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Abstract This paper presents a new technique that combines Grad’s 13-moment equations (G13) with a
phenomenological approach to rarefied gas flows. This combination and the proposed solution technique cap-
ture some important non-equilibrium phenomena that appear in the early continuum-transition flow regime. In
contrast to the fully coupled 13-moment equation set, a significant advantage of the present solution technique
is that it does not require extra boundary conditions explicitly; Grad’s equations for viscous stress and heat
flux are used as constitutive relations for the conservation equations instead of being solved as equations of
transport. The relative computational cost of this novel technique is low in comparison to other methods, such
as fully coupled solutions involving many moments or discrete methods. In this study, the proposed numer-
ical procedure is tested on a planar Couette flow case, and the results are compared to predictions obtained
from the direct simulation Monte Carlo method. This test case highlights the presence of normal viscous
stresses and tangential heat fluxes that arise from non-equilibrium phenomena, which cannot be captured by
the Navier–Stokes–Fourier constitutive equations or phenomenological modifications.

Keywords Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems
(NEMS) · Micro- and nano- scale flow phenomena · Rarefied gas dynamics · Non-continuum effects ·
Non-equilibrium gas dynamics

PACS 47.61.Fg, 47.61.-k, 47.45.-n, 47.61.Cb, 47.70.Nd

1 Introduction

Micro-electro-mechanical systems (MEMS) have found many applications in industrial and process systems,
biomedical devices, environmental control devices, micro-processor cooling, and high precision printing.
Micro-ducts, micro-heat-exchangers, micro-pumps, and micro-air-vehicles are now commonly used terms.
Rapid progress in micro-engineering has not been matched by an increased understanding of the fundamental
physics occurring in such small-scale domains. One particularly active research area of emerging importance
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is understanding the gas dynamics occurring in these miniaturized domains. This is because the general char-
acteristics observed in macro-scale flows are not always applicable to micro-sized domains. For example, the
Navier–Stokes–Fourier (NSF) fluid dynamic equations with conventional no-slip boundary conditions are no
longer valid when the system characteristic length scale approaches the molecular mean free path of the gas [5].

The inadequacy of the NSF equations to represent gas dynamics in micro-domains stems from the fact that
they are only able to describe flows which are close to equilibrium. Molecular collisions are the mechanism
by which gas molecules equilibrate energy and momentum. Hence, if a gas is too rarefied, or is confined to
micro-geometries, the number of collisions is reduced considerably relative to the bulk flow in the system,
inducing non-equilibrium phenomena. If λ is the mean free path, i.e., the average distance travelled by a gas
molecule between successive collisions, and H is the system characteristic length, then K n = λ/H , is a
dimensionless parameter called the Knudsen number that gauges the degree of non-equilibrium.

The NSF equations can be obtained from the Boltzmann equation,
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through approximations of f , the particle distribution function (PDF). Equation (1) is considered to be the
fundamental governing equation of any dilute gas characterized by binary collisions. However, its solution
is a non-trivial task due to the dimensional complexity of the collisional operator on the right hand side of
Eq. (1). Various methods have been used to obtain a simpler approximation: each method attempting to retain
acceptable accuracy in order to capture the fundamental gas dynamics. There are two main approaches.

In discrete molecular methods, the fluid is modelled using a microscopic formalism, i.e., as a collection
of moving molecules which interact through collisions or very close proximity potentials. Such modelling
can be performed using either statistical ensemble averages, e.g., direct simulation Monte Carlo (DSMC) [2],
or deterministic methods, e.g., molecular dynamics (MD) [17]. Although such methods achieve a realistic
picture, their application has been restricted to simple flows due to their computationally intensive nature.

Continuum modelling is another approach. The fluid is assumed continuous and infinitely divisible so
it is possible to define velocity, density, pressure, and other properties at any point in space and time. This
modelling approach can be sub-divided further. Extended gas dynamic continuum models can be derived by
either perturbation methods, commonly known as the Chapman–Enskog expansion [4], or moment methods
[6,9]. The usual conservation equations with the NSF constitutive relations are derived in each case [18].
The other category of continuum models is the use of simple phenomenological extensions to the governing
conservation equations in order to capture non-equilibrium effects. The application of velocity slip [15] and
temperature jump [19] boundary conditions as well as constitutive model scaling in the form of wall function
methods [13] have been used in continuum-based approaches.

It has previously been shown that Grad’s 13-moment equations are unable to capture the non-linear stress/
strain relationship in the near-wall region [14]. In this paper we focus on continuum-based methods with
a unique combination of moment and phenomenological extensions in order to achieve a better description
of non-equilibrium effects that are typical of gaseous flows in micron-sized domains. Combining the two
methods not only improves the description of non-equilibrium phenomena but also retains the relatively low
computational cost—a desirable feature for modelling tools used in engineering design applications.

