
Help I need to choose a revision
control system!

DJ Worth

February 2012

 Technical Report
RAL-TR-2012-003

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Help I Need to Choose a Revision Control System!

D.J. Worth

April 2011

Abstract

In this report we dive into the daunting looking world of revision control systems,
aka source code control systems or source code management systems. Keeping track
of changes in files is something that most software developers want to do. It allows
us to see which files were changed if a bug is spotted or results differ from one
version of the software to the next. Attempting to do this with file and directory
names is guaranteed to fail (well nearly) and consumes time that could be better
used developing the software. The tools we will introduce in this note are designed
to help software developers do away with manual control and provide easy access to
files and their histories. We will discuss the benefits of revision control, introduce
the tools and give use cases for each that illustrate how they can be used.

Keywords: revision control, source code control, source code management,

Email: david.worth@stfc.ac.uk

Reports can be obtained from www.softeng.cse.clrc.ac.uk

Software Engineering Group
Computational Science & Engineering Department
Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
Oxfordshire OX11 0QX

c© Science and Technology Facilites Council

Enquires about the copyright, reproduction and requests for additional copies of this report
should be address to:

Library and Information Services
STFC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
Oxfordshire OX11 0QX

Tel: +44 (0)1235 445384
Fax: +44 (0)1235 446403
Email:library@rl.ac.uk

STFC e-reports are available online at: http://epubs.cclrc.ac.uk

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from
the use of information contained in any of their reports or in any communication about their
tests or investigations

Contents

1 Introduction 1
1.1 Background . 1

2 Why Use Revision Control? 2

3 RCS in CCPForge 2

4 CVS 2

5 Subversion (SVN) 3

6 GIT 4

7 Bazaar 7

8 Mercurial 8

9 GUI Clients 11

10 Conclusion 13

i

1 Introduction

As with many areas of software engineering, revision control systems (RCS) can seem daunting
to the outsider as their use seems de rigeur in software engineering projects but their actual
use can be obscured by the jargon that surrounds them. Confusion arises from the outset as
different people use different names for these systems of tracking changes. Some use the phrase
source code management (SCM) and others source code control (SCC) but they refer to the
same thing - a framework for tracking changes to files and directories (folders).
In this report we will first of all attempt to persuade those who are sceptical about adopting
an RCS that it is a good idea, If this is successful then the reader can go on to the sections
containing details of some of the more popular systems available at present. In each section
we give a transcript of a short session with the tool being described showing how each is used
from the command line (in Linux). Of course a graphical user interface is easier then having to
remember the command line syntax so we give a list of GUIs for each tool which readers can
investigate at their leisure and select from according to their predilection for operating system,
desktop, integration with other tools, and which looks the coolest.
For the purpose of this report the remote repsoitories are all hosted on CCPForge and so URLs
are specific to that host.

1.1 Background

All modern revision control systems track changes to files and some track directories as well,
keeping their data in a repository. Files can be checked out of the repository in order to build the
software or make changes to the files and then any changes are committed back to the repository
with a comment to say why the changes was made.
If two developers change the same file then the second to commit their changes will, in all but
the simplest cases, be told that there is a conflict and be required to merge their changes into
the new version of the file created by the first developer. A three-way diff application will be
useful at this point, e.g. kdiff3 or gvimdiff.
One way of avoiding having to merge changes too often is to create a branch of the source code
in the repository for the development task at hand and then merge that branch back into the
trunk only when the task is complete. The implication here is that the trunk version of the
source is the most up-to-date code that works correctly and from which a release could be made
at any point and this is considered best practice.
Current revision control systems are divided into two camps: centralised or distributed. A cen-
tralised system, as the name implies, has one central repository from which developers checkout
code and to which they commit, as described above. In a distributed system there is one orig-
inal repository but other repositories are cloned from it to a developer’s local machine and all
commits and other changes are done locally. The changes can be pushed back to the repository
from which the clone was made. A cloned repository can be made available to be cloned from
by other developers since no one repository has anything that marks it as the repository. It is
up to the development team to define a process for bringing together the source code for the
next version of the software.
A distributed system can be used entirely locally1, within a user’s own directory structure, as
it is easy to set up repositories for each project’s files in a file system. Moving further into the
esoteric, it is possible to checkout from a centralised repository and then run a local distributed
system to track the minor changes during a development task before the completed change is
committed back to the repository of the centralised system (presumably with the commit log
from the distributed system as the commit comment).

