
 
Abstract— This paper describes a generally applicable robust

method for determining prediction intervals for models derived
by non-linear regression. Hypothesis tests for bias are applied.
The concept is demonstrated by application to a standard
synthetic example, and is then applied to prediction intervals for
a financial engineering example viz. option pricing using data
from LIFFE for 'ESX' European style options on the FTSE 100
index. Unbiased estimates of the standard error are obtained.
The method uses standard regression procedures to determine
local error bars and avoids programming special architectures. It
is appropriate for target data with non-constant variance.

Index Terms— Data mining, Decision support, Financial
Engineering, Neural nets.

I. INTRODUCTION

Trading in financial derivatives is an immensely important
aspect of financial markets in terms of value and of volume
[1], [2]. A key factor affecting the deployment in financial
engineering of data mining approaches is the confidence we
can place in the reliability of the predictions that are made.
Surprisingly, there has been little reported for the confidence
factors associated with the modelling of option prices using
neural nets, denoted here by NN. Even more surprising is the
absence from the literature of standard statistical hypothesis
testing [3], comparisons between models are made on
measures such as mean-squared-error and R2 [4], [5]. These
are rather insensitive since they consist of a single figure of
merit over the full data set. Amilon's Technical Report is an
exception to this [6].

In our studies of financial systems we observed that a
particular model could be statistically acceptable for a set of
data but that if the inputs were partitioned then, for some
partitions, it failed the statistical tests. This led us to the
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conclusion that we needed to consider error estimates on a
point by point basis. A prediction interval is a measure of the
confidence that we can have in the output value from an
unseen input row from a model trained on similar data; it
necessarily spans the model error. Non-constant variance is
characteristic of the data we consider. Tibshirani [7] has
compared some error estimations for neural network models;
however these are unsuitable for our work because they
involved either fixed variance, or detailed knowledge of the
network parameters, or complex bootstrapping. Nix and
Weigend [8] developed a special network architecture from
which we drew the inspiration for this work.

We present a robust method for determining prediction
intervals for models derived by non-linear regression. It is
based on simultaneously modelling the conditional mean and
variance of the target and uses a standard NN-architecture. We
demonstrate proof of concept by successfully applying the
method to a synthetic problem defined in [8]. We then create a
synthetic option pricing problem with realistic noise. We
show that the method works well for this synthetic option
pricing problem. We can recover both the option prices and
the prediction intervals to a good level of accuracy; indeed the
final Phase of refinement is seen to be unnecessary. There is a
performance  limit in the case of very small residuals.

II.BACKGROUND

Multivariate linear regression is well characterised. It is
well known that under the classical assumptions for least
squares regression [9], the variance of the target (dependent)
variable is equal to the variance of the noise term for the
(normally unknown) true regression function, and the squared
residuals for the estimated regression function can be used to
estimate the variance of the noise term. Neural nets are a
generalization of multivariate non-linear regression which is
not so well characterised. Nix and Weigend [8] considered
regression using neural nets. They proposed a model for
situations where the variance of the error terms is not
constant, termed heteroskedasticity in the literature. The
model assumed a two parameter distribution of the true errors.
They proposed a neural network with two outputs that
simultaneously estimated the conditional mean of the specific
target and its input dependant variance. The architecture used
differed from a standard NN with fully connected hidden
layers. It had a special hidden layer for the variance which
was connected to both the input layer and the hidden layer for
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the conditional mean of the target. They minimised the
negative log likelihood cost function. During the iterative
search for a minimum of the cost function, the weight update
equations (delta terms) are multiplied by the inverse variance
in what is effectively a weighted least squares regression.
They used the following three Phase training algorithm.

Phase I:  Split data into equal sets A and B. Determine
conditional mean d* from A assuming 2 ( )σ x  is constant.
Uses B for validation to determine minimum without over-
fitting.

Phase II: Uses Phase I model with frozen net-weights to
derive estimates of σ*2(x) from set B; deploys a special
architecture.

Phase III: Resplit the data into two equal sets A' and B'.
Train both d* and estimates of σ*2(x) on A' until cost function
is minimised on B'.

