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Executive Summary

This report describes work done in the gNEMO project investigating whether
general-purpose graphics processing units (GPUs) can be used to improve the per-
formance of an ocean-modelling code, NEMO. The porting is performed using accel-
erator directives with the aim of minimising changes to the original Fortran source
code. Although speed-up factors of between two and five were obtained for five
out of the six subroutines tackled, this is only in comparison to a single CPU core.
Once the routines were modified so as to make use of all of the cores on a CPU, the
GPU speed-up was only ever a factor of two at most. In current systems, GPUs
and CPUs are separate units with a relatively slow connection between them. The
time spent transferring data over this connection can be considerable and must be
minimised. The work required to do this resulted in complex code consisting of
double the number of lines in the original — a far cry from minimising changes
to the NEMO source. Finally, with the GPU-enabled routines merged back into
NEMO, a speed-up of 25% was measured when a GPU was used to augment a single
CPU core. We conclude that environmental codes such as NEMO that do not have
a single bottleneck and require that data be frequently transferred between CPU
and GPU are not well suited for making use of current GPU technology.
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1 Introduction

Many-core devices are widely acknowledged as being a key building block of future su-
percomputers. In fact, four of the top ten machines in the June 2011 Top500 List of
Supercomputers [7] are already using some sort of many-core accelerator. Three of those
four machines are using NVIDIA Graphical Processing Units (GPUs) which are currently
the most popular accelerator option for scientific computing. These devices consist of
hundreds of lightweight cores, groups of which execute together in lock-step (Same In-
struction Multiple Data [SIMD]) fashion. The theoretical peak performance of GPUs
is very attractive; the NVIDIA Tesla M2090 for instance has 512 cores capable of 665
GFlops (double precision) and a memory bandwidth of 177 GBytes/s (with ECC switched
off). However, the lightweight nature of the cores combined with their SIMD operation
can make getting such performance for a real-world code difficult.

NEMO [5] is a widely-used European oceanographic model. It is designed to be
highly-portable and is written in Fortran90 and parallelised using MPI with a regular
domain decomposition in latitude/longitude. At about 20 years old, NEMO has already
seen many computer architectures come and go and therefore retaining its portability is
crucial. At the same time, the code is very much memory-bandwidth bound and therefore
the high peak memory bandwidth offered by GPUs is an attractive prospect.

This report describes work done in porting parts of NEMO to make use of GPUs
while attempting to retain the original Fortran90 code base. We discuss the details of
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using accelerator directives, the performance achieved and the lessons learned along the
way.

1.1 NEMO Configurations

For the most part we have used the ORCA2_LIM configuration; one of the standard
NEMO configurations. It is a two-degree-resolution global ocean model with 31 vertical
levels coupled with the Louvain-la-Neuve sea-ice model (LIM) [3, 1] in the Arctic and
Antarctic regions. The low resolution gives a grid of 182 x 149 x 31 which is very manage-
able — the whole model executes in about 1GB of RAM. This makes it straightforward
to read and write arrays from disk to allow the answers produced by a kernel running on
a GPU to be checked against those obtained from the full model running on a CPU.

In order to investigate the scaling performance of the kernels we have also used a grid
of 1442 x 1021 x 46 to represent the ORCA025 configuration (io resolution) and a grid
of 362 x 292 x 46 to represent the ORCA1 configuration.

1.2 Machines Used

We have made use of the following machines in this project:

e csehtis a linux cluster run by the DiSCO group at STFC Daresbury Laboratory. In
this work we made use of the Nehalem-based compute nodes and associated NVIDIA
Tesla S1070 GPU servers (which contain four M1060 cards). Each compute node
has two, four-core Nehalem (Intel Xeon E5540) chips clocked at 2.53GHz and is
connected to four M1060 cards;

e 5iD is an IBM iDataPlex system hosted at Daresbury. It has compute nodes con-
sisting of two, six-core Intel Westmere X56 chips clocked at 2.67GHz and 24GB of
memory (2GB/core). (The Westmere chip is the 32nm die shrink evolution of the
Nehalem.) One of the compute nodes also includes two NVIDIA Fermi (M2050)
GPUs;

e HECToR is the current national UK HPC service. When this work was performed
it was at “Phase IIb” and was a Cray XE machine with two, twelve-core AMD
Magny Cours chips (clocked at 2.1GHz) per compute node;

e Power7is an IBM Power 750 Express system run by the DiSCO group at Daresbury.
Each of the four frames has 256GB of memory and four Power7 chips (32 processor
cores in total) clocked at 3.55GHz. A processor core has 256kB of L2 cache and
4AMB of L3 cache.

The Power7 machine was used for some benchmarking runs of the OpenMP versions
of the ported routines and HECToR was used for access to the craypat profiling tool.

2 Choosing the Routines to Port

The choice of routines to port to GPU obviously depends on the profile of NEMO. An
example for the ORCA2_LIM configuration is shown in Table 1. In common with many
environmental-science codes, the profile is rather flat in that no one routine accounts for
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a large percentage of the total run-time. We can exclude the lib_mpp_mpp_Ink_3d routine
since it is a largely a wrapper for the organisation of halo swaps for 3D arrays. This
means that the most significant routines are lim_rhg (rheology of the sea ice), tra_ldf-iso
(lateral diffusion of tracers), tra_adv_tvd (tracer advection), ldf slp (lateral diffusion;
slopes of neutral surfaces) and trazdf-imp (vertical diffusion of tracers handled using an
implicit scheme). It turns out that traadv_tvd_nonosc is actually a child of traadv_tvd so
in porting the latter it too must be ported. Therefore, these are the routines that we
have attempted to port to the GPU.

3 Assessment of the Porting Technologies

As listed in Table 2, there are currently several ways of writing code for execution on a
GPU. Of these, three are specific to NVIDIA hardware and while NVIDIA currently has
the edge in GPU hardware, both AMD and Intel are working to develop their offerings in
this area. A second key issue is the fact that NEMO is written in Fortran while CUDA
and OpenCL are C-based. The performance benefits of running on a GPU would have
to be substantial to warrant the effort required to re-write tried, tested and trusted parts
of NEMO in C.

As a consequence of these considerations we have considered only directives-based
approaches in this work since, in principle, they allow the original Fortran code to remain
unchanged and also have the potential to generate code for different GPUs. In fact,
HMPP Workbench (a product from French company CAPS entreprise) can generate
either CUDA or OpenCL code from the same source. Retaining a single code base is
essential for a portable code like NEMO as to fork the code to support a single, specialist
architecture would result in an unacceptable increase in the maintenance overhead. It is
also likely that such a branch will fall into disrepair and disuse as the main trunk of the
code continues to be developed.

Programming the GPU with high-level directives can potentially introduce a perfor-
mance penalty compared to the flexibility available when using a lower level such as
CUDA. This cost must be balanced against the portability of the resulting code. A
comparison of the performance of CUDA and PGI Directives implementations of a rou-
tine from the Weather Research & Forecast model has been performed by Wolfe and
Toepfer [9]. They found that there was no performance penalty associated with using
directives in that case. Obviously this can’t always be guaranteed but it seems likely
that good performance can be obtained from directives provided they are used with an
understanding of the underlying hardware.

3.1 Directives-based Approaches

As with any well-structured scientific code, NEMO makes heavy use of Fortran MOD-
ULEs to encapsulate data and routines related to different parts of the model. This was
found to cause difficulties for both the PGI and HMPP directives as they have limitations
on the scope of data that the region of code to be run on the GPU can access.

