in an integer.

The resulting dense trapezoidal matrix is referred to as the nodal matrix. The condensed version of the

elimination tree consisting of supernodes is referred to as the assembly tree. Supernodes are important as

they can be exploited in the factorization phase to facilitate the use of efficient dense linear algebra kernels

and, in particular, Level-3 Basic Linear Algebra Subroutines (BLAS kernels) [8]. These can offer such

a large performance increase that it is often advantageous to amalgamate supernodes that have similar

(but not exactly the same) nonzero patterns, despite this increasing the fill in L and the operation count.

Within the HSL solvers, node amalgamation is controlled by a user-defined parameter (which has a default

setting that has been chosen on the basis of extensive experimentation).

Determining supervariables, constructing an assembly tree, amalgamating supernodes and finding row

lists (that is, lists of the variables that belong to each supernode), are common tasks that are performed by

most modern sparse direct solvers. For efficiency in terms of both development and software maintenance

all the new HSL solvers, with the exception of HSL MA77, use the same code to perform these tasks. This

common code is not suitable for use in HSL MA77 since it requires that the matrix A is held in main memory:

HSL MA77 is designed for very large systems and allows A to be held in files on disk (see Section 4.2). Thus

separate analyse routines were developed for HSL MA77 that read the required entries of A as they are

required into main memory.
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2.3 An introduction to the factorize phase

The factorization can be performed in many different ways, depending on the order in which matrix

entries are accessed and/or updated. Possible variants include left-looking, right-looking, and multifrontal

algorithms. The (supernodal) right-looking variant computes a (block) row and column of L at each step

and uses them to immediately update all rows and columns in the part of the matrix that has not yet been

factored. In the (supernodal) left-looking variant, the updates are not applied immediately; instead, before

a (block) column k is eliminated, all updates from previous columns of L are applied together to the (block)

column k of A. In the multifrontal method [9, 27] the updates are accumulated; they are propagated from

a descendant column j to an ancestor column k via all intermediate nodes on the elimination tree path

from j to k. Two of the packages in this study (HSL MA77 and HSL MA97) implement multifrontal methods,

while HSL MA86 for indefinite systems and HSL MA87 for positive-definite systems use a supernodal left-right

looking approach. In Sections 3 and 4 we discuss the two approaches in more detail.

For symmetric matrices that are positive definite, the factorization phase can use the chosen pivot

order without modification. Moreover, the data structures determined by the analyse phase can be static

throughout the factorization phase. For symmetric indefinite problems, using the pivot order from the

analyse phase may be unstable or impossible because of (near) zero diagonal entries. Thus, in general, it

is necessary to modify the pivot sequence to maintain numerical stability and the resulting factorization

takes the form

PAPT = LDLT ,

where D is a block diagonal matrix with 1 × 1 and 2 × 2 blocks. During the factorization, pivots are

selected one-by-one, with the aim of limiting the size of the entries in L:

|li,j | < u−1, (2.1)

where the threshold u is a user-set value in the range 0 ≤ u ≤ 1.0. Suppose that q denotes the number

of rows and columns of D found so far. Let ai,j , with i > q and j > q, denote an entry of the matrix

after it has been updated by all the permutations and pivot operations so far. For a 1× 1 pivot in column

j = q + 1, the requirement for inequality (2.1) corresponds to the stability threshold test

|aq+1,q+1| > u max
i>q+1

|ai,q+1|. (2.2)

However, it is not always possible to select a valid 1× 1 pivot. It is sufficient to use 2 × 2 pivots in these

cases (see, for example, Section 4.4 of [14]). Following Duff et al. [12], the corresponding stability test for

a 2× 2 pivot is
∣

∣

∣

∣

∣

(

aq+1,q+1 aq+1,q+2

aq+1,q+2 aq+2,q+2

)−1
∣

∣

∣

∣

∣

(

maxi>q+2 |ai,q+1|

maxi>q+2 |ai,q+2|

)

<

(

u−1

u−1

)

, (2.3)

where the absolute value notation for a matrix refers to the matrix of corresponding absolute values. Tests

(2.2) and (2.3) with the default value 0.01 for u are used by each the sparse indefinite HSL solvers included

in this study.

