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Abstract. We investigate what can be learned from a purely phenomenological study of options prices
without modelling assumptions. We fitted neural net (NN) models to LIFFE “ESX” European style FTSE
100 index options using daily data from 1992 to 1997. These non-parametric models reproduce the Black-
Scholes (BS) analytic model in terms of fit and performance measures using just the usual five inputs (S,
X, t, r, IV). We found that adding transaction costs (bid-ask spread) to these standard five parameters
gives a comparable fit and performance. Tests show that the bid-ask spread can be a statistically significant
explanatory variable for option prices. The difference in option prices between the models with transaction
costs and those without ranges from about −3.0 to +1.5 index points, varying with maturity date. However,
the difference depends on the moneyness (S/X), being greatest in-the-money. This suggests that use of a
five-factor model can result in a pricing difference of up to £10 to £30 per call option contract compared
with modelling under transaction costs. We found that the influence of transaction costs varied between
different yearly subsets of the data. Open interest is also a significant explanatory variable, but volume is
not.

PACS. 89.65.Gh Economics, business, and financial markets – 07.05.Mh Neural networks, fuzzy logic,
artificial intelligence

“You need to think about how to account for the mismatch between models and the real world.”

Emanuel Derman - Goldman Sachs [1]

1 Introduction

A call (put) option is the right, but not the obligation, to
buy (sell) an asset at a fixed, strike price on a future, fixed,
maturity date. Most theoretical modelling approaches to
the determination of the correct price for an option con-
tract start from a stochastic model of the price changes
of the underlying financial asset. Techniques from physics
can help solve the resulting partial differential equations.
However, we investigate what can be learned from a purely
phenomenological study of options prices without mod-
elling assumptions. Data mining is an interactive and it-
erative technique that allows the construction of an empir-
ical model and independent identification of the relevant
variables. Some initial results are presented here.

Data mining takes place in the context of knowledge
discovery in databases (KDD). The technique should be
thought of as a process rather than a technology. However,
it relies on technological developments in database man-
agement systems, data visualisation, statistics, and ma-
chine learning, as well as domain knowledge. KDD may

a e-mail: M.Dixon@lgu.ac.uk

be defined as the non-trivial extraction of previously un-
known and potentially useful knowledge from data. The
data mining part of KDD is a set of techniques for an au-
tomated approach to exhaustively exploring and reveal-
ing complex relationships in very large datasets. Figure 1
illustrates the KDD processing steps. Note the importance
of iteration as an understanding of the data is gained.
A data-centric approach is one that is concerned with the
analysis of actual market data to generate practical mod-
els for pricing options. The models need not be intuitive
in the way analytical models are. There is a strong focus
on data preparation, data cleaning, and the avoidance of
building in parametric approximations.
Since the technique uses machine learning algorithms such
as neural nets (NNs) and radial basis functions to explore
data and model relationships, it offers many advantages
for option pricing, including:

• The machine learning algorithms used can approxi-
mate any continuous function to any desired accu-
racy [2]. The induced functional model develops an
internal representation of the relationship between
the dependent (target) variable and the independent



220 The European Physical Journal B

Information
requirement

Action

Data
Selection

Cleaning
• domain
   consistency
• de-duplication
• disambiguation

Enrichment Coding Data Mining
• clustering
• segmentation
• prediction

Reporting

Operational
data

External
Data

Feedback

Fig. 1. The KDD/data mining process applied to option prices: This diagram illustrates the iterative nature of the knowledge
discovery process.

variable, such that no a priori assumptions about the
parametric form of the returns distribution of the un-
derlying asset are required [3].

• Models are easily adapted to changes in data over time,
and additional explanatory variables are easily added,
by retraining the model. In contrast, models of the
Black-Scholes [4] type may have to be re-derived from
first principles to accommodate changes.

Most option pricing models in use today are extensions
of, or were derived in a similar manner to, the Black and
Scholes [4] or Cox et al. [5] models. There are numerous
variations, but such models rest on many simplifying as-
sumptions. Among the outstanding problems in the do-
main of option pricing are:

• There are no closed-form exact solutions for American
exercise options and many ‘exotic’ options, so numer-
ical approximations must be used.

• Many option-pricing models assume specific continu-
ous time stochastic (diffusion) processes for the un-
derlying asset. There is evidence [6] that a diffusion
process cannot generate discrete data series typical of
stock prices.

