The EURACE agent-based economic
model: benchmarking, assessment
and optimization

LS Chin, D) Worth, C Greenough, S Coakley,
M Holcombe, M Kiran

April 2012


vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text


©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library

STFC Rutherford Appleton Laboratory
R61

Harwell Oxford

Didcot

0OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.


mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

The EURACE Agent-Based Economic Model:
Benchmarking, Assessment and Optimization

L.S. Chin', D.J. Worth, C. Greenough
S. Coakley*, M. Holcombe! and M. Kiran?

April 2012

Abstract

This report describes the authors’ experiences in developing and optimising the serial
and parallel versions of a very large complex agent-based economic model. The
EURACE Model was developed as part of the EU Framework 6 project EURACE
using the Flexible Large-scale Agent Modelling Environment - FLAME - which has
been developed in a collaboration between the Computer Science Department of the
University of Sheffield and the Software Engineering Group at the STFC Rutherford
Appleton Laboratory.

The report contains a brief description of FLAME, which is an applications program
generator for agent-based simulations and its parallel implementation. However the
bulk of the report is concerned with the process of developing and optimising the
serial and parallel versions of the EURACE model. This includes a description of
the tools developed by the project to aid this development and how they were used
in debugging the EURACE Model.

The final sections of the report describe some of the large-scale benchmark simula-
tions performed with a study of the effects of serial sections on the overall parallel
performance of such a model.

1 Software Engineering Group, STFC Rutherford Appleton Laboratory
T Computer Science Department, University of Sheffield

Keywords: agent-based modelling, economic modelling, parallelisation, optimisa-
tion, performance analysis

Email: {shawn.chin, christopher.greenough, david.worth}@stfc.ac.uk
Reports can be obtained from: http://epubs.stfc.ac.uk

Software Engineering Group

Computational Science & Engineering Department
STFC Rutherford Appleton Laboratory

Harwell Oxford

Didcot

Oxfordshire OX11 0QX



Contents

1 Introduction

2 FLAME - The Flexible Large-scale Agent Modelling Environment

3 General Parallel Implementation of FLAME

4 The EURACE Economic and Financial Model

5 Tools for FLAME and Model Assessment
5.1 Static and Dynamic Analysis Tools . . . . . . . . ... .. .. L.
5.2 FLAME Verification . . . . . . . . . . ... .
5.3 Model Validation . . . . . . . . . . ..
5.4 The Verification and Validation Process . . . . .. .. ... ... ... .. ....

6 Performance of the FLAME Framework

7 Performance of EURACE Model
7.1 Assessment and Benchmarking for the EURACE Model . . . ... ... .. ...
7.2 Serial Performance Analysis . . . . . . . . . ... o
7.3 Population Partitioning . . . . . . . ..o
7.4 Phase I Parallel Performance Analysis . . . . .. ... ... ... .. ... ....
7.5 Phase Il Benchmarking . . . . . . .. .. ...
7.6 Dominance of Serial Components . . . . . . . . . . ...

8 Conclusion

References

A Parallel Computing Systems Used In EURACE

B FLAME Verification

© oo oo oS

10
10
12
17
17
21
22

24

25

26

28



1 Introduction

The report builds on a previous report [1] which describes the initial developments of the parallel
framework and some initial performance results with simple agent-based models. Although in
this report we give a short summary of FLAME and its parallelisation, the bulk of the report
is concerned with the optimisation of the serial and parallel versions of the EURACE Economic
Model and the tools and types of analysis used in the optimisation.

After a short summary of FLAME and its parallelisation we consider the assessment of the
overheads and parallel performance of the FLAME infrastructure. In particular we attempt to
monitor the overheads of the message management through the message board library and the
overlapping of communication and computation achieved by multi-threading. The report then
considers both the serial and parallel optimisation of the EURACE model and considers the
different tools developed to verify and monitor the performance of the model.

The final sections give the results of some computational experiments and an assessment of
the effect of serial sections of the code on the parallel performance.

The initial development of FLAME was driven by Simon Coakley [4] in the Computer Science
Department at Sheffield University. It is now developed jointly with the Software Engineering
Group at the STFC Rutherford Appleton Laboratory. Details can be found on the FLAME
Web site http://wuw.flame.ac.uk.

This work was performed as part of the EU funded project EURACE Project [2] (STREP
No 035086) which was a three-year project investigating the use of agent-based modelling in
economic and financial systems.

2 FLAME - The Flexible Large-scale Agent Modelling Environ-
ment

FLAME (The Flexible Large-scale Agent Modelling Environment) is what it says - it is an
environment for developing agent-based applications. FLAME develops the ideas of Kefalas
et al. [6] which describes a formal basis for the development of an agent-based simulation
framework using the concept of a communicating X-machine.

FLAME has a model specification language, XMML (based on the XML standard) and a set
of tools to compile the agent-based system. FLAME uses a template library to drive the code
generation and can produce both serial and parallel programs. The main elements a FLAME
model are: the XMML model definition and the agent transition functions (provide as C code).

The modeller provides a description of his model and the functions that define the operations,
communications and changes of state of the agents and FLAME generates the applications
program. Figure 1 shows the structure of the FLAME environment. The model file is parsed
by the xparser and the results combined with the transition functions through the xparser’s
template library to generate the application.

Full details of the theoretical background to FLAME and the X-Machine approach to agent-
based modelling is given in other various reports and papers [1, 4, 5].

3 General Parallel Implementation of FLAME

We will not go into detail concerning the parallelisation of FLAME in this report. A detailed
description can be found in [3]. A brief summary will be sufficient to appreciate the approach
and its impact of the performance on FLAME models. Although the FLAME architecture has
some inherently good characteristics that lend themselves to parallelisation, it also has a number
of bad characteristics. Because FLAME is a simple application generator it does not have a full
understanding of the application it is generating. Although the agent population and their
interactions can be specified a prior: the computational load of each agent and the nature of



—
\
Model XMML — || = C
/ xparser

C T Simulation Code
Agent
Functions
.tmpl

Templates

;; ’ Object Files (*.0)
Executable %

libmboard
Figure 1: The structure of the FLAME Environment

the communications they perform are very difficult to determine without running the code.

A basic characteristic of FLAME and its agents are those of activation (state changes) and
communication (conceptually agent to agent, but not in implementation). This could generally
be considered a bad characteristic as the communication happens often and the communicating
tasks are computational light-weight so the potential parallelism could be seen as very fine
grained. It is not quite that simple as the computational weight of each transition function
could vary greatly.

This communication between agents is implemented within FLAME as a set of message boards
on which agents post messages (information) and from which agents can read the messages.
There is one message board per message type and FLAME manages all the interactions with the
message boards through a Message Board API. The use of simple read /write, single-type message
boards allows FLAME to divide the agent population and their associated communications areas
providing a high level parallelisation strategy. This division could be based on any number of
parameters or separators but the simplest to appreciate is position or locality. If, as in EURACE,
agents are people or companies for example, they will have locality defined either as location or
by some group topology. It may be reasonable to assume that the dominant communications in
both scenarios will be with neighbouring agents.

As the majority of large high performance computing systems currently use a distributed
memory model a Single Program Multiple Data (SPMD) paradigm is considered most appro-
priate for the FLAME architecture. The parallelisation of FLAME utilises partitioned agent
populations and distributed message boards linked through MPI communication. Figure 2
shows graphically the difference between the serial and parallel architecture of FLAME. The
most significant operation in the parallel implementation of FLAME is providing the message
information required by agents on one node of the processor array but stored on a remote node
of the processor. The FLAME Message Board Library manages these data requests by using a
set of predefined message filters to limit the message movement. This process could be consid-
ered a synchronisation of the local message boards within an iteration of the simulation. This
synchronisation essentially ensures that local agents have the message information they need as
the simulation progresses.



