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Abstract

The WG5 committee, at its meeting in Delft, May 2005, decided to include co-arrays in the next

Fortran Standard. A Fortran program containing co-arrays is interpreted as if it were replicated

a fixed number of times and all copies were executed asynchronously. Each copy has its own set

of data objects and is called an image. The array syntax of Fortran is extended with additional

trailing subscripts in square brackets to give a clear and straightforward representation of access

to data on other images.

References without square brackets are to local data, so code that can run independently is

uncluttered. Any occurrence of square brackets is a warning about communication between

images.

The additional syntax requires support in the compiler, but it has been designed to be easy to

implement and to give the compiler scope both to apply its optimizations within each image and

to optimize the communication between images.

The extension includes execution control statements for synchronizing images and intrinsic

procedures to return the number of images, to return the index of the current image, and to

perform collective operations.

The paper does not attempt to describe the full details of the feature as it now appears in the

draft of the new standard. Instead, we describe a subset and demonstrate the use of this subset

with examples.
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1 Introduction

The co-array extension to Fortran consists of two new features. One is a simple syntactic extension

called the co-dimension that describes data distribution. The other is the Single-Program-

Multiple-Data (SPMD) programming model that describes work distribution. The programmer

moves data between replicated objects called co-arrays using explicit co-array syntax that looks

and feels like normal Fortran. The programmer also determines the execution path through

replicated copies of the program using explicit control constructs and synchronizations.

The programmer uses co-array syntax only where it is needed. A reference to a co-array with

no square brackets attached to it is a normal reference to the local object. Since most references

to data objects in a parallel code should be local, co-array syntax should appear only in isolated

parts of the code. If not, the syntax acts as a visual flag to the programmer that too much

communication among images may be taking place. It also acts as a flag to the compiler to

generate code that avoids latency whenever possible.

Because co-arrays are integrated into the language, remote references automatically gain

the services of Fortran’s basic data capabilities, including the typing system and automatic type

conversions in assignments, information about structure layout, and even object-oriented features.

The co-array feature adopted by WG5 was formerly known as Co-Array Fortran, an informal

extension to Fortran 95 by Numrich and Reid (Numrich and Reid 1998). Co-Array Fortran itself

was formerly known as F−−, which evolved from a simple programming model for the CRAY-

T3D described only in internal Technical Reports at Cray Research in the early 1990s. The

first informal definition (Numrich 1997) was restricted to the Fortran 77 language and used a

different syntax to represent co-arrays. It was extended informally to Fortran 90 by Numrich

et al (Numrich and Steidel 1997, Numrich, Steidel, Johnson, de Dinechin, Elsesser, Fischer and

MacDonald 1998b), and defined more precisely for Fortran 95 by Numrich and Reid (Numrich

and Reid 1998).

Co-Array Fortran has been incorporated into the Cray Fortran compiler and various

applications have been converted to the syntax (Numrich 2005a, Numrich 2005b, Numrich, Reid

and Kim 1998a). It was also an unsupported feature of the SGI Fortran compiler (Numrich et al.

1998a) for a brief period in the late 1990s, but it never became a supported product. A portable

compiling system for a subset of the extension has been implemented by Dotsenko, Coarfa, and

Mellor-Crummey (Coarfa, Dotsenko and Mellor-Crummey 2004). It performs source-to-source

transformation of co-array code to standard Fortran 90 code augmented with calls to platform-

specific communication protocols. One instantiation uses the Aggregate Remote Memory Copy

Interface (ARMCI) library for one-sided communication (Nieplocha and Carpenter 1999) and

another uses loads and stores for communication on shared-memory machines. Experience with

this compiling system is related in several papers by this group (Coarfa, Dotsenko, Eckhardt

and Mellor-Crummey 2003, Dotsenko, Coarfa and Mellor-Crummey 2004a, Dotsenko, Coarfa,

Mellor-Crummey and Chavarŕıa-Miranda 2004b).

Reid (Reid 2005a, Reid 2005b) proposed that co-arrays be included in the revision of Fortran

that is planned for 2008. The ISO/IEC Fortran Committee agreed to include co-arrays in

their May 2005 meeting (ISO/IEC Fortran Standards Committee, ISO/IEC JTC 1/SC22/WG5

n.d.) but made some changes. The US Fortran Standards Technical Committee J3 (US

Fortran Standards Committee J3, a technical subcommittee of the InterNational Committee

for Information Technology Standards (INCITS) n.d.), the primary development body, have
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made further changes since then. This paper contains a description of the main features of the

proposal as it now stands with applications to some simple examples. For a more complete

summary, see Reid (Reid 2007), and for more extensive discussion and examples, see Numrich

and Reid (Numrich and Reid 1998, Numrich and Reid 2005).

2 Execution model

The co-array extension adopts the SPMD programming model. A single program is replicated a

fixed number of times with each replication called an image. The name image is used to avoid

any connotation of how a particular run-time system might implement the co-array extension,

for example, using a thread model versus a process model, or how an image is mapped onto

a physical processor. The number of images should be thought of as the number of virtual or

logical processors; it may be the same as the number of physical processors, may be more than

the number of physical processors, or may be less than the number of physical processors.

A particular implementation may permit the number of images to be chosen at compile-time,

at link-time, or at run-time. Once fixed, however, it does not change. The programmer may

retrieve the number of images at run-time through the intrinsic function num images() and may

retrieve the unique image index from the intrinsic function this image(), which returns the

index of the image that executes the function. Images are numbered from one in the normal

Fortran fashion.

Each image executes asynchronously, and the normal rules of Fortran apply. The programmer

determines the execution path on each image using normal Fortran control constructs and explicit

synchronizations with the help of the image index. The actual execution path followed on each

image may, and probably will, be different from image to image.