N.B. Set A is used as a training set. Set B is used as a
validation set, (i.e. training is terminated when the cost
function is minimised on B)

The outcome is a model for both ( )y x , the underlying true

regression, and 2 ( )σ x the true squared error. Nix and
Weigend applied it to a synthetic data example and
demonstrated good recovery of the target function and the
variance against the criteria of 1) a normalised mean squared
error and a mean cost 2) visual inspection of diagrams.
Hypothesis testing results were not reported. They then
applied the method to laser data. However we have seen no
report of this technique being applied to the financial option
domain.

Heskes [10] considered prediction intervals for non-linear
regression with small datasets and proposed a noise model for
which the variance was input dependent. He derived
confidence intervals for the error in the estimated regression
function using a bootstrap procedure[11] in which a set of
regressions is averaged. The data samples are drawn from the
training set by random sampling with replacement. He derived
prediction intervals for targets corresponding to patterns used
for validation but not used in training. A weighting device was
used to avoid wasting data. He assumes the regression noise
and the residual noise are independent. A negative least
likelihood model for residual noise is applied.

Heskes notes that in practice, neural nets produce biased
estimates because finite samples tend to over-smooth sharp
peaks. He suggests that since we do not know how to handle
the resulting bias then attempting confidence limits of better
than of order 1/(number of input rows) is too ambitious.
(second order terms are of order 1/(number of input rows) 3/2

). Heskes applied the method to a synthetic data problem very
similar to [8]. A very small training set of 50 points with 25
bootstrap samples was used. Using 1000 test points, the aim
was for 68% within prediction interval while 65% was
achieved. Assessment was by commentary on the graphs, no
hypothesis testing was done and it was not applied to another
case.

LeBaron and Weigend [12] considered regression by

bootstrapping neural nets on the very noisy data constituting
the volume of transactions on the New York Stock Exchange.
They normalised drift by dividing the data by a moving
average. The value of their results is that they suggest errors
due to differences in architecture are dominated by errors due
to use of different training sets (sampling error) for this type
of data. The implication is that optimising architectures (i.e.
by pruning, adding additional inputs, extra hidden layers etc.)
on a single training set is unlikely to improve generalisation
performance, and that ensemble techniques (i.e.
bootstrapping) which allow quantification and reduction of the
sampling error are to be preferred for this type of data.

Prediction intervals are defined as confidence intervals for a
prediction d*(x) made from an unseen set of inputs x, where
there is no corresponding target d(x).  Consider the following
expression

* *[ ( ) ( )] [ ( ) ( )] ( )d d y d n− = − +x x x x x
Prediction intervals are concerned with the left hand side, the
difference between the target and the prediction produced by
the estimated regression function.  Confidence intervals are
concerned with the first right hand term, the difference
between the true and estimated regression functions.  The
second right hand term is the (sample dependent) random
noise term.  Normally, the noise and the true regression
function cannot be observed.  However, if the variance of the
noise is estimated as *2 2( ) isσ =ix , using the squared residuals

* 2[ ]i id d− ,  then a (heteroskedasticity consistent) estimate of
the prediction interval is given by
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In this case, k is the applicable degrees of freedom and t is the
critical value from Student’s t-distribution.

III. MODEL / ALGORITHM

A. Desired Properties for Approach to Prediction intervals
There are several properties that we aim for in an approach

to prediction intervals. a) The method should be applicable to
a range of multivariate non-linear regression techniques. b)
The method should be able to achieve a defined level of
accuracy; Heskes [10] has indicated that 1/(number of input
rows) is the relevant limit. c)The method should be
straightforward to implement and should not require a special
architecture since it is intended for use in a data-centric
framework using commercial neural net tools. d) The method
should not be complex or computationally costly  e) The
method must yield prediction intervals consistent with non-
constant noise variance (heteroskedasticity).

The Nix-Weigend [8] method uses a special non-standard
architecture requiring special programming. Methods using
the inverted Hessian matrix of partial second derivatives of
parameters can be problematic because a) many neural net
packages do not provide access to the network weights b)
inversion can fail if over-fitting occurs c) accuracy of these
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methods is relatively poor [7]. The ‘naïve’ bootstrap does not
produce estimated standard errors consistent with non-
constant noise variance.  Moreover, it is computationally
costly and supported by few commercial packages.