PARALLEL

Figure 2: Serial and Parallel Message Boards

The patterns and volumes of communication for the population will have a considerable
impact on the performance and parallel efficiency of the simulation. In general, agents are
rather light-weight in terms of computational load; but all agents can and do communicate
with all others the communications load within and across processors will be great. Fortunately
communications within a processor are generally efficient. However across processors this com-
munication can dominate the application. The Message Board Library implementation attempts
to minimise this communication overhead by overlapping the computational load of the agents
with the communication.

Where the agents have some form of locality the initial distribution of agents makes use
of this information in placing agents on processing nodes. Exploiting this locality is key to
gaining parallel performance and as with all parallel applications it is the serial component of
the application that quickly degrades this performance.

4 The EURACE Economic and Financial Model

The complete EURACE model is an extremely large and complex model made up of eight
modules. Each module is the FLAME implementation of a particular economic role for different
agents. The list of modules is:

1. Labour market;

2. Consumption goods market;

3. Investment goods market;

4. Credit market;

5. Financial market;

6. Firms’ financial management role;
7. Government;

8. Eurostat.

Each module implements a set of functions for all those agents playing a certain role. All the
agents (firms, households, etc.) may be involved in different economic activities (i.e. markets)
and are characterised by different actions or functions. These actions are grouped into distinct



Regulatory

Central
bank

TESEIVES

interests interests
Assets
market Banks
savings
goods B
dividends, W,
Households interests interests

spending

Figure 3: The EURACE Economic Model

roles and roles are define the interfaces between agents and markets. For example, firms selling
goods are playing a role in the consumption goods market using a set of functions related to
that role. However, when they are asking for loans, they are working in the credit market role
using the set of functions that this role requires. The last two modules (7-8) deal with roles
played by one single agent respectively.

Agent type | Number of agents

National

Government
Central_Bank
Clearinghouse
Eurostat
IGFirm
Regional
Mall

Bank 2
Firm 80
Household 1600

—_ = =

Table 1: Distribution of agent population

The final EURACE model is made up of 9 agent types (see Table 1). The proportions of the
agents are uneven and this will effect the distribution of the agents over the available processors
in a parallel simulation. It is also worth noting that there are a number of national agents -
there will only be one of these in the whole population. These singleton agents are an essential
part of the model but they could be computational bottlenecks. Although these singleton agents
have been classified as national in a model containing many countries some of them (Central
Bank and Euostat )could be super-national.



start_Household

start_Government

not (First_Iteration)

First Iteration ot (First_lteration)

Household_initialization idle Government_initialization idle

Household_Start_Yearly_Loop_Top @nt_Stan_MonthIy_Loop_Top

not ( Periodicity: yearly hot ( Periodicity: monthly\Periodicity: monthly
Phase: 1) Phase: 1) Phase: 1

Periodicity: yearly,

Phase: 1
idle idle Government_monthly_resetting
Government_Start_Yearly_Loop_Top
Periodicity: yearly "\ not ( Periodicity: yearly
Phase: 1 Phase: 1)
Government_send_policy_announcements idle
7 o - Pojj

o L Vley

O~ ~ ~~~7=8nno
. o Sl =-_10unc,

/ policy 2>~ Py, “ement
Household_read_policy_announcements -1 Government_yearly_resetting - \'Z'ZOUnCSme ¢ ST

Household_Start_Policy_Data

; not ( Periodicity: monthly
Phase: 1)

——--

Household_receive_data

l c,o“??‘>’
L o
@d_stan_ﬁnanciaI_Market_RoIe g\\«\?i\/
A\

Periodicity: monthly
Phase: 1

not ( Pei‘(o}jicity: monthly
_.“Phase: 1)

<

Household_received_coupons

Figure 4: Portion of EURACE state-graph

GOVERNMENT_paid_coupons

What is not reflected in these diagrams and tables are the message types used by the model
- within the EURACE Model there are 62 message types of varying size. Figure 4 shows a
small portion of the EURACE state-graph illustrating the start of the Household and Govern-
ment agents. The boxes indicate the agent functions and the ovals the state names. Associ-
ated with some of the state names there are conditional branches, for example at the states
start_Household and start_Government. These conditionals are due to the periodicity of the
functions but, in general these conditional branches can involve more general statements based
on the agents’ memory. The lines connecting two agent strands in the portion indicate com-
munication between agents (albeit through the message board mechanism of FLAME). For
example consider the function Government_pays_coupons near the bottom of the Government
agent strand. This functions post messages to the payment_coupons message board which the
function Household_receives_payment_coupons receives by reading from the same message board.



5 Tools for FLAME and Model Assessment

5.1 Static and Dynamic Analysis Tools

EURACE has developed a very complex model in which there are many agents and many
communications. The nested model directories contain 11 subdirectories and ~50 XMML and
C-code files. Checking the consistency of the model is a very difficult task, for although FLAME’s
parser will check the validity of the model within the context of the DTD (Data Type Definitions)
of FLAME tags, checking that messages are used in a consistent way is difficult.

There are many elements to the testing and assessment of an application and this is all the
harder in the case of FLAME as FLAME is a program generator. The EURACE project had
agreed development standards for all software developed which includes FLAME and any C code
component of the EURACE model. These are detailed in other reports and on the EURACE
Wiki. We have not only to verify that FLAME generates correct code as defined in the FLAME
model definition but also that the generated code is also correct.

Although there is a unit testing suite for EURACE its target is not FLAME - which has its
own set of test examples - rather it targets the EURACE model functions. The unit testing
framework addresses the verification and consistency of agent function calls once the model has
been parsed by the xparser using the model XMML files.

However these unit test do not check the consistency of the whole XMML model. A number
of static and dynamic analysis tools have been developed to perform this type of consistency
analysis as we will now describe.

FLAME_Analyses : a static analysis of the FLAME model which gives detailed information
on the components of a model: agent, function and messages types, their number and
sizes, a static communications table,and a weighted communications table. An example
of the outputs from FLAME_Analyses are given in Tables 2, 3 and 4.

Agent list:

( 260 Bytes) (M: 7, 7) Bank

( Dyn Memory) (M: 5, 6) Mall

( Dyn Memory) (M: 3, 5) IGFirm

( Dyn Memory) (M:19,16) Household

( Dyn Memory) (M:11, 7) Government

( Dyn Memory) (M:20,29) Firm

( Dyn Memory) (M: 4, 3) Eurostat

( Dyn Memory) (M: 3, 2) Clearinghouse
( Dyn Memory) (M: 6, 1) Central_Bank

Table 2: : Agent list with internal memory descriptions

In Table 2 we have a list of all the agents present in the model and an indication of the
internal memory state: Dyn Memory indicates that the agents internal memory is dynamic.
The expressions (M:7,7), as in the case of the Bank agent indicates that this agent receives
7 message types and sends 7 message types. For the Clearinghouse agent 3 message types
are received and two types are sent. Note that these numbers refer to the message types,
not the number of messages as this will be population and model state dependent.

In Table 3 the arrows (-->) show the direction of the messages and the F indicates that
the message is filtered. At the end of each line the entry (daily,0), for example indicates
the period and phase of a message.