An HMPP ‘codelet’ (subroutine/kernel to be run on the GPU) for instance cannot
access arrays from a module - they must either be local or passed as an argument to the
codelet. One solution to this is to use a ‘region’ rather than a codelet. In this approach
one inserts directives to delimit the section of code that is to be run on the GPU. So long
as the necessary modules are in scope within the program unit containing the region then
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% of total run-time | Imbalance % | Routine

74.4 - USER

13.4 2.6 limrhg_lim_rhg
5.2 7.8 lib_mpp_mpp_Ink 3d
5.1 2.6 traldf_iso_tra_ldf_iso
4.3 3.9 traadv_tvd_tra_adv_tvd
4.2 3.9 ldfslp_1df_slp
3.3 7.5 traadv_tvd_nonosc
3.3 2.1 trazdf_imp_tra_zdf_imp
3.2 4.6 zdftke_tke_tke
2.6 2.8 dynzdf_imp_dyn_zdf imp
2.2 5.0 zdftke_tke_avn
2.1 7.9 field_bufferize_bufferize field
1.9 6.8 mathelp_moycum
1.6 34.4 solpcg_sol_pcg
1.5 7.5 field_bufferize_init_field _bufferize
1.2 6.5 traadv_eiv_tra_adv_eiv
1.2 6.3 eosbn2_eos_bn2
1.1 7.7 eosbn2_eos_insitu_pot
1.1 8.3 traswp_tra_unswap
1.1 12.7 dynspg_flt_dyn_spg_fit
1.0 6.7 zdfddm _zdf_ddm
1.0 7.8 eosbn2_eos_insitu

15.2 - MPI
6.1 23.4 mpi_allreduce
5.9 39.7 mpi_recv
2.5 60.5 mpi_allgather

10.4 - ETC
3.5 7.5 _wordcopy_fwd_aligned
1.4 23.8 __c_mcopy8
1.0 28.8 __c_mzero8

Table 1: A profile of NEMO running the ORCA2_LIM configuration on 12 MPI processes
on HECToR Phase IIb.

Approach Notes Fortran
support
PGI Accelerator Directives | Currently NVIDIA specific Yes
HMPP Workbench Can generate CUDA and OpenCL code Yes
PGI CUDA Fortran NVIDIA specific Yes
OpenCL Portable, open standard No
CUDA C Widely used but NVIDIA specific No

Table 2: The available options for programming a GPU.



they can be used within the region. We did however find that using a region rather than
a codelet has some drawbacks. First, extra data transfers to the device are generated for
integers holding the dimensions of the arrays, and a lot of these are not actually used
in the code (as evidenced by the Fortran compiler warnings). Second, there are some
features (notably asynchronous data transfer) available to HMPP codelets that are not
available to regions.

An alternative solution that retains the use of a codelet is to write a new subroutine
to take the place of the region. All of the module arrays that it uses can then be passed
to it as arguments. In fact, HMPP can help with this process if a version that works
with a region has been constructed. Adding “-d -k” to the command line options passed
to HMPP causes it to generate a file with an “extracted.{c,f90}” extension. This file
contains the codelet that has been automatically generated out of the region. This code
can then be used to help with converting the code to the codelet approach.

A key issue with making use of current many-core devices is the transfer of data
between the memory of the CPU and the memory of the device. With the potential
future integration of many-core devices and CPUs onto the same die this issue should be
resolved but currently it is easy to lose all compute speed-up because of the cost of getting
data to and from the device. It is therefore essential to be able to overlap computation
and data transfer in order to hide the cost of the latter. However, as Figure 1 shows,
hiding the cost of data transfers comes at a price. For routines that do not involve any
halo swaps (traldfiso and trazdf imp), the overhead of using directives to port them
to GPU in terms of lines of code is approximately 30%. This increases dramatically to
100-150% when a routine contains halo swaps due to the associated data transfers and
the need to break the routine into more codelets (because a codelet cannot contain a
halo swap), each with a fairly lengthy interface description in both Fortran and HMPP
directives.

At the time we did this work, the PGI Accelerator implementation had no support for
asynchronous data transfers although it does have ‘data regions’ for keeping data on the
device between calls to accelerated regions. It also allows for subroutine calls from within
such regions. The use of regions rather than separate codelets would also significantly
reduce the extra code required when halo swaps are present. HMPP does have support
for asynchronous transfers and also, codelets can be grouped together with data retained
on the device between calls to them.

Unless otherwise specified, we used version 11.3 of the PGI compiler, version 2.4.4 of
CAPS HMPP Workbench and version 11.1 of the Intel compiler.

4 Comparing GPU and CPU Performance

One must be careful in comparing the performance obtained by an application on a GPU
with that on a CPU. Inevitably an application must be optimised to get good performance
from a GPU. Unless equal effort is put into optimising it for the CPU then the GPU has
an unfair advantage. Just as one optimises code to make use of the many cores of a GPU,
an application must also be optimised to make use of the multiple cores that all modern
CPUs have. (Obviously there is little point in running the ported kernel on a single core
of a GPU so why compare the performance of a parallel application on a GPU with that
of a serial one on the CPU?)

Modifying an already parallel (MPI) program like NEMO to make use of GPUs makes
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Figure 1: Plot of the number of lines of code for each routine before and after porting to
GPU with HMPP directives. Note that both the traadv_tvd and Idf_slp routines involve
halo-swaps while the other two do not.

the situation more complex. Normally, the number of GPUs available on a compute node
is significantly fewer than the number of CPU cores on the node. This creates a problem
for any parallel program wishing to make use of GPUs since only a subset of the program’s
processes will have access to a GPU if it uses all the cores of a compute node. (Once
a GPU has been bound to a process it cannot be used by another process until it is
released.)

There are two common solutions to this problem. The first is to under-populate
the host CPUs so that there are only as many processes on a compute node as it has
GPUs. However, this means that the performance gain obtained by using the GPU must
be weighed against the lost performance of the unused CPU cores. For instance, cseht
has four Tesla cards per compute node but each compute node consists of two Nehalem
sockets and thus a total of eight CPU cores. Therefore, if we wish to keep a 1:1 mapping
between CPU processes and GPUs then we must occupy only half of the available CPU
cores. The second solution is more complex and involves attempting to use OpenMP (for
example) to employ the CPU cores that do not have a GPU available in useful work.

5 Lateral diffusion of tracers ( traldf iso)

Before attempting to optimise the routine for the GPU, we measured its performance on
a single core of an Intel Nehalem chip. Compiled with the Intel compiler with flags “-O3
-axAVX” and run on 1 Nehalem core the mean time/kernel call over 100 calls was 0.095
seconds. Following all of the optimisations done for the GPU, this time was reduced to
0.082 seconds.



Optimisation notes Number of calls | Mean time
per call (s)

First working traldf-iso on Tesla GPU 2 19.539
Made zdk1t and zdkt private so loop at 216 2 1.087
can be parallelised

Made zdkt and zdk1t depend on jk so that 100 0.038

loops over jk can be parallelised. Moved tim-
ing loop down into kernel

Build with optimising flags on host 100 0.039
Put in explicit loops instead of (:,:) notation 100 0.037
as allows loops to be fused

Removed jn index from zd{i, j }t workspaces 100 0.033
Moved outer loop over tracers inside RE- 100 0.034
GION but run on host with DO HOST

Added fastmath option to -ta=nvidia 100 0.033
Took tracer loop down inside all loops and 100 0.024
manually unrolled it.

Added time option to -ta=nvidia 100 0.025
Removed erroneous DO HOST directive on 100 0.024
first loop

Tweaked schedule (longer vector on inner- 100 0.024

most loop) on most expensive loop to im-
prove performance

Permute loops from jk, 77, ji to j7,ji, jk to 100 0.021
improve ‘memory coalescing’.