B. Modelling Prediction Intervals and Cost Function
For option market participants, prediction intervals and

confidence in the predicted values from unseen input rows are
of greater practical interest than confidence intervals for the
true regression. We therefore introduce a model that calculates
the prediction interval directly; we avoid the bootstrapping
that is a practical necessity in obtaining the confidence
intervals for the true regression. Our model has two outputs;
one output is the target variable and the other is the squared
error. It differs from the Nix and Weigend [8] model because
a) It deploys a standard NN architecture and b) It uses a sum
of squares cost function and does not assume a Gaussian noise
distribution c) It uses independent training and validation sets,
rather than interchanging validation sets.

We follow Heskes [10] who suggests that it is desirable that
the training set for fitting the squared errors is independent of
the set used for training and validating the model for the target
variable.  The reason is, since training is stopped on the
training set when the sum of squared errors is minimised on
the validation set, the two are associated and thus not truly
independent.

C. Training Algorithm
1) Phase I:

Randomly split the training data into two data sets, Set A
and Set B.  Using Set A, train a NN model on the target
variable d(x).  Run the trained NN model on Set B, to obtain a
set of squared residuals.  By using squared residuals on a test
set (Set B) as the second target for Phase II, over fitting and
consequent underestimation of the standard error is avoided.

2) Phase II:
Using Set B for training, train a second NN with two output

nodes.  The target for the first output node is the variable d(x);
the target for the second output node is the squared residuals
obtained in Phase I from set B using the model trained on Set
A.

3) Phase III (optional):
Using Set A for training, train a further NN with two output

nodes.  The target for the first output node is the variable d(x);
the target for the second output node is squared residuals for
the estimate d*(x) obtained in Phase II using the model trained
on Set B.  Training is now complete.

Set A is itself randomly split into a training and a validation
portion; as is Set B. Testing of each Phase is performed on an
independent test set, Set C. Note: their [8] Phase II differs
from ours as does their cost function. which involves σ*2(x)
terms.

IV. SYNTHETIC EXAMPLE

Nix and Weigend [8] defined a univariate synthetic

example to demonstrate the effectiveness of their model. For
comparison purposes our proposed training algorithm and
network is applied to the same univariate synthetic example,
called Example #1 in their paper and here.  This example uses
a one-dimensional data set where y(x) the true regression, and

2 ( )σ x , the variance of the noise, are known.  The true
regression y(x), is given by the equation

( ) (3 ) (5 )y Sin x Sin x=x , where x is a uniformly distributed
random number from the interval [0, π/2]. Heskes [10] used
similar trigonometric functions for the true regression and the
noise variance. The noise n(x) consists of numbers from the
normal distribution 2[0, ( )]N σ x , where

2 2( ) 0.02 0.25[1 (5 )]Sin xσ = + −x .  The target value for
training is d(x) = y(x) + n(x).

We then adopted the following procedure. We used the
same number of hidden nodes as Nix and Weigend for
regression and for noise variance. For Phase I, a network with
a single input node, 10 hidden layer nodes and a single output
node is used.  Phases II and III use a network with a single
input node, 20 hidden layer nodes and 2 output nodes, one for
d(x)  = y(x) + n(x) and one for 2 ( )σ x .  Fig. 1 shows a plot of
the data points, the true regression y(x), and the approximate
prediction band obtained on a test set, for our Phase III model.
The effect of Phase III was to tighten the prediction curves
into the true model.
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Prediction Bands for Example#1

Fig. 1 y(x) is the true regression, d(x) are the target data points, d*(x) is the
estimate of the true regression, L and U are the true upper and lower
prediction intervals and L* and U* are the estimated prediction intervals
obtained using the network estimate σ*2(x)for the noise variance.

Table I shows the results of statistical tests for the
performance of the proposed network in predicting the true
regression, the true noise variance function, and the target data
points d(x) and actual squared errors for Example #1; d*(x) is
the estimate of the target.  The results show that the network
produces unbiased estimates of the mean and the variance of
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TABLE I PERFORMANCE OF PROPOSED NETWORK (EXAMPLE#1)
Model Layers In Output R2 F-stat t-stat t-Test

 [no. of nodes]    Fcrit(1 tail) Fcalc(0.05) tcrit(2 tail) Tcalc(2,0.05) [H0:O=O*(x)]
Estimated v. True Regression Function & Noise Variance Function

PhaseIII 1-10-2 x µy*(x) 0.99 1.03 1.01 1.96 -1.12 Unbiased
PhaseIII 1-20-2 x σ*2(x) 0.99 0.97 0.86 1.96 -1.96 Unbiased

Estimated v. Actual Target (d) & Squared Errors
PhaseIII 1-20-2 x µy*(x) 0.42 1.03 2.40 1.96 -0.91 Unbiased
PhaseIII 1-20-2 x σ*2(x) 0.34 1.03 4.38 1.96 0.32 Unbiased

Table I Shows the proposed network produces an unbiased estimate of both the mean and the variance for its two outputs.  The estimate of the actual target d(x)
and the squared errors is also unbiased, and the hypothesis test for the means shows there is no difference at the 95% significance level.

both the true regression function y(x), and the noise variance
function 2 ( )σ x .