• Most option pricing models assume that volatility of
the underlying asset and the risk-free interest rate are
fixed for the life of the option. It has been shown [7]
that Black-Scholes type models display pricing biases
if volatility varies stochastically.

• There is evidence [8,9] that many existing option-
pricing models are wrongly specified.

Bouchaud and Potters [10], for example, stress the need
in practice to recognise residual risk.

In the early 1970s when modern option pricing theory
emerged, little actual market data existed. Thus, the need

was for an analytical model capable of pricing securities
for which little guidance in the form of a price history
was available. Black-Scholes filled this need admirably and
became the foundation for subsequent work. However, now
computers allow analysis that is more complex and the
exploitation of large data sets.

2 Questions investigated

Most option pricing models assume no transactions costs
(“frictionless markets”). Generally, there are five input pa-
rameters. These are: S = price of the underlying asset at
time of purchase of the option, X = the exercise price,
t = the time, as a fraction of a trading year (typically
252 days) until maturity of the option, r = the risk-free in-
terest rate, and σ = the volatility of the underlying asset.
The famous Black-Scholes formula [4, p. 664] uses these
five inputs. (We denote this standard set “S5”.)

Because the volatility (σ) cannot be directly observed
in the market, it is standard practice to derive the “implied
volatility” (IV). This measure is obtained by using quoted
market prices to solve the BS or other option pricing for-
mula for σ. That the observed IV is found not constant
reflects shortcomings of the BS model. It does not accom-
modate an observed price distribution broader than that
of a Normal Gaussian (“fat tails”).

Such models exclude the effects of transaction costs,
volume of trade, open interest, and other variables that
may influence option prices. Extensive data sets of daily
data and tick data are now available from options ex-
changes that record these, as well as other technical mar-
ket factors.
Our research is concerned with developing a computa-
tional framework for applying non-parametric models to
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Table 1. Short descriptive statistics of the data: This table summarises the content of the daily data records used for the
training and test sets. Table 1a is the complete data set, while Table 1b is that subset of records for which transaction volume
and open interest data are available. Time to maturity (t) is expressed in days, the risk free interest rate (r) and implied
volatility (IV) are annual percentage rates while S, X, C and spread are in index points.

(a) Full Data set – “Calls” All Expiries 1992 - 1997 

Training Set 

 S X S/X t r IV Spread C 

Mean 3195 3072 1.05 119 6.6 17.1 10.1 221.8 
Std. Dev. 405 494 0.17 103 1.4 8.8 7.0 205.0 

Range 2232 2750 0.67 367 6.9 200.0 54.5 1125.0 

Minimum 2284 2075 0.78 1 5.1 0.1 0.5 1.0 

Maximum 4516 4825 1.45 368 12.0 200.1 55.0 1126.0 

Count 38426 38426 38426 38426 38426 38426 38426 38426 

Test Set 

 S X S/X t r IV Spread C 
Mean 3196 3075 1.05 120 6.6 17.0 10.2 219.8 
Std. Dev. 399 488 0.11 103 1.3 8.7 7.0 204.3 
Range 2194 2750 0.68 367 6.9 219.8 52.5 1152.0 
Minimum 2284 2075 0.78 1 5.1 0.1 0.5 1.0 
Maximum 4478 4825 1.46 368 12.0 219.8 53.0 1152.0 
Count 38587 38587 38587 38587 38587 38587 38587 38587 

 
(b) Data Subset for Volume & Open Interest 1992 - 1997 

Training Set 

 S X S/X t r IV Spread Volume OI C 
Mean 3424 3437 1.00 72 6.5 14.4 6.5 219 2174 89.1 
Std. Dev. 504 522 0.05 77 1.1 4.9 4.8 558 2495 106.2 
Range 2232 2700 0.57 367 6.9 113.0 42.5 10779 20463 977.0 
Minimum 2284 2125 0.83 1 5.1 0.1 0.5 1 1 1.0 
Maximum 4516 4825 1.41 368 12.0 113.1 43.0 10780 20464 978.0 
Count 7174 7174 7174 7174 7174 7174 7174 7174 7174 7174 

