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Sparse linear equations

We want to solve the set of linear equations

Ax = b

where A is a sparse n × n unsymmetric matrix with τ nonzeros.

We have a choice of a direct method based on matrix factorization
or an iterative method usually using a Krylov based method.
For the former, the problem is usually one of storage. For the
latter, the problem is one of convergence, usually requiring a
sophisticated preconditioner.

A midway possibility is to use a hybrid method.
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Hybrid approach ... Block iterative method

Nearly block diagonal

Use direct solution on blocks Ai and clean up remaining × using
iterative method (for example, GMRES) using block Jacobi
preconditioning.
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Block triangular form (BTF)
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The overall system is solved through the steps ....

A33X3 = B3

A22X2 = B2 − A23X3

A11X1 = B1 − A12X2 − A13X3

So only A11, A22, and A33 are involved in the solution operations.
The off-diagonal blocks are ONLY used in matrix-matrix multiplies.
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Block triangular form (BTF)

Linear Programming; BP1600
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Block triangular form (BTF)

BP 1600
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Benefits of block triangular form (BTF)
Matrix SHYY161 LHR71C
Order 76480 70304
Entries 329762 1528092

Entries in factors
Using BTF 8845668 7880997
No BTF 10864045 8947643

Factorization time
Using BTF 144 18
No BTF 222 33

Subsequent factorization time
Using BTF 23 4
No BTF 38 7
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Hybrid approach ... Block iterative method
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Use direct solution on block triangular form and clean up
remaining × using iterative method (for example, GMRES).

8 / 34



Bath-RAL Numerical Analysis Day, Rutherford Appleton Laboratory. January 30 2012. Iain Duff and Kamer Kaya, RAL, CERFACS

Our aim is to construct a block triangular preconditioner for the
solution of

Ax = b

where A is a sparse n × n matrix with τ nonzeros.
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If the matrix is reducible we will first use Tarjan’s 1972 algorithm
to permute the matrix to block triangular form so that we need
only ”solve” for the blocks on the diagonal. Thus we seek a way to
get a BTF that is a good representation for an irreducible matrix.

Basically, we would like to keep most of the important parts of the
matrix in the diagonal blocks of the BTF and to minimize in some
sense the dropped entries.

We will use a long-buried algorithm for hierarchical decomposition
to construct a BTF approximation with some optimal qualities.

Our thanks to Phil Knight (Strathclyde) for drawing our attention
to this decomposition.
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BTF preconditioner

We obtain a block upper triangular preconditioning matrix M by

I Simultaneously removing some entries of A and finding a
permutation such that the sparsified and permuted matrix has
a block triangular form (BTF) in which the size of each block
is less than a given maximum block size.
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Matrices and digraphs

An n × n matrix A can be associated with a digraph G = (V ,E )
with n vertices: For each row/column i in A, there is a vertex in
V . And for each aij 6= 0 in A, there is an edge (i , j) in E .

(a) A (b) G
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Strong subgraph

A strong subgraph is a directed (sub)graph in which every vertex
can be reached from every other vertex by following a path of
directed edges. The simplest example would be a cycle involving
all vertices.
A strong component is a maximal strong subgraph.
A graph is strongly connected if it is a single strong component. In
that case, there is no non-trivial permutation to block triangular
form.

13 / 34



Bath-RAL Numerical Analysis Day, Rutherford Appleton Laboratory. January 30 2012. Iain Duff and Kamer Kaya, RAL, CERFACS

Tarjan’s Algorithms

I Finding the strong components of a digraph G = (V ,E ) takes
O(n + τ) time [Tarjan, 1972].

I Assume that G is strongly connected and the edges in E are
sorted according to some criteria. In a hierarchical
decomposition, strong subgraphs can be formed by starting
with an empty edge set and adding the edges one by one in
the sorted order. How might we do this?

I Trivial solution: There are τ edges. Use Tarjan (1972) each
time that we add an edge. This would cost O(τ (n + τ)) time
and so be prohibitive.

I Tarjan proposed an algorithm for doing this with complexity
O(τ log τ) [Tarjan, 1983].
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Hierarchical Decomposition Algorithm (HD)

A hierarchical decomposition tree shows which strong subgraphs
are formed during the edge addition process and when.

(c) G (d) Decomposition tree for G .
The leaves correspond to the
vertices of the graph, and the
internal nodes correspond to
the edges forming strong sub-
graphs.

.
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Tarjan’s HD Algorithm

T = HD(G = (V ,E), σ, i): σ is the sorted list of E , Gi is known to be acyclic.