The final example of the output from the analysis tool is the inter-agent communications
table show in Table 4. The table displays the possible inter-agent communication based
on the communications defined in the model definition. Although this has been weighted
using the message size as a measure of a message’s volume the table takes no account of



|--( bank_identity )-------------——————————— > Firm (daily,0)
|--( dividend_per_share ) -—- --> Household (monthly,1)
|--( accountInterest )----------————————————- > Household (daily,O0)
|--( loan_conditions )---————-———"-——————————— > Firm (daily,0)
|--( bank_interest_payment )------------——--—- > Central_Bank (daily,0)
|--( tax_payment )------————————————————————— > Government (monthly,0)
|--( bank_to_central_bank_account_update )---> Central_Bank (daily,0)
F <~ ( policy_announcement )--| Government (yearly,1)
Cmmm ( policy_rate )--| Central_Bank (monthly,1)
F <-—- e ( loan_request )--| Firm (daily,O0)
F <-—- -—- --( loan_acceptance )--| Firm (daily,0)
Cmmmmm oo ( installment )--| Firm (daily,O0)
<--- - ( bankruptcy )--| Firm, Firm (daily,0)
| ( bank_account_update )--| Firm, IGFirm, Household (daily,0)

Table 3: : Message activity of Bank agent including timing and filtering

the numbers of particular agents in the population. Despite this it gives some indication
of the likely communications traffic between agent types which can be used to inform any
agent distribution process in a parallel implementation of the model.

............... Message Destination ...............

0 1 2 3 4 5 6 7 8
Firm 0 | 0.000 0.000 3.065 1.533 1.571 10.000 2.299 1.571 4.598 I
Central_Bank 1 | 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.038 |
Clearinghouse 2 | 2.299 0.000 0.000 0.000 1.533 0.766 0.000 0.000 0.000 I
IGFirm 3 | 1.533 0.000 0.000 0.000 0.038 0.038 0.000 0.000 0.766 I
Government 4 | 0.003 2.299 1.533 0.003 0.000 0.808 0.000 0.000 0.003 |
Household 5 | 6.935 0.000 0.766 0.000 2.337 0.000 1.533 0.038 0.766 I
Mall 6 | 0.766 0.000 0.000 0.000 0.000 3.065 0.000 0.038 0.000 I
Eurostat 7 | 0.038 0.038 0.000 0.000 0.805 0.766 0.000 0.000 0.000 |
Bank 8 | 1.533 1.533 0.000 0.000 0.038 0.805 0.000 0.000 0.000 I

Table 4: : Weighted Inter-agent Message Analysis

In this example it is clear that Firm agents have considerable communications with House-
hold agents and vica versa. However it should be noted that the information flow is not
symmetric. Given the population sizes of each agent type is possible to determine the po-
tentially dominant communications and hence determine possible strategies to minimise
the communications overheads in a parallel simulation.

FLAME Consistency : a static consistency checker which compares the XMML definition
with C code and ensures that the number and usage of messages is consistent. The script
scans all the XMML and C code looking for message definitions and where messages are
being passed. The tool checks that all messages that are sent by agents can be received.
The consistency of the data being sent and received is not checked. This checking is
included in the compilation and building of the application.

The Message Monitoring Package : The MM package is a dynamic library designed to
monitor message traffic in the simulation. It is a set of additional directives included
in the FLAME templates which are embedded in the application code that monitor all
message traffic and writes to an SQL database. The database can be post-processed to
assess the message traffic in the model. It also gathers information on the agent population
in the simulation and the records of all function calls.

The Timer Package : The Timer package is used to measure elapsed CPU time for functions



and message board synchronisations during a simulation. Knowing which functions take
the longest time has helped to narrow the application of more detailed profiling tools such
as gprof allowing for quicker identification of problems and possible solutions. Analysis of
message board synchronisation times has shown that the message board implementation
has provided excellent overlap of communication and computation.

FLAME_Analyses and FLAME_Consistency are python scripts that process the FLAME model
definition and C-code files and the MMP and TP are libraries included in the FLAME application
at build time to produce run time output.

5.2 FLAME Verification

Verification and validation of the FLAME implementation is again made difficult by its nature.
We must verify and validate FLAME itself and we must also verify the applications generated
by FLAME in both their serial and parallel forms. FLAME has two distinct parts: the xparser
which generates the application from the model XMML and C code files and The Message Board
Library (libmboard) which is the underlying infrastructure that manages the inter-agent com-
munications. ltbmboard also provides the application with its interface to any parallel hardware
being used through the MPI (Message Passing Interface).

libmboard was developed using an agile test driven methodology and consequently has is own
set of unit tests and test programs. These are documented in the libmboard documentation.
Similarly the xparser has its own set of tests which are detailed in other reports.

For the developers we need to verify that FLAME is generating the model specified in the
XMML and C code and that the execution of the generated application is correct. Throughout
the project we have gathered a number of test examples (model and their associated C code)
which help verify the FLAME implementation. We have started to provide a set of simple
problems that enable us to do this. They need to be simple for the only way of checking that
the code is correct is by very careful walk throughs. In Appendix B we have described some
of these very basic models that are used in verifying the FLAME generation process. The
main characteristic of these models is that they exercise the FLAME infrastructure and we can
determine the expected results of the simulation. By using these types of simple models we are
able to verify that both the serial and parallel versions of the FLAME generated applications
are correct - in as much that they produce the expected results.

5.3 Model Validation

Validating the outputs of any simulation code generated by FLAME is a difficult process. This
will require mining the outputs of the application and making comparisons with analytic or
observed results. There are very few tools that can perform this task. A simple model validation
tool, the sim_validator applies a set of simulation rules to an SQL database of the simulations
results. The rules are defined in a file and a snippet from the rules file is given below:

: :VARIABLES

#Balance sheet: Firm

firm payment_account = Firm(payment_account)
firm cum revenue = Firm(cum_revenue)

#RULE VERIFIED

#Firm:

abs( firm payment_account + firm total value local_inventory +

firm total _value_capital_stock - firm total_debt - firm equity)< PRECISION

In this snippet a number of variables are defined: firm payment_account for example is a
reference to a Firm’s memory variable payment_account. Rules can then be defined using these
variables and a standard programming operators.



The tool applies these rules to the output of the simulation and reports any violations. There
are currently 18 such rules in the EURACE validation file. The process to devise these rules
includes a great deal of input from the model developers.

5.4 The Verification and Validation Process

During the development of FLAME and the EURACE model each of the tools described above
were used during the verification and validation process. Much of this process relied on having
an expected set of values for the various outputs of these tools and ensuring that differences
from these expected values were explained. This is far from an automatic and rigorous process
but given the maturity of the tools available it was the best possible.

6 Performance of the FLAME Framework

As we have already stated the parallel implementation of FLAME seeks to use an SPMD
paradigm - each node of the parallel system is running essentially the same program. How-
ever given the nature of agent-based modelling and the FLAME implementation each nodal
program could perform a very different sequence of instructions and function activations as it
traverses its part of the state space, i.e. a set of agents.

The two fundamental design features of FLAME are that all communication between agents
takes place through a specified message board and that these message boards are distributed over
the processing nodes of the parallel system. These message boards can be considered the data
load and the agents themselves the computational load. In FLAME both these are distributed
over the computational nodes.

However, although there may be some imbalance in computational load, with a reasonable
initial data (agents) distribution, any imbalance should be small. The crucial element in the
parallel implementation of FLAME is the distribution of the message boards over the system
and their synchronisation. Clearly it is essential that the FLAME infrastructure does not impose
a high overhead on the application. The Timer package has been use to estimate the overhead
of the FLAME infrastructure and the most important task performed by the FLAME frame-
work is message and message board management. Although applications make use the message
board functions for writing and reading messages, the message board synchronisation process is
potentially the most costly.