Same code on Fermi GPU 100 0.018
Optimised code on single Nehalem core 100 0.082

Table 3: The key stages in optimising the tra_ldf iso routine to run on the Tesla GPU
using PGI accelerator directives. For comparison, the bottom row gives the performance
of the final code when built with the Intel compiler and run on a single core of a Nehalem
chip on cseht.

5.1 Porting traldf iso with PGI directives

The traldf-iso routine presents a good starting point for porting NEMO to make use
of GPUs due to its relative simplicity and complete lack of MPI calls. This enabled the
entire body of the routine to be encapsulated in a single accelerated region using the PGI
accelerator directives. The basic optimisation steps and timings of the resulting code are
given in Table 3.

The current generation of many-core devices must be accessed over a PCI-Express
bus which means that data transfer to and from the device can be a significant overhead.
This must be borne in mind when timing the execution of code on a GPU in order to
separate this cost from that of the computation. Since the whole routine being accelerated
could be encapsulated in a single, accelerated region, it was possible to add an extra loop
inside this region to repeat the kernel multiple times without requiring any additional
data transfers.

One advantage of using the PGI Accelerator directives is that basic profile information
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./traldf_iso_harness.F90
kernel
172: region entered 101 times
time(us): total=2416730 init=21 region=2416709
kernels=2303948 data=43597
w/o init: total=2416709 max=33362 min=23641 avg=23927
194: kernel launched 101 times
grid: [19x15] block: [16x8x2]
time(us): total=180467 max=1798 min=1780 avg=1786
205: kernel launched 101 times
grid: [12x10] Dblock: [16x16]
time(us): total=7357 max=74 min=71 avg=72
226: kernel launched 101 times
grid: [75x4] Dblock: [16x2x8]
time(us): total=139061 max=1380 min=1374 avg=1376
257: kernel launched 101 times
grid: [37x8] block: [16x4x4]
time(us): total=896716 max=8903 min=8842 avg=8878
294: kernel launched 101 times
grid: [37x8] Dblock: [16x4x4]
time(us): total=298665 max=2962 min=2954 avg=2957
373: kernel launched 101 times
grid: [10x32] block: [16x16]
time(us): total=557276 max=5549 min=5490 avg=5517
402: kernel launched 101 times
grid: [74x4] block: [16x2x8]
time(us): total=208920 max=2072 min=2060 avg=2068
./GPU/traldf_iso_harness.F90
kernel
165: region entered 2 times
time(us): total=6292127 init=3805949 region=2486178
data=56672
w/o init: total=2486178 max=2425436 min=60742 avg=1243089

Figure 2: An example of the output of the built-in NVIDIA profiler for the traldf-iso
kernel running on a Tesla GPU. Entries for some inexpensive kernels have been removed
for clarity.



is readily obtained for the code running on the GPU, simply by adding the “time” option
to the “-ta=nvidia” flag. An example of the output for traldf iso is shown in Figure 2.
From this we see that the region starting at line 172 in the source was executed 101 times
(once for results verification, 100 further times for timing). The ‘data’ field tells us that
out of a total time of 2.4 s, only 44 ms were lost to data transport for this region. Below
this, timings are given for each of the ‘kernels’ (parallelised loops executed on the GPU)
in the region. So we see for instance that the loop at line 205 only took 72 us on average
while that at line 257 took nearly 9 ms. It is therefore easy to identify which loops to
attempt to optimise.

In order to check that the code was optimal, we made use of the PGI forum to ask
for feedback from other users and developers. This led to the moving of the tracer loop
(which only has a trip count of two — once for temperature and once for salinity) down
inside all of the other loops and then to manually unrolling it.

5.2 Porting traldf iso with HMPP

Once we could get no further speed-up from the PGI-directives version of the routine, we
moved to using HMPP Workbench instead. As with the PGI directives, the most difficult
task in porting the kernel was dealing with the scoping of the various arrays used in the
computation; with the exception of integer parameters, all of the variables used in an
accelerated region must be contained within the current program unit and cannot come
from external modules.

We worked around this issue by enclosing the computational kernel (the body of
a subroutine that USE’d several modules) within a ‘region’ pragma. The data usage
patterns for the various arrays ( c.f. INTENT(in) or INTENT (inout) in Fortran) are
then specified as parameters to the region. The key steps in optimising the resulting
kernel are listed in Table 4.

As with the PGI directives, the key step is, unsurprisingly, to ensure that the correct
loops are being parallelised. The next largest improvement was gained by permuting loop
indices from jk,jj,ji ( i.e. levels, latitude, longitude) to jj, ji, jk. If left unpermuted,
the nested loop is parallelised such that consecutive threads are working on array sections
well separated in memory. Since threads on the GPU are divided up into groups which
are then executed in SIMD (Same Instruction Multiple Data) fashion, best performance
is obtained when a fetch from memory supplies data that can be used by all of the threads
in a given group. If the threads aren’t working on a contiguous section of memory then
this will not happen. Permuting the loop indices ensures that parallelisation occurs over
the indices in which an array is contiguous in memory and thus that neighbouring threads
are working on contiguous parts of an array. Strangely, this seems to be more important
with HMPP than it did with the PGI directives. The final result of 0.015 s per kernel
call is some 20% faster than the time of 0.021 s achieved with the PGI directives.

A key advantage of HMPP at the time of writing is its support for asynchronous
data transfer to the GPU. Although not strictly necessary for the tra_ldf-iso kernel, we
experimented with this feature to overlap loading of data to the GPU with the reading of
initial array values from disk. This revealed that in order to use asynchronous I/O with
an array on an NVIDIA device, the array must be allocated in ‘pinned’ (page-locked)
memory on the host. Further, the only way to achieve this is to use the CUDA routine
cudaMallocHost(). Since this routine is in C, we used the F2003 standard mechanism for
C/Fortran interoperability to generate a Fortran interface to it.
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Optimisation notes No. of calls | Mean time
per call (s)

First working traldf-iso on GPU 10 32.238

Put /$hmppcg parallel for outer two loops of 10 16.920

the most expensive triply-nested loop

Repeat above for all triply-nested loops 10 0.117

Move outer tracer loop inside and unroll 10 0.100

Put ‘o=in condition on temporary arrays to 10 0.096

prevent them being copied back to host

Simulate 3D gridification in 2D on most ex- 100 0.067

pensive loop

Permute indices jk, jj, 7¢ to 77, ji, jk on sec- 100 0.053

ond most expensive loop

Undo 3D gridification on most expensive 100 0.022

loop and permute indices

Permute indices on all remaining loops 100 0.017

Removal of device allocation from within 100 0.015

timing region

Optimised code on single Nehalem core 100 0.082

Table 4: The key stages in optimising tra_ldf iso to run on the Tesla GPU using HMPP
workbench. For comparison, the bottom row gives the performance of the final code when
built with the Intel compiler and run on a single core of a Nehalem chip on cseht.

5.3 Porting traldf iso with OpenMP

Finally, for a fair comparison of the GPU with the CPU we must create a version of the
routine capable of using all of the cores on the CPU. The standard method for doing this
is to use OpenMP to parallelise the various loops in the routine over the available number
of threads/cores. In order to minimise the overhead of the creation and destruction of
thread teams, the whole timing loop was enclosed within an OMP PARALLEL region.
Within this, each computational loop was parallelised by simply specifying OMP DO.
This means that all of the 3D loops were parallelised in the z/depth dimension. The
few 2D loops, mainly dealing with the surface and ocean floor, were parallelised in the y
dimension. The expensive loop at line 257 was also fused with the small loop immediately
following it since both of the outer loops over 2z had identical limits.