1: if |E | − i = 1 then
2: The edge σ(|E |) makes the graph strongly connected. Return the tree

T containing the vertices in V as leaves and a root corresponding to the
last edge.

3: else
4: Set j = d(i + |E |)/2e.
5: if Gj is strongly connected then
6: Call HD(Gj , σ, i).
7: else
8: For each nontrivial SC of Gj , call HD(SC , σs , is) where σs , obtained

from σ is the sorted edge list for E(SC) and is = max(k) such that
SCk is known to be acyclic.

9: Create a condensed graph G ′ from G by condensing each SC of Gj

into one vertex. Call T =HD(G ′, σ′, i ′) where σ′ is the sorted edge list
for E(G ′) and i ′ = max(k) s.t. G ′k is known to be acyclic.

10: Replace each leaf of T with the subtrees obtained by previous calls.
Return T .
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Tarjan’s HD Algorithm

Tarjan’s algorithm, HD, constructs the hierarchical decomposition
tree in a recursive way by using a binary-search approach on the
sorted edge list of the digraph.

I Let σ be the sorted list, and σ(i) is the ith edge on this list.

I Let Gi be the digraph containing only the first i edges from σ.

For a recursive call, the algorithm gets 3 parameters:

I A strongly connected digraph G = (V ,E ).

I The sorted list σ of the edges in E .

I An integer i < |E | such that Gi is known to be acyclic.
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Tarjan’s HD Algorithm

The algorithm then

I Checks whether the graph formed with the edges midway
between i and the last strongly connected graph is strongly
connected.

I If it is, it then calls HD on this strongly connected graph.

I If not, it calls HD on the strong components of the graph.

I As it backtracks, it forms a condensed graph from the strong
components and calls HD on these.
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HDPRE: Modifying HD

We first need several modifications to HD to define our HDPRE
algorithm that adapts the HD algorithm for our preconditioning
purposes.

We first avoid the problem of multiple edges of the same weight by
using the indices of the edges in the list σ rather than the edge
weights for defining the ordering.

We use a parameter mbs so that the target maximum block size
for our BTF is mbs. We then must stop the recursion when we
reach this block size rather than continue to the trivial case. The
use of the mbs parameter requires other changes to the algorithm
when handling the condensed graph.
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SCPRE: Obtaining the preconditioning matrix

The preconditioning matrix is obtained by an algorithm called
SCPRE in 3 steps:

1. Use HDPRE to obtain the initial block structure and
permutation.

2. Traverse the original sorted edge list. For each edge with
endpoints in different blocks, combine the blocks if the total
size of them is not larger than mbs.

3. To put more weight into the upper triangular part, order the
blocks one by one by always choosing the block with
maximum total outgoing edge weight.

20 / 34



Bath-RAL Numerical Analysis Day, Rutherford Appleton Laboratory. January 30 2012. Iain Duff and Kamer Kaya, RAL, CERFACS

SCPRE: Solving the system

I We first permute the original matrix by using the permutation
obtained by SCPRE. Let A = D + U + L be the permuted
matrix. Then M = D + U is the preconditioner.

A =

(D1 U
D2

...
...

L Dk

)
=⇒ M =

(D1 U
D2

...
...

0 Dk

)

I Along with A, we also store the LU factors Li and Ui for each
block Di such that Di = LiUi. We use the AMD algorithm
when computing these factors.
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Experiments: Preconditioned GMRES

The parameters for the restarted GMRES are:

I The desired error tolerance is ε = 10−8.

I The stopping criterion is

||(Ax− b)||
||b||

< ε.

I GMRES is restarted every 50 iterations.

I Maximum number of outer iterations is 10. (Maximum
number of iterations is 500).
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Experiments: Preconditioners

I SCPRE: with mbs = 2000 and two edge-ordering schemes:

1. dec.: We order the edges (nonzeros) in decreasing order in
terms of their weights (magnitudes).

2. rcm: We first apply the reverse Cuthill-McKee (RCM) ordering,
and then we order the nonzeros pagewise.

I XPABLO [Fritzsche et al., 2007]:

1. XPABLO-UX: M is the block upper triangular part of the
permuted matrix.

2. XPABLO-LX: M is the block lower triangular part of the
permuted matrix.
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Experiments: Preconditioners

I We use MATLAB’s (version 7.10) ILUT [Saad, 1994]
(function ilu) with threshold value 10−4, and two
row/column orderings:

1. rcm: We use the RCM ordering to permute the matrices.
2. amd : We use the AMD ordering to the permute the matrices.
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Experiments: Matrices
Type Matrix n nnz SC-1 SC-2 SC-3