Table 5 gives details on the time taken by the FLAME framework to perform this synchroni-
sation. Each row in the table gives the synchronisation time as a percentage of the total elapsed
time per iteration for the top five message boards in each group. The two left-hand columns of
this show the basic synchronisation time. Even when combined it is clear the all the message
board synchronisations are only taking 5% of the total run time. Although we would expect
to reduce this through some more detailed optimisation of the synchronisation algorithms and
code, 5% is considered to be an acceptable overhead.

In the design of FLAME care has been taken to overlap communication and computation
so that, as far as possible, agent functions are not waiting for data during their activation.
This has been achieved by FLAME analysing the sending and receiving of messages defined in
the model XMML file to push the start of communication (call to MB_SyncStart()) as high as
possible in the call tree (i.e. just after all messages of a particular type have been sent to the
message board) and the wait for communication to complete (call to MB_SyncComplete()) as
low as possible (just before the messages are required).

To illustrate the effect of overlapping communication and computation a special version of
FLAME that placed the calls to MB_SyncStart and MB_SyncComplete as successive operations
was run alongside the usual version. The timer package was used to time the MB_SyncComplete
functions in both cases and the results are given for the 5 longest elapsed times in Figure 5.
Runs were for a 16 region problem on 2 nodes for 40 iterations.



No overlapping Overlapping
Message board Node 0 | Node 1 ‘ Node 0 ‘ Node 1
order 3.3 2.9 3.0 2.2
loan_conditions 0.1 0.2 - -
info_firm < 0.1 < 0.1 - -
order_status < 0.1 < 0.1 < 0.1 < 0.1
bank_account_update < 0.1 - < 0.1 < 0.1
eurostat_send_macrodata | - 1.2 - -
vacancies2 - - < 0.1 -
capital_good_request - - < 0.1 < 0.1
capital_good_delivery - - - < 0.1

Table 5: Percentage of total time spent synchronising top nine message boards

The graphs of Figure 5 show the time delay between MB_SyncStart - the start of a message
board synchronisation - and MB_SyncComplete - the time of completion. The upper two graphs
show these times with no overlapping. Note the difference in the scales between the graph for
Node 0 and that for Node 1 - about a factor of 10 difference. At the start of a simulation it is clear
that the eurostat_send macrodata message board is a significant beneficiary of overlapping.
Once overlapping has been introduced the effects of eurostat_send macrodata disappear and
the wait time for the message boards even out. However this analysis shows that the order,
order_status and bank_account_update message boards are holding back the simulation.

On a closer examination of the EURACE model’s state graph shows that the messages are
sent by the Eurostat agent very early in an iteration and read by the Government agents very
late in the iteration. So despite there being a potential serial bottleneck in the single Eurostat
agent its communications overhead is hidden in the communications overlapping. Similarly the
order message board benefits less since order messages are required very soon after they are
sent.

7 Performance of EURACE Model

7.1 Assessment and Benchmarking for the EURACE Model

Before presenting the results of the benchmarks it is useful to consider what we are measuring
and why. The goal of most performance analyses is to identify sections or elements of a program
that are taking significant resources - computational time - with the aim of optimising these to
reduce the total elapsed time of the simulation. Our purpose is no different from this expect
that we will be considering both serial and parallel performance.

It goes without saying that there is little point assessing the parallel performance of a code
that performs poorly in serial mode. Most of the components of the code will be executed
in both modes although there may be re-organisation of the control flow. So we start will an
analysis of the serial version of the EURACE model.

When assessing parallel performance two basic laws influence the developer: Amdalh’s Law
and Gustafson’s Law. Amdahl’s law is a model for the relationship between the expected
speed-up of parallel implementations of an algorithm relative to the serial algorithm, under the
assumption that the problem size remains the same when parallelised.

Amdahl’s law states that if P is the proportion of a program that can be made parallel (i.e.
benefit from parallelisation), and (1 — P) is the proportion that cannot be parallelised (remains
serial), then the maximum speed-up that can be achieved by using N processors is

1
——
(1-P)+ 5

10



Effect of overlapping Connunication and Conputation

order , EEE order , I
loan_conditions, B eurostat_send_macrodata, B
info_firn, S loan_conditions, S
order_status, B info_firn,
bank_account _update, /23 order_status, C—3
Hith no overlap - Hode @ Hith no overlap = Hode 1
1.4
1.2
1
8.8
8.6
8.4
8.2
a
a L i 15 28 23 38 35 48 ] L] i@ 15 28 23 38 35 48
order, order, DN
order_status, D order_status, D
bank_account_update, bank_account_update,
vacancies?, capital_good_request, N
capital_good_request, 3 capital_good_delivery, /3
Hith overlap - Hode 8 Hith overlap - Hode 1
1..,4 1.4 T T T T T T T T
1.2 1.2
1 1
8.8 a.8
8.6 8.6
8.4 8.4
a.2 a2
a a
a Ll i@ 1% 28 25 38 35 48 a Ll i 15 28 25 38 35 40

Figure 5: Elapsed times (s) for message board synchronisations with and without communica-
tion/computation overlapping

In the limit, as N tends to infinity, the maximum speed-up tends to 1/(1 — P). In practice,
performance falls rapidly as NV is increased once there is even a small component of (1 — P). As
an example, if P is 90%, then (1 — P) is 10%, and the problem can be sped up by a maximum
of a factor of 10, no matter how large the value of N used. For this reason, as has been often
said, parallel computing is only useful for either small numbers of processors, or problems with
very high values of P: so-called embarrassingly parallel problems. A large part of the craft of
parallel programming consists of attempting to reduce the component (1 — P) to the smallest
possible value.

Fortunately this is not the end of parallel computing. It must be noted that this was for a
fixed size application. Gustafson’s Law paints a different picture. It states that any sufficiently
large problem can be efficiently parallelised and the speed-up that can be gained is:

S(N)=N —a- (N —1) (1)

where N is the number of processors, S is the speed-up, and « the non-parallelisable part of the
process i.e. the serial part.

Gustafson’s law addresses the shortcomings of Amdahl’s law, which cannot scale to match
availability of computing power as the machine size increases. It removes the fixed problem size
or fixed computation load on the parallel processors: instead, it proposes a fixed time concept
which leads to scaled speed up for larger problem sizes (i.e. weak or soft scaling).

Amdahl’s law is based on fixed workload or fixed problem size (i.e. strong or hard scaling). It
implies that the sequential part of a program does not change with respect to machine size (i.e,
the number of processors). However the parallel part is evenly distributed over N processors.

In both these formalisations of potential parallel speed-up the proportion of serial activity

11



20.00

—
|~
18.00 =
/ Parallel Portion
16.00 - — 50%
— T75%
14.00 — 90%
— 95%
12.00 A
o
] /
2 1000 —
& ]
8.00 ,///
6.00 A
4,00 5/// —
/"
/
—

2.00 ::;Eﬁgéff
0.00

—

=] =t D [s =
~ M  w  Nu ~ o
— o [Te] 3

24
a

2048
4096
8192

16384

32768

6553

Murmber of Processors

Figure 6: Amdahl’s Law

has a significant effect. However Gustafson’s Law gives the hope that for a sufficiently large
problem parallel performance can be demonstrated.

Although neither of these models completely characterises the exact situation - it is very
difficult to estimate the serial part of a parallel code - it is clear that the serial part has a
significant effect on the speed up of any application. So in the assessment of the EURACE
model we will focus on identifying the serial part.

We have developed a number of analysis tools that have allowed us to benchmark any FLAME
model and assess its serial and parallel performance. We have used a number of versions of the
EURACE model in this benchmarking.