Provided no image encounters an error condition that may be expected to terminate its

execution, all images continue execution until they have all executed a stop or an end program

statement. We call this ‘normal termination’. If an error condition occurs on one image, the

computation is probably flawed, and it is desirable to stop the other images as soon as is

practicable. We call this ‘error termination’.

An image that initiates normal termination does not complete termination until all other

images have initiated either normal or error termination allowing its data to remain accessible to

the other images. The new statement all stop allows the programmer to terminate execution

on all images. When this statement executes on an image or an error condition occurs on an

image, the image initiates error termination for itself and causes all other images that have not

already initiated termination to initiate error termination. Within the performance limits of the

processor’s ability to send signals to other images, this propagation of error termination should

be immediate and cause the whole calculation to stop.

3 Co-dimensions

Each image has its own set of replicated data objects with the same names in each image. All

of the objects may be accessed in the normal Fortran way on each image. Some objects are also

co-array objects that may be accessed across images.
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3.1 Specifying co-array objects

Co-arrays are declared with co-dimensions in square brackets immediately following dimensions

in parentheses or in place of them. For example, the declarations,

real :: a(20)[20,*] ! An array co-array

real :: c[*], d[*] ! Scalar co-arrays

character :: b(20)[-5:20,0:*]

integer :: ib(10)[*]

type(interval) :: s[20,*]

define co-arrays of various types. The form for the dimensions in square brackets is the same as

that for the dimensions in parentheses for an assumed-size array. The total number of subscripts

plus co-subscripts is limited to 15.

Each co-array exists with the same name and has the same shape on each image. In the

example, each image has a real co-array a of size 20 in its own local memory, two scalars c and

d, and so forth. There is no concept of a shared array without co-subscripts that spans the set

of images. The programmer is responsible for decomposing such a global array into local pieces

that reside on each local image.

A co-array cannot be a pointer, but it may be allocatable,

real, allocatable :: u(:)[:], v[:,:]

The allocate statement has been extended so that the co-bounds can be specified at run-time,

allocate ( u(10)[*], v[-1:p,0:*] )

The programmer might, for example, pick the variable p at run-time to set a particular logical

relationship between the actual number of images. The co-bounds must always be included in the

allocate statement and the upper bound for the final co-dimension must always be an asterisk.

The value of each bound, co-bound, or length type parameter must be the same on all images.

The data in parentheses in a co-array’s declaration or allocation statement specify the normal

rank, bounds, extents, size, and shape of the co-array. They determine the access rules

within an image’s own memory. The data in square brackets specify the co-array’s co-rank,

co-bounds, and co-extents. They determine the access rules from one image to another. The

syntax and semantics for co-dimensions mirror those of assumed-size arrays. The final extent is

always indicated with an asterisk, and there is no final co-extent, no final upper co-bound, and

no co-shape. Since a co-array exists on all images, the co-size of a co-array is always equal to

the number of images. This convention allows the programmer to write code independent of the

number of images the code will eventually use.

Co-dimensions allow the programmer to define a logical relationship among images for each

co-array. This logical relationship may be different for different co-arrays and may even change

for the same co-array across procedure calls. The set of subscript indices that correspond to the

current image are always calculated from the declaration of the co-array in the current procedure

on that image. The programmer may retrieve them from the alternative form of the intrinsic

function this image(z) for any co-array z. For the co-array,

real :: z[10,0:9,0:*]
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for example, this image() has the value 5 on image 5, and this image(z) has the value

(/5,0,0/). For the same example on image 213, this image(z) has the value (/3,1,2/).

Conversely, the programmer may retrieve the image index that corresponds to a set of co-

subscript indices from the inverse intrinsic function image index. For example, the value of

image index(z,(/5,0,0/)) is 5 on every image, and the value of image index(z,(/3,1,2/))

is 213.

3.2 Referencing images

Co-array indices in square brackets provide a convenient notation for accessing an object within

another image’s memory in the same way that array indices in parentheses provide a notation

for accessing an object within an image’s own memory. A reference to an object without square

brackets is always a reference to the object on the invoking image. A reference to an object with

co-subscripts enclosed in square brackets is a reference to the object on the image corresponding

to the co-subscripts. Co-subscripts map to an image index in the same way as array subscripts

map to a position in array element order. For example, if two objects, x and y, are declared as

co-arrays,

real :: x(n)[-3:*],y(n)[5,*]

then an image that executes the statement,

x(:) = y(:)[q,r]

copies the array y(:) from the image corresponding to co-subscripts [q,r] into array x(:) in

its own memory.

Images execute statements they encounter by the normal rules of Fortran. Co-subscripts do

not determine how work is assigned to different images. They are a logical description of the

relationship between memory assigned to different images. Whether the co-subscripts map to

the executing image or not has no bearing on whether that image evaluates the expression or

assignment. For example, any image encountering the statement,

x(:)[p] = x(:) + y(:)[q,r]

executes it no matter what values are given for p, q and r. The invoking image copies array y(:)

from the image corresponding to [q,r], adds it to its local data x(:), and stores it to the remote

array x(:) on the image corresponding to p.

The co-subscripts [q,r] map to an image index based on the co-dimensions in the declaration

statement for co-array y. The co-subscript [p] maps to an image index based on the co-dimension

in the declaration statement for co-array x. Neither of these images is involved in the execution

of this statement. If it is necessary to restrict execution to a specific image, the programmer

must use a Fortran if or case statement in the normal way. If it is necessary to avoid memory

race conditions, the programmer must use synchronization statements such as those discussed in

Section 4.