Test Set 

 S X S/X t r IV Spread Volume OI C 
Mean 3430 3447 1.00 73 6.4 14.4 6.5 238 2201 87.6 
Std. Dev. 493 510 0.05 78 1.1 5.7 4.8 614 2522 106.2 
Range 2207 2700 0.60 366 6.9 143.2 52.5 11515 20403 1113.0 
Minimum 2284 2125 0.82 1 5.1 0.1 0.5 1 1 1.0 
Maximum 4491 4825 1.42 367 12.0 143.3 53.0 11516 20404 1114.0 
Count 7282 7282 7282 7282 7282 7282 7282 7282 7282 7282 

 

option pricing. We wish to identify variables not included
in pricing models generally that may be statistically signif-
icant explanatory factors for determining option prices, or,
when added, significantly improve performance. Here, we
are investigating whether transaction costs, volume and
open interest affect the implied pricing mechanism of the
market. We concentrate initially on adding to the usual
five Black-Scholes parameters the bid-offer spread, serving
as a measure of transactions costs. We also add volume,
reporting the quantity of each contract sold, and open
interest, the numbers of each contract not closed by an
offsetting transaction, as measures of market activity and
a proxy for liquidity in the market.

We chose to study instruments traded on LIFFE and in
particular the LIFFE FTSE 100 index (European exercise)
option ‘ESX’ for several reasons:

• Plenty of historical data, both daily closing prices and
tick data, are readily available.

• This instrument is ideally specified for the BS formula
and so allows direct comparative assessment of the per-
formance of our approach in emulating the benchmark
market data.

The raw data used were obtained from Market Data Ser-
vices of LIFFE on CD-ROM.
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3 Input assumptions

We wish to investigate what can be learned from a purely
phenomenological study of observed options prices and
thus do not adopt many of the assumptions underlying
models of the BS type. Most specifically, we do not assume
zero transaction costs. We use the BS pricing formula only
as a performance benchmark.

Following the approaches of Hutchinson et al. [11],
Kelly [12], Malliaris and Salchenberger [13], Herrmann and
Narr [14] and Bennell and Sutcliffe [15], we use neural net-
works (NNs) as our principal modelling tool. This is sup-
plemented by the use of data visualisation techniques for
data exploration, particularly 3D scatter plots and sur-
face plots. Multivariate OLS (ordinary least squares) lin-
ear regression is used as a means to suggest the statistical
significance of explanatory variables in the data.

Contrary to many earlier studies we do not exclude
deep in-the-money and deep out-of-the-money options,
which are difficult to handle, but include the full set of of-
fered strike prices. Nor do we replace illiquid calls with the
information contained in liquid puts (converted using put-
call parity). Instead, we treat calls and puts separately.
(There is evidence that the pricing mechanism differs for
calls and puts [14].) Our aim is to obtain a full picture of
market pricing.

We use the values of implied volatility tabulated by
LIFFE as our input IV measure in contrast to Bennell
and Sutcliffe [15] who use LIFFE at-the-money IV. This
is because:

• We have found that though at-the-money IV gives a
very slightly better fit, as measured by R-squared, its
performance is slightly worse as measured by mean
error (ME) and mean absolute error (MAE).

• LIFFE tabulated IV is used widely in the market.

Again, unlike Bennell and Sutcliffe [15] who use the FTSE
100 Index closing price, we use the LIFFE tabulated value
of the instrument settlement price as our measure of S, the
price of the underlying asset. This is because:

• The ESX option is actually an option on the FTSE
100 index future. It is only at expiration that it is cash
settled against the underlying index, when spot-future
convergence has rendered the price of the future and
the price of the index equal.

• By using the instrument settlement price, which is the
value of the implied future, dividend adjustment is not
required.

• The problems of asynchronous prices discussed by
Bennell and Sutcliffe [15] are avoided.

4 The data

4.1 Data preparation

Our study includes investigations using both daily data
and tick data. The results reported here relate to daily
data. Our dataset of daily closing prices for the FTSE

100 index option contains 119,413 calls and the same num-
ber of puts, representing five years of trading from March
1992 to April 1997. However, not all these data are used.
First, the data were cleaned to remove options with invalid
or missing parameters. Since we are primarily concerned
with modelling the market-implied pricing mechanism un-
der transaction costs, options for which bid and offer prices
are not recorded were then removed. Next, further clean-
ing was carried out to remove options with misreported
bid or offer prices (e.g. where the spread is negative). The
resulting data set contained 77,013 call options and a sim-
ilar number of puts. The data set was then randomly par-
titioned into a training set and a test set. The number of
call options remaining in the training set was 38,426, with
the remainder assigned to the test set.