In order to maintain good performance when running across more than one socket, the
code had to be modified to ensure that memory is initialised by the thread that will access
it, rather than just by the master thread - this ensures that it is allocated in close vicinity
to the physical core on which it is executing. Care also must be taken in enforcing suitable
affinity settings in the run-time environment. We set KMP_AFFINITY=none and used
the taskset command on the linux-based systems and set PSC_OMP_AFFINITY=FALSE
on HECToR. On the Westmere chip, the six- and four-thread jobs were fastest when the
threads were shared evenly between the two sockets of a node. ! On the older Nehalem
chip, the same applied just to the four-thread job. We were unable to find any way of
sharing threads evenly between sockets on the Power7 system.

!This demonstrates that four threads are sufficient to saturate the memory bandwidth to a single
socket.

11



D 08
% o
4]
B
"~ 06
=
o
2> O | o o S s o
g e—e AMD Magny Cours (HECTOR)
& Intel Nehalem (cseht)

0.2 e—e Intel Westmere (SiD)

IBM Powe_r? _
0 | | | | | |
0 4 8 12 16 20 24

Number of OMP Threads

Figure 3: The speed-up of the OpenMP version of the tra_ldf-iso routine with respect
to its performance on an NVIDIA Tesla GPU. In each case the number of cores utilized
is the same as the number of OpenMP threads. Results are the averages of three runs
for the ORCA2_LIM case and lines are guides to the eye.

Figure 3 shows the performance of this OpenMP version of the routine relative to the
HMPP version running on the NVIDIA Tesla card. For a single thread/core, the Intel
Nehalem and Westmere processors gave very similar performance and were, surprisingly,
slightly quicker than the Power7. As the number of threads is increased, the Westmere
initially matches the Power7 and both outperform the Nehalem, presumably due to their
greater memory bandwidth which is key for the low computational-intensity loops at the
heart of the routine. Despite the relatively good scaling on the Westmere, even using a
full node of SiD (two, six-core Westmere chips) only gets us to 79% of the performance
of the code on the Tesla GPU. Using a single socket (six cores) gets us 69%. In fact,
only the Power7 system is able to match the performance of the GPU and it requires
two sockets (16 cores) to do so. Note that the HECToR results could be improved upon
by taking care to share threads evenly between sockets and/or dies (the Magny Cours
chip is actually two, six core dies on a single socket) so as to make best use of available
memory bandwidth.

6 The Rheology of the sea-ice component ( lim _rhg)

In the standard ORCA2_LIM configuration, the sea-ice component (LIM2 or LIM3) cou-
ples to the ocean model only once in every ten time steps. Despite this, the ice rheology
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Nehalem Tesla
Region Call count | Total (s) | Average (s) | Total (s) | Average (s)
Whole kernel 6 39.43 6.572 981.04 163.51
Alloc GPU 2 0.00 0.000 2.43 1.22
GPU store 3252 0.00 0.000 273.41 0.08
GPU load 2172 0.00 0.000 179.75 0.08
partl 6 0.22 0.037 4.43 0.74
part2 6 0.35 0.058 7.60 1.27
part3a 720 12.94 0.018 9.11 0.01
part3b 720 4.23 0.006 7.40 0.01
part3c 720 5.86 0.008 6.15 0.01
part3d_odd 360 2.63 0.007 129.92 0.36
part3d_even 360 2.73 0.008 130.74 0.36
part3e_even 360 2.65 0.007 133.89 0.37

Table 5: Comparison of the profile of the ported lim_rhg routine when run on a single
Nehalem core and a Tesla GPU. Only codelet routines, data transfer and GPU initiali-
sation costs are included. Timings are for the ORCA025 dataset.

routine accounts for approximately 13% of run-time when the model is run on 12 or 24
cores of Phase IIb of HECToR, (Table 1). It therefore appears to be a prime target for
optimisation/acceleration.

Unlike the tracer diffusion routine tackled in Section 5 however, the ice rheology
routine is relatively long (776 lines), contains an iterative solver and performs many halo
swaps. Building on the experience gained in porting the tracer-diffusion routine, only
HMPP was used for this component (since it had performed slightly better than the PGI
accelerator directives for traldf-iso and the latter do not support asynchronous data
transfers at the present time).

As with traldf iso, a completely serial test harness was constructed around the lim_rhg
routine. However, the halo-swap calls were retained and always executed on the master
thread running on the host CPU. This ensured that, for the harness to give correct results,
the necessary data had to be available on the CPU prior to each halo-swap call. Again,
following our findings when porting traldf iso, each section of code suited to acceleration
was moved into a distinct codelet subroutine.

All unnecessary data transfers to and from the GPU were eliminated by making the
related variables 'resident’ on the device. Required data transfers for these variables
were explicitly managed via HMPP’s advancedload /delegatedstore directives. Note that
trying to declare Fortran allocatable arrays to be resident on the GPU revealed a bug in
HMPP (version 2.4.4). For the purposes of the test harness therefore, these allocatable
arrays were made static.

As with the majority of NEMO, the computational intensity of the loops in lim_rhg is
actually rather low. In addition, the sea-ice model does not use an explicit discretisation
of the thickness of the ice and as a result there is no z-dimension to the calculations.
Hence all of the compute loops are only doubly nested.

The profile of the ported, optimised [im_rhg routine for an ORCA025-resolution test
case is shown in Table 5 for both a single Nehalem core and a Tesla GPU. Clearly the
average time taken per kernel call is much greater on the GPU (164 s) than it is on the
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Figure 4: Scaling performance of the OpenMP version of the lim_rhg kernel on a
Nehalem compute node for the ORCA2 and ORCA025 datasets.

Nehalem (7 s). However, this large difference is primarily due to data transport costs
as can be seen by the entries for GPU store and GPU load (data downloaded from the
GPU to CPU RAM and vice versa, respectively). The part3d* and part3e* kernels also
include substantial data transfer costs because their codelet arguments include arrays
that are transferred to/from the GPU upon every call. (They have not been optimised to
the same extent as the other kernels in the table.) This emphasises the need to optimise
data transport to/from the device in order to achieve good overall performance.

In this case however, the compute performance itself does not justify the effort required
to optimise the data transport. Consider the performance of the part3a—c kernels which
are particularly important due to their involvement in the iterative solver (note the high
call counts). Only for part3a does the GPU out-perform the Nehalem core and then only
by ~30%; part3b is ~75% slower on the GPU and part3c ~5% slower. This is to be
contrasted with the situation in traldf iso where the kernel was a factor of four faster on
the Tesla GPU and retained a factor of two speed-up, even when OpenMP was employed
to use all four cores of a single Nehalem chip.

We can therefore conclude that given the low performance of the compute kernels and
the frequency with which data must be transferred back to the CPU memory, this routine
is not well suited to making good use of the Tesla GPU. To underline this conclusion,
we consider the performance of this kernel when ported to use OpenMP. The plot in
Figure 4 shows the scaling performance of the OpenMP version of the kernel on a single
node (two Nehalem chips) of the cseht cluster. On a full Nehalem socket (four cores),
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Figure 5: Profile of the OpenMP version of the lim_rhg kernel as the number of OpenMP
threads is increased. Results are for the ORCA2 dataset run on HECToR IIb.

the OpenMP version achieves nearly a factor of three speed-up over the performance
obtained on a single core for both the ORCA2 and ORCA025 datasets. The OpenMP
version is therefore a significant improvement and emphasises the dominance of the CPU
over the GPU for this kernel. That said, the scaling of the OpenMP implementation is
poor, even for the relatively large ORCA025 dataset. Investigation of this aspect with
profiling tools shows that it is the thread synchronisation required for the calls to the
halo-swap routines that is the cause — see Figure 5.