7.2 Serial Performance Analysis

This section comprises tables of agent function CPU times recorded with the timer package
as the EURACE model has evolved in various revisions. Our objective is to demonstrate the
approach to assessment and optimisation. In all cases the code was compiled with debugging
and profiling turned on which will clearly have an effect on the absolute timings. However not
on the proportion of time spent in each routine.

The agent population used for these initial assessments was the basic unit of population
defined in Table 1 which contained 1688 agents and all nine agent types.

The starting point of this analysis was a elapsed time assessment of the model using the TP
Library. Table 6 shows the results of this experiment. It is clear that one of the clearinghouse
agent’s functions has taken up over 72% of the total run time.

12



[sturjgg:T owury unt ejoy, “uopemndod [[ews ‘SUOIRINT (f ‘[RLIOG ‘TOLZ UOISIANY [opOW HOVHNH 9 9q8L

10> 60°0 9T ) 9yepdn~junoo9e PuUdsS POYISNO]
10> 60°0 AOHIVILSLIOATAS Su0dN09~POATOIRI PIOTESTIOH Ueq WOIJ }1S0I0JUT OJUT 9AIOIdI P[OYOSNOF]
10> 11°0 990 90 SPUSPIAIDTOAIEDS.I"PIOYSSTIOH]
¥1°0 9T°0 o[0YINOqRT 11e1S P[OYSNOH SNIVISYATYO.LIVA orjoj3r0d-sjroyepdn ployosnoy
uo1309[or 10”100 qol

280 280 70 €0 ~pues-suoryeorddeqol-peaI uL,j
9¢°0 0 960 60 1~SPO03-ANg-pue 3y Uel P[OYOSNOL]
8¢€°0 770 SHHAYO ANAIS NOILVINYOA AHI'THd ANO4d UOT)eULIOY SJol[oq "puoq P[oYosnoy
LT 90°¢ SNILVLSHYHJYOLIVM SHHAYO ANYS SIOP.LOTPUOs™PIOYOSNOY
[4é GE'Ge NOILVINYHOA AAI'Tdd ANOY | LON YO SAdITdd HILvVddN OL HSOOHD UOIBULIOY SJOI[9q 32018 P[OYPSNOYH

¢l 18°¢8 SHOIYdAILNdINOD MOOLSOANIAIATIOHY U PUR”SIOPIO-OATOIII OSTIO FULIRS] )

% (s) ewrg, 09 991§ woTj 938G UOT)OUNT

13



When this function was profiled with the GNU gprof tool (see Figure 7) it was found that
the time was being taken buy the routine newPrice. After reviewing the algorithm implemented
in newPrice ways were found to improved it. A number of approaches would potentially lead
to a halving of the number of calls to aggregateDemand - a core routine of newPrice.

Writing Reading
Message Name Counts Message Name Counts
order 57557 order 2935407
bank_account_update 1551 quality_price_info_1 13700
job_application 666 info_firm 7850
job_application2 552 accountInterest 6000
order_status 337 dividend_per_share 3000
accepted_consumption_1 274 bank_account_update 1551
consumption_request_1 274 job_application 666
tax_payment 62 vacancies 666
hh_subsidy_notification 60 job_application2 552
hh_transfer_notification 60 vacancies2 552

Table 7: Initial top ten counts of message Reads and Writes (population: 1688 agents)

During a second phase the message counts table (Table 7) was generated. This shows the
number of message of a particular type that have passed through the message board system.
From the timings (Table 6) it is clear that the clearinghouse agent is a serious bottleneck in
the simulation. This is re-enforced by Table 7 as the order message is the most used message
type and this is the primary input message for the clearinghouse agent.

Considerable time was taken in understanding these results and various improvements to
the algorithms used by the clearinghouse agent were suggested to the modellers and were
incorporated into a new version of the code.

Table 8 show the message counts after these improvements had been implemented.

Writing Reading
Message Name Counts Message Name Counts
order 11929 order 11929
job_application 3704 dividend_per_share 6400
job_application2 3408 quality _price_info_1 4480
bank_account_update 1681 job_application 3704
vaaccepted_consumption_1 306 cancies 3704
consumption_request_1 306 job_application2 3408
tax_payment 84 vacancies2 3408
infoAssetCH 81 accountInterest 3200
hh_transfer_notification 80 bank_account_update 1681
info_firm 80 info_firm 880

Table 8: Optimised top ten counts of message Reads and Writes (population: 1688 agents)

These changes significantly lowered the time taken by the clearinghouse and this was enough
to bring the second placed function in Table 6 to the top in Table 9.

14



ClearingHouse_receive_orders_and_run (73.5%, called 40 times)
+----emptyClearing

+----receiveOrderOnAsset
| +----setOrder
| +----isBuyOrder

| +----addBuyOrder

| | +----addOrder

| +----isSellOrder

| +----addSellOrder

|  +----setAsSellOrder

| | +----getOrderQuantity

|  +----addOrder

+--—-computeAssetPrice (72%, called 2040 times)

| +----setClearingMechanism

| +----lastPrice

| +----runClearing (72%, called 2040 times)
+----buyOrders
+----sellOrders
+----sortOrders

(!
(!
(!
| | +----newPrice (71.2%, called 2040 times)
| | | +----aggregateDemand (69.25),, called 4,495,474 times)
| | | +----aggregateSupply (2%, called 4,495,474 times)
| | +----aggregateDemand
| | +----aggregateSupply
| | +----ordersMacthing
| | | +----addOrder
| | +----rationing
| +--—-randomize
| +----removeZerolOrders
| +----addPrice
| +--—--addVolume
+----sendOrderStatus
+-—-—-buyOrders
+---—formedPrice
+----sellOrders

Figure 7: Call graph for clearinghouse receive_orders_and run showing work done in most
expensive call path

15



[s:w|gf:9 awr) una [ejo], ‘uoryendod [[ews ‘SUOIjRISII (g ‘RIS ‘€FLE UOISIARY [opowl HOVYNH 6 °[qRL

uo1)9[61 10" Iejo-qol

S1'0 ¢90 70 €0 ~puas-suoryeotdde qol~peal uLl j
020 62°0 ADHIVILSLIOATAS SUOANO0D~POATOIRI POTOSTIOH NURQ WO} }SOI0UT OJUT OAISIDI P[OOSNOH
020 80 990 90 SPUSPIAIP 9AIIAI P[OYISNOL]
¢c0 60 ¢l 11 ¢~ SpPo038-Ang-pue yurI POYOSNOH
8¢'0 70'1 960 60 1~SPO03-Ang-pue-3UeI P[OYOSNO
€0 8Y'1 O[O0y MOqRT.Ie}5 P[OYosNOy SALVLSYHdYOLIVM orojprod-syroyepdn-proyasnoy
¢l 867 SHHAYO ANAIS NOILVINYOA AHI'THd ANO4d UOTRULIOT SIRI[Rq puoq pIOYeSNOH
0T 9L Tv SHOIYdAILNIINOD MOOLSOANIAHATIDHY UNIPUR”SIOPIO-OATOIII OSTIOF FULID] )
1T v ov SNILVLSHAdYOLIVM SHHAYO dNAS SIOPIOTPULs POYoSNOYy
19 8L°GVC NOILLVINHOA AHITHE ANOE | LON HO SAHITHE HLvVAdN OL HSOOHD UOTYRULIOLSJOI[Oq "2 0S™P[OYOSNOY
% (s) ewrg, 09 991§ woTj 938G UOT)OUNT

16



Clearly a similar analysis should now performed on the Household_stock _beliefs _formation
as it now takes up 61% of the processing. This type of iterative analysis and optimisation has
been used to improve the performance the EURACE model.