The programmer is responsible for generating valid co-subscripts that map to valid image

indices. For example, for the co-array y declared at the start of this subsection, a reference

to y(:)[1,4] on 16 images is valid since it has co-subscript order value 16, but a reference to

y(:)[2,4] is invalid since it has co-subscript order value 17.
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3.3 Co-arrays as actual arguments of procedures

A co-array may be an actual argument of a procedure either with or without co-subscripts in

square brackets. If the interface is not explicit, the compiler assumes that no dummy argument

is a co-array. If the actual argument contains co-subscripts,

real :: x[p,*]

call mysub(x[q,r])

the compiler is likely to make a local copy of x[q,r] before entering the routine and a remote

copy upon exit from the routine. To limit the number of copies made, the programmer must

supply an explicit interface. For example, the interface,

interface

subroutine mysub(x)

real,intent(out) :: x

end subroutine mysub

end interface

alerts the compiler that only copy out is required.

This feature is very important. It means that all the intrinsic procedures of Fortran 2003 and

any procedure that has been written for a uni-processor is available for co-arrays. Here is a very

simple example:

s = sum(a(:)[p])

3.4 Co-arrays as dummy arguments of procedures

A dummy argument of a procedure is permitted to be a co-array. It may be of explicit shape,

assumed size, assumed shape, or allocatable:

subroutine subr(n,w,x,y,z)

integer :: n

real :: w(n)[n,*] ! Explicit shape

real :: x(n,*)[*] ! Assumed size

real :: y(:,:)[*] ! Assumed shape

real, allocatable :: z(:)[:,:]

When the procedure is called, the corresponding actual argument must be a co-array or a

subobject of a co-array with no co-subscripts. The association is with the whole or part of

the co-array itself and not with a copy, so the programmer must avoid calls for which making

a copy of an argument is necessary. For example, a noncontiguous section such as a(1:6:2) is

not acceptable if the actual argument is an explicit-size array. Copying is disallowed because the

called procedure may access the corresponding co-array on another image and that other image

may have not yet have made a copy of its co-array or indeed may never do so since it is executing

some other procedure.

The interface is required to be explicit so that the compiler knows that the dummy argument

is a co-array. Here is an example
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interface

subroutine sub(x,y)

real :: x(:)[*], y(:)[*]

end subroutine sub

end interface

:

real, allocatable :: a(:)[:], b(:,:)[:]

:

call sub(a(:),b(1,:))

If a dummy argument is an allocatable co-array, the corresponding actual argument must be

an allocatable co-array of the same rank and co-rank.

The rules for resolving generic procedure references take no account of the co-array properties

and are therefore unchanged. The rules cannot be extended to allow overloading of array and

co-array versions since the syntactic form of an actual argument would be the same in the two

cases.

Each image independently associates its non-allocatable co-array dummy argument with an

actual co-array and defines the co-rank and co-bounds afresh. It uses these to interpret each

reference to an object with co-subscripts, taking no account of whether the remote image is

executing the same procedure with the same co-array.

3.5 Co-arrays in procedures

Automatic-array co-arrays are not permitted (an automatic array is not a dummy array and

has one or more bounds that are not constant expressions). Were they permitted, it would be

necessary to require image synchronization, both after memory is allocated on entry and before

memory is deallocated on return. A co-array function result is like an automatic co-array and is

disallowed for the same reasons.

Unless it is allocatable or a dummy argument, a co-array that is declared in a procedure must

be given the save attribute. This ensures that the system does not reallocate it on every entry.

An allocatable co-array is not required to have the save attribute because a recursive procedure

may need separate allocatable arrays at more than one level of recursion.

4 Execution control statements

Each image executes on its own as a Fortran program without regard to the execution of

other images. Each image can define data in any other image’s memory and may access data

from any other image’s memory at any time during execution. A memory race condition may

occur whenever an image alters the contents of a co-array, even in its own memory. It is

the programmer’s responsibility to avoid memory race conditions by using execution control

statements. The programmer must ensure that when an image assigns a new value to a co-array,

no other image still needs the old value. And when an image accesses the value of a co-array, it

receives the expected value, either an old value unchanged by other images or a new value changed

in a controlled way by another image. In this and later sections, we discuss the more important
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execution control statements available to the programmer: sync all, allocate, deallocate,

notify, query, sync team, call form-team, open, close, and a call of a collective subroutine.

For code between execution control statements, the compiler is free to use all its normal

optimization techniques as if only one image were present. Execution of a execution control

statement usually suppresses compiler optimizations that might reorder memory operations across

the statement. All memory operations initiated by an image before the statement must complete

before any memory operations following the statement are initiated by the image unless the

compiler can establish that failure to do so could not alter processing on another image.

4.1 The sync all statement

The sync all statement provides a barrier for the important case where all images must

synchronize before moving forward. Any statement executed before the barrier on image P is

also executed before any statement executed after the barrier on any other image Q. The normal

rules relating to execution order apply. In particular, if the value of a co-array variable is changed

by any image before the barrier, it is accessible to all images after the barrier. The programmer

must ensure that if one image changes a co-array value between two successive barriers, another

image does not reference or define that value between the barriers.

Figure 4.1 shows two simple examples of the use of the sync all statement. In the code

shown on the left side of the figure, image 1 reads data from standard input and broadcasts it

to other images. The first sync all ensures that image 1 does not interfere with any previous

use of p by another image. The second sync all ensures that another image does not access p

before the new value has been set by image 1.

Alternatively, in the code shown on the right side of the figure, image 1 still reads data from

standard input but does not broadcast the value to the other images. Instead, each other image

makes a copy. The first and last sync all statements are there for the same reasons as before.

The two new sync all statements ensure that no race condition occurs. The other images wait

at their sync all statement for image 1 to finish. When image 1 reaches its sync all statement,

the other images are released, and they copy the value of p from image 1. This alternative version

illustrates that the sync all statement on one image may correspond to a different sync all

statement on another image.