Should no suitable 1×1 or 2×2 pivot be available within a supernode, all remaining pivot candidates are

passed up the assembly tree to the parent. These are known as delayed pivots. Delaying a pivot candidate

results in additional fill-in and more work, and so is undesirable. In the extreme case where all pivots are

delayed to a root of the assembly tree, the factorization becomes equivalent to a dense factorization of an

n× n matrix.

2.4 The importance of scaling

Scaling the problem is a key part of solving large sparse linear systems. In addition to reducing the

residual, in the indefinite case a good scaling can help from a purely computational standpoint by reducing

the number of delayed pivots and hence the size of the computed factors and overall solution time. In this
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case, the factorization of the scaled matrix A = SAS is computed, where S is a diagonal scaling matrix.

How to find a good S is an open question. A number of options for scaling are included within HSL and

these are discussed in [18]. The indefinite HSL solvers in this study allow the user to specify scaling factors

on the call to the factorization. In addition, HSL MA86 and HSL MA97 will compute scaling factors using

either a weighted bipartite matching or an iterative method based on matrix equilibration. For very large

matrices that will not fit into main memory, HSL MA77 offers the option of scaling the matrix using an

out-of-core iterative algorithm that aims to compute S so that the infinity norm or one-norm of each row

and column of A is approximately equal to 1. Since each iteration involves reading the stored matrix data

from disk, this is expensive and is only recommended if the user is unable to temporarily hold the matrix

in main memory and call one of the HSL scaling packages.

3 Supernodal task-based approach

3.1 Positive-definite case (HSL MA87)

We consider first the case when A is positive definite and briefly discuss the approach used by our

supernodal sparse Cholesky solver HSL MA87. This code is designed for use on multicore processors and is

described in detail in [17]. Motivated by the work of Buttari et al. [5, 6] on efficiently solving dense linear

systems of equations on multicore processors, the factorization is divided into tasks, each of which alters a

single block of the factor L. The block size nb is a user-controlled parameter. The columns of each nodal

matrix are split into blocks of nb columns (the last block column may have fewer than nb columns) and

then each block column is split into blocks, each with nb rows (again, the last block may have fewer than

nb rows). The tasks to be performed on each block are partially ordered and the dependencies between

them implicitly represented by a directed acyclic graph (DAG), with a vertex for each task and an edge

for each dependency. A task is ready for execution if and only if all tasks with incoming edges to it are

completed. While the order of the tasks must obey the DAG, there remains much freedom for exploitation

of parallelism. At the start of the computation there is one task ready for each leaf of the assembly tree;

the final task will be associated with the factorization of a root of the assembly tree.

The DAG-based approach was adopted for HSL MA87 since it offers significant improvements over

utilising more traditional fork-join parallelism by block columns. It avoids requiring all threads to finish

their tasks for a block column before any thread can move on to the next block column. It also allows easy

dynamic worksharing when another user or an asymmetric system load causes some threads to become

slower than others. Such asymmetric loading can be common on multicore systems, caused either by

operating system scheduling of other processes or by unbalanced triggering of hardware interrupts.

The tasks within a sparse supernodal Cholesky factorization algorithm are as follows:

factorize block(Ldiag) This computes the traditional dense Cholesky factor Ldiag of the triangular part

of a block that is on the diagonal. If the block is trapezoidal, this is followed by a triangular solve

of its rectangular part

Lrect ⇐ LrectL
−T
diag.

solve block(Ldest) This performs a triangular solve of an off-diagonal block by the Cholesky factor Ldiag

of the block on its diagonal, i.e.

Ldest ⇐ LdestL
−T
diag.

update internal(Ldest, scol) This performs the update of the block Ldest by the block column scol

belonging to the same nodal matrix, i.e.

Ldest ⇐ Ldest − LrL
T
c ,

where Lr is a block within scol and Lc is a submatrix in the same block column.
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update between(Ldest, snode, scol) This performs the update of the block Ldest by the block column

scol of a descendant supernode snode, i.e.

Ldest ⇐ Ldest − LrL
T
c ,

where Lr and Lc are submatrices of contiguous rows of scol that correspond to the rows and columns

of Ldest, respectively.

The dense Cholesky factorization within the factorize block task may be performed using subroutine

potrf from the LAPACK library [4] (a software library for numerical linear algebra that is built using

the BLAS routines to effectively exploit the caches on modern cache-based architectures). The other tasks

may be performed using BLAS-3 subroutines.