1Sounds odd but it’s true.

1

2 Why Use Revision Control?

The answer lies in remembering the German fairy story of Hansel and Gretel. The children were
led into the woods and abandoned to their fate but clever Hansel had left a trail of white stones
enabling them to return home.
Think about it When you are developing code everything is fine but when you come to
test the software and something is broken then how do you retrace your steps towards the last
working version to see what went wrong?
If you use a revision control system to track changes as you go then it is easy to retrieve the
history of changes to each file making the hunt for the mistake a lot less painful. In addition if
you supplied useful comments with each revision then those changes that wont have caused a
problem can be quickly dismissed. Going even further, by tagging the set of source files for each
release of the software it is straightforward to rebuild the last (presumably) correct version to
compare against the new, broken version. Most scientific software does not do anything on its
own, it is driven by input data and this data should also be put under revision control so that
you can be absolutely sure that the input data has not changed since the last working tests or
if it has changed then the revision comment tells you why.
In short revision control can save developers a great deal of blood, sweat and tears when they
need to re-visit old versions of files or back out changes that caused the software to break.
There are other fringe benefits to using RCS that should be taken into account.

• A central repository allows for collaborative development.

• A central repository allows use of tools for continuous integration (e.g. with buildbot) or
code review for example.

• A local (distributed) repository can be used for keeping track of small changes during a
development task so they don’t clutter the main repository.

3 RCS in CCPForge

CCPForge (http://ccpforge.cse.rl.ac.uk) is a collaborative software development facility
for the Collaborative Computational Projects and UK academic scientific software projects. It
provides many of the tools that a software development project could require including mailing
lists, forums and a release mechanism but the most important is a variety of revision control
systems. Each project on CCPForge can choose its own system from those described in the
following sections according to the requirements of the project, e.g. there may be an existing
repository that can be imported.
It is possible to switch from one system to another though there is no automatic migration of
an existing repository to the new format. If this is required then project administrators should
contact the CCPForge administrator.
For whichever control system is chosen CCPForge provides browsing of the repository, the com-
mands to check out the code, querying of commits in a specified date range, and a link to the
documentation for the system.

4 CVS

The Concurrent Version System, CVS, (http://cvs.nongnu.org/) is one of the oldest source
code management tools and is still widely used, especially for projects that were started when
it was the best system around. It offers version control of files but not directories in a central
repository via a client/server idiom and provides some help in merging a file when two people
have modified it independently.

2

http://ccpforge.cse.rl.ac.uk
http://cvs.nongnu.org/

CVS keeps separate version numbers for each file (generally in the form x.y) and increments the
second digit when a change is committed to the file. It is possible to change the first digit - see
the CVS documentation.
In the normal run of events (and it is only those we are considering here) using CVS is very
straightforward. It is simply a matter of checking out the code, making the changes and com-
miting those changes back to the repository. A quick example is given below.

$ export CVS_RSH=ssh

$ cvs -d :ext:djw@ccpforge.cse.rl.ac.uk:/ cvsroot/singch checkout source/model

cvs checkout: Updating source/model

U source/model/cap.f90

U source/model/condcol.f90

U source/model/dcoef.f90

U source/model/heat.f90

U source/model/inteq.f90

U source/model/singch.f90

$ cd source/model

$ touch tmp.txt

$ cvs add tmp.txt

cvs add: scheduling file ‘tmp.txt ’ for addition

cvs add: use ’cvs commit ’ to add this file permanently

$ cvs commit -m "Added a file for tutorial purposes"

cvs commit: Examining .