2 Extended hydrodynamics: the moment method

The governing fluid conservation laws for mass, momentum and energy contain moments in the form of stress,
σi j = pδi j + σ<i j> = pδi j + τi j and heat flux, qi . The angular brackets <> indicate the traceless part of
a tensor. Two options exist to derive relationships for these higher-order moments; (i) derive their transport
equations, or (ii) obtain a constitutive relationship in the form of a closure approximation in terms of the five
lower-order moments, i.e., ρ, vi and T .

One form of closure approximation is by considering a Hermite polynomial expansion of the PDF [6]. The
resulting closure approximation for the first five moments are termed the Euler equations with the resulting
constitutive relations being τi j = 0 and q j = 0. When transport relations (governing equations) for the viscous
stress, τi j , and heat flux, qi , are derived, the moment equations are then of the form:
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where the collision frequency is defined as τc = µ/p.
Higher-order moments ρ<i jk>, ρrr<ik> and ρrrss appear in the viscous stress and heat flux transport equa-

tions, Eqs. (2) and (3). Again, there are two options to obtain relationships for these higher-order moments:
either using a closure approximation, or formulating further transport equations recursively until a closure is
defined. A closure for the first 13 moments yields the Grad 13-moment equations (G13), whereby ρ<i jk> = 0,
ρrr<ik> = 7RT τik and ρrrss = 15p2/ρ. The NSF equations can be derived from both moment equation sets
described here. Regularization of the Euler equations yields the NSF expressions [18].

A fully coupled solution of any moment equation set larger than five requires additional boundary con-
ditions, which may be derived from kinetic schemes [18]. The derivation of such boundary conditions is
a non-trivial task and becomes more complex as more moments are considered [7]. In addition, a coupled
solution of systems with a large number of moments incurs a computational cost that is comparable to that
of discrete methods, although the consideration of more moments should yield a better approximation to the
Boltzmann equation.

3 A method of differential iteration using moment equations

The specific structure of the moment equations lends itself to being decoupled into two sub-systems and
solved without the need for any additional boundary conditions. The Maxwellian iteration, best illustrated in [8],
decouples the conserved variables, i.e., ρ, vi and T from all the higher-order moments τi j , q j , ρ<i jk>, ρrr<ik>,
ρrrss , etc. The first Maxwellian iteration of the G13 moment equations yields the NSF equations. Liu proposed
a decoupling method along these lines with the iterations being weighted [11] and the method has been shown
to be mathematically consistent and convergent [12]. In order to illustrate this approach, the G13 moment set
will be used as an example.

We denote the two sub-systems as I and II. System I is equivalent to the conservation laws together with
constitutive relations for the viscous stress and the heat flux. System II consists of all the transport equations
of the non-equilibrium variables which will be used as modified constitutive relations in system I, i.e., the
viscous stresses, heat fluxes, and all higher-order moments for which the boundary conditions are unknown. It
is assumed that the non-equilibrium fluid property fields are continuous up to the boundaries. Such an assump-
tion is plausible even though discontinuities might exist at the wall boundaries in a similar way to velocity slip
and temperature jump. The value on the gas side is the value that ultimately is of significance to the solution
and this value should be continuous with the rest of the field. The unknown boundary data are extrapolated
after having solved system II.

For the G13 moment set, system I can be written as
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whereas system II can be expressed as follows:
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where the superscript n indicates the iteration index and wn is a monotonically decreasing weight, such that
wn = 1/n. One whole iteration comprises a complete solution of both sub-systems.

The iterative procedure is initiated at n = 1 by solving for equilibrium—that is, by setting all non-equi-
librium variables in system I to zero, i.e., τ (0)i j = 0 and q(0)j = 0. At n = 1, it can be shown that system I is
equivalent to the NSF equations. Having solved system I, we substitute all variables into system II containing
the non-equilibrium components, which are assumed to be continuous up to the boundary. The solution proce-
dure switches between the two sub-systems until the L2 error norm, defined for the uncontrollable boundary
data in system II over successive iterations, is considered to be sufficiently small [12].

The mathematical details of this iterative procedure have been presented in [10–12]. However, it should be
noted that their solutions do not take into account the velocity slip or temperature jump boundary conditions.
In this paper, the same method has been used with the incorporation of velocity slip and temperature jump
into the solution, together with other modifications that better represent the dynamics of non-equilibrium gas
flows.

4 Phenomenological variants of simple continuum models

In continuum models, phenomenological techniques are often used to capture a particular physical behavior
rather than modelling it from first principles. Such an approach can be adopted to model features in non-equi-
librium micro-scale gas flows. Velocity slip, temperature jump, and strain-rate scaling through the Knudsen
layer are phenomenological models that will be briefly described here.