There are some restrictions on the order in which the tasks are performed; for example, the updating

of a block of a nodal matrix from a block column of L that is associated with one of the supernode’s

descendants has to wait for all the rows of the block column that it needs to become available. At a

moment during the factorize phase, some tasks will be executing while others will be ready for execution.

Within HSL MA87, each task that is ready is held either in a local stack (one for each cache) or, if the stack

is full, a global task pool.

Although the task dependencies can be represented by a DAG, in HSL MA87 the whole DAG is not

computed and stored explicitly. Instead, an implicit representation is used to determine if tasks are ready

and explicit lists of such tasks are maintained. As the order of the execution of tasks is not pre-defined but

can vary with the (essentially random) load on the machine, the order in which operations are performed

can differ (but be equally valid) on different runs of the code on the same problem. Since floating-point

addition is not associative, this leads to slightly different computed factors on each run and thus to solutions

that are not bit-compatible.

3.2 Indefinite case (HSL MA86)

As already observed in Section 2.3, the main difference between the positive-definite and the indefinite

cases is that, in the latter, it is necessary to include pivoting to ensure numerical stability. Consider the

block column shown in Figure 3.1. In the indefinite case, large entries in the off-diagonal block rect may

Figure 3.1: Trapezoidal block column, consisting of a square diagonal block diag and a rectangular off-

diagonal block rect.

diag

rect

cause stability problems unless they are taken into account when factorizing the diagonal block diag. To

be able to test for large entries, all the entries in rect must be fully updated before diag is factorized.

To ensure this is the case, the indefinite solver HSL MA86 combines the factorize block task and all the

solve block tasks for a block column into a single factorize column task. Thus the parallelism is less

fine-grained and, for a matrix with the same sparisty pattern and the same block size nb, there are fewer

tasks than in the positive-definite case
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If a pivot candidate is delayed because it is unstable (that is, it fails the tests (2.2) and (2.3)), some

columns may be moved to different block columns and/or different nodes. For some degenerate problems

where many pivots are delayed, this can cause load balance issues resulting in a slow down of the solver.

Additional details of HSL MA86 and the differences between the positive-definite and indefinite DAG-

based algorithms is given in [20].

4 Multifrontal approach

4.1 Supernodal multifrontal (HSL MA97)

In a multifrontal method, the factorization of A proceeds using a succession of assembly operations

into small dense matrices (the so-called frontal matrices), interleaved with partial factorizations of these

matrices. For each pivot in turn, the multifrontal method first assembles all the rows that contain the

pivot. This involves setting up a frontal matrix and adding the rows into it. A row of A that has been

added to the frontal matrix is said to be assembled; rows that have not yet been assembled are referred

to as unassembled. A partial factorization of the frontal matrix is performed (that is, the pivot and any

other variables that are only involved in the assembled rows are eliminated). The computed columns of

the matrix factor L are not needed again until the solve phase and so can be stored while the rest of the

frontal matrix (the generated element or contribution block), together with a list of the variables involved,

is stored separately using a stack. At the next and subsequent stages, not only must unassembled rows of

A that contain the pivot be assembled into the frontal matrix but so too must any generated elements that

contain the pivot. The method generalises to a supernodal approach by working with blocks of pivots.

At each stage, the m×m frontal matrix can be expressed in the form

F =

(

F11 FT
21

F21 F22

)

, (4.1)

where F11 and F21 are fully summed, that is, all the entries in the corresponding rows and columns of A

have been assembled, while F22 is not yet fully summed. If F11 has order p and q pivots can be chosen

stably from F11 (if A is positive definite, p pivots can be chosen in order down the diagonal but, in the

indefinite case, it may only be possible to select q < p pivots stably), the partial factorization of F takes

the form

F = Q

(

L1 0

L2 I

)(

D1 0

0 FS

)(

LT
1 LT

2

0 I

)

QT , (4.2)

where Q is a permutation matrix of the form

Q =

(

Q1 0

0 I

)

,

with Q1 of order p. If A is positive definite, L1 is lower triangular and D1 = I, the identity matrix; if A

is indefinite, L1 is a unit lower triangular matrix of order q and D1 is a block diagonal matrix of order q.