RCS file: /cvsroot/singch/source/model/tmp.txt ,v

done

Checking in tmp.txt;

/cvsroot/singch/source/model/tmp.txt ,v <-- tmp.txt

initial revision: 1.1

done

Listing 1: A simple CVS session with check out, add a file and commit

5 Subversion (SVN)

Subversion (http://subversion.apache.org/), sometimes known by its command line name
svn, is a more modern form of centralised source code control, starting as it did with the intent
of improving on CVS. To this end Subversion keeps the revision history for directories as well as
files, only transmits and stores the differences to files when they are changed, and all commits
are atomic, i.e. if the commit for one file fails in a set of changes then no files are changed in
the repository.
Subversion revision numbers are different from those in CVS, being a single integer for the
whole repository that indicates the number of changes made since development began. The
value is incremented on each commit. In this way it is easy to mark a release of a set of files
by remembering the revision number of the repository at the time rather than having to store
a list of the separate version numbers of all files in the release.
Like CVS, Subversion uses a client/server architecture with a central repository that can be
accessed remotely either by http: or a special svn: protocol.

$ svn checkout --username djw http :// ccpforge.cse.rl.ac.uk/svn/softeng/SEG_Notes

A SEG_Notes /2010

A SEG_Notes /2010/ CCPForge_Upgrade

A SEG_Notes /2010/ CCPForge_Upgrade/CCPForge_Upgrade.pdf

A SEG_Notes /2010/ CCPForge_Upgrade/CCPForge_Upgrade.tex

A SEG_Notes /2010/ Coverage -Example1

...

A SEG_Notes/List -SEG -Notes.txt

Checked out revision 485.

3

http://subversion.apache.org/

$ cd SEG_Notes/

$ touch tmp.txt

$ svn add tmp.txt

$ svn commit -m "Added temporary file for tutorial purposes"

Adding tmp.txt

Transmitting file data .

Committed revision 486.

Listing 2: A simple subversion session with check out, add a file and commit

6 GIT

Git (http://git-scm.com/) is different from CVS and Subversion in that it is a distributed sys-
tem. This means that a repository can be cloned to your local machine and used for day-to-day
revision control without the need for a network connection or a local repository can be created
prior to pushing it to a remote server. When (or if) changes are ready to be propagated to other
developers the local repository is pushed to the one it was cloned from. Good documentation is
available at http://www.kernel.org/pub/software/scm/git/docs/.
A word of warning from the Git reference tutorial before choosing git just because it’s what all
the smart kids are using:

This first thing that is important to understand about Git is that it thinks about
version control very differently than Subversion or Perforce or whatever SCM you
may be used to. It is often easier to learn Git by trying to forget your assumptions
about how version control works and try to think about it in the Git way.

$ git config --global user.name "David Worth"

$ git config --global user.email "david.worth@example.com"

$ mkdir myproject

$ cd !$

cd myproject

$ mkdir subdirectory

$ touch test1.txt test2.txt test3.txt subdirectory/test4.txt

$ ls

subdirectory test1.txt test2.txt test3.txt

$ git init

Initialized empty Git repository in /path/to/myproject /.git/

$ git add .

$ git commit -m "Initial import"

[master (root -commit) 5b9aa0e] Initial import

0 files changed , 0 insertions (+), 0 deletions(-)

create mode 100644 subdirectory/test4.txt

create mode 100644 test1.txt

create mode 100644 test2.txt

create mode 100644 test3.txt

$ vi test1.txt

$ git diff

diff --git a/test1.txt b/test1.txt

index e69de29 .. e9b1475 100644

--- a/test1.txt

+++ b/test1.txt

@@ -0,0 +1 @@

+This is the first edit for the file : DJW

$ git add .