Figure 4.1: Read data on image 1 and define it on other images.

real :: p[*] | real :: p[*]

... | ...

sync all | sync all

if (this_image()==1) then | if (this_image()==1) then

read (*,*) p | read(*,*) p

| sync all

do i = 2, num_images() | else

p[i] = p | sync all

end do | p = p[1]

end if | end if

sync all | sync all
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4.2 The allocate and deallocate statements

There is an implicit synchronization of all images in association with each allocate statement

that involves one or more co-arrays. Images do not commence executing subsequent statements

until all images finish executing the same allocate statement. The programmer is responsible

for ensuring that the shape and co-shape are the same on all images. Similarly, for a deallocate

statement involving one or more co-arrays, all images delay making the deallocations until they

are all about to execute the same deallocate statement. Without these rules, an image might

reference data on another image that has not yet been allocated or has already been deallocated.

For an allocatable co-array declared in a procedure without the save attribute, if the co-array

is still allocated when a return statement or an end statement is executed, there is an implicit

deallocation (and associated synchronization) before the procedure is exited.

Fortran 2003 allows the shapes to disagree in an intrinsic array assignment to an allocatable

array; the system performs the appropriate reallocation. Such disagreement is not permitted for

an allocatable co-array, since it would involve synchronization.

4.3 The notify and query statements

The notify and query statements support an asynchronous programming style to enable better

load balancing between images. Rather than waiting for all the other images at a sync all

statement, an image may proceed with calculations while other images catch up.

Each of these statements specifies an image set in parentheses,

notify(image set)

query(image set)

as an integer scalar holding an image index, as a rank-one integer array holding distinct image

indices, or as an asterisk to indicate all images. The notify statement is non-blocking; the image

executing it continues execution without waiting for any of the images in its image set. The

query statement is blocking; the image executing it waits until it receives notification from every

image in its image set.

An alternative form of the query statement,

query(image set, ready=scalar logical variable)

is non-blocking. A query statement is said to be satisfied on completion if it has no ready=

specifier or if its ready= variable has been set to true. If the ready= value is false, we expect the

image to execute further query statements until it executes a satisfied query statement.

These control statements interact with each other in the following way. Let NP,Q be the

number of notify statements executed on image P with image Q in its image set. Let SQ,P be

the number of satisfied query statements executed by image Q with image P in its image set. A

query statement on image Q without a ready= variable delays until NP,Q > SQ,P for all images

P in its image set. A query statement on image Q with a ready= variable sets its value to true

if and only if NP,Q > SQ,P for all images P in its image set.

An execution of a notify statement on image P with image Q in its image set corresponds

to a satisfied query statement on image Q with image P in its image set, if the number NP,Q

of such notify statements on image P is the same as the number SQ,P of such satisfied query

statements on image Q.
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Any statement executed before a notify statement on image P is also executed before any

statement executed after the corresponding query statement on image Q. The normal rules

relating to execution order apply. In particular, if the value of a co-array variable is changed by

image P before the notify statement, it is accessible to image Q after the query statement.

Figure 4.2 shows two examples of how to use notify/query pairs. On the left side, image p

computes the value of some variable z and then notifies image q. Image q executes a blocking

query to image p and waits for notification before reading the value of z. On the right side, image

p does the same thing, but image q executes non-blocking query statements. Image q continues

execution doing work not dependent on the value of z and loops back to check for a true value

for its logical variable. Only then does it read the value of z from image p.

Figure 4.2: Using notify and query statements.

real :: z[*] | real :: z[*]

... | logical :: ready=.false.

... | ...

sync all | sync all

if(this_image()==p) then | if(this_image()==p) then

z = some_function() | z = some_function()

notify(q) | notify(q)

elseif(this_image()==q) then | elseif(this_image()==q) then

query(p) | do while(.not.ready)

z = z[p] | ... ! Work not dependent on z

end if | query(p,ready=ready)

| end do

| z = z[p]

| end if

4.4 The sync team statement

A team of images is defined by the value of a scalar of type image team of the intrinsic module

ISO Fortran env. All the components of the type are private, and none is a co-array. A variable

of this type has default initialization to a value that identifies an empty team.

A team is established by executing the intrinsic subroutine,

call form_team(image_team,list)

with a rank-one integer array list containing the image index for each member of the team.

Every image of the team must call this procedure, and none of the team members continues

beyond the call until all team members have made the call. The intrinsic function,

list = team_images(team)

returns the images in the team as a rank-one array of type default integer.

The intention is to allow the processor to calculate optimized communication patterns during

the call of form team and to store them for all subsequent team actions. It is quite likely that
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different images would need different data, so it is inappropriate to copy values between images.

For this reason, a co-array is not permitted to be of type image team.

The statement,

sync team (team)

behaves like sync all except that it applies only to the images of the team. The executing image

must be a member of the team.

5 Input/output

The main mechanism for parallel I/O is the direct-access file where the programmer arranges that

the same record is never accessed by more than one image without an intervening synchronization.

If two images write to the same record of a direct-access file, it is the programmer’s responsibility

to separate the writes by appropriate flush statements and image synchronizations.

The open statement has been augmented to allow several images to be connected on the same

unit. The set of images connected to a unit is called a connect team, specified as team=connect

in the open statement by a variable connect of type image team. The executing image must be

a member of the team, and each member of the team must execute the same open statement.

There is an implicit team synchronization. If there is no team= specifier in an open statement,

the connect team is the executing image. In that case, the normal rules for opening a file apply.

If an open statement specifies a connect team of more than one image, the connection must

be either direct access or sequential access with action=’write’. If the connection is for write,

the processor ensures that once an image P commences transferring the data of a record to the

file, no other image Q transfers data to the file until the whole record from image P has been

transferred. In other words, each record in an external file arises from a single image. The

backspace, rewind, and endfile statements are not permitted for such a unit.