7 Tracer Advection ( tra_adv tvd)

Back in Section 2 we concluded that the tra_adv_tvd routine was a potential candidate
for porting to the GPU. Table 1 shows that this routine accounts for 4.3% of execution
time for the ORCA2_LIM configuration when run on 12 MPI processes on HECToR, IIb.
The routine calls another subroutine, nonosc, but the two routines combined are only
374 lines in total. However, both tra_adv_tvd and nonosc contain several halo-swap calls
and these present the major difficulty in porting these routines to the GPU.

As with the other routines, we first created a serial test harness for tra_adv_tvd
which allows its results to be compared with those obtained from the original version
within NEMO. The initial form of this harness with the original version of tra_adv_tvd
demonstrated that it took 0.115 s/call on a single Westmere core and 0.124 s/call on a
single Nehalem core (when compiled with the Intel compiler with “-O3 -axAVX”).

We used HMPP Workbench to port the routine due to its support for asynchronous
data movement. Since the calls to the halo-swap routines must be executed on the CPU,
these naturally break the routine up into several sections, each of which was made into
a separate codelet for execution on the GPU. The two calls to nonosc had to be inlined
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Notes Time per call (s)

First working port with kernell on GPU 0.401
Permute loops in kernell 0.229
Move kernel2 to GPU 0.252
Permute loops in kernel2 and keep arrays on 0.214
GPU between calls

Make kernel2 async. and overlap with halo 0.194
swaps

Async. download for results of kernel2 0.177
In-line nonosc and convert into two 0.274
codelets, nonoscl and nonosc2

Permute loop indices in nonosc{1,2} 0.242
Make nonosc{1,2} work arrays local instead 0.205

of args, overlap sending of zwx and zwy with
halo swaps for zwy and zwz, respectively

Remove unnecessary data transport for 0.196
nonosc{1,2}

Move kernel3 to GPU 0.181
Improve halo-swap performance by re- 0.092

ordering indices on work arrays so that tracer

index is slowest-varying

Move working-array initialisation into sep- 0.095
arate kernel_init so can overlap with data

transfers which must happen upon every it-

eration of the timing loop (more realistic)

Re-ordered initial data loads and switched 0.085
to have them sync. and kernel_init codelet

async.

Original kernel on single Nehalem core 0.124

Table 6: Steps in the porting and optimisation of the tra_adv_tvd routine. Timings are
on Nehalem and Tesla hardware for the ORCA2 dataset.

since code executing on a GPU cannot call subroutines within the HMPP model. In
total the ported routine consists of six codelets for execution on the GPU. As usual,
great care had to be taken to avoid unnecessary data transfers to/from the GPU. For
this we made use of HMPP’s ability to map an array from different codelets to the same
piece of memory on the GPU and keep it there between calls. This achieves the same
result as declaring an array to be device resident but is simpler to do in practice. We
also succeeded in removing uploads/downloads of temporary arrays by declaring them as
inputs to the codelet and then using the noupdate clause for them at the corresponding
callsite.

The main steps in the porting and optimisation of the routine are listed in Table 6.
After quite a lot of work, the final, ported version of the routine on a Tesla GPU is
some 31% faster than the original version running on a Nehalem core when using the
ORCA2_LIM dataset. Attempts to execute the code with the ORCA025 grid failed
because of insufficient memory on the GPU and so we used the ORCA1 grid.
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Figure 6: The time spent in compute and data transport in the tra_adv_tvd kernel and
the ORCA1 grid when running on a single Nehalem (Westmere) core and a Tesla (Fermi)
GPU. The “Tesla (whole arrays)” column shows the performance of the kernel before it
was optimised to reduce data transport. The rightmost column shows the performance
of the kernel on a Fermi GPU when compiled for a Tesla.

Figure 6 shows the breakdown of the kernel execution time in terms of compute and
data transport (to and from the GPU). From a comparison of the first two columns, it
is clear that data transport is the main performance bottleneck when the kernel is run
on the GPU. However, the majority of the data transfers between the GPU and CPU
are for the purposes of doing halo-swaps which obviously only involves the halo regions
of each array. Therefore, we modified the code so that only the halo regions of an array
are transferred between the GPU and CPU when doing a halo swap. Doing so reduced
the time spent in transferring data from 0.34 s (per kernel call) to just 0.09 s when using
the Tesla GPU on cseht (third column in Figure 6). Uploads (downloads) of halos to
(from) the GPU were overlapped with the packing (unpacking) of halos on the CPU for
any other arrays involved in a particular halo swap.

Finally, this version of the kernel was benchmarked on a Fermi GPU on SiD. As ex-
pected, the data transport cost remained similar at 0.08 s per call and the computational
cost was slightly reduced from 0.14 s on the Tesla to 0.11 s on the Fermi. Strangely, this
time was obtained when the NVIDIA CUDA compiler targeted the Tesla architecture
(“sm_13"). If it targeted the Fermi (“sm_20") architecture then the computational cost
of the resulting binary was 0.13 s per kernel call.

8 Vertical Tracer Diffusion ( tra_zdf imp)

As it is essential to minimise data transport to and from the GPU, it seemed sensible
to continue porting the tracer-related routines that often make use of the same fields.
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Table 1 of Section 2 shows that the tra_zdf imp routine accounts for 3.3% of execution
time for the ORCA2_LIM configuration when run on 12 MPI processes on HECToR, IIb.
This routine is only about 300 lines long and does not contain any halo-swap calls.

Following the same strategy used for the other ported routines, tra_zdf-imp was
extracted from NEMO and integrated into a serial test harness which gave the same
results as when the routine executed within NEMO. (For the first time it was found
necessary to save the harness input data in binary form [Fortran unformatted| otherwise
the loss of precision caused the harness to produce results that differed from the original
by more than one part in 10'%). With the harness giving correct results when built with
the Intel compiler and flags “-O3 -axAVX,” it was used to time 50 calls of the routine on
a single Nehalem core. The measured time per call was 0.039 s.

HMPP directives were again used to port this routine to the GPU. Like all of the
other tracer-related routines dealt with so far, tra_zdf imp contains an outer loop over
tracers of trip-count two (temperature and salinity) which obviously has very limited
scope for parallelisation. In this case however, this loop contains a large IF block that
modifies the calculation depending on the tracer being dealt with. Therefore we unrolled
this loop in contrast to previous routines where it was pushed down inside all of the other
loops. This has the advantage of not increasing the memory-bandwidth requirements of
the loops but does nearly double the number of distinct loops in the routine (to 19).
Since each of these loops becomes a separate kernel that must be launched on the GPU
this is not ideal. However, even in this form, once all of the loops had been given permute
directives (k,j,i = j,i,k) so as to improve memory coalescing, the performance on the
Tesla GPU (including data transport costs) matched that of the Nehalem core.

At this point the code was analysed using the simple CUDA profiler (export
CUDA _PROFILE=1; run application; timings written to cuda_profile 0.log). Using this,
the more expensive loops were optimised. For some, precious memory bandwidth could
be saved by storing intermediate results calculated for the first tracer for use in the same
loop with the second tracer. Following the work of Pickles et al. [8] on changing the
loop order in NEMO such that the depth index varies fastest, we found considerable
benefit in manually permuting the order of each of the nested loops (rather than using
the HMPP permute directive) as this then enabled many of them to be fused. This
reduced the number of separate kernels launched on the GPU from 19 to just seven and
in some cases effectively removed the cost of an individual kernel altogether. Overall, this
process reduced the time spent in kernels on the GPU by approximately 30%. After this
work, the GPU version took 0.015 s/call on the Tesla card (when data transport costs
are excluded) — a factor of 2.6 times faster than on a single Nehalem core.