4

http://git-scm.com/
http://www.kernel.org/pub/software/scm/git/docs/

$ git commit -m "Added first line of text"

[master 15 d1051] Added first line of text

1 files changed , 1 insertions (+), 0 deletions(-)

$ git log

commit 15 d10519c7115abb6d9167585b54c7e6a009dede

Author: David Worth <david.worth@example.com >

Date: Mon Jun 6 13:15:18 2011 +0100

Added first line of text

commit 5b9aa0ee606e3b9d9178b3cd8b0819010a31d013

Author: David Worth <david.worth@example.com >

Date: Mon Jun 6 13:11:12 2011 +0100

Initial import

Listing 3: A simple git session in which we create files, a local repository, and commit to that
repository

The initial git repository for a CCPForge project is empty and in a state which can be pushed
to from an existing repository such as the local one created above. This can be achieved as
follows, but only for an empty CCPForge repository. In a newly created repository there is only
one branch and that is called the master and we use that name in the push command.

Add remote repository (for this local repository only)

$ git remote add ccpforge ssh:// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing

$ git push ccpforge master

Counting objects: 7, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (4/4) , done.

Writing objects: 100% (7/7), 574 bytes , done.

Total 7 (delta 1), reused 0 (delta 0)

To ssh :// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing

* [new branch] master -> master

Listing 4: Give a name to a remote repository. and push changes to it

To get the repository from CCPForge (in new directory) the command is as follows.

$ cd

$ git clone ssh:// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing myproject

Cloning into myproject ...

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (4/4) , done.

remote: Total 7 (delta 1), reused 0 (delta 0)

Receiving objects: 100% (7/7), done.

Resolving deltas: 100% (1/1), done.

If we now modify the copy of the code checked out above the commit is local and then the
changes must be pushed back to the remote repository. Note that instead of an explicit add

then commit we use the -a option for the commit which adds any changed files for us.

$ cd myproject/

$ vi test2.txt

$ git commit -a -m "Added text to test2.txt"

[master 2a35be9] Added text to test2.txt

1 files changed , 1 insertions (+), 0 deletions(-)

$ git push

Counting objects: 5, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2/2) , done.

Writing objects: 100% (3/3), 300 bytes , done.

5

Total 3 (delta 1), reused 0 (delta 0)

To ssh :// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing

15 d1051 ..2 a35be9 master -> master

Retrieve this change back in the original directory where initial commit and push were done,
again using the master branch.

$ git pull ccpforge master

From ssh :// ccpforge.cse.rl.ac.uk/gitroot/git -testing

* branch master -> FETCH_HEAD

Updating 15d1051 ..2 a35be9

Fast -forward

test2.txt | 1 +

1 files changed , 1 insertions (+), 0 deletions(-)

This has shown how we can work with a single branch but the usual (and some may say correct)
way to work is to create a branch in the repository for the development task and then merge
that branch back into the master branch. A simple demonstration follows.

Start with a fresh copy of the repository

$ git clone ssh:// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing myproject

$ cd myproject

List the current (local) branches

$ git branch

* master

Create a branch called djw_new

$ git branch djw_new

Check the branches now. * = current branch

$ git branch

* djw_new

master

Switch to the new branch so we can work in it

$ git checkout djw_new

Switched to branch ’djw_new ’

Make some changes to file contents and commit the change.

$ vi subdirectory/test4.txt

$ vi test2.txt

$ git commit -a -m "Make some changes for branch/merge testing"

[djw_new 7602 bc5] Make some changes for branch/merge testing

2 files changed , 20 insertions (+), 1 deletions(-)

If necessary (for collaboration perhaps) you can push this new branch to the

repository you cloned from (the origin) with

$ git push origin djw_new

Counting objects: 9, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (4/4) , done.

Writing objects: 100% (5/5), 518 bytes , done.

Total 5 (delta 0), reused 0 (delta 0)

remote: fatal: This operation must be run in a work tree

To ssh :// djw@ccpforge.cse.rl.ac.uk/gitroot/git -testing

* [new branch] djw_new -> djw_new

Switch back to the master branch and see that that branch does not have the

changes

$ git checkout master

Switched to branch ’master ’

$ vi subdirectory/test4.txt

Now merge changes from djw_new to master. Remember to pull any changes from the

remote repository

$ git pull

6

$ git merge djw_new

Updating 5bf63e0 ..7602 bc5

Fast -forward

subdirectory/test4.txt | 17 +++++++++++++++++

test2.txt | 4 +++-

2 files changed , 20 insertions (+), 1 deletions(-)

Once the changes are merged we can delete the branch with

$ git branch -d djw_new

Listing 5: Simple branch/merge example

7 Bazaar

Bazaar (http://bazaar.canonical.com/en/) is another distributed revision control system
and works in much the same way as git. The simple session below follows the 5 minute tutorial
at http://doc.bazaar.canonical.com/bzr.2.3/en/mini-tutorial/index.html.