The default unit for input, either * in a read statement or input unit in the intrinsic module

iso fortran env, has a connect team consisting of image one only. Any other preconnected unit

has a connect team consisting of all the images, but a read statement for such a unit is permitted

only on image one.

The processor is permitted to hold data in a buffer and to transfer several whole records on

execution of a flush statement. Without a flush, all writes may be buffered locally until the

file is closed. Execution of a flush statement is required only when a record written by one

image is read by another or when the relative order of writes from images is important. The

flush statement ensures that any changed records in buffers are copied to the file itself or to a

replication of the file that other images access. Executing a flush statement also has the effect

of requiring the reloading of I/O buffers in case the file has been altered by another image.

If an image executes a close statement, all images in the connect team must execute the same

close statement for the unit with the same status. There is an implicit team synchronization.

6 An example: LU Factorization

As an example, we examine in some detail a parallel algorithm for LU factorization, with row

pivoting, of a square matrix of order n. We decompose the matrix by columns into blocks of size
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n×nb. If the program executes with p images, these blocks are held contiguously on images (1,

2, . . ., p, 1, 2, . . ., p, . . .) as a block-column, cyclic-wrapped distribution.

Figure 6.3: Program for LU factorization.

program LU

integer :: n[*] ! Matrix order

integer :: nb[*] ! Block size

character(len=100) :: file[*] ! I/O File name

double precision, allocatable :: A(:,:)[:] ! Distributed matrix

integer,allocatable :: ipiv(:)[:] ! Row indices of the pivots

integer :: p ! Number of images

integer :: Iam ! This image

p = num_images()

Iam = this_image()

if(Iam == 1) then

read(*,*) n,nb,file

notify(*)

else

query(1)

file=file[1]

n=n[1]; nb=nb[1]

end if

allocate(A(n,nb*ceiling(real(n)/(nb*p)))[*])

allocate(ipiv(nb*ceiling(real(n)/(nb*p)))[*])

call dataIN(file,n,nb,A)

call LUfactorize(n,nb,A,ipiv)

call dataOUT(file,n,nb,A)

deallocate(A,ipiv)

end program LU

Figure 6.3 shows a program that illustrates how we can tie together all the pieces of the

co-array extension to carry out an LU factorization. Image 1 reads the problem size, the block

size, and the input file name from standard input and notifies the other images once it has these

values. The other images wait on a blocking query until they are released and then read the

values of the input variables from image 1. All images then allocate memory for the matrix A

and the pivot vector ipiv. These arrays are co-arrays so there is an implied synchronization for

these two allocate statements.

The matrix A has been previously written to a direct access file column-by-column. The

procedure dataIN shown in Figure 6.4 reads the data from that file. There is a corresponding

procedure dataOUT that writes the data out to the file.

Our code for the actual factorization is based on the LAPACK procedure dgetrf (Anderson,

Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney

and Sorensen 1999) that performs a blocked right-looking factorization. For each block column,

dgetrf performs the following steps:

1. dgetf2: Apply interchanges within the block column and factor it.

2. dlaswp: Apply the interchanges to the previous columns, which belong to the factor L.

11



Figure 6.4: Parallel I/O from a file.

subroutine dataIN(inputFile,n,nb,A)

character(len=*),intent(in) :: inputFile ! I/O file name

integer, intent(in) :: n ! Matrix order

integer, intent(in) :: nb ! Block size

double precision, intent(out) :: A(n,*) ! Distributed matrix

integer :: len ! Length of the block column

integer :: j ! Loop index

integer :: ja=1 ! Column in A

integer :: p ! Number of images

integer,parameter :: unit=999 ! Unit number

type(image_team) :: team ! Team

p = num_images()

call form_team( all, (/ (j,j=1,p) /) )

inquire (iolength=len) A(:,1)

open(unit,file=inputFile,status=’old’,access=’direct’,recl=len,team=all)

j = (this_image()-1)*nb+1

do while(j<=n)

read(unit,rec=j) A(:,ja)

j = j+1; ja = ja+1

if (mod(ja,nb)==1) j = j+nb*(p-1)

end do

close(unit)

end subroutine dataIN

3. dlaswp: Apply the interchanges to the subsequent columns.

4. dtrsm: Compute the block row of U .

5. dgemm: Update the submatrix of subsequent rows and columns.

For large matrix order n compared with the block size nb, most of the work is performed in the

Level-3 BLAS code dgemm, which is likely to be highly optimized on every machine.

Figure 6.5 shows our co-array version. The major loop is over the block columns, as in

dgetrf. The image that holds the pivot block column uses dgetf2 to factor it, as in step 1.

After a synchronization, each image uses co-array syntax to make a copy of the pivot block

column and the interchanges. Each image then executes step 2 for those previous columns that

it holds and steps 3 to 5 for those subsequent columns that it holds. Note that, for a large

problem, the bulk of the work is in step 5 and is performed in parallel as each image executes

dgemm independently.

Table 6.1 shows the execution times on a Cray-X1E for a matrix of order n=5000 with block

size nb=50 as a function of the number of images. Each processor has two vector pipelines,

with frequency 1.13 MHz, capable of two floating-point operations each for a peak computational

power of 4.52 Gflop/s. Each image corresponds to four processors working together (called MSP

mode) with a peak computational power of 18.1 Gflop/s.

With one image, our code obtains the fraction, 15.8/18.1 = 0.87, of the peak theoretical power.