9 Slopes of Neutral Surfaces ( ldf slp)

Having ported all of the significant tracer-related routines, the next routine to tackle is
ldf_slp. According to the profile in Table 1, this routine accounts for 4.2% of the execution
time of the ORCA2_LIM configuration on 12 MPI processes of HECToR IIb. In contrast
to tra_zdf-imp tackled in Section 8, [df slp contains several halo swaps as well as a call
to a child routine ( ldf-slp-mal). For porting to the GPU the child routine had to be
manually in-lined and then the subroutine broken into four kernels, separated by halo
swaps. Using the test harness, this version of the code was found to take 0.079s/call on
a single Nehalem core.
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Optimisation of the four kernels and the halo exchanges was performed as for the
previously-ported routines. HMPP’s refusal to parallelise one loop led to the discovery
of a bug in the original code (incorrect z-index used to access some arrays). With the
correction of the bug, the loop parallelised as expected. In optimising some of the indi-
vidual loops within the kernels it was found very beneficial (a 40% speed-up was obtained
in one case) to remove division operations. This was possible because the triply-nested
loops are parallelised over x and y with each CUDA thread then performing the loop over
z. It was sometimes possible to hoist-out from that loop z-invariant quantities involving
division, resulting in the saving of a considerable number of operations. The relatively
unusual (for NEMO) compute-bound nature of some of the kernels was emphasised by
a large speed-up ( e.g. a factor of two) seen when moving from the Tesla to the Fermi
GPU.

Once the individual kernels had been optimised, the time taken by the calculation
as a whole was the same as when the original code was run on a single Nehalem core.
However, the performance was dominated by the data transport to and from the CPU
required for the halo swaps. As before, the quantity of data transported was reduced by
altering the code so that only the halo regions of an array are transferred to and from the
CPU. With this optimisation the whole calculation took 0.05s/call. However, 0.016s of
this was taken up with the initial upload of data to the GPU. If we exclude this cost (on
the basis that much of this data will already be on the GPU when running within NEMO)
then the GPU version run on a Tesla card is a factor of two faster than the original on a
single Nehalem core. The same code run on the Fermi GPU took 0.036s/call with 0.017s
spent doing the initial data upload. Excluding this cost, the calculation is four times
faster than it was on a single Nehalem core. This is the largest difference in performance
between the two GPU cards seen for any of the subroutines tackled and emphasises the
greater computational intensity of this case.

10 Merging the Accelerated Routines into NEMO

While it is interesting to see what speed-up may be obtained for a given kernel in isolation,
it is not of much use unless it is possible to integrate the GPU version of the kernel back
into NEMO without losing performance. HMPP’s support for asynchronous data transfer
is a crucial part of this work. We shall begin this section with a detailed description of
the work involved in merging the accelerated version of traldf-iso into NEMO.

The first stage in this task is to alter the NEMO code so that the new version of
the traldf-iso routine is called instead of the old. In order to minimise the changes
to NEMO, we simply replaced the contents of the original routine with a call to the
accelerated version. The latter was re-named traldf iso_hmpp and contained within a new
traldf iso_hmpp_mod module. When using HMPP traldf iso then contains the callsite for
the codelet and also acts as a wrapper that brings the necessary module variables into
scope ready for the call. Since the NEMO build system has a rule of one module per
file with the filename matching the name of the module (for the purposes of dependency
checking) it is necessary for traldf-iso_hmpp_mod to be contained in a separate file.

Having merged the new version of traldfiso into NEMO so that it may be built and
run in traditional form, the next task is to compile the GPU-enabled routine into the
NEMO binary. In principle it should be possible to compile the whole of NEMO with
the HMPP compiler since, in the absence of any HMPP directives, the code should just
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Time in tracers (s) Time to step (s)

Nehalem 0.463 1.267
GPU sync. copy 0.361 1.134
GPU async. copy 0.359 1.129
GPU async. launch 0.369 1.174

Table 7: Performance of NEMO as a whole when run in ORCA2_LIM configuration.
Each row gives the mean time of three runs where the time for each run is averaged over
twenty time steps with the first and last steps excluded.

be compiled with the user-specified Fortran compiler. However, this approach resulted
in a large number of errors relating to duplicate definitions of symbols. Therefore we
adopted a strategy of building NEMO as usual (which works because the HMPP directives
are standard Fortran comments), using HMPP to build the accelerated version of the
subroutine and then re-linking this with the other object files to get a new NEMO binary.

We also added a new module, tra_hmpp, as a central location for adding e.g. the
statements to map variables between different codelets. Since HMPP requires that all
codelets of a given group be in a single file, and that all of the callsites, transfers,
etc. also be in a single file we found it easiest to concatenate the traldf iso.F90 and
traldf iso_hmpp_mod.F90 files with tra_hmpp.F90 before compiling it with HMPP. A
script to do all of this within the default NEMO directory structure (as of version 3.1 and
later) is shown in Figure 7. This procedure is complicated slightly by the fact that any
modules USE’d by a codelet must also have been compiled with HMPP - hence the need
to re-compile the par_kind.f90 module in Figure 7. Note also the need to link with the
CUDA run-time library because of the use of the cudaMalloc() routine to access pinned
memory.

Once we had a working version of NEMO with the traldfiso routine running on a
GPU and had verified the results, the overheads associated with device initialisation and
data transfer had to be tackled. Unless a device is explicitly released at some point,
HMPP defaults to releasing it after the first codelet call. Therefore, calls to allocate
and release the device were added within separate subroutines in the tra_hmpp module;
hmpp_init and hmpp_final. The former is called from within NEMO’s nemo_init routine
in nemogem.F90 and the latter from a new routine, nemo_final in the same file, once all
of the time-stepping is complete. This guarantees that the device is only initiated once
which is important since it is a relatively expensive blocking operation.

In order to deal with data transfer to the device we introduced another routine,
tra_ldf_prepare, called from within the time-stepping routine, stp. Its purpose is to
initiate asynchronous data transfers from the host memory to the GPU. As such, it is
called as soon as the arrays involved in tra_ldf iso are ready 1i.e. at the last point in
stp beyond which they are not modified until the codelet itself is called. Fortunately
the various tracer routines are such that this approach enables us to overlap the costly
transfer of data to the GPU with the call to the tra_dmp routine.