$ bzr whoami "David Worth <david.worth@example.com >"

$ bzr whoami

David Worth <david.worth@example.com >

$ mkdir myproject

$ cd !$

cd myproject

$ mkdir subdirectory

$ touch test1.txt test2.txt test3.txt subdirectory/test4.txt

$ ls

subdirectory test1.txt test2.txt test3.txt

$ bzr init

Created a standalone tree (format: 2a)

$ bzr add

adding subdirectory

adding test1.txt

adding test2.txt

adding test3.txt

adding subdirectory/test4.txt

$ bzr commit -m "Initial import"

Committing to: /path/to/myproject/

added subdirectory

added test1.txt

added test2.txt

added test3.txt

added subdirectory/test4.txt

Committed revision 1.

$ vi test1.txt

$ bzr diff

=== modified file ’test1.txt ’

--- test1.txt 2011 -05 -20 09:36:22 +0000

+++ test1.txt 2011 -05 -20 09:41:32 +0000

@@ -0,0 +1,1 @@

+This is the first edit for the file : DJW

$ bzr commit -m "Added first line of text"

Committing to: /path/to/myproject/

modified test1.txt

Committed revision 2.

$ bzr log

--

7

http://bazaar.canonical.com/en/
http://doc.bazaar.canonical.com/bzr.2.3/en/mini-tutorial/index.html

revno: 2

committer: David Worth <david.worth@stfc.ac.uk >

branch nick: myproject

timestamp: Fri 2011 -05 -20 10:39:32 +0100

message:

Added first line of text

--

revno: 1

committer: David Worth <david.worth@stfc.ac.uk >

branch nick: myproject

timestamp: Fri 2011 -05 -20 10:36:22 +0100

message:

Initial import

$ bzr push --create -prefix bzr+http :// djw@ccpforge.cse.rl.ac.uk/bzr/bzr -testing/

djw/myproject

HTTP djw@ccpforge.cse.rl.ac.uk, Realm: ’Document repository ’ password:

Created new branch.

Listing 6: A simple bazaar session in which we create files, a local repository and push to a
remote repository

Note that the last command needs --create-prefix to create the djw directory in which
directory myproject is created. The files and subdirectory in the current working directory end
up in directory /djw/myproject in the repository. The new branch is call myproject.
To get the branch from CCPForge (in new directory) the command is as follows. Note that you
cannot get /djw as that’s not a branch.

$ cd

$ bzr branch http :// ccpforge.cse.rl.ac.uk/loggerhead/bzr -testing/djw/myproject

Branched 2 revision(s).

If we now modify the copy of the code checked out above the commit is local and then the
changes must be pushed back to the remote repository.

$ cd myproject

$ vi test2.txt

$ bzr commit -m "Test commit to loggerhead branch"

Committing to: /path/to/myproject/

modified test2.txt

Committed revision 3.

$ bzr push bzr+http :// djw@ccpforge.cse.rl.ac.uk/bzr/bzr -testing/djw/myproject

HTTP djw@ccpforge.cse.rl.ac.uk, Realm: ’Document repository ’ password:

Pushed up to revision 3.

We can now get these changes back in direcory where the initial commit and branch push were
done

$ bzr merge http :// ccpforge.cse.rl.ac.uk/bzr/bzr -testing/djw/myproject

HTTP ccpforge.cse.rl.ac.uk, Realm: ’Document repository ’ username: djw

HTTP djw@ccpforge.cse.rl.ac.uk, Realm: ’Document repository ’ password:

http :// ccpforge.cse.rl.ac.uk/bzr/bzr -testing/djw/myproject is permanently

redirected to http :// ccpforge.cse.rl.ac.uk/bzr/bzr -testing/djw/myproject/

M test2.txt

All changes applied successfully.