Q1, L1, and D1 are stored until the solve phase, while the Schur complement FS is the generated element

and is stacked.

For our new multifrontal solver HSL MA97 we have developed dense linear algebra kernels to perform the

partial factorization of the frontal matrices. To simplify the implementation of these, full storage of the

(symmetric) frontal matrix is used, enabling blocking to be implemented within a recursive factorization

scheme. Given an m × p fully summed block

(

F11

F21

)

to factorize, if p is small (p ≤ 16), a factorization

kernel is called. Otherwise, the block is divided in half, as shown in Figure 4.1. The factorization routine is

called on the left half, and the right half is updated using the computed factors. The factorization routine

is then called on the remaining fully summed columns. In the indefinite case, columns corresponding to
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Figure 4.1: The recursive dense factorization

delayed pivots are swapped to the end (of the right half) and are included in the factorization routine call

with the remaining pivot candidates. As these calls to the factorization routine are recursive, multiple

levels of division in both the left and right halves occur in practice.

Once the factorization of the fully summed block is complete, update operations are performed on the

(2,2) block of the frontal matrix (F22) to compute the generated element.

Parallelism can be exploited in two ways in the multifrontal method:

Tree-level parallelism that performs assembly and factorization work associated with different frontal

matrices on different threads.

Node-level parallelism that uses traditional dense linear algebra techniques to speed up the factorization

of individual frontal matrices.

HSL MA97 implements both types of parallelism. To achieve bit-compatible solutions, care must be

taken to ensure arithmetic operations happen in the same order on each parallel run. Important

advantages of bit-compatibility are that it makes the debugging of dependant codes simpler and can satisfy

regulatory requirements concerning repeatability of simulations that are used to justify decisions. However,

enforcing bit-compatibility limits dynamic parallelism and therefore reduces the speedup achievable

through parallelism. Further details are given in [21].

4.2 Out-of-core working (HSL MA77)

As the problem size grows, the computed factors and working space required by direct solvers generally

increases significantly. This can lead to there being insufficient physical memory to store the data,

particularly when the linear systems arise from discretizations of three-dimensional problems. In such

cases, it may be possible to use a direct solver that is able to hold its data structures on disk, that is, an

out-of-core solver. HSL MA77 is designed as an out-of-core multifrontal solver.

The multifrontal method needs data structures for the original matrix A, the frontal matrix F , the

stack of generated elements, and the matrix factor L. As already observed, computed columns of L are

not needed again until the solve phase so an out-of-core method writes the columns of L to disk as they

are computed. If A, the stack and F are held in main memory and only the factor written to disk, the

minimum possible input/output for an out-of-core method is performed: it writes the factor data to disk

once and reads it once for the forward substitution and once for the back substitution. However, for very

large problems, it may be necessary to hold further data on disk. HSL MA77 is designed to also allow the

stack and the original matrix data to be stored on disk, leaving only the frontal matrix F to be held in

main memory.
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Figure 5.1: Description of the machine mitchell.

System(23GB)

Node#0(12GB)

Socket#0

Node#1(11GB)

Socket#1

L3(12MB)

L3(12MB)

L2(256KB) L2(256KB) L2(256KB) L2(256KB)

L2(256KB) L2(256KB) L2(256KB) L2(256KB)

L1(32KB) L1(32KB) L1(32KB) L1(32KB)

L1(32KB) L1(32KB) L1(32KB) L1(32KB)

Core#0 Core#1 Core#9 Core#10

Core#0 Core#1 Core#9 Core#10

P#0 P#8 P#1 P#9 P#2 P#10 P#3 P#11

P#4 P#12 P#5 P#13 P#6 P#14 P#7 P#15

mitchell

Processor 2 × Intel Xeon E5620

Physical Cores 8

Memory 24GB

Compiler Intel Fortran 12.0.0

ifort -g -fast -openmp

BLAS MKL 10.3.0

Separate dense kernels were designed for use within HSL MA77 [29, 30]. These employ block algorithms

and, as in our other sparse solvers, the computation is performed using BLAS routines. A key feature

that is important when attempting to minimise memory requirements but does lead to complications in

the coding and some copying overheads, is that storage for only the lower triangular part of F is required.

