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When many organisations operating open repositories for publications are considering moving to 

support data management in line with recent changes to the policies of funding bodies, this paper 

describes the reverse change, where an organisation operating an open data collection system has 

extended it to support data preservation with links to a publication repository. The lessons learned 

when moving from a data collection system to an open repository should be useful to those 

considering the move the other way. 

 

The Science and Technology Facilities Council (STFC) operates large national scientific facilities (e.g. 

ISIS
1
 neutron source, Central Laser Facility and Diamond synchrotron) for UK scientists and provides 

access for UK scientists to large international facilities (e.g. CERN, ESO) and satellites. These facilities 

contain instruments which produce large amounts of data which have been made available for many 

years to the scientists who have performed experiments for analysis in their own institutions.  

 

One of these facilities is the ISIS neutron source which is a large £500 million microscope used to find 

the structure and properties of chemicals to make new materials, medicines etc.. which has been 

operating since 1984. The particle accelerator collides its proton pulses at one of the two tungsten 

targets which generate the neutrons that are then directed to a suite of instruments, each optimised 

to explore different properties of materials. Inside the instrument experimental scientists position a 

material for investigation. Neutrons travel into the material and are detected when they come out. 

The directions in which the neutrons emerge tell us about the arrangement of the atoms inside. The 

amount of energy lost by the neutrons as they travel through the material tells us about the atomic 

dynamics. An understanding of why individual substances behave as they do is fundamental to the 

development of new materials with properties tailor-made to their application. 

 

ISIS instruments produce 2-120 files of raw and calibration data per experiment in NeXus
2
 or RAW 

format, which is analysed in Mantid
3
 and other software to produce molecular structures in 5 

different structure formats (e.g. Cambridge Structural Database
4
). The 834 experiments undertaken 

in 2009 produced 0.5 million files,  containing 0.5 TB of data. Over 25 years ISIS has produced 8 

million files in 250,000 experimental datasets archived as 8TB of data, of which less than 100 

datasets are commercial and therefore have constraints on making them available for re-use. Data 

up to five years old is checked occasionally but older data is effectively dormant – we want to 

change this in order for the UK to get more value from the data, and its investment in the facility.  

 

The main reasons for preserving the data are: 

1. For scientists to access their data from facilities; 

2. Validation of scientific results by other scientists; 

3. Re-use of data in meta-studies to find hidden effects/trends; 

4. To test new theories against past data; 

5. To do new science not considered when data was collected without repeating experiment. 

 

                                                           
1
 ISIS is a the name of the neutron facility, it is not an acronym. 

2
 http://www.nexusformat.org/ 

3
 http://www.mantidproject.org/Main_Page 

4
 http://www.ccdc.cam.ac.uk/products/csd/ 



 

Raw data is produced by the instruments in conjunction with calibration information (e.g. 

instrument temperatures and settings) which are combined to form calibrated data. This is analysed 

by the experimental scientists in various ways, to derive various measures of the material, which are 

usually put together to form a model of the structure and properties of the material, which are 

written up in an academic publication, and which are deposited in one of the chemical structure 

databases (e.g. CSD). Figure 1 illustrates this process, showing the different forms of data involved, 

and particularly the many forms of derived data which may be produced. 

 

Figure 1: The flow of data from a scientific experiment 

For many years STFC operated a data collection and archive service to achieve only the first of these 

reasons. The data was archived in a distributed file system at four separate locations to manage 

failure risks, and experimental scientists could gain access to their data by entering the "run 

number" into the web page shown in Figure 2, left where they could download the data. There were 

no links between the raw data, the experimental proposal, the resultant data submitted to  chemical 

structure databases or the academic publication. There were also no preservation actions taken on 

the archive such as fixity checks or watching for external events, such as format obsolescence.  

 

    

Figure 2: The user interface of the old scientific data collection system (left), landing page for a data 

DOI (centre) and the new iCAT data preservation infrastructure (right). 

In recent years three main advances have been made to the e-infrastructure. Firstly,  to also store 

data in a preservation system (the Safety Deposit Box from Tessella
5
) to perform fixity checks. 

Secondly, to publish DataCite Digital Object Identifiers (DOI) which supports both the citation of data 

in academic publications that link to a landing page such as that shown in Figure 2, centre; and the 

searching of data through the DataCite metadata  (Starr & Gast, 2011) search utility
6
. Thirdly, 

cataloguing of the data by the Core Scientific Metadata Model  (Sufi et al, 2003) for its inclusion in 

the open iCAT
7
 service (Flannery et al, 2009) so that users can search and browse for data using the 

TopCat user interface shown in Figure 2, right. These changes have resulted in a data collection and 

preservation architecture shown in Figure 3, above the dotted line. They support the basic 

functionality of collecting and archiving data for the experimental scientists, linking to published 

citations and data search engine for data discovery, data access and download for analysis and 

                                                           
5
 http://www.digital-preservation.com/wp-content/uploads/SDB4.pdf 

6
 http://search.datacite.org 

7
 http://code.google.com/p/icatproject/ 



 

verification.  These functionalities reliably support the first reasons for preserving the data, and the 

accessibility required for the second, but they do not provide the flexibility and support required for 

users unfamiliar with the data to use it for novel purposes.

 
Figure 3: The architecture of the scientific data collection system (above dotted line), with the 

extensions for the preservation infrastructure (below dotted line). 

For different user groups to use the data, the system must support multiple security and data 

policies (Wilson et al, 2011) to protect the experimental scientists, provide provenance records of 

the scientific analysis to support validation of published results (Yang et al, 2010), provide 

descriptions of the data and preserve the analysis software needed to re-use the data (Conway et al, 

2011), and it must foster trust in potential users who are unfamiliar with it, so that they will use it. 

The proposed extensions to the preservation system shown in the lower part of figure 3 address 

these issues by providing watch services for external events such as format obsolescence, a policy 

store for data and security policies to be applied to access, by storing provenance records of data to 

clarify analysis validation; by providing mechanisms to support the re-use of data rather than just its 

archiving, and by providing ways to foster trust. 

 

Support for the re-use of data rather than just its archiving, comes from providing support for 

preservation planning supported by preservation network models (Conway et al, 2011) which 

provide a basis for archiving not only the data itself, but also the software used to analyse it in a 

software repository, and support for storing data descriptions including links to external websites to 

provide context information so that scientists coming to the data whether the software used 



 

originally still works, or not, have enough information to interpret the meaning of the data. In order 

to perform cross-disciplinary studies, or to test new theories with data sets, it is necessary to 

manipulate them into common forms equally compatible with new software. For  scientists to do 

this requires both detailed descriptions of the semantics of the data themselves, and broad 

descriptions of their context to provide hooks to new theories and techniques that may not have 

existed when the data were collected. It is unclear exactly what level of description will be needed 

for any potential future use the data may be put to, but the proposed approach at least supports an 

extensible preservation network which can link any available information which can be archived as 

potential future support. 

 

Trust is fostered in two ways. Firstly, by increasing transparency through an open software, where 

the code can be inspected by the preservation archive, rather than by a closed proprietary system 

where users must take the risk on the manufacturer's warranty alone. Secondly, by supporting the 

complete ISO OAIS standard, so that the whole preservation system can be externally certified to 

comply with best practice, as an external warranty.  

 

Conclusion 

Experience of moving from a data collection service to a data preservation service has shown the 

need for several mechanisms to support the future discovery, access, interpretation and re-use of 

the data, rather than just for archiving the data for future viewing. 
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