The approximate upper and lower prediction intervals
calculated from the estimated noise variance function are also
unbiased estimates of the true upper and lower prediction
intervals. For comparison of the proposed network
performance with that of the Nix-Weigend network we have
computed, and show in Table II, the statistics used by the
authors in [8].

TABLE II RESULTS FOR EXAMPLE#1
p p

This Work Nix-Weigend
row Test Set  (n=104) Test Set  (n=105)

Target d ENMS Our Mean Cost ENMS NW Mean Cost
1 Phase I 0.764 0.454 0.593 0.882
2 Phase II 0.577 0.344 0.593 0.566
3 Phase III 0.578 0.344 0.570 0.462
4 n(x) (exact additive noise) 0.575 0.343 0.563 0.441

Target e2 ρ (PIII) ρ (PII) ρ (PIII) ρ (PII)
5 ρ(σ∗(x), residual errors) 0.571 0.569 0.548 N/a
6 ρ(σ(x), residual errors) 0.586 0.585 0.584 N/a

Distribution P(III) 1 std. 2 std. 1 std. 2 std.
7 % of errors < σ*(x); 2σ*(x) 67.4 93.1 67.0 94.6
8 % of errors < σ(x); 2σ(x) 66.9 95.0 68.4 95.4
9 (exact Gaussian) 68.3 95.4 68.3 95.4

In Table II ENMS is the mean squared error normalised by the (global) variance
of the target d. Our Mean Cost is the mean of the cost function (d-d*)2.  Row 4
gives these figures for [(d-y(x))2 = n(x)2] and represents the best performance
attainable.  Row 5 gives the correlations between the absolute errors and the
network estimate for the standard deviation of the errors.  Row 6 gives the
correlations between the absolute errors and the true noise standard deviation.
Row 7 gives the percentage of absolute errors that are less than 1 and 2 times
the corresponding network estimate for the standard deviation of the error.
Row 8 gives the percentage of absolute errors that are less than 1 and 2 times
the corresponding true noise standard deviation. Row 9, which is included for
comparison purposes, gives the percentage of observations that are less than 1
and 2 standard deviations in a Gaussian distribution.

Table II shows that compared to the Nix-Weigend network
there is little improvement in the fit to the target d between
our Phases II and III.  However the Phase III fit (row 3) for
the proposed network is close to the best attainable, deviating
only by 0.6%.  The Nix-Weigend network on the other hand
does not approach the best attainable figure quite so closely,
deviating by 1.4%.  The proposed network figures for
correlation of the actual absolute errors with the network
prediction and the true values (rows 5 and 6), is slightly better

than the corresponding figures for the Nix-Weigend network,
even in Phase II.  The distributions of errors reported in rows
7 and 8 differ only slightly from those for the Nix-Weigend
method.

Overall, on the basis of the results in Table II the proposed
network performs comparably with a Nix-Weigend network
and actually outperforms it slightly on the errors and
correlations. The results in Table II however, are not based on
formal statistical tests.  For this reason we prefer to rely on the
results presented in Table 1.  The results of F and t tests
presented in Table I show that the proposed network can
provide unbiased estimates of an underlying true regression
function, an associated noise variance function, and also the
actual target and squared errors in the univariate case.

V.OPTION PRICING EXAMPLE

A. The Data
The option market data were from LIFFE [1].  They consist

of daily closing prices for the FTSE-100 index call option for
all trading dates from 13 March 1992 to 1 April 1997.  The
data set contains 119,413 records. The data were cleaned to
exclude options with invalid or missing parameters.  Only
options which had actually been traded, as indicated by
positive values of bid, offer, spread, trading volume, and open
interest (number of unclosed transactions) were used.  To
exclude mis-priced options only those with moneyness
between 0.8 and 1.4, and at-the-money implied volatilities (as
tabulated by LIFFE) less than 40% were included.  The
cleaned data set comprised 14,254 records.  This data set was
randomly split into a training set and a test set.  The resulting
training sets contained 7,083 records with 3629 in Set A and
3454 in Set B. 50% of these were randomly sampled and  used
for validation. The test set contained 7,171 records.