Writing the data to disk is done efficiently within HSL MA77 through the use of a purpose-written system

for virtual memory management. By exploiting information known by the programmer about when data

will next be required, it is possible to significantly outperform the operating system’s virtual memory

manager. The virtual memory management system used by HSL MA77 is described by Reid and Scott [28]

(see [29] for further details).

HSL MA77 was designed primarily as a serial code. However, an option is offered to exploit node-

level parallelism. The requirement to use multiple stacks when exploiting tree-level parallelism, and the

lack of appropriate locking within the virtual memory routines, means that the exploitation of tree-level

parallelism within HSL MA77 would be difficult.

We note that HSL MA77 allows the matrix A to be input both by square symmetric elements and by

rows. Furthermore, the elements or rows may be entered one at a time, on separate calls to an input

routine. This form of input reduces main memory requirements by avoiding the need to assemble A

and is particularly convenient for many large-scale engineering applications that employ a finite-element

approach. All the other solvers in this study require A to be input by rows in a single call.

5 Numerical experiments

A range of test problems have been chosen that are of interest to engineers. Most of the problems are

taken from the University of Florida Sparse Matrix Collection [7]; some additional large problems came

from Anshul Gupta of IBM. All the problems were supplied in assembled form and so we do not report

on the element entry option offered by HSL MA77. The problems are divided into those that are positive

definite (Test Set 1) and those that are indefinite (Test Set 2). We report the order n and number of

entries nz(A) in A. We also give the expected number of entries nz(L) and the expected number of

floating-point operations nflops to compute L when HSL MA97 is used with its default settings (that is,

the number of entries in L and number of floating-point operations if the supplied pivot sequence is used

without modification).

All tests are run in double precision on the test machine mitchell, summarised in Figure 5.1. All runs
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Test Set 1: Positive-definite problems.
(*) indicates the problem was supplied by Anshul Gupta.

Index Name n nz(A) nz(L) nflops Description

(103) (106) (106) (109)

1. GHS psdef/vanbody 47.0 2.32 6.35 1.40 Structural

2. GHS psdef/oilpan 73.8 2.15 7.00 2.90 Structural

3. GHS psdef/s3dkq4m2 90.4 4.43 18.9 7.33 Structural

4. Wissgott/parabolic fem 525.8 3.67 31.0 7.46 CFD

5. Schmid/thermal2 1228 8.58 63.0 15.1 Steady state thermal

6. Boeing/pwtk 217.9 11.5 50.8 22.9 Structural: wind tunnel

7. GHS psdef/crankseg 1 52.8 10.6 34.0 32.5 Structural

8. Rothberg/cfd2 123.4 3.09 40.0 33.0 CFD

9. DNVS/shipsec1 140.9 3.57 40.5 38.3 Structural: ship section

10. DNVS/shipsec5 179.9 4.60 55.3 57.7 Structural: ship section

11. AMD/G3 circuit 1585 7.66 118.8 58.7 Circuit simulation

12. GHS psdef/bmwcra 1 148.8 10.6 71.8 61.5 Structural

13. Schenk AFE/af 5 k101 503.6 17.6 103.6 61.6 Structural: sheet metal forming

14. Um/2cubes sphere 101.4 1.65 46.5 75.2 Electromagnetics: 2 cubes in a sphere

15. GHS psdef/ldoor 952.2 42.5 154.7 79.9 Structural

16. DNVS/ship 003 121.7 3.78 62.0 81.9 Structural: ship structure

17. Um/offshore 259.8 4.24 88.4 106.3 Electromagnetics: transient field diffusion

18. GHS psdef/inline 1 503.7 36.8 179.6 146.1 Structural

19. GHS psdef/apache2 715.2 4.82 148.6 176.0 Structural

20. ND/nd24k 72.0 28.7 321.7 2057 2D/3D

21. Gupta/nastran-b (*) 1508 56.6 1071 3174 Structural

22. Janna/Flan 1565 1565 114.2 1501 3868 Structural: steel flange

23. Oberwolfach/bone010 983.7 47.9 1092 3882 Model reduction: trabecular bone

24. Janna/StocF-1465 1465 21.0 1149 4391 CFD: flow with stochastic permeabilies

25. GHS psdef/audikw 1 943.7 77.7 1259 5811 Structural

26. Janna/Fault 639 638.8 27.2 1156 8289 Structural: faulted gas reservoir

27. Gupta/sgi 1M (*) 1522 63.6 2049 9017 Structural

28. Janna/Geo 1438 1438 60.2 2492 18067 Structural: Geomechanical deformation model

29. Gupta/ten-b (*) 1371 54.7 3298 33095 3-d metal forming

30. Gupta/algor-big (*) 1074 42.7 3001 39920 Stress analysis
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Test Set 2: Indefinite problems.
Index Name n nz(A) nz(L) nflops Description