The variables volume and open interest (OI) are not
recorded for all options data. To work with these vari-
ables it is thus necessary to create a subset of the full
data set specified above. For call options, this subset has
7174 options in the training set and 7282 in the test set.

Table 1 contains short descriptive statistics of the call
records for the full data set and for the subset.

4.2 Put-call parity

For a given maturity and strike price, the risk-free, fair
price of a call and that of the corresponding put are di-
rectly related. This can allow one, for example, to substi-
tute put data for illiquid, in-the-money call data. However,
market prices of calls and puts do not satisfy this relation
in practice. Thus, the implied volatilities for such pairs of
puts and are not equal. Figure 2 shows that the distri-
butions of implied volatilities for corresponding puts and
calls differ markedly.

We would not expect this if the market pricing mech-
anism for equivalent call and put options were the same.
However, the difference is significant at <0.001 in t tests.
These numbers support the view that the pricing mecha-
nism of the market differs significantly from Black-Scholes
and motivates our separate treatment of call and put op-
tions discussed above. We choose not to invoke the put-call
parity relation, but we are concerned to fit to all the put
data across the full range of moneyness.

4.3 Data exploration

Besides looking at the distribution of volatilities, we are
interested in the potential relevance of other than the stan-
dard five BS variables. Specifically, we look at the quanti-
ties bid-offer spread, open interest and volume of transac-
tions. Three-dimensional scatter plots and surface plots of
variables of interest against moneyness (defined as S/X)
and time to maturity are used to gain further insight into
the data.

The spread, or difference between the offer and bid
prices for an option, is a proxy for transaction cost. Its
behaviour for the full data set is shown in Figure 3.

This plots the spread as a percentage of call price as a
function of moneyness and time to maturity. The diagram
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Fig. 2. Distribution of implied volatilities: Plot showing how the values of implied volatility are distributed differently for call
and for put data (combining all maturities and all strike prices).
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Fig. 3. Calls: Transaction costs % vs. Moneyness and days to maturity: Plot showing how transaction costs increase away from
the at-the-money options.

clearly shows that the spread is low close to the money
and rises quite steeply for options away from the money.
The rise is steeper close to maturity.

Figure 4 shows open interest plotted against time and
moneyness for the subset of the data. The number of open
contracts rises as moneyness decreases. There is also a
maturity effect, with rising numbers in the last 150 days
to maturity, and a peak around 250 days from maturity.

5 Method

We use an industry standard, commercially available,
data mining suite SPSS Clementine to implement our ap-

proach. We use Clementine’s Neural Net node as our prin-
cipal modelling tool. This provides a standard NN having
a multi-layer perceptron (MLP) architecture. We use up
to 7 input nodes, just one hidden layer of nodes, and one
output node. An example NN is shown diagrammatically
in Figure 5.

To avoid modelling assumptions, we do not normalise
the option price by the strike price (i.e. C/X). This is to
avoid any implicit assumption regarding return distribu-
tions. (See Merton [16], theorem 9 and Hutchinson, Lowe
and Poggio [11], p. 862.) Instead, we use models explic-
itly containing all the variables we wish to study. In using
NNs to price options, the error of interest is the difference
between the estimated (fitted) price and the target price.
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Fig. 4. Calls: Open interest vs. Moneyness and days to maturity: Plot showing how the open interest for calls varies with
moneyness and days to maturity. Most contracts are out-of-the-money.

S X r t IV Spread

C

Fig. 5. Typical neural net architecture: The number of pro-
cessing nodes chosen for the intermediate layer in a neural
network can vary. The diagram shows six nodes.

In common with previous researchers, we use R-squared
as our measure of goodness of fit and standard deviation,
with mean error (ME) and mean absolute error (MAE) as
our measures of error. (Note that fitting C/X would lead
to apparent error measures that are up to two thousand
times lower numerically [14].)

NNs, in common with other non-parametric methods,
can suffer from the problem of over fitting. For a model
of fixed capacity (i.e. fixed number of training cycles and
hidden layer nodes), increasing the sample size can lead
to a poorer fit in the training set, and a better fit in the
test set. If sample size is held constant then fit improves
in the training set as model capacity increases. In the test
set it improves, until it reaches a minimum at some given
model capacity and then decreases again [17].