B. Tests with Synthetic Prices and Noise
In this section the proposed network is applied in the more

realistic multivariate setting of option pricing. Our approach
was tested using synthetic option prices and synthetic noise,
labelled Example#2. For this purpose we follow Hutchinson et
al [13] and omit the volatility and risk-free interest rate from
the standard Black-Scholes inputs. The synthetic option prices
were created using a trained NN option pricing model as the
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underlying known regression function.  The NN was trained
using observed market prices as the target and the variables
moneyness, (m = S/X), and time to maturity, t, as inputs; S
represents the price of the asset in index points and X is the
strike price for the option. Analysis of squared residual errors
for NN option pricing models indicated that

2 4 17( , ) 510 361t m t mσ = + was a suitable choice for
approximating the underlying residuals to give a known noise
variance function; it is important to emphasise that this
function has no significance other than as a residual model.
Using this function, a closely similar shaped distribution, as
indicated by variance, standard deviation, skewness, and
kurtosis, is obtained for the absolute values of the synthetic
noise generated, and for those of real residual errors for NN
option pricing models.  Moreover, t-tests indicate that the
obtained target d(t,m) is not significantly different from
observed market prices. Artificial noise from the normal
distribution N was drawn as N(0,σ2(t,m)) and added to the
outputs of the trained NN to generate a synthetic target option
price d(t,m). As in Example#1 the aim is to determine whether
the method can successfully recover an underlying known
regression function and noise variance function.  The results
for Example#2 are presented in Table III.

TABLE III: RESULTS FOR EXAMPLE#2p y p
row Test Set

Target d = CNN + noise ENMS Our Mean Cost
1 Phase I 0.059 564.660
2 Phase II 0.062 599.406
3 Phase III 0.059 566.805
4 n(x) (exact additive noise) 0.058 556.988

Target e2 ρ (PIII) ρ (PII)
5 ρ(σ*(x), residual errors) 0.537 0.536
6 ρ(σ(x), residual errors) 0.562 0.591

Distribution (PII) 1 std. 2 std.
7 % of errors < σ*(x); 2σ*(x) 51.3% 81.4%
8 % of errors < σ(x); 2σ(x) 70.0% 96.1%

Distribution (PIII)
9 % of errors < σ*(x); 2σ*(x) 32.5% 60.2%
10 % of errors < σ(x); 2σ(x) 71.4% 96.2%
11 (exact Gaussian) 68.3% 95.4%

In Table III ENMS is the mean squared error normalised by the (global) variance
of the target d. Our Mean Cost is the mean of  cost function (d-d*)2.  Row 4
gives these figures for [(d-y(x))2 = n(x)2] and represents the best performance
attainable.  Row 5 gives the correlations between the absolute errors and the
network estimate for the standard deviation of the errors.  Row 6 gives the
correlations between the absolute errors and the true noise standard deviation.
Row 7 gives the percentage of absolute errors that are less than 1 and 2 times
the corresponding network estimate for the standard deviation of the error.
Row 8 gives the percentage of absolute errors that are less than 1 and 2 times
the corresponding true noise standard deviation. Rows 9 and 10 report these
results for PhaseIII.  Row 11, which is included for comparison purposes,
gives the percentage of observations that are less than 1 and 2 standard
deviations in a Gaussian distribution.  Here (x) represents the two input
variables (t,m)

In Table III The Phase III fit for the target d(t,m), (Row 3)
is only 0.001 (1.7%) more than the lowest attainable value
(Row 4).  The Phase II fit (Row 2), is not quite as good but is

still only 0.004 (7%)  more than the lowest attainable value.
Although the difference is not statistically significant at the
95% level as shown by the t-tests, the Phase II fit to ENMS is
slightly poorer than the Phase I fit (Row 1).  This is because,
in contrast to [8], our Phase II involves training a new model
constrained to fit both the target d(t,m) and the squared
residuals from Phase I.  Like [8] we use 10 hidden layer nodes
per output node, but in our method these are in a single hidden
layer of 20 nodes with full connectivity to all input and output
nodes. Pruning runs, not reported here, indicate fewer nodes
can achieve the relevant accuracy.