(103) (106) (106) (109)

31. GHS indef/dixmaanl 60.0 0.30 0.61 0.007 Optimization

32. Marini/eurqsa 7.3 0.007 0.29 0.03 Time series

33. IPSO/HTC 336 4438 226.3 0.78 2.98 0.12 Power network

34. TSOPF/TSOPF FS b39 c19 76.2 1.98 4.40 0.29 Transient optimal power flow

35. GHS indef/stokes128 49.7 0.56 2.98 0.37 CFD

36. GHS indef/mario002 389.9 2.10 8.09 0.55 2D/3D

37. Boeing/bcsstk39 46.8 2.06 7.92 2.20 Structural: solid state rocket booster

38. GHS indef/cont-300 180.9 0.99 11.7 2.96 Optimization

39. GHS indef/turon m 189.9 1.69 13.7 4.23 2D/3D: mine model

40. GHS indef/bratu3d 27.8 0.17 6.28 4.42 Optimization

41. GHS indef/d pretok 182.7 1.64 14.6 5.06 2D/3D: mine model

42. GHS indef/copter2 55.5 0.76 10.4 5.49 CFD: rotor blade

43. Cunningham/qa8fk 66.1 1.66 24.3 21.3 Acoustics

44. GHS indef/bmw3 2 227.4 11.3 49.1 29.8 Structural

45. Oberwolfach/t3dh 79.2 4.35 48.1 69.1 Model reduction: micropyros thruster

46. Dziekonski/gsm 106857 589.5 21.8 137.1 82.6 Electromagnetics

47. Schenk IBMNA/c-big 345.2 2.34 52.0 115 Optimization

48. Schenk AFE/af shell10 1508 52.3 368 393 Structural: sheet metal forming

49. Zaoui/kkt power 2063 12.8 217 562 Optimal power flow

50. Dziekonski/dielFilterV2real 1157 48.5 607 1296 Electromagnetics: dielectric resonator

51. PARSEC/Si34H36 97.6 5.16 486 4267 Quantum chemistry

52. PARSEC/SiO2 155.3 11.3 1037 13249 Quantum chemistry

53. PARSEC/Si41Ge41H72 185.6 15.0 1411 20147 Quantum chemistry

54. Schenk/nlpkkt80 1062 28.2 2282 29265 Optimization

55. Schenk/nlpkkt120 3542 95.1 13684 143600 Optimization

are performed on 8 cores. The solvers use their default settings, except that a MeTiS nested dissection

ordering is always used, a scaling is supplied and, in the case of HSL MA77, support for 64-bit addressing is

enabled and the file size for the virtual memory system is increased to 512 Mb per file. Solvers are limited

to using at most 24 Gb of virtual memory to avoid paging.

The supplied scaling is calculating using the HSL package MC77 run for one iteration in the infinity-norm

followed by up to three iterations in the one-norm, as recommended by Ruiz and Uçar in [31].

In each test, the right-hand side is constructed to correspond to the solution x = 1. The runs incorporate

up to 5 iterations of iterative refinement with the following termination condition on the scaled backwards

error:
‖Ax− b‖∞

‖A‖∞‖x‖∞ + ‖b‖∞
≤ 10−14.

For most problems, each of the solvers took the same number of iterations to reach the required accuracy.

The solvers all failed to achieve the required accuracy for problem 44 (GHS indef/bmw3 2), which is

singular. In addition, HSL MA77 was the only code to successfully factorize problem 49 (Zaoui/kkt power)

but, again, this problem is singular and the required accuracy was not obtained.

For comparison purposes, we also include results for an older but very widely used and well-known

HSL code MA57 [11]. This is a multifrontal solver that is primarily designed for the solution of symmetric

indefinite systems. It was not written as a parallel code but parallel performance can be achieved by using

multithreaded BLAS. To make the comparisons as fair as possible, we do not use the default scaling offered

by MA57 but, since MA57 does not allow scaling factors to be input, we prescale A using the same scaling

strategy as used by the other solvers.