7.3 Population Partitioning

In Section 3 we briefly described the essence of the parallel implementation within FLAME:
the population of agents and the message boards are distributed over the processor array such
that some form of load balance can be achieved. As explained in Section 3 the inter-agent
communication tables of the FLAME analysis tool give us some indication how to distribute the
agents as does the relative size of each section of the population. There are various ways in which
the partition can be achieve: round-robin, geometric, separator driven. For the EURACE model
a separator driven approach is used. This partitioning seems appropriate as the large model

MECKLENBURG-
VORPOMMERN

Figure 8: Partitioning based on a regional separator

populations are generated on a region by region basis using the standard unit of population (see
Table 1). As part of the model definition each agent holds in its memory which region it is
associated with. This value is used in the model to control the range of some of the inter-agent
communications. For example, households general only deal with banks and firms in their region.
Within the EURACE model these regional identifiers give some locality to agents processes. As
shown in Figure 8 these could be country divisions or regional divisions within a country.

7.4 Phase I Parallel Performance Analysis

Having now performed a serial optimisation of the EURACE model we consider its parallel
performance. In initial testing and benchmarking FLAME generated applications have shown
reasonable parallel performance. However this is very dependent on the model - its size and
complexity - and the population size; but the performance was encouraging. It was noticeable
that as the number of messages used by a model increased some erratic behaviour was observed
on some of the systems being used. The details of these benchmarking are in [3].

For the first parallel benchmarks the EURACE model and population is characterised in
Table 10. Table 1 gives the initial breakdown of agents types within the population. It is most
important to note that the number of message types is 62 - a great many more than any of the
previous test models. Analysis of parallel performance includes profiling the agent functions as
for the serial case but also investigating how the EURACE application performs as the number

17



Model ‘Agents Messages Population
EURACE | 9 62 30,000

Table 10: Details of the EURACE Model

of processes is increased for a fixed initial population. The profiling of agent functions running
on a 2-node system is shown in Tables 11 and 12. It is clear that the household is dominant on
Node 0 (14.2% of the cpu times) and the clearinghouse agent function for finding the correct
market price for assets is dominant on Node 1 (35% of the processor time).

At this point we need to comment of the distribution of the agents over the compute nodes.
From Table 1 we see that household and firm agents dominate the population. Table 4 shows
us that household and firm agents are involved in much of the communications so it is reason-
able to distribute these populations so that households are near their desired firms. This cannot
be done from the initial data of the model as the household-firm associations are only generated
during the course of the simulation. Also since the EURACE model in its current form only
restricts households to communicating with firms in the same region we can use region informa-
tion to group households and firms from the static data. However, for this small population the
household and firm agents are distributed evenly between the two compute nodes. The other
agents in the population are allocated to a single node.

We can now try to put these initial results in some form of context. From Tables 11 and 12 we
can see that household functions dominate. This is not unreasonable as they are the majority
agent on each node. Not only that; because there is only one clearinghouse it is a serious
serial bottleneck. All agents have to wait for it to complete its calculations before they can
carry on. The household function for sending orders is not a bottleneck since the agents are
distributed round the processes by FLAME.

Although FLAME makes great efforts to maximise the time available to synchronise the
message boards, as explained in Section 6, this will only have an effect if the function in question
has potential parallel tasks. Unfortunately the clearinghouse particularly when computing
the correct market price for assets, requires asset and order information from all firm and
household agents before it is able to perform the calculation. This generates a serial bottleneck
which will have a serious effect on performance. This is reflected in the timings in Table 12 -
the clearinghouse is top of the list. All other agents - and processors - much wait until the
clearinghouse completes its work - which is around 35% of the runtime.

Although this is a serious problem in terms of performance it is still possible to perform runs
of the EURACE model with larger populations. Using a 16 region model with 26948 agents runs
have been carried out on large parallel machines available to STFC, namely HAPU, NW-Grid
and HECToR. Details of these machines can be found in Appendix A.

18



0 @poN ‘[s:w]cz:Fg ewry uni [eyo], ‘uorpendod wordal 9T ‘suoljeIall (g ‘[o[[eled ‘FGLE UOISIAY [opowl VYN 1T °lqeL

10 6¥0°9T 91 q1 91epdn~unodde puds pPlOYesNOH
10 | €10T°91 960 60 1~spoo3-Anq-pue yuer p[oyosnoi]
10 | ¥¢vL LT o[OY TRIOURUIL] WLIL I PUH €000 SUOT)ORSURIY D0} PRI ULIL ]
¢0 | T1997€ 9[OY InoqeT IR} S ployesnoy SALVLSHAAYOLIVM oroy310d-s31-9yepdn proyosnor]
¢0 TGOT LS ADHALVILSILOHATAS SUO0dN 0D~ POATOISI P[OYISNOH NUeq WOI]~ 1S9I9)UT OJUT 9ATIII POYSSNOH
€0 | 2099°¢y O[O} 1O IR [RIOURUL ] 118}S PIOYSNOF] ©)e(] AdI[0 }e}S PIOYOSNOT] B)EPTOATIIAI P[OYSSNIOF]
L0 | 168701 990 90 SPUSPIAIP 9ATIAI P[OYISNO]
6°0 | 7CO'LET I9pIo
V1 YY1 T1C NOILVINHOA AHITHd dNO4d | LON HO SHHITHI HILVddN OL HSOOHD UOTYRULIOF SJOT[0q ¥20S P[OaSNOH
(! €'¢80¢ SNIVLSHHAYOLIVM SHHAYO ANHS SISp.I0~puss pPlOYesNOH
% (s) ewrg, 09 991§ woIj 93e)S UOTYOUN,T

19



1 ®PON ‘[s:w|Gg:F{g ouwry uni [ejo], ‘woryendod uoIdal 9T ‘SUOIIRIDN (g ‘[A[[RIRd ‘FGLTG UOISIAY [9powW HOVYNH ‘¢TI °[qRL
0 £€666°ST o[oY [eloURUL I ULIL " PUY €000 SUOT}ORSURI}"H20)S™Pra.ULIL ]
170 G967°91 960 60 17Spo0S-Anq-pue yuer pOYasNOH
¢o CoIvve o0y Inoqer T 1Ie} S PlOYasnoy SNLVLSHHAYOLIVM or[ojy10d-syrarepdn-plotpsnoy
0 G690’ L€ ADAILVAILSILOATAS Su0dN09~POAIIODI PIOYOSTNOT] J[Ueq TWOIJ }SOIOYUT OJUT OATOII P[OYISNOT]
0 e0s eF 910V JOS[IRI\ [RIOURUL ] }1€}G P[OYOSNOF] eyR (] AOT[0J 1181 PIOYOSNO] BJRPTOATOIOI P[OYISNO]
0 (R Iopio
L0 L9201 990 90 SPUSPIAIPTOAISOR.I"P[OYSSTIOH
o1 S01°¢Tc NOLLVINHOA AHITHI ANOd LON HO SAHITHI HLVAdN OL HSOOHD UOTYeULIO)™SJal[0q 320)S P[OYSNIOH
VT | T¥L90C SALVLSHHAYOLIVM SHAAYO ANHIS SIop.I0TpUss PIOYsSTIOH
0°¢¢ | 6¢'9cIg SHOTHdAHLNdINOD MOOLSOANIAHATHOHY U PUESIOPIO OATII 9SO SULIRd])
% (s) ouurfg, 09 93893 w01} 91e)S uorjounj

20



The graph of average iteration time (seconds) against number of processes is shown in Figure
9. Some interesting features can be seen in this graph: it can be observed that HECToR shows
generally good speedup, the NW-Grid machine shows a little but HAPU shows some seriously
eratic behaviour. The iteration times are given in Table 13.