As shown in Figure 6.6, our code scales quite well, as p−2/3 although not perfectly as p−1, as the

number of images increases to 32. The wiggles in the curve are caused by details of the Cray-
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Figure 6.5: Code for LU factorization.

subroutine luFactorize(n, nb, A, ipiv)

integer,intent(in) :: n ! Matrix order

integer,intent(in) :: nb ! Block size

double precision,intent(inout) :: A(n,*)[*] ! Matrix to factorized

integer,intent(inout) :: ipiv(*)[*] ! Row indices of the pivots

integer :: me ! This image

integer :: p ! Number of images

integer :: pivimage=1 ! Index of the image handling current pivot block

integer :: info ! Temporary variable

integer :: i ! Row index

integer :: j ! Pivot column index

integer :: jb ! Size of the pivot block

integer :: lastcol ! The local index of the last column on this image

integer :: lpiv(nb) ! Local copy of ipiv for pivot block

integer :: pivcol=1 ! The local index of the pivot column on its image

integer :: nextpiv=1 ! The local index of the next column on this image

double precision :: pivblock(n,nb) ! Copy of pivot block column

double precision :: one=1.0

p = num_images()

me = this_image()

lastcol = nb*ceiling(real(n/nb+1-me)/p)

if ( mod(n-1,p*nb)/nb+1 == me ) lastcol = lastcol + mod(n,nb)

Loop: do j = 1, n, nb

jb = min(nb,n+1-j) ! Size of the pivot block

! Factor diagonal and subdiagonal blocks on pivimage.

if (pivimage==me) call dgetf2( n-J+1, jb, A( j, pivcol ), n, ipiv( pivcol ), info )

SYNC ALL

! Copy the pivot columns from pivimage

PIVBLOCK(J:N,1:JB) = A(J:N,PIVCOL:PIVCOL+JB-1)[PIVIMAGE]

LPIV(1:JB) = IPIV(PIVCOL:PIVCOL+JB-1)[PIVIMAGE]

! Apply interchanges to columns 1:nextpiv-1.

call dlaswp( nextpiv-1, A(j,1), n, 1, jb, lpiv, 1 )

if (pivimage==me) nextpiv=nextpiv+jb

! Apply interchanges to columns nextpiv:lastcol.

if (nextpiv <= lastcol) then

call dlaswp( lastcol-nextpiv+1, A(j,nextpiv), n, 1, jb, lpiv, 1 )

! Compute block row of U

call dtrsm(’l’,’l’,’n’,’u’,jb,lastcol-nextpiv+1,one,pivblock(j,1),n,A(J,nextpiv),n)

! Update trailing submatrix

call dgemm(’n’,’n’,n-j-jb+1,lastcol-nextpiv+1,jb,-one, pivblock(j+jb,1), &

n, A(J,nextpiv),n,one,A(J+jb,nextpiv),n)

end if

SYNC ALL

! Adjust the pivot indices.

if (pivimage==me) then

do i = pivcol, pivcol+jb-1; ipiv(i) = j - 1 + ipiv(i); end do

end if

! Update pivimage, wrapping if necessary.

pivimage = pivimage + 1

if (pivimage>p) then; pivimage = 1; pivcol = pivcol + nb; end if

end do Loop

end subroutine luFactorize
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Table 6.1: Execution time and computational power for a Cray-X1E for matrix size n = 5000

and block size nb = 50.
images time(s) Gflop/s

1 5.3 15.8

2 2.8 29.5

4 1.8 45.8

8 1.5 55.5

16 0.61 136

32 0.51 162

Figure 6.6: Execution time for a Cray-X1E as a function of the number of images. The matrix

size is n = 5000 and the block size is nb = 50. Perfect scaling corresponds to the dashed line

marked p−1. Our code scales approximately as p−2/3.
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X1E architecture (Numrich 2007). We are aware that better scaling may be obtained by a full

decomposition in both rows and columns rather than decomposing by columns alone (Dongarra,

van de Geijn and Walker 1994, Dongarra and Walker 1995, Numrich 2005a, Numrich 2005b,

Numrich 2007), but the additional synchronization required and the additional complications

required for pivoting make it run slower for modest values of n. Besides, such a code is more

complicated and would not be appropriate to show in full here.

7 Co-arrays of derived type

By definition, co-arrays are the same size on each image. This restriction is not sufficient for

handling applications where the sizes of arrays are determined dynamically and different images

may hold different amounts of data. But a co-array may be of a derived type with pointer or

allocatable components. The targets of such components are always local with shapes that may

vary from image to image. On each image, the component is allocated locally or is pointer

assigned to a local target with the desired size for that image. If an image has no data assigned

to it, it need not allocate the component or associate the pointer.

For example, the derived type,

type VelocityField

real,allocatable :: x(:),y(:),z(:)

type(FieldMap),pointer :: map

end type

contains allocatable components that hold the values of a velocity field. It also contains a pointer

of another derived type that holds a map describing how the velocity field is distributed across

images.

A variable of this type may be declared as a co-array,

type(VelocityField),allocatable :: v[:]

Allocation of an instance of this type as a co-array,

allocate(v[*])

is a collective allocation with implied synchronization across images.

Each image allocates memory for its own data components,

allocate(v%x(0:n+1),v%y(0:n+1),v%z(0:n+1))

using the normal Fortran allocate statement. These memory allocations are independent of

each other, there is no synchronization involved, and the memory allocated may be, and probably

will be, at different locations on the local heap for each image. The programmer must supply

synchronization following these allocations before referencing data across images.

Pointer assignment takes place locally on each image. For example, if map and localMap are

of type fieldMap, the code,

type(fieldMap),target :: map

type(fieldMap),pointer :: localMap

v%map => map

localMap => v%map
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represents pointer assignment of the pointer component to a map on the invoking image, in the

first case, and a local pointer assignment to the pointer component, in the second case.