Table 7 contains the results of timing how long it takes NEMO to do a single time
step when running entirely on a Nehalem core and when running on a Nehalem core but
with tra_ldf-iso running on the GPU. We see an overall speed-up of a single time-step
of 7% which compares well with the 5.1% that the tra_ldf-iso routine was reported as
accounting for (Table 1) when NEMO was profiled on 12 MPI processes on HECToR. A
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#!/bin/sh

FO90_HOST="ifort -r8 -03"

FOO="hmpp -d3 --keep -Xnvcc -pg ${F90_HOST}"
cd ORCA2_LIM/BLD/ppsrc/nemo

mv ../../obj/server.o{,.orig}

rm ../../obj/agrif*.o

mv ../../obj/tra_hmpp.o{,.orig}

cat tra_hmpp.f90 > tra_hmpp_merged.£f90

# For ldfslp

mv ../../obj/1ldfslp.o{, .orig}

mv ../../obj/ldfslp_kernels_mod.o{, .orig}

cat ldfslp_kernels_mod.f90 >> tra_hmpp_merged.f90
cat 1dfslp.f90 >> tra_hmpp_merged.£f90

# For traldf_iso

cat traldf_iso_hmpp_mod.f90 >> tra_hmpp_merged.f90
cat traldf_iso.f90 >> tra_hmpp_merged.£f90

mv ../../obj/traldf_iso.o{,.orig}

mv ../../obj/traldf_iso_hmpp_mod.o{, .orig}

# Build module USE’d by the ones that we’re building with HMPP

$F90 -c -I../../inc par_kind.f90

# Now build HMPP form of accelerated modules

$F90 -c -I../../inc tra_hmpp_merged.f90

# Re-link the executable with the new object files

$F90 tra_hmpp_merged.o ../../obj/*.o “/WORK/Intel/lib/libnetcdf.a \
-o nemo_hwa.exe -L${CUDA_HOME}/1ib64 -lcudart

if [ -f "nemo_hwa.exe" ]

then

mv nemo_hwa.exe ../../bin/.

else

echo "Build failed: no executable produced."

fi

cd -

Figure 7: Build script for NEMO with the HMPP-accelerated version of the Idfslp and
traldf iso and routines. Sections for the other routines are omitted for brevity.
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small speed-up was measured when data was uploaded asynchronously to the GPU. We
also tried running the codelet asynchronously on the GPU and overlapped its execution
with that of a different tracer-related routine. However, this proved to be slightly slower
than using synchronous execution. The reason(s) for this are not fully understood but
it is likely to be related to the fact that execution of the kernel on the GPU only takes
approximately 0.02s.

10.1 Incorporating the GPU versions of traadv_tvd, trazdf imp
and Ildf slp into NEMO

The new version of the traadv_tvd routine was built into the NEMO executable following
the approach taken for tra_ldf iso. Since a GPU device must be freed before it can be
allocated for use by a different group of codelets it was decided to avoid the associated
performance penalty by putting all of the codelets into a single ("tracers’) group. Further,
as HMPP requires all codelets to be in a single source file, the build script shown in
Figure 7 was extended so that all of the codelets are concatenated with tra_hmpp.F90
file before it is compiled.

We were able to remove some data transfers by keeping two arrays on the GPU
between the end of the traldf-iso codelet and the start of the codelets associated with
traadv_tvd. (This was achieved by use of the HMPP map directive.) Figure 8 shows the
effect of moving the traadv_tvd routine off the Nehalem CPU and onto the Tesla GPU.
With both traadv_tvd and traldfiso running on the GPU, NEMO is 10.8% faster than
the case where it executes only on a single Nehalem core.

Figure 8 also shows the performance gains obtained when trazdf-imp and finally
ldf_slp were moved onto the GPU. Note that the data transfer time did not increase
significantly when doing this as, again, some uploads and downloads could be avoided
by using HMPP’s map functionality to make use of data already loaded to the card for
the previous codelets. For this to be effective, the uploads and downloads that HMPP
automatically generates have to be suppressed by setting their ‘io’ state appropriately
and using the ‘noupdate’ directive at the callsite to prevent uploads. (Setting the ’io’
state for a variable overrides the direction that HMPP otherwise takes from the Fortran
INTENT attribute for any given routine argument.)

The importance of being able to do asynchronous data transfer to and from the device
has already been mentioned. For an array to be involved in such a transfer it must be
allocated in pinned memory. Since there is currently no support for this within the
directives frameworks,? that must be done via a call to a C routine which returns a
pointer. As a result, the array itself must be declared as a Fortran POINTER (instead
of an allocatable array). We have found that making this change can have unwanted side
effects on the performance of code using this array on the CPU. Table 8 quantifies this
for the case of the vertical physics routines when the weighting and masking arrays are
converted from allocatable arrays; first to pointers (albeit allocated in the normal way)
and then to pointers to pinned memory. Declaring the arrays as pointers clearly has a
detrimental effect; when using the Intel compiler, the time spent doing vertical physics
increases by 8% compared to the case where they were simply declared ALLOCATABLE.
However, when the arrays are moved into pinned memory the situation improves and the

2PGI's CUDA Fortran adds the capability to specify the ‘PINNED’ attribute for an array declaration.
Since CUDA Fortran can be used with the PGI Accelerator Directives this provides a workaround when
using the latter.
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Figure 8: The reduction in execution time (black diamonds) and corresponding speed-
up (red) for NEMO as a whole as routines are moved from a Nehalem CPU core onto a
Tesla GPU. The black circles show the total amount of time spent transferring data to
and from the GPU during each time-step. Lines are guides to the eye.

Mean time per step (s)
Intel v. 11.1 PGIv. 11.9

Original 0.191 0.276
With pointers 0.207 0.286
With pointers and pinned memory 0.198 0.283

Table 8: The time spent in the vertical physics part of NEMO and the effect of changing
the weighting and masking arrays to pointers and then to pinned memory. Times are
averages over three, 55-step runs of the ORCA2_LIM configuration. Code was linked
against version 3.2 of the CUDA run-time library from NVIDIA.

23



o—o CPU
o—e CPU+GPU

Speed-up w.r.t. one PE on CPU

0.0

Number of PEs

Figure 9: Comparison of NEMO in MPI mode with and without running the accelerated
routines on the GPU. Runs done on Nehalem CPUs and Tesla GPUs. Sockets kept
minimally populated to maximise available memory bandwidth. Lines are guides to the
eye.

affected code is now only some 4% slower, presumably because preventing the arrays
from being paged-out reduces the time the CPU must wait for them to be loaded and
so improves memory bandwidth. When using the PGI compiler the pattern is the same
although moving to pointers only slows the code by 4%. Changing to pinned memory
slightly reduces the slow-down to 3%. Happily, in this particular case the arrays involved
actually remain constant after initialisation and therefore must only be uploaded to the
GPU once. We can therefore afford not to move them into pinned memory and thus
can avoid the associated performance hit in the vertical physics section. Obviously this
may not always be the case and therefore it is important to be aware of the possibility
of slowing down code that is not running on the GPU.

Finally, we experimented with running the MPI version of NEMO with the accelerated
routines. Performance plots are shown in Figure 9 for runs done with and without using
GPUs. When GPUs are used, each MPI processing element (PE) is associated with one
GPU. The linux ‘taskset’ command was used in conjunction with ‘mpirun’ in order to
ensure that CPU processes were shared equally between sockets. In moving subroutines
to execute on the GPU we have reduced the amount of computation (time) available
to be done in parallel. Therefore we expect the scaling of the GPU-enabled version of
NEMO to be worse than that of the CPU-only version and the results in Figure 9 bear
this out. In fact, when four MPI PEs are used we see that the CPU-only version is fastest.
However, the ORCA2_LIM configuration is relatively small and by the time it has been
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Routine Time % Computational intensity (ops/ref)

tra_adv_tvd 6.5 0.82
sol_pcg 6.4 0.78
tra_ldf_iso 5.9 0.88
1df_slp 5.6 0.98
lim_rhg 3.8 1.17
tra_qsr 3.5 0.81
tra_adv_eiv 3.3 0.42
dyn_zdf imp 2.8 0.57
tra_zdf_ imp 2.6 0.70
mathelp_moycum 2.6 0.62
zdf_ ddm 2.3 0.71
eos_insitu_pot 2.0 1.63
eos_bn2 2.0 1.69
eos_insitu 1.6 1.74

Table 9: Profile of NEMO run in serial on a single core of HECToR IIb for the
ORCA2_LIM configuration.

sub-divided into four regions there is no-longer enough work for the GPUs to be effective.