As in Example#1 the correlation of the absolute errors with
the estimated absolute errors and with the true noise standard
deviation (Rows 5 and 6) improves slightly from Phase II to
Phase III. The correlation results in Table III are of a similar
order to those for Example#1 in Table II. Row 7 and Row 9
distribution results show the dispersion of the actually
occurring absolute errors is greater than the estimated and true
noise standard deviation results given in Row 8 and Row 10
indicate.  The decreased correlation of absolute values of
residual errors with the known noise standard deviation (Row
6) suggests that Phase III training should be omitted in the
more realistic multivariate setting for this data.

This conclusion is supported by Table IV which gives the
results of hypothesis tests for Example#2.  They show that the
(proposed network) estimate for the mean of the target d(x) is
unbiased for all three training phases. The Phase II estimate of
the mean of the known noise variance function and the actual
squared errors is unbiased as indicated by the hypothesis test
results. However Phase III estimates of both are biased, unlike
the Example#1 results. The F statistics indicate there is no
difference between the estimated and actual variance of the
known noise variance function for both PhaseII and PhaseIII.

The Table III & IV results for PhaseII training in
Example#2 show the proposed network produces an unbiased
estimate of the input dependent noise variance function
σ2(t,m), which is a smooth function of time to maturity t, and
moneyness m.   Moreover, this is an unbiased estimate of the
actually occurring squared errors for the estimate of the target.
These results suggest that given a set of unseen input variables
for which there is no corresponding targets, the proposed
network is capable of producing an unbiased estimate of a
target d(t,m), and a corresponding (unknown) noise variance
function. The unbiased estimate of both the mean of the target
and the true noise variance function suggest that prediction
intervals upon them will be a good estimate of the 95%
prediction intervals.

VI. CONCLUSIONS
This work has shown that it is possible to implement a

robust method for computing statistical prediction intervals
generalised for non-linear regression. The method has been
applied successfully to a standard synthetic set of data and
gave statistically acceptable results. The method avoids the
need for a special neural net architecture or the calculation of
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TABLE IV PERFORMANCE OF PROPOSED NETWORK (EXAMPLE#2)b e V e o ce o oposed Ne wo ( p e# )
Phase Layers Input Output R2 Adj.R2 F_Statistic t-statistic t-test

[no. nodes] Fcrit(1 tail) Fcalc(0.05) tcrit(2 tail) tcalc(0.05) [H0:O=O*]
Estimated Regression Function

Phase I 2-10-1 t,m µy*(d) 0.942 0.967 1.04 1.08 1.96 -0.02 Unbiased

Estimated v. Actual Target (d) & True Noise Variance Function

Phase II 2-20-2 t,m µy*(d) 0.939 0.964 0.96 0.98 1.96 -1.62 Unbiased

Phase II 2-20-2 t,m σ*2(d) 0.845 0.557 0.96 0.45 1.96 1.52 Unbiased

Phase III 2-20-2 t,m µy*(d) 0.942 0.966 1.04 1.08 1.96 -0.61 Unbiased

Phase III 2-20-2 t,m σ*2(d) 0.900 0.855 0.96 0.75 1.96 6.20 Biased

Estimated v. Actual Squared Errors

Phase II 2-20-2 t,m σ*2(d) 0.246 -0.139 0.96 0.77 1.96 -1.16 Unbiased

Phase III 2-20-2 t,m σ*2(d) 0.219 0.118 1.04 1.51 1.96 4.39 Biased

Table IV shows the proposed network produces an unbiased estimate, µy*(d), of the mean of the target d in all three training phases.  The estimated variance
σ∗2(d) is also unbiased estimate of both the true noise variance and the actual squared error for PhaseII; the corresponding Phase III estimates are biased.

gradients of net weights so is suitable for use in standard
developments.

A synthetic option pricing test was constructed and the
true noise variance function recovered. These tests show
that the method is appropriate for determining prediction
intervals for target data with non-constant variance. The use
of standard hypothesis tests allows us to detect and reject
apparent improvements achieved as a consequence of
distorting the variance. In work not reported here we find
there appears to be a lower limit to what we can expect to
recover when there is a very good fit as indicated by the
adjusted R2 and small mean square residuals
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