4.1 Velocity slip and temperature jump boundary conditions

The velocity slip and temperature jump boundary conditions are simplified phenomenological approaches to
represent both non-equilibrium and gas-surface interaction effects occurring near solid walls. Such boundary
conditions were first suggested by [15] and [19], respectively. Using Grad’s closure approximation for the PDF,
we find that the boundary conditions accounting for velocity slip and temperature jump are of the form [18]:
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respectively. The subscript ‘wall’ indicates wall boundary conditions.
Both boundary conditions are extensively used in the slip-flow regime, i.e., 0.001 < K n < 0.1 [5] in com-

bination with the NSF equations. Various modifications are also presented in the literature in order to extend
their validity into the early transition regime, i.e., 0.1 < K n < 1.0 [1]. Nevertheless, modifying such bound-
ary conditions is not sufficient to fully capture many non-equilibrium effects in the transition regime. Further
modifications to the governing or constitutive equations are required in order to capture effects such as the
non-linear stress/strain-rate and the non-linear heat-flux/temperature-gradient relationships in the proximity
of solid walls.

4.2 The Knudsen layer and constitutive scaling

Much of the drive behind the extension of slip and jump boundary conditions has been to include the effects of
the Knudsen layer—the local region of non-equilibrium flow extending a few molecular mean free paths from
solid walls. Modifying the coefficients α1, α2 and β1 in the velocity slip and temperature jump conditions of
Eqs. (12) and (13) only changes the magnitude of the wall boundary values. While this may provide a better
solution in the bulk flow, it fails to model the effects of the Knudsen layer in the vicinity of the wall.

One possible solution that has been proposed to represent this non-equilibrium region is to introduce a
scaling function, ψ , in the viscous stress/strain-rate relationship which is dependent on the distance, x̄ j , from
a solid boundary. Any such scaling function should have a large effect within a few mean free paths from the
wall and scale to unity in the bulk flow. Cercignani [3] solved the linearized Boltzmann equation and showed
that the one-dimensional velocity profile through the Knudsen layer was of the form:
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For an essentially one-dimensional flow, the stress tensor then has the scaled form:
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This representation is similar to other scaling methods used in micro-liquid transport models to describe
non-linearities close to the wall [16].

5 Capturing non-equilibrium effects: a combined technique

Restricting the modelling of rarefied gas flows to the conservation equations and modifications thereof might
hamper the possibility of capturing the correct physics occurring in the transition regime. The combination of
conservation equations and scaling methods alone is not enough to capture all non-equilibrium flow effects.
Nevertheless, this method can capture some of the stress/strain rate non-linearities occurring in the proximity
of solid boundaries.

We, therefore, propose a solution of the moment equations in conjunction with constitutive scaling meth-
ods within the Knudsen layer. In a similar manner to the approach described in [13], we introduce a viscosity
scaling function in the G13 constitutive relations in order to model non-linearities in the flow close to surfaces.
To retain the definition of the Prandtl number for a monatomic gas, Pr = 2/3, we shall assume that the
thickness of the momentum and thermal Knudsen layers are equivalent. Hence the same scaling function will
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Fig. 1 Schematic representation of Couette flow

be assumed for the momentum flux and thermal heat flux. In reality, this is unlikely since the relaxation times
for momentum and thermal energy are different [20].

The viscous stress and heat flux NSF constitutive relations for viscous stress and heat flow have been
modified to accommodate the scaling parameter, ψ , as follows:
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Similarly, the scaled G13 relations can be writen as
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6 Steady Couette flow

A steady-state Couette flow of argon gas was used as a test case to investigate the various models and the
proposed new solution technique. Our results were compared to DSMC data for K n = 0.1 and K n = 0.5.
The steady-state Couette flow problem is a simplified one-dimensional problem in which ∂/∂t , ∂/∂x1, ∂/∂x3,
n1, n3, v2, and v3 are all zero (see Fig. 1). The conservation equations need to be solved for ρ, v1, T and p,
together with the equation of state for an ideal gas and the constitutive equations for τi j and qi that provide a
closed set of equations.

For this one-dimensional problem, the conservation equations reduce to
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If the effects of the Knudsen layer are taken into account using the classical NSF equations, the correction
coefficients are α1 = 1.114, α2 = 1.34533 and β1 = 1.127 [18].

The one-dimensional NSF constitutive relations reduce to
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If there is no scaling of the stress/strain relationship, the function ψ is set to unity.