Cir. sim. AMD/G2 circuit 150102 726674 150102
Bomhof/circuit 3 12127 48137 7607 1 1
Bomhof/circuit 4 80209 307604 52005 7 7
Hamm/bcircuit 68902 375558 68902
Hamm/hcircuit 105676 513072 92144 4927 238
Hamm/memplus 17758 99147 17736 1 1
IBM Austin/coupled 11341 97193 11293 1 1
Rajat/rajat03 7602 32653 7500 1 1
Rajat/rajat27 20640 97353 13017 2353 80
Sandia/ASIC 100k 99340 940621 98843 2 2

CFD DRIVCAV/cavity16 4562 137887 4241 1 1
DRIVCAV/cavity26 4562 138040 4241 1 1
Garon/garon1 3175 84723 3175
Garon/garon2 13535 373235 13535
Bai/af23560 23560 460598 23560
Simon/raefsky2 3242 293551 3242
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Experiments: Matrices

Type Matrix n nnz SC-1 SC-2 SC-3

Dev. sim Sanghavi/ecl32 51993 380415 42341 1 1
Schenk/3D 51448 3D 51448 537038 44822 1 1
Schenk/ibm matrix 2 51448 537038 44822 1 1
Schenk./matrix 9 103430 1205518 99372 1 1
Schenk/matrix-new 3 125329 893984 78672 1 1
Schenk ISEI/igbt3 10938 130500 10938
Wang/wang3 26064 177168 26064
Wang/wang4 26068 177196 26068

Thermal Averous/epb1 14734 95053 14734
Averous/epb2 25228 175027 25228

Finance Mulvey/finan512 74752 596992 74752

Electromag. Zhao/Zhao1 33861 166453 33861
Zhao/Zhao2 33861 166453 33861
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Experiments: Results

I To obtain better conditioned matrices, all of the matrices are
initially permuted and scaled by MC64 with option 5
(maximum product matching).

I The relative memory usage for ILUT and SCPRE (XPABLO) are

nnz(L) + nnz(U)

nnz(A)
and

∑k
i=1 (nnz(Li) + nnz(Ui))

nnz(A)

where k is the number of blocks in the preconditioner, and L
and U are the incomplete factors.
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Results: Summary

XPABLO SCPRE ILUT

Criteria mbs = 2000 mbs = 2000 tol = 10−4

UX LX dec. rcm rcm amd

# converge 24 23 27 27 23 23
# best iter. 1 1 9 2 8 19

Avg. mem 4.53 4.68 3.87 5.08 12.9 16.47

I SCPRE is robust

I SCPRE and XPABLO require much less memory than ILUT
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Results: Memory usage

By increasing mbs, we can make SCPRE use more memory and
(hopefully) converge more quickly. The table below gives the
iteration counts for the matrix G2 circuit (irreducible with
n = 150102) and preconditioner SCPRE(dec .):

Precon. mbs # iters mem mbs # iters mem

2000 444 3.86 16000 118 10.79
SCPRE 4000 196 5.53 32000 75 13.37

8000 155 8.24 64000 54 12.88

Precon. order. # iters mem order. # iters mem

ILUT rcm 48 13.3 amd 30 8.6
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Results: Device simulation matrices

XPABLO SCPRE ILUT

Matrix mbs = 2000 mbs = 2000 tol = 10−4

UX LX dec. rcm rcm amd

ecl32 87 92 30 32 17 12

3D 51448 3D - - 11 11 - -

ibm matrix 2 - - 10 16 - -

matrix 9 83 84 98 88 - -

matrix-new 3 84 87 30 41 - -

igbt3 29 29 20 17 17 12

wang3 107 105 54 58 10 9

wang4 39 38 21 36 7 6

Avg. memory 7.46 7.46 6.99 7.76 43.58 20.28

I SCPRE is the most robust

I SCPRE requires less iterations than XPABLO

I SCPRE and XPABLO require far less memory than ILUT
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Results: Parallelization

I If we take M = D, i.e., use a block-diagonal preconditioner,
the operation M−1x is parallelizable.

I The same preconditioner is used in [Fritzsche et al., 2007] for
XPABLO.

XPABLO SCPRE

Criteria mbs = 2000 mbs = 2000
dec. rcm

# converge 23 24 26
# best iter. 5 16 8

Avg. mem 4.83 4.01 5.33
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Conclusion

I The first work that uses Tarjan’s hierarchical decomposition
algorithm for preconditioning purposes.

I Comparable results with ILUT for some matrices.

I Works well especially for device and circuit simulation
matrices.

I Simple to tune. (increase/decrease mbs)

I Can be easily modified to be used with parallel iterative
solvers.
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THANK YOU FOR YOUR ATTENTION
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