Tining results for 16 region nodel, 248 iterations, round-robin, Revision 2754

188

T
hapu, ——
nu-grid, ——
hector —%—

Tine per iteration (=)

28

2 4 1 i 18 12 14 16
Hunber of processes

Figure 9: Average iteration time (s) for 240 iterations of 16 region EURACE model

Num processes | HAPU | NW-Grid | HECToR
2 92.3 43.2 -

4 43.3 32.4 29.8

6 76.9 29.3 26.6

8 63.6 30.8 24.1

10 72.1 37.3 22.9

12 34.6 36.5 22.0

14 82.5 40.5 22.1

16 45.0 41.0 21.7

Table 13: Average iteration times for 16 region EURACE model

Although the HECToR and NW-GRID results show some parallel performance it is dis-
appointing. The HAPU results show some very strange behaviour which can only really be
explained by deficiencies in the EURACE model algorithms. During the assessment of the
model it has been shown to be very sensitive to changes in parameter values: sometimes failing
with zero divides but more often than not becoming stuck in an infinite loop. The model is very
complex and it is very difficult to debug. Programming conventions and testing procedures -
as defined in the project - have helped eliminate many problems but as one might expect there
will be residual bugs.

7.5 Phase II Benchmarking

As with most software developments the process is one of iterative improvement. The EURACE
model is no different. The results in Figure 9 and Table 13 are from early in the development.

21



The next figures and tables show results after rather detailed refinements of the model have
taken place.

a 2 4 [ 8 18 12

MNo. of processors

Figure 10: 20,212 agents, 12 regions

Procs | HECToR | NW-Grid Hapu HPCx
1 0.798000 | 0.783857 | 1.071690 | 3.330214
0.649357 | 0.600000 | 1.068810 | 1.789929
0.350190 | 0.405214 | 0.746429 | 1.212595
0.314262 | 0.392381 | 0.428500 | 0.903405
0.266381 | 0.630905 | 0.376381 | 0.626500
12 0.319143 | 0.948024 | 0.503643 | 0.783548

S| | N

Table 14: Average iteration time (s) for 240 iterations of 12 region (20,212 agents) EURACE
model

Both these sets of results show a significant improvement in parallel performance of the model
though they are still not really adequate. We have illustrated the development and refinement
process used within EURACE and have shown that the framework provided by FLAME does
not impose a significant overhead to the application.

7.6 Dominance of Serial Components

Throughout the assessment critical algorithms have been reviewed and improvements made
but there are still many processes that are not particularly robust. Given the very complex
interactions between agents one could not expect every computational situation to have been
covered. Only significantly more testing and detailed evaluation and assessment of the EURACE
algorithm will lead to a robust simulator.

We have identified that the EURACE model contains some serial bottlenecks. In particular
the clearinghouse agent. From Table 12 see that this agent can be responsible for about 35%
of the run time of a simulation. As there is only one agent of this type and all household agents
communicate (through the order and order _status messages) with this one agent on a daily
basis it is very clear that this agent could create a serious problem.

The clearinghouse agent responsible for satisfying the financial orders being placed by
each household. It essentially manages the supply and demand. Within this part of the model

22



12

i8 r

Figure 11: 101,044 agents, 60 regions

Procs | HECToR | NW-Grid Hapu HPCx
5 4.260786 | 3.454667 | 7.392095 | 11.422095
10 2.198643 | 2.821857 | 3.867690 | 9.367476
15 1.473929 | 3.000000 | 2.704500 | 8.683452
20 1.258405 | 3.133048 | 2.316595 | 5.470405
30 1.067667 | 2.514833 | 2.706690 | 4.737167
60 0.774833 | 3.410143 | 3.605976 | 3.50000

Table 15: Average iteration time (s) for 240 iterations of 60 region (101,044 agents) EURACE
model

there are a number of controlling parameters. The trading activity is one such parame-
ter. It controls the probability that a particular household will place an order and hence it
controls the total number of households making requests to the clearinghouse. So with the
trading activity set to zero no household will make a request but with increasing values more
and more households will be making orders. So by performing simulations with varying values
of trading activity we can observe the effect on performance of this serial bottleneck.

The experiment performed a series of runs of the model varying both the population size and
the value of the trading parameter. From these experiments we should be able to observe the
effects of both Amdahl’s and Gustafson’s Laws. Table 16 and Figure 12 display these results.
We see that varying this parameter has a dramatic effect on the performance of the EURACE
model. With trading set to zero there is the increase in elapsed time with population one hopes
for - linear in population size. However once trading is activated the performance becomes much
more complex. For the large values this serial part appears to dominate the simulation. For
low values of the trading parameter we see an initial increase in elapsed time - maybe following
Amdahl’s Law - but then a decrease, as the population size grows. This could be attributed
to the Gustafson effect but the elapsed time returns to growth as the population continues to
increase. Understanding the effect of varying this single parameter is clearly complex. However
it does show how a small serial component of the model can have a dramatic effect on its parallel
performance.

23



Regions/Proc | No. Agents Trading Activity

T=0.02 | T=0.01 | T=0.005 | T=0.0
1 16844 97.906 37.163 18.403 2.322
2 33684 617.120 | 339.146 96.711 6.822
3 50524 4533.217 | 1442.034 | 598.720 | 13.447
4 67364 8547.810 | 2547.859 | 1077.721 | 17.077
5 84204 - | 5784.514 | 3054.110 | 26.057
6 101044 - | 2620.614 | 1074.894 | 35.352
7 117884 -1 1010.944 | 554.409 | 45.040
8 134724 - | 761.719 | 305.876 | 57.390
9 151564 - | 733.395 | 415.251 | 66.603
10 168404 - - | 967.845 | 81.746
20 336804 - - | 3619.854 | 257.164
30 504712 - - - | 640.419

Table 16: Solution time (secs) per 10 iteration with varying parameter values

9000 T T
120,82 ——
120,01 —H—

120,005 —H—

8o0e 120,08 —8— -

7a88

11

oeea -

4888

Tine in seconds {s)

3008

2008

1888

n L L L L L
a 50008 100000 150000 200000 250000 3006000 350000 400000 450000 500000 55001
Fopulation size = number of agents

Figure 12: Elasped time with parameter variation

8 Conclusion

In this report we have described the parallel implementation of the FLAME framework and
its assessment together with some benchmarking results using the EURACE Model. We have
also demonstrated FLAME’s use in a number of EURACE related simulations in addition to the
complete EURACE model on populations ranging from a few hundreds of agents, through to tens
and hundreds of thousands of agents. In some of these simulations the parallel implementation
of FLAME has shown reasonable scalability and parallel efficiency but in others the results have
been disappointing.

An important goal of the project has been to perform, in parallel, a large simulation using
the EURACE Model. The project has achieved this to a degree: the model has been defined,
important parameters have been given values, a method of generating agent populations imple-
mented and a parallel implementation of the EURACE model can be generated by FLAME.
Using these steps serial and parallel simulations of the EURACE model have been performed.
In the process a detailed assessment of the FLAME generated code, the serial and parallel im-
plementations and the EURACE model itself have been performed. Message counts, function

24



times and synchronisation times are a few of the measures that have been used together with a
detailed static analysis of the model to identify the performance deficiencies in both the FLAME
framework and the EURACE model.