11 Understanding GPU Performance

In an attempt to better understand the GPU performance, we used the craypat tool on
HECToR to measure the computational intensity of NEMO’s more significant subrou-
tines. Table 9 contains another profile of NEMO running ORCA2_LIM but this time
including the computational intensity of each subroutine. This shows that, in general,
the routines accounting for a greater percentage of run-time have relatively low computa-
tional intensities; probably because these routines have greater dependence on available
memory bandwidth. In turn, this makes them less suitable for execution on GPUs which
favour high compute-intensity kernels. A second point to note is that tra_ldf iso actually
has a lower compute intensity than lim_rhg and yet performed much better on the GPU.

We also used the craypat API to instrument traldf iso so as to be able to measure the
computational intensity of the individual loops in the routine. For the most expensive
loop (at line 257) the computational intensity is 0.95 operations per memory reference
(ops/ref). For the second most expensive loop (line 373) it is 0.61 ops/ref. Both of these
loops consist of triply-nested/3D loops over the full domain depth, height and width
respectively giving ample scope to parallelise, even with the relatively small ORCA2
data set. This is to be contrasted with the loops in lim_rhg which are predominantly
only doubly-nested/2D. To make matters worse, the outer loop over latitude is restricted
to either the Arctic or Antarctic (the routine is called once for each case) — approximately
30% of the height of the full domain. The amount of parallelism in these loops is therefore
greatly reduced in comparison to those in traldf-iso.

The low computational intensity of the routines in NEMO emphasises their need for
high bandwidth between the processor and system memory. There are various synthetic
benchmarks available which are able to measure this bandwidth. Results obtained using a
modified version of STREAM [6] and (the CUDA part of) SHOC [2] are shown in Table 10.
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Units | Nehalem | Westmere | Tesla | Fermi
traldf_iso | (s/call) | 0.039 0.032 0.021 | 0.018
Reads (GB/s) | 17.21¢ 19.85¢ | 82.5° | 93.2°
Writes (GB/s) | 11.52¢ 12.80% 73.8" | 102.8°

a Results from modified STREAM
b SHOC results from [4]

Table 10: Kernel timings and memory bandwidths for single Nehalem and Westmere
Intel CPUs and the Tesla and Fermi NVIDIA GPUs. The OpenMP version of the kernel
was used on the CPUs and the PGI Accelerator Directives version on the GPUs. The
CPUs were populated with as many OpenMP threads as they had cores — four for the
Nehalem and six for the Westmere.

(We modified STREAM such that it separately measured the bandwidth obtained when
reading-from and writing-to memory rather than doing a single copy operation.)

The figures in Table 10 show that the Tesla GPU offers a factor 4.8 improvement in
memory bandwidth over a single Nehalem socket and the Fermi slightly more. Despite
this, the improvement in kernel performance in going from the OpenMP version on a full
Nehalem socket (four cores) to the HMPP version on a Tesla GPU is only a factor of 2.6.
This may imply that the GPU version of the kernel is not getting the best out of the
hardware.

The factor of 1.13 improvement in memory bandwidth (for reads, which are what
dominates the traldf iso kernel) in going from Tesla to Fermi is fairly close to the 1.17
speed-up seen when moving the PGl-accelerated kernel from Tesla to Fermi. This limited
speed-up also implies that the kernel is unable to take advantage of the factor eight
increase in double-precision compute capability of the Fermi.

12 Conclusions

Of the five NEMO routines ported to the GPU in this work, all bar one ran at at least
twice the speed obtained on a single core of a Nehalem processor. In fact, even when data
transfer costs are included, this remains true for three of the routines. Moreover they have
been successfully merged back into the NEMO code without losing this speed-up ( i.e.
much of the data-transfer costs have been hidden and/or shared between the routines),
such that these routines are no longer significant in the NEMO profile. However, the sea-
ice routine proved very different. Despite having restricted ourselves to the computational
part of the kernel ( i.e. avoiding the thorny issue of data transport), we were unable to
get a speed-up over just a single CPU core, even with the ORCA025 grid, because of the
limited parallelism present in the loops.

However, comparing the performance of a single CPU core with that of a whole
GPU with several hundred cores is inconsistent. We have therefore constructed OpenMP
versions of some of the routines which are then able to utilize all of the cores on a CPU
socket. (No OpenMP version of NEMO as a whole exists.) These OpenMP versions avoid
the significant complexities of programming for two memory address spaces and achieved
some 60-70% of the performance of the GPU. Note also that this was done on an Intel
Westmere chip which has already been superseded by Intel’s Sandy Bridge architecture.

Another useful metric to consider is the amount of time taken to port code to the
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GPU. The work described in this report took a total of one year of effort, albeit with
maybe two months spent learning to use the directives and associated software tools. In
that time, five routines have been ported to GPU using directives, one of which was done
first with PGI directives and then again with HMPP directives. In contrast, the two
OpenMP implementations took at most a day each to complete and required minimal
code changes.

As previously noted, the ORCA2_LIM configuration fits into approximately 1GB of
RAM and since NVIDIA’s Fermi GPUs have either 3 or 6GB of RAM, another possible
approach is to run the whole of NEMO on the GPU. This avoids the difficult problem
of minimizing the effect of the PCI-Express bottleneck but obviously requires that the
whole code be ported — a non-trivial task that is also likely to have a huge effect on the
code base.

We also note that the ORCA*_LIM configurations are only one example of the many
model configurations that NEMO is capable of. It may be that aspects related to
biologically-active tracers, for instance, are better suited to making use of a GPU.

Back in Section 3 we discussed our motivation for using only directives-based ap-
proaches to porting NEMO. A key reason for doing so was the desire to keep changes to
the original source code to a minimum. We have found that porting compute-intensive
loops to the GPU is relatively simple (although still more complex than using OpenMP)
and therefore not overly intrusive. However, the fact that current system architectures
have two memory address spaces separated by a slow interconnect is a key issue for an
MPI code like NEMO. A great deal of work (and code) is required to efficiently man-
age data transfers between the two memory address spaces and this makes the resulting
program bulky and fragile.

Taking a step back, NVIDIA, AMD and Intel are all working towards integration of
the GPU with the CPU which would obviously eliminate the PCle bottleneck and a lot of
the programming pain. On the software side, the SuperComputing 2011 conference saw
the announcement of OpenACC — a new, cross-platform collection of compiler directives
for accelerator programming supported by Cray, PGI, CAPS and NVIDIA. With such
industrial support, it seems likely that OpenACC will be the best directives option for
porting existing scientific codes to make use of GPUs in the future.

13 Project Outputs

The outputs and dissemination activities resulting from this work have been as follows:

e Presentation at the University of Manchester GPU Club, Manchester, December
2011;

e Presentation at the 3rd UK GPU Computing Conference, London, December 2011;
e Presentation at the National Oceanographic Centre, Liverpool, December 2011;

e Presentation of results to the NEMO Systems Team and discussion of the implica-
tions for the NEMO roadmap (Paris, December 2011);

e Presentation at PRACE IIiP WP8 Meeting, Barcelona, February 2012;

e Daresbury Laboratory Technical Report (this document), March 2012;
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e Kernel benchmark codes and GPU version of the NEMO code supplied to the
NEMO Systems Team, March 2012.

14 Acronyms

GPU (General-Purpose) Graphics Processing Unit

HECToR High-End Computing Terascale Resource

LIM Louvain-la-Neuve sea-Ice Model
MPI Message Passing Interface
NEMO Nucleus of the European Model of the Ocean
PE (MPI) Processing Element
SIMD  Single Instruction Multiple Data
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