Pointers are not allowed to be co-arrays, and there is no concept of pointer assignment across

images. For example, the derived-type intrinsic assignments,

v[q] = v ! Pointer component of v[q] becomes undefined

v = v[q] ! Pointer component of v becomes undefined

result in these pointer components becoming undefined when such assignments are executed by

an image other than the one with co-subscript q. The data components of the structure, of

course, are copied from one image to the other.

Co-array syntax supplies a straightforward way to access data from the components of such

structures. The co-subscript in square brackets is associated with the variable v, not with its

component, for example,

vX(1:n) = v[p]%x(1:n)

This statement requires the image that executes it to obtain the address, on image p, of the

allocated component v%x and then to copy the data in the array itself to the local array vX.

A typical example for using such data structures is the exchange of halo cells from neighboring

images (Numrich et al. 1998a, Numrich et al. 1998b),

v%x(n+1)=v[me+1]%x(1)

v%x(0) =v[me-1]%x(n)

Data manipulation of this kind is handled awkwardly, if at all, in other programming models.

Its natural expression in co-array syntax gives the programmer power and flexibility for writing

parallel code.

Note that the presence of co-arrays with pointer components may lead to variables that are

not co-arrays being accessed from other images or having their values changed by other images.

For example, the variable map may be accessed from another image through the co-array v. Of

course, this cannot happen for a variable that does not have the target attribute.

Co-arrays of derived type can be combined with the object-oriented features of Fortran

95 (Akin 2003, Norton, Decyk and Szymanski 1997) and Fortran 2003 (Cohen 2004, Reid 2003)

to emulate object-oriented class libraries. Numrich used this technique to build an object-

based parallel numerical library (Numrich 2005a, Numrich 2005b, Numrich 2006). This library

defines distributed data structures as derived types such as BlockR8Matrix for a blocked matrix

with double precision data. Constructors create these distributed objects based on information

contained in another structure called a VectorMap, and they allocate memory space for the correct

amount of data for each image. The library contains procedures that perform various operations

on these data structures including the usual linear algebra operations like matrix multiplication,

matrix transpose, and LU decomposition.

Figure 7.7 contains a code sample that shows how to use this object-based library for solving

a system of linear equations. The second line of the program gives access to the library through

the module CafLib. The next four lines of code declare some co-arrays: the block matrix A holds

the distributed matrix, and the block vector X holds the right-hand-side vector, which will be

replaced by the solution vector. The pivot vector pivot holds pivot information associated with

16



Figure 7.7: Program for solving a system of linear equations using CafLib.

program LU

use CafLib ! Access object-based library

type(BlockR8Matrix) :: A[*] ! Distributed matrix

type(BlockR8Vector) :: X[*] ! Distributed vector

type(R8PivotVector) :: pivot[*] ! Distributed permutation

integer :: k[*],n[*] ! Block size and matrix size

type(DirectAccessDiskFile) :: fileA ! Description of file for A

type(DirectAccessDiskFile) :: fileX ! Description of file for X

character,parameter :: myA=’myA’ ! File name for A

character,parameter :: myX=’myX’ ! File name for X

integer,parameter :: unit=888 ! Unit number

integer :: Iam ! Index of executing image

integer :: p,q,coDims(2) ! Co-dimensions

Iam = this_image()

coDims(:) = factorNumImages(2) ! Factor the image-index space

p = coDims(1); q = coDims(2) ! Co-dimensions; p*q<=num_images()

if(Iam == 1) then

open(unit=unit,file="input"); read(unit,*) n,k; close(unit)

end if

SYNC ALL ! Barrier

n = n[1]; k = k[1]

call newBlockMatrix(A,n,n,k,k,p,q) ! Construct block matrix

call newBlockVector(X,n,k,p*q) ! Construct block vector

call newPivotVector(A,pivot) ! Construct pivot vector: collective

call newDiskFile(fileA,unit,myA,n) ! Describe I/O for matrix A

call newDiskFile(fileX,unit,myX,n) ! Describe I/O for vector X

call readBlockMatrix(A,fileA) ! Read matrix A from a file: collective

call readBlockVector(X,fileX) ! Read vector X from a file: collective

call luDecomposition(A,pivot) ! Perform LU decomposition: collective

call solve(A,X,pivot) ! Solve the system: collective

: ! Make use of the solution

call writeBlockVector(X,fileX) ! Write vector X to a file: collective

call deletePivotVector(pivot) ! Remove block matrix: collective

call deleteBlockMatrix(A) ! Remove block vector

call deleteBlockVector(X) ! Remove block vector

call deleteDiskFile(fileA) ! Remove disk file A

call deleteDiskFile(fileX) ! Remove disk file X

end program LU
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the matrix A used during the decomposition and solution. The integers n and k contain the global

matrix size and the local block size. They are declared as co-arrays so that all images can obtain

their values from the first image, which reads them from an input file.

The first executable statement determines the image number for each image. The second

executable statement invokes the function factorNumImages, which returns an array of two

integers that factor the image-index space into a two-dimensional grid. These indices p and q are

used in the constructors at run-time to determine how objects are distributed across images.

The if statement controls execution so that image 1 opens the input file, reads the problem

size and local block size, and then closes the file. The other images wait at their barrier sync all

until the values have been defined in the co-array variables n and k, and they all copy the values

from image 1 after passing the barrier.

Each image independently invokes the constructor newBlockMatrix to create a distributed

matrix of global size n×n. Inside the library, the co-array is declared with co-dimensions A[p,*].

The constructor decomposes both rows and columns into a cyclic-wrapped distribution (Dongarra

and Walker 1995) with local blocks of size k×k held as allocatable array components. The

constructor allocates memory for these blocks and initializes them to zero. Next, each image

invokes the constructor newBlockVector to create a distributed vector of global size n with a

cyclic-wrapped distribution of local blocks of size k again held as allocatable array components.