7 Results

The G13 equations and their modifications have been solved using differential iteration, in which system I
is the governing and constitutive equation set resolving ρ, v1, T , p, τ12 and q2. The production terms of the
uncontrollable boundary data, i.e., τ11, τ22 and q1, are computed in system II and weighted values thereof
appear as source terms in system I in the next iteration. A finite volume technique was used to solve system I,
whereas system II was solved once for every converged solution of system I by a central difference approxi-
mation of the derivatives. The whole system of equations converges to a final steady-state solution by reducing
the L2 error norm of the uncontrollable boundary data, Er , between subsequent iterations as defined by [11]:
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In addition, the problem has been normalized as follows:

Xi = xi

H
, Vi = vi

viwall

,  = T
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, (33)

where P = p + τ22 is the total prescribed normal stress obtained as a constant of integration from Eq. (20).
For argon, the specific gas constant, R = 207.83 J K−1 kg−1.

The following boundary conditions were used for all test cases: at X2 = 0, V1 = 0 and  = 1 whereas
at X2 = 1, V1 = 1 and  = 1. Full accommodation was assumed at the walls, i.e., σ = 1 and σT = 1. Two
flow regimes were considered, namely K n = 0.1 and K n = 0.5, and the results are presented in Figs. 2 and 3.
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Fig. 2 Couette flow results for K n = 0.1; DSMC predictions ( f illed circle), NSF solution with conventional slip boundary
conditions (dashed dotted line), and combined G13 and Knudsen layer wall scaling solution (solid line)

In both these cases, the Mach number, defined as Ma = viwall/
√

2RTwall, was approximately 0.3. The results
are shown in half-space for clarity, and compare the DSMC predictions to the NSF solution with conventional
slip/jump boundary conditions and the new solution to the G13 equations for both test cases. In Fig. 3, for
the K n = 0.5 case, the conventional G13 solution is additionally shown to highlight the relative differences
between the phenomenological scaling and extended constitutive terms.
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Fig. 3 Couette flow results for K n = 0.5; DSMC predictions ( f illed circle), NSF solution with conventional slip boundary
conditions (dashed dotted line), G13 solution with conventional slip boundary conditions (dashed line), and combined G13
and Knudsen layer wall scaling solution (solid line)

8 Discussion and conclusions

Figures 2 and 3 show that the combination of the G13 equations with scaling functions achieves a better repre-
sentation of the Knudsen layer in the near wall region than the standard NSF slip-flow solution. In particular,
we see that:
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(1) The non-linearity near the wall for the tangential velocity, V1, is better predicted (see Figs. 2a and 3a)
due to the inclusion of the wall scaling function in the stress constitutive law.

(2) The method achieves a better representation of the temperature profile in the bulk flow due to an improved
prediction of the normal heat flux, Q2. As shown in Fig. 3f, this is partly due to the extended constitutive
terms in the G13 equations and further improved by the wall scaling function.

(3) The proposed method achieves a better estimate of the shear stress, which in turn yields a better estimate
of the velocity slip at the wall. This improvement is solely attributed to the constitutive scaling.

(4) The proposed method captures some of the non-equilibrium effects which are otherwise absent from NSF
solutions. In particular, the method manages to capture the normal stresses, �11 and �22. Additionally,
the trend for tangential heat flux, Q1 is better represented in the proposed method. Such effects can only
be captured through the inclusion of 13-moments or more. The combination of the NSF approach with
the Knudsen layer wall function technique is unable to capture such non-equilibrium behavior.

These phenomena are not appreciable at low Knudsen numbers and, in particular, Fig. 2d shows a scattered
result obtained by DSMC. This is due to the fact that the modelled gas is not very rarefied and the average
flow speed is fairly low, typical of applications in MEMS. From the DSMC predictions it can also be seen that
the tangential heat flux, Q1, is of the same order of magnitude as the normal heat flux, Q2, underlining the
importance of capturing such effects since they play an implicit role in the conservation equations. Although
it is not part of the present investigation, it is likely that the magnitude of quantities such as stress and heat
flux will be affected by the Mach number.

The computational expense of the proposed approach is of the same order as a classical NSF solver, making
it attractive for engineering design applications in the early transition regime. The computational overhead of
using such a technique in comparison to the NSF/slip solution is problem-dependent. In particular, for these
specific test cases, it has been found that for K n = 0.1 and a relative converged error change of Er = 10−5,
the increase in CPU time is approximately 25% whereas for K n = 0.5, with the same relative error threshold,
the additional CPU overhead is approximately 90%.

This novel technique still has some shortcomings. In particular, it can be shown that the proposed solution
method for the G13 equations is incapable of capturing non-linearities of normal stress and tangential heat flux
occurring in the vicinity of the wall. Currently, the iteration method is suitable for flows that have a steady-state
solution. An extension to time-dependent solutions would incur extra computational cost since the system of
equations needs to converge iteratively on both systems for each time step. Two possible ways of improving the
current approach are by considering higher-order formulations, such as the regularized 13-moment equations
[18] or Grad’s 26-moment equations or using alternative wall functions for the different moments in the G13
equations.
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