Tables 5.1 and 5.2 show the execution times for the complete solution of Ax = b, including the time

for ordering, analysis, scaling, factorization and iterative refinement. We see that all the problems that fit

within the 24 Gb of available physical memory complete in under 10 minutes using the fastest solver.

It is clear that the task-based code HSL MA87 is the fastest solver for the positive-definite problems,

although the new multifrontal solver HSL MA97 is competitive for the smallest problems in Test Set 1.
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Table 5.1: Execution time in seconds for the

complete solution of Ax = b for positive-definite

problems (Test Set 1). Times within 5% of

the fastest are in bold. - indicates insufficient

memory to perform factorization.

Problem MA57 HSL MA77 HSL MA87 HSL MA97

1. 0.75 0.85 0.41 0.42

2. 0.99 1.10 0.42 0.42

3. 1.83 1.87 0.64 0.66

4. 6.11 8.17 4.58 4.62

5. 14.9 20.0 12.0 12.1

6. 5.00 5.20 1.79 1.88

7. 4.55 3.99 1.73 1.99

8. 5.87 6.22 2.86 3.03

9. 5.04 4.49 1.67 1.93

10. 7.84 6.21 2.29 3.39

11. 22.0 28.7 14.1 14.4

12. 9.28 8.71 3.45 3.61

13. 10.5 11.1 3.59 4.10

14. 8.35 7.77 2.96 3.74

15. 16.6 17.9 6.87 7.40

16. 9.97 7.31 2.65 3.54

17. 14.9 15.7 6.36 7.44

18. 23.8 23.4 10.3 11.5

19. 24.0 27.9 10.6 11.8

20. 188. 132. 47.8 80.2

21. 228. 179. 81.4 101.

22. 266. 217. 49.1 111.

23. 230. 184. 79.0 97.5

24. 287. 234. 103. 119.

25. 327. 229. 114. 142.

26. 405. 260. 144. 200.

27. - 382. 182. -

28. - 638. 308. -

29. - 1344. - -

30. - 1461. - -

Table 5.2: Execution time in seconds for the

complete solution of Ax = b for indefinite

problems (Test Set 2). Times within 5% of

the fastest are in bold. - indicates insufficient

memory to perform factorization; † indicates

requested accuracy not achieved.

Problem MA57 HSL MA77 HSL MA86 HSL MA97

31. 0.22 0.38 0.23 0.23

32. - 0.17 0.16 0.11

33. 2.34 2.94 2.43 2.35

34. 2.20 1.75 1.31 1.11

35. 0.85 0.76 0.46 0.44

36. 3.63 4.16 2.76 2.68

37. 0.82 0.87 0.41 0.38

38. 6.52 4.14 2.10 1.89

39. 2.75 3.31 2.08 2.01

40. 9.68 3.00 1.50 1.88

41. 4.12 3.37 2.04 2.00

42. 1.67 1.97 0.97 0.96

43. 3.58 3.47 1.77 1.84

44. †9.65 †10.0 †
4.6

†
4.52

45. 10.3 8.67 6.64 5.96

46. 29.6 25.6 12.8 12.8

47. 39.0 21.4 9.28 13.3

48. 44.7 44.4 18.4 19.0

49. - †
7916. - -

50. 2684. 478. - 230.

51. 388. 355. 99.7 182.

52. 1016. 853. 276. -

53. - 1342. 416. -

54. - 5277. - -

55. - - - -

12



The compromises that had to be made in adapting the task-based design to incorporate pivoting in the

indefinite case incur overheads. These are significant for the smaller problems in Test Set 2 and, for these

problems, HSL MA97 generally outperforms HSL MA86. By comparing the columns for MA57 and HSL MA97,

we see that the new multifrontal code offers significant advantages over the older code. We also see that

the out-of-code code HSL MA77 is competitive with MA57 (for some problems, the latter is the faster of the

two but for other cases, including problems 38, 39 and 47, HSL MA77 significantly outperforms MA57).

If we consider only the in-core codes, the supernodal codes (HSL MA86 and HSL MA87) are able to solve

larger problems than the multifrontal codes (MA57 and HSL MA97). This is because they do not maintain

significant storage other than the factors, whereas the multifrontal method requires a stack.