To prevent over fitting, we use Clementine’s quick
training mode. This randomly selects a test set from
within the training set and terminates training at the op-
timum number of cycles for the given training set. The
best choice for the number of hidden layer nodes is in-

fluenced by the training set size and number of training
cycles. For definiteness, we chose 11 hidden layer nodes for
the results presented here, in the interests of comparison
with the work of Herrmann and Narr [14] who use similar
network architecture. We will explore further the issue of
an optimal choice for the number of hidden layer nodes.

6 Results

We confirmed that using the BS formula with IV from
LIFFE and r from the LIBOR 90 day rate did reproduce
market C values to an accuracy of R-squared = 0.998.
It is not sensitive to the exact value of the interest rate
assumed.

6.1 Trial fit

Initially, to verify the approach, we examined just a re-
stricted subset of options trading for a single expiration
selected at random from the 67 expirations represented in
our data set. The training set was 4047 call option prices
for the December 1996 expiry and, to test the extrapola-
tive ability of the model, the test set was 1076 prices for
December 1997 expiry.

We found that adding transaction costs (bid-ask
spread) to the standard five parameters as used in the
Black-Scholes (BS) model improved the (already good) fit
and performance measures of the NN model. Tests showed
that the bid-offer spread was a statistically significant ex-
planatory variable for option prices for this data set. There
was an in-sample difference in option prices between the
models with transaction costs and those without of from
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Fig. 6. Effect of spread on fitted value: Plot showing, for the example of December 1996 maturity call option data, the variation
of price difference between NN models with spread included and those without.

Table 2. Calls: Results for full data set summarised in Table 1: Neural net fits for training and test data sets without and with
the addition of spread data to the standard five BS input parameters.

NN Modelling Results: Full Data Set 

Nodes per Layer Fit Performance Model Name 

Input Hidden Output 

Target 

R R-sqd. gain ME MAE 

Training Set 

S5 5 11 1 C 0.999 0.998 - -0.04 2.55 
S5+Spread 6 11 1 C 0.999 0.998 0.000  0.03 4.07 

Test Set 

S5 5 11 1 C 0.990 0.980 - -0.93 3.46 
S5+Spread 6 11 1 C 0.990 0.980 0.000 -0.84 4.07 

 

about −3.0 to +1.5 index points, depending on money-
ness. This is shown in Figure 6.

Since the two models fit the data differently, this sug-
gests that use of a five-factor BS-type model could result
in a pricing difference, at least for this data sample, of
up to about £30 per call option contract compared with
modelling taking into account transaction costs. (Each call
option contract is for £10 per index point.)

6.2 Full data set

Turning to the full data set detailed in Table 1, we per-
formed multivariate OLS regressions of the six explana-
tory variables (S, X, t, r, IV, spread) against option price.
All were statistically significant at <0.0001. Five of the
variables are the usual input parameters (S5). The addi-
tional variable is the bid-offer spread.

Interestingly, spread has nearly twice the explanatory
power for option prices of r, the risk-free interest rate. In
the case of call options, it has a t-statistic of −26.1 against
−15.9 for r, the critical value of t here being −3.7 at the
0.0001 level. However, residual plots, normal probability
plots, and diagnostic tests for functional form indicated a
strongly non-linear fit.

In the NN modelling, we found that adding the spread
to the five usual inputs yields an equally satisfactory fit.
The model including spread is virtually as good in fitting
out-of-sample data. Table 2 summarises these fits to the
call options data set of Table 1.

However, interestingly, the fitted values for the two
models are significantly different at the 0.05 level, and
significantly different for the target variable ‘Call Settle-
ment Price’ (C) both in- and out-of-sample. This reflects
a dependence of C on spread.
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Table 3. Calls: NN results for models including open interest: Neural net fits adding either or both spread and open interest
as input variables.

NN Modelling Results: Spread & OI 

Model Name Nodes per Layer Target Fit Performance 
 Input Hidden Output  R R-sqd. gain ME MAE 

Training Set 

S5 5 11 1 C 0.998 0.996 - -0.49 4.29 
S5+Spread 6 11 1 C 0.998 0.996 -0.0002 -0.30 4.39 

S5+OI 6 11 1 C 0.999 0.997  0.0010 -0.04 3.79 
S5+Spread+OI 7 11 1 C 0.999 0.998  0.0013 -0.48 3.59 

Test Set 

S5 5 11 1 C 0.993 0.986 - -0.68 4.53 
S5+Spread 6 11 1 C 0.993 0.986 -0.0001 -0.51 4.61 

S5+OI 6 11 1 C 0.993 0.987  0.0007 -0.20 4.00 
S5+Spread+OI 7 11 1 C 0.993 0.987  0.0011 -0.66 3.77 

 

Table 4. Fitted price differences by moneyness and over time: Summary of NN fits to the full data set as a function of moneyness
and maturity year.