8 Mercurial

Mercurial, also known as Hg, (http://mercurial.selenic.com/) is another popular distributed
revision system that is worth mentioning in this report. It works in very much the same way

8

http://mercurial.selenic.com/

as the previous two as can be seen in the following interactive session. A fuller tutorial can be
found at http://mercurial.aragost.com/kick-start/en/basic/.
First clone a remote repository

$ hg clone http :// djw45@ccpforge.cse.rl.ac.uk/hg/hg_test

http authorization required

realm: SEGForge Mercurial repositories

user: djw45

password:

destination directory: hg_test

no changes found

updating to branch default

0 files updated , 0 files merged , 0 files removed , 0 files unresolved

Now we can create a new file, add it to the local repository and commit the change. Notice the
hg status shows the change in state of the file as we progress.

$ cd hg_test

$ vi README.txt

$ hg status

? README.txt

$ hg add README.txt

$ hg status

A README.txt

$ hg commit -m "Added a first file" -u djw

$ hg status

$

Mercurial always wants a user name for commit, hence the -u djw but we can set it once and
for all in a hgrc file. Typically this will be /.hgrc and should contain

[ui]

username = Firstname Lastname <example@example.net>

We can check what we did with

$ hg log

changeset: 0:1127890 de2aa

tag: tip

user: djw

date: Fri Dec 16 14:36:54 2011 +0000

summary: Added a first file

Now make another change to the file and get Mercurial to show the difference. We can commit
the change without giving a username this time because it is defined in the .hgrc file.

$ hg diff

diff -r 1127890 de2aa README.txt

--- a/README.txt Fri Dec 16 14:36:54 2011 +0000

+++ b/README.txt Fri Dec 16 14:47:09 2011 +0000

@@ -1,3 +1,5 @@

Testing Mercurial version control system

+This file will constantly be updated during testing!

+

DJW December 2011

$ hg commit -m "Make a second change"

To get our work back to original repository we have to push as follows:

9

http://mercurial.aragost.com/kick-start/en/basic/

$ hg push

pushing to http :// djw45@ccpforge.cse.rl.ac.uk/hg/hg_test

http authorization required

realm: SEGForge Mercurial repositories

user: djw45

password:

searching for changes

remote: adding changesets

remote: adding manifests

remote: adding file changes

remote: added 2 changesets with 2 changes to 1 files

Notice that this single push includes 2 changesets corresponding to the 2 commits we made to
the local repository. A changeset is simply the collection of changes to all files made between
one commit and another or between a clone/update and a commit.
Now we will look at creating and merging branches. To create a branch called experimental

$ hg branch experimental

With no argument this command simply tells us which branch we are on. Branches are not
created in the repository until a commit is made. Now edit the file and commit the branch and
finally push it to the original repository.

$ hg commit -m "Created experimental branch"

$ hg push --new -branch # Note the option to create the branch

pushing to http :// djw45@ccpforge.cse.rl.ac.uk/hg/hg_test

http authorization required

searching for changes

remote: adding changesets

remote: adding manifests

remote: adding file changes

remote: added 1 changesets with 1 changes to 1 files

The original ”main” branch is called default and we can switch to that branch using the update
command. The edits made to the file in the experimental branch will not be there in this branch.
(Check that this is so!)

$ hg update default

1 files updated , 0 files merged , 0 files removed , 0 files unresolved

We can now merge the changes from the experimental branch into the default one. First we can
see what the merge will do before actually doing it with the --preview option.

$ hg merge --preview experimental

changeset: 2: b962660177e8

branch: experimental

tag: tip

user: djw <david.worth@stfc.ac.uk>

date: Fri Dec 16 15:06:01 2011 +0000

summary: Created experimental branch

Note the changeset value in the output above. We can use this to find out what the actual
change was (using diff) and so what will be changed during the merge.