The constructor allocates memory for these blocks and initializes them to zero. Inside the library,

the co-array is declared with co-dimension X[*].

Each image invokes the constructor newPivotVector to create a pivot vector associated with

the matrix A. It is a collective subroutine with internal synchronization. The pivot vector is used

internally by the library, and all its components are private. Its co-dimensions inside the library

match those of the matrix A. The library function getPivotVector returns an array containing

the usual pivot vector, like our array ipiv in Figure 6.5, if the programmer needs it.

The library contains I/O routines for matrix and vector objects. To use them, each image

invokes the constructor newDiskFile to create objects of type DirectAccessDiskFile that

enable them to read the matrix A and the vector X from direct access files. Each image invokes the

collective subroutines readBlockMatrix and readBlockVector that read the data from the files.

They then invoke the collective subroutine luDecomposition that performs the LU decomposition

followed by the collective subroutine solve that solves the system. They all invoke the collective

I/O subroutine writeBlockVector that saves the solution vector to a file. After using the

solution, each image comes to the second barrier sync all where they wait for all images to

arrive before deleting the data structures.

Reference (Numrich 2005a) describes the performance of this code on the Cray-T3E and

reference (Numrich 2007) describes the performance on the Cray-X1E.

8 Collective subroutines

A collective subroutine is a member of a new category of intrinsic subroutines that perform

operations across co-dimensions in a way similar to intrinsic procedures that perform operations

across normal dimensions.

co_all (mask,result[,team]) True if all values are true

co_any (mask,result[,team]) True if any value is true
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co_count (mask,result[,team]) Numbers of true elements

co_maxloc (co_array,result[,team]) Image indices of maximum values

co_maxval (co_array,result[,team]) Maximum values

co_minloc (co_array,result[,team]) Image indices of minimum values

co_minval (co_array,result[,team]) Minimum values

co_product(co_array,result[,team]) Products of elements

co_sum (co_array,result[,team]) Sums of elements

Each subroutine has a leading intent(in) co-array argument with the same shape on every

image of the team, an intent(out) result argument with the same shape as the first argument,

and an optional scalar intent(in) argument of type image team. If the optional argument is

absent, the team consists of all images. The same statement must be used to call the collective

on all images of the team, and each call involves synchronization of the images of the team. Upon

completion, each image of the team receives the same result, each element of which is calculated

from the values of the corresponding elements on all the images of the team.

The following invocation, for example,

real :: x(n)[*],y(n)

call co_product(x,y)

returns to local array y(:) on each image the products,

y(i) =
∏

p

x(i)[p] . (8.1)

Roundoff effects may cause the result of co product, as well as the result of co sum, to vary

between images.

An important case is for a scalar co-array. For example, the code,

real :: x(n), y(n), prod

real :: local_prod[*]

:

local_prod = dot_product(x(1:n),y(1:n))

call co_sum(local_prod,prod)

computes the inner-product of two rank-one arrays x and y. Each image computes its own local

inner-product using the normal dot product intrinsic function. No team is specified in the call

of co sum, so the team is taken to be all the images. There is an implied synchronization so the

programmer need not supply it explicitly. The collective procedure returns the sum over all the

images to them all in the result variable prod.

9 Summary

The co-array programming model is the first official parallel extension to the Fortran language.

We designed co-arrays, from the beginning, to be a natural extension that makes sense to a

Fortran programmer. Arrays are the rock bottom essence of the language for expressing numerical

algorithms in a very natural way. Co-arrays provide an equally natural way for expressing parallel

numerical algorithms.
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The underlying philosophy of our design is to make the smallest number of changes to

the language required to obtain a robust and efficient parallel language without requiring the

programmer to learn very many new rules. Co-array syntax looks and feels like normal Fortran

syntax and, for the most part, the rules that apply to co-dimensions are the same as the rules

that apply to normal dimensions.

Of equal importance in our design, the compiler is required to implement very little new

technology. Because the programmer is responsible for data distribution, for remote data

communication, and for explicit synchronization, the compiler is free to concentrate on local

code optimization using all the compiler technology developed over the past decades. Only where

it sees explicit co-array syntax does it need to generate new code to use a specific communication

protocol for a particular machine. Square bracket syntax in a statement acts as an explicit flag

to the compiler, as well as to the programmer, that remote memory operations are taking place.

The compiler optimizes such statements locally using the same optimization techniques it uses

to optimize local memory operations.

In this paper, we have explained the more important aspects of co-arrays for parallel

programming as they have been specified for the next Fortran standard. An image is a replication

of the program, and the number of images is fixed. Each image behaves as a uni-processor code

except that some data objects are declared as co-arrays, and each image has access to co-arrays

on other images. That access is provided in a very natural way though an additional set of

subscripts.

There is no attempt to treat the set of co-arrays with a given name as a huge shared array

because that would place a huge burden on the system to provide memory coherence. Instead,

the programmer provides explicit synchronizations, and the compiler is free, for code between

synchronizations, to use all its normal optimization techniques as if only one image were present.

Co-arrays have the same shape on every image. For irregular data, a co-array may be of a

derived type that has allocatable or pointer components that may vary in size between images.

The allocated arrays or pointer targets are always on the same image so that implementation

is straightforward. We have outlined how to use such data structures to design a library for

numerical linear algebra that emulates an object-oriented class library.

We have concentrated on the more important mechanisms for synchronization, illustrated how

to form and use subsets of images as teams, described the new category of collective subroutines,

and demonstrated the principal mechanism for parallel I/O using direct-access files. Our code for

parallel LU factorization shows the simplicity of using the co-array model and how to combine it

with well established numerical libraries that have been used as the workhorses for performance

for many decades.
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