Price Difference (index points): Model with Spread minus 5-Factor Model 

Yrs\ Moneyness 0.8 – 0.9 0.9 - 1.0 1.0 - 1.1 1.1 - 1.2 1.2 - 1.3 1.3 - 1.4 All Moneyness 
1992  0.64 -0.08 -0.38 -0.31 -1.31  3.57  0.36 
1993 -0.27  0.19 -0.67  0.88 -1.29  3.72  0.43 
1994  0.78 -0.13 -0.01 -0.04 -0.28  2.82  0.52 
1995  0.50  0.02  0.21 -0.19  0.25  0.63  0.24 
1996 -0.78  0.11 -0.10  0.64 -0.60  0.71 -0.02 
1997 -0.35  0.22 -0.10  1.54  6.66 -5.33  0.44 

All Years  0.09  0.06 -0.19  0.42  0.57  1.02  0.33 

 

6.3 Data subset with open interest

Next, we considered other possible variables to influent
the option price. In multivariate regressions for the data
subset, volume is found to be statistically insignificant as
an explanatory variable for option prices, so we do not in-
clude it in our models. Open interest however is significant
and is included.

Again, adding just spread does not change the quality
of the fit. However, adding both spread and open interest
produces a marginal improvement. Here, the fitted values
from the models show no statistically significant differ-
ences at the 0.05 level between one another and with the
target variable. Table 3 reports the results for call options.

6.4 Secular effects

However, the results from the trial sample above were not
typical. Indeed, we found that other subsets of the data
(for different years) exhibited behaviour different from a
fit using the full data set. This raises the question of the
reasonable lifetime of models. (A fitted model cannot be
expected to extrapolate to future data if the environment
it assumes changes. We found that a fit of 1992 data mod-
elled successively later years increasingly less well.) Thus,
we studied possible annual variability by selecting data for
expiries grouped in to individual years. Table 4 tabulates

how the difference in call prices for fits with and without
spread varies year-by-year. It also shows the dependence
on moneyness.

The average pricing difference is close to zero for out-
of-the-money, but positive for in-the-money (typically 0.5
index points) and rises to 1.0 for large values of money-
ness. Subdividing the data by maturities falling in each
calendar year, there is some variation around the overall
average, especially for larger moneyness. However there is
no consistent trend for the six-year period studied. The
price variations for individual expiries are more marked.

7 Summary and conclusions

We confirm, for FTSE 100 European call options, that
a NN model using the standard five inputs (including the
LIFFE tabulated IV) fits the option prices, consistent with
the BS formula. We then looked to see if there were sig-
nificant other explanatory variables.

• NN models with and without spread are equally good
as measured by R-squared, ME and MAE. However,
the two fits are different and can lead to pricing differ-
ences for options.

• We find a clear dependence on moneyness of the effect
of spread. It is greatest away from the money, ranging



J. Healy et al.: A data-centric approach to understanding the pricing of financial options 227

up to £10 or more per contract, varying for different
maturities.

• Our results suggest that the significance of spread in
the NN fit appears to vary from year to year. This
reminds us that the useful life of such an empirical
model should be tested.

• Transaction volume is probably not significant, but
open interest is. When both spread and open interest
are added, a slight improvement in model performance
is obtained, though it is not statistically significant.

Overall, the data fail to reject the null hypothesis of no
difference in fitted values between the models.

We conclude that NNs are a valid tool to model and
predict option prices. Unlike theoretical models, they can
easily take into account other factors, such as transaction
costs.

We would like to thank Brian Eales of LGU Economics Depart-
ment for helpful discussions on the importance of spread for
portfolio hedging and for a critical reading of the draft. CISM
provided resources for F.F. Cai and M. Dixon and a Teaching
Research Studentship for J.V. Healy. Professor K.G. Jeffery
enabled collaboration between LGU and the Business Infor-
mation Technology Department at the Rutherford Appleton
Laboratory. Andros Gregoriu of the Department of Economics
and Finance at Brunel University advised on econometric tests.
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