$ hg diff -c 2: b962660177e8

diff -r 16699 d7a8dda -r b962660177e8 README.txt

--- a/README.txt Fri Dec 16 14:48:38 2011 +0000

+++ b/README.txt Fri Dec 16 15:06:01 2011 +0000

@@ -1,5 +1,6 @@

Testing Mercurial version control system

This file will constantly be updated during testing!

10

+This is an update from the experimental branch

DJW December 2011

There is a line to be added which is what we want so we can go ahead with the merge.

$ hg merge experimental

1 files updated , 0 files merged , 0 files removed , 0 files unresolved

(branch merge , don ’t forget to commit)

$ hg commit -m "Merged from experimental branch"

$ hg push

pushing to http :// djw45@ccpforge.cse.rl.ac.uk/hg/hg_test

http authorization required

searching for changes

remote: adding changesets

remote: adding manifests

remote: adding file changes

remote: added 1 changesets with 0 changes to 0 files

For all the commands there is help available with hg help, e.g.

$ hg help init

hg init [-e CMD] [--remotecmd CMD] [DEST]

create a new repository in the given directory

Initialize a new repository in the given directory. If the given directory

does not exist , it will be created.

If no directory is given , the current directory is used.

It is possible to specify an "ssh ://" URL as the destination. See "hg help

urls" for more information.

Returns 0 on success.

options:

-e --ssh CMD specify ssh command to use

--remotecmd CMD specify hg command to run on the remote side

--insecure do not verify server certificate (ignoring web.cacerts

config)

use "hg -v help init" to show global options

9 GUI Clients

There are many graphical clients to make these revision control systems easier to use for the
commandline-phobic or those without access to a commandline. So many clients in fact that
there will be no detailed discussion here just a list with current URLs and brief descriptions.

TortoiseCVS CVS commands integrated with Windows explorer context menu plus views of
revision trees and graphical display tools for merging and diffs. http://www.tortoisecvs.
org/.

TortoiseSVN Subversion commands integrated with Windows explorer context menu plus
views of revision trees and graphical display tools for merging and diffs. http://tortoisesvn.
net/features.html.

TortoiseGIT Git commands integrated with Windows explorer context menu plus views of
revision trees and graphical display tools for merging and diffs. http://code.google.

com/p/tortoisegit/.

11

http://www.tortoisecvs.org/
http://www.tortoisecvs.org/
http://tortoisesvn.net/features.html
http://tortoisesvn.net/features.html
http://code.google.com/p/tortoisegit/
http://code.google.com/p/tortoisegit/

TortoiseHg TortoiseHg is a Windows shell extension and a series of applications for the Mercu-
rial distributed revision control system. It also includes a Gnome/Nautilus extension and
a CLI wrapper application so the TortoiseHg tools can be used on non-Windows platforms.
http://tortoisehg.bitbucket.org/.

TortoiseBZR A Windows frontend to Bazaar in the style of TortoiseSVN or TortoiseCVS.
https://launchpad.net/tortoisebzr/.

CvsGui CVS client aplication for Windows, Mac and Linux allows browsing of repository, file
operations and can show graph of file history. http://cvsgui.sourceforge.net/.

RapidSVN Multi-platform GUI front-end for the Subversion revision system. http://rapidsvn.
tigris.org/.

Git Extensions Client including Windows explorer integration, Visual Studio plug-in. Can
also run on different platforms under Mono. http://code.google.com/p/gitextensions/.

msysgit A distribution of git for Windows that includes explorer integration and a gui client
http://code.google.com/p/msysgit/.

Giggle A GTK based git client able to visualise and browse the revision tree, view changed
files and differences between revisions, visualise summary information for the project and
commit changes. http://live.gnome.org/giggle.

Git-gui Distributed as part of git, git gui a visual client that allows repository browsing and file
actions. See http://nathanj.github.com/gitguide/tour.html for a guide on its use.

GitX A GUI for Mac OS X featuring a history viewer and commit GUI http://gitx.frim.nl/.

Gitg A Git repository viewer for gtk+/GNOME http://git.gnome.org/browse/gitg.