All this analysis has led to improvements in FLAME and the EURACE Model which in
general have increased its computational performance. However the presence of substantial serial
components in the model has resulted in very poor parallel scalability. It is well known that
parallel speed-up is limited by the serial faction of a code - this is Amdah’s Law. The analyses
performed on the EURACE Model have shown that the singleton agents - in particularly the
clearinghouse - have a significant impact on the parallel performance of the model. These
types of potential problems were understood at the start of the project and the modellers took
steps to avoid them. The clearinghouse was thought necessary to the architecture of the
EURACE model and although different strategies were tested to reduce its effect there was little
that could be achieved. The clearinghouse and any other serial bottleneck will compromise
the parallel performance of the application.

Although at the end of EURACE we have not achieved the optimum solution to these prob-
lems we have at least advanced the current state of the art in the parallel implementation of
agent-based simulations in the context of the FLAME Framework.

References

[1] C. Greenough, DJ Worth, LS Chin, M. Holcombe and S Coakley (2009), Exploitation of
High Performance Computing in the FLAME Agent-Based Simulation Framework, EU-
RACE Project Report D1.4, 2009

[2] The EURACE Project Web - http://www.eurace.org

[3] L.S. Chin, D.J. Worth and C. Greenough (2010), An Approach to the Parallel Implemen-
taton of Agent-Based Simulations, to be published as a Rutherford Appleton Laboratory
Technical Report

[4] Coakley (2005) ”Formal Software Architecture for Agent-Based Modelling in Biology”, PhD
Thesis, University of Sheffield

[5] Holcombe (1998) ”X-machines a basis for dynamic system specification”, Software Engi-
neering Journal

[6] Kefalas et al (2003) ” Communicating X-machines: From Theory to Practice”, Lecture Notes
in Computer Science

25



A Parallel Computing Systems Used In EURACE

A number of the partners in the EURACE project have their own parallel systems. The FLAME
Framework and the EURACE Model have been ported to these systems.

Unit GREQAM TUBITAK UNIBI

Processor Type Intel Xeon 5140 (Dual Core) | Intel Xeon E5355 (Quad Core) | Intel Xeon 5160 (Dual Core)
Total Cores 4(2x2) 4(1x4) 4(2x2)

Total Memory 4GB (4 x 1GB) 16GB (4 x 4GB) 2GB

Memory per core 1GB 4GB 512MB

Total Storage 146GB (2 x 73GB) 292GB (2 x 146GB) 219GB (3 x 73GB)

Usable Storage 73GB (RAID 1)

Operating System | Windows XP Pro x64 Red Hat Enterprise Linux 4
MPI Library! MPI 1 MPI 1 MPI 1

STFC has a large number of different parallel computing systems which it has made available
to the project and used in testing the EURACE Model. Each of these machine has a different
hardware architecture and software infrastructure.

HPCx : The HPCx platform is currently number 43 in the 28th Top 500 Supercomputer list
(Nov 2006). It is based on the IBM pSeries 575 system, and has a total of 2560 processors.
The HPCx system uses IBM eServer 575 nodes for the compute and IBM eServer 575
nodes for login and disk I/O. Each eServer node contains 16 processors. At present there
are two service nodes. The main HPCx service provides 160 nodes for compute jobs for
users, giving a total of 2560 processors. There is a separate partition of 12 nodes reserved
for certain projects. The peak computational power of the HPCx system is 15.3 Tflops
peak.

HAPU : HAPU is an HP Cluster Platform 4000 based on Redhat Enterprise Linux 4. It
has 128 x 2.4GHz Opteron cores, with 2Gb memory per core, and a Voltaire InfiniBand
interconnect.

NW-GRID : The NW-GRID Cluster comprises three compute racks, with each rack containing
32 SUN x4100 nodes. Each node contains 2 Dual Core 2.4Ghz Opterons with 8GB of
memory. That brings the total processor count to 192 Dual-Core Opterons (384 processor
cores).

MANO : MANO is an IBM Blue Gene/L machine. It comprises 1024 nodes of dual-core
700MHz PowerPC chips with the second cpu usually dedicated i/o and communications.
The frontend (or login) node is a p5-520Q with 4x1.5GHz processors, 16GB RAM and
running SuSE Linux Enterprise Server 9 and this is supplemented with an identical service
node for system control. GPFS is provided through two p5-505 servers each with 2x1.5GHz
processors and 4GB RAM.

bglogin2 : is a single frame of a IBM Blue Gene/P machine. A standard Blue Gene/P config-
uration will house 4,096 processors per rack. Four 850 MHz PowerPC 450 processors are
integrated on each Blue Gene/P chip. It is at least seven times more energy efficient than
any other supercomputer, accomplished by using many small, low-power chips connected
through five specialized networks.

HECToR : is a Cray XT4 scalar supercomputer. The XT4 comprises 1416 compute blades,
each of which has 4 quad-core processor sockets. This amounts to a total of 22,656 cores,
each of which acts as a single CPU. The processor is an AMD 2.3 GHz Opteron. Each
quad-core socket shares 8 GB of memory, giving a total of 45.3 TB over the whole XT4
system. The theoretical peak performance of the system is 208 Tflops. There are also
24 service blades, each with 2 dual-core processor sockets. They act as login nodes and

26



controllers for I/O and for the network. In addition there is a Cray vector Blackwidow
part of the system which includes 28 vector compute nodes; each node has 4 Cray vector
processors, making 112 processors in all. Each processor is capable of 25.6 Gflops, giving
a peak performance of 2.87 Tflops. Each 4-processor node shares 32 GB of memory.

27



B FLAME Verification

It is important to ensure that applications generated by the FLAME framework execute correctly
in both their serial and parallel modes. Because of the stochastic nature of the agent-based ap-
proach to modelling it is unrealistic to expect complex simulations to follow exactly the solution
path although general trends should be similar. However for some simple applications we can
expect the serial and parallel implementations to produce exactly the same results throughout
the simulation. Such example applications can be used to verify the correctness of both the
serial and parallel implementations.

The Clircles Model is one such application. The circle agent is very simple. It has a position in
two-dimensional space and a radius of influence. Each agent will react to its neighbours within
its interaction radius repulsively. So given a sufficient simulation time the initial distribution of
agents will tend to a field of uniformly spaced agents.

Each agent has z, y, fx, fy and radius in its memory and has three states:outputdata,
inputdata and move.

outputdata : post agent’s position on the message board.
inputdata : read message board information to find nearest neighbours.
move : computes to necessary change in position for this iteration of the model

The agents communicate via a single message board, location, which holds the agent id and
position. Given the simplicity of the agent it is possible to determine the final result of a
number of ideal models.

A set of simple test models and problems have been developed based on the circle agent.
Each test has model.xmml file and a set of initial data (0.xml).

Test 1 : Model: single circle agent type; Initial population of no agents.

Test 2 : Model: single circle agent type; Initial population of one agent at (0,0).

Test 3 : Model: Two circle agent type; Initial population of agents at (-1,0) and (+1,0).
Test 4 : Model: Four circle agent type; Initial population of one agent at each of (+1,£1).

Test 5 : Model: Four circle agent type; Initial population of one agent at each of (0,£1) and
(£1,0).

Test 6 : Model: Four circle agent type; Initial population of one agent at random positions.

In each of these models the expected results can be specified and therefore they provide a very
simple check of the implementation.

The circle agent also provides a good mechanism to check the parallel implementation
against the serial. Such is the nature of the model, that the positions of the agents at each
iteration of the simulation is independent of the order of calculation. As the order of calculation
can not be easily prescribed in the parallel simulation we can use this characteristic to test the
validity of the parallel implementation against the serial. We would expect to get the identical
positions for each agent at every iteration of the simulation.

28



	RAL-TR-2012-006-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2012-006-report.pdf