All but one of the problems in Test Set 2 is successfully solved by the out-of-core solver HSL MA77. The

exception, problem 55 (Schenk/nlpkkt120), is not solved because the largest frontal matrix (which is of

order 82,567) does not fit into main memory (it requires approximetaly 32 Gb after allowing for delayed

pviots). It would be possible to adapt the dense factorization kernel used by HSL MA77 to overcome this

by holding only part of the frontal matrix in memory at any one time. However, while such an adaptation

is conceptually straightforward, it would be time-consuming to implement and is beyond the scope of

this paper. An alternative strategy to try and limit the amount of main memory required would be to

weaken the stability criterion by using a smaller pivot threshold u with the aim of reducing the number

of delayed pivots (the large front is because there is a large number of delayed pivots). The consequences

of this would be a less accurate factorization and more steps of iterative refinement (which is costly in the

out-of-core case) would be needed to try and restore accuracy. A mixed precision approach could also be

used in which the factorization is computed in single precision (requiring less memory) and then double

precision accuracy recovered using refinement. This is discussed further in [19].

Figures 5.2 and 5.3 illustrate the slow down of HSL MA97 (bit-compatible) and HSL MA77 (out-of-core)

compared to HSL MA86/7. This indicates that the maximum penalty for using the bit-compatible code is

just over 50%, with an average slow down of 20–30%. The out-of-core code (which is also bit compatible)

is typically 2–3 times slower than the in-core code but note that this overhead is not only because of

working out-of-core, it is also the result of the fact that HSL MA77 only exploits node-level parallelism.

Finally, Figures 5.4 and 5.5 show the proportion of time spent in each phase of the multifrontal solver

HSL MA97 as a percentage of the total time (the time for the factorise phase includes the time taken for

scaling). Ordering represents a significant portion (over 50% in many cases) for all except the largest

problem, where the factorize phase dominates. This is due in part to Amdahl’s Law because the ordering

phase has not been parallelized. While parallel implementations of nested dissection exist, they have

historically only been used when the matrix A cannot be stored in the memory of a single node as the

quality of ordering produced (and thus the number of operations and time for the subsequent factorize

phase) are poorer than the serial implementations. It may be time to re-evaluate this conventional wisdom,

at least for problems of medium size.
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Figure 5.2: Comparative slow down for demanding bit-compatibility (HSL MA97) and out-of-core working

(HSL MA77) compared with HSL MA87. Positive-definite problems.
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Figure 5.3: Comparative slow down for demanding bit-compatibility (HSL MA97) and out-of-core working

(HSL MA77) compared with HSL MA86. Points below the line represent speedup. Indefinite problems.
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Figure 5.4: Cumulative proportions of the time for different phases of HSL MA97 (gaps between curves

represent the proportion of the total time spent in that phase). Positive-definite problems.
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Figure 5.5: Cumulative proportions of the time for different phases of HSL MA97 (gaps between curves

represent the proportion of the total time spent in that phase). Indefinite problems.
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6 Concluding remarks

The new HSL sparse direct solvers discussed in this paper are written in Fortran 95 and employ OpenMP

for parallel implementation. They adhere to the Fortran 95 standard, except that they use allocatable

structure components and dummy arguments (which are part Fortran 2003 and supported by all modern

Fortran compilers).

While it is beyond the scope of this paper to compare the HSL solvers with other modern direct sparse

solvers such as PARDISO [32, 33], MUMPS [3], and WSMP [16], results presented in [21] demonstrate

that the performance of the HSL solvers is comparable with these codes. We conclude that the limiting

factor on the use of modern sparse direct methods is the available memory for storing the matrix factors.

Out-of-core techniques can significantly extend the range of problems that can be tackled and, in our tests,

imposed a relatively modest time penalty.

If bit-compatible answers are desired, these can be achieved. With our current codes, the extra cost of

bit-compatibility is typically in the range 20–30%.

Code Availability

Each of the solvers is available as part of the 2011 release of the mathematical software library HSL. All

use of HSL requires a licence; licences are available to academics without charge for individual research and

teaching purposes. Details of how to obtain a licence and the solvers are available at www.hsl.rl.ac.uk

or by email to hsl@stfc.ac.uk.
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