Bazaar Explorer Qt based cross-platform client http://doc.bazaar.canonical.com/explorer/
en/.

QBzr QBzr provides a GUI frontend for many core bzr commands and several universal dialogs
and helper commands. https://launchpad.net/qbzr/.

Bzr-Gtk and Olive GTK+ Frontends to Various Bazaar Commands. Currently contains di-
alogs for almost all common operations, including annotate and visualise (log). Olive, the
integrated version control application is also part of bzr-gtk. https://launchpad.net/

bzr-gtk/.

hgview hgview is a simple tool aiming at visually navigate in a Mercurial repository history.
http://www.logilab.org/project/hgview.

MacHG OSX GUI for Mercurial providing a graphical way to manage a collection of files, to
add things to the collection, to save a snapshot of the collection, to restore the collection to
an earlier state and in general to work with the files. http://jasonfharris.com/machg/.

RabitVCS A set of graphical tools written to provide simple and straightforward access to
the version control systems you use. Currently, it is integrated into the Nautilus and
Thunar file managers, the Gedit text editor, and supports Subversion and Git. http:

//rabbitvcs.org/.

Push Me Pull You A graphical interface for a distributed version control systems. Currently
it contains proof-of-concept support including the distributed systems described in this
report.http://pmpu.sharesource.org/.

12

http://tortoisehg.bitbucket.org/
https://launchpad.net/tortoisebzr/
http://cvsgui.sourceforge.net/
http://rapidsvn.tigris.org/
http://rapidsvn.tigris.org/
http://code.google.com/p/gitextensions/
http://code.google.com/p/msysgit/
http://live.gnome.org/giggle
http://nathanj.github.com/gitguide/tour.html
http://gitx.frim.nl/
http://git.gnome.org/browse/gitg
http://doc.bazaar.canonical.com/explorer/en/
http://doc.bazaar.canonical.com/explorer/en/
https://launchpad.net/qbzr/
https://launchpad.net/bzr-gtk/
https://launchpad.net/bzr-gtk/
http://www.logilab.org/project/hgview
http://jasonfharris.com/machg/
http://rabbitvcs.org/
http://rabbitvcs.org/
http://pmpu.sharesource.org/

Meld This is a visual diff and merge tool but has support for the revision control systems
mentioned in this report. http://meldmerge.org/.

There are a number of Eclipse plug-ins for revision control systems beyond the included CVS
support, including:

Subclipse http://subclipse.tigris.org/

Subversive http://www.eclipse.org/subversive/

EGit http://eclipse.org/egit/

JGit http://eclipse.org/jgit/

Bzr-Eclipse http://wiki.bazaar.canonical.com/BzrEclipse

QBzr-Eclipse https://launchpad.net/qbzr-eclipse/

MercurialEclipse http://javaforge.com/project/HGE

10 Conclusion

The simple conclusion is that there is no best revision control system. Indeed, there is probably
no best system for each individual, just the one they prefer and that is a difficult decision because
the systems have such similar command sets.
One thing that can be said is that a distributed system may be better for the following reasons:

• Distributed systems currently have a great deal of momentum so it is worth learning at
least one system.

• A distributed system can be used in a centralised way - but that is not enforced.

• You have a local copy of the who repository to work with.

• Branching is easier (more obvious what it means to branch) so you are more likely to use
it.

The last word should be to say that revision control is essential for good software development
so it is important to choose a system - which ever it turns out to be.

References

13

http://meldmerge.org/
http://subclipse.tigris.org/
http://www.eclipse.org/subversive/
http://eclipse.org/egit/
http://eclipse.org/jgit/
http://wiki.bazaar.canonical.com/BzrEclipse
https://launchpad.net/qbzr-eclipse/
http://javaforge.com/project/HGE

	RAL-TR-2012-003-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2012-003-report.pdf
	Introduction
	Background

	Why Use Revision Control?
	RCS in CCPForge
	CVS
	Subversion (SVN)
	GIT
	Bazaar
	Mercurial
	GUI Clients
	Conclusion

