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Abstract

Non-parametric methods such as artificial neural nets can successfully model prices of
financial options, out-performing the Black—Scholes analytic model (Eur. Phys. J. B 27 (2002)
219). However, the accuracy of such approaches is usually expressed only by a global fitting/
error measure. This paper describes a robust method for determining prediction intervals for
models derived by non-linear regression. We have demonstrated it by application to a
standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics
Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to
obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100
index options (http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid spe-
cial neural net architectures and use standard regression procedures to determine local error
bars. The method is appropriate for target data with non constant variance (or volatility).
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1. Introduction

Data mining and computational methods such as artificial neural nets are
increasingly used in finance. They provide an alternative non-parametric model of
option prices, out-performing the Black—Scholes (BS) model [1-4]. These data
mining methods are often generalisations of better known non-linear regression
techniques. Confidence in the reliability of models and predictions is a key issue in
finance. However, while techniques of statistical inference are well defined for the
parametric regression methods traditionally employed in financial modelling, this is
not the case for the non-parametric data mining techniques. Consequently, there is
an absence from the literature of statistical hypothesis testing [5], and models are
evaluated on summary criteria such as mean squared error and R>. Also, prediction
and confidence intervals are rarely constructed for option pricing models estimated
using these techniques. In our work on option pricing, we have found that when
input data is partitioned by moneyness/maturity, model price predictions may be
unbiased for some partitions yet biased for others. Examination of pointwise
prediction intervals is thus a necessity to obtain a fuller picture of model
performance than is given by single summary statistics or hypothesis tests. We seek
a method which is generally applicable, and can be used with any regression
technique of sufficient flexibility. In this paper we describe a robust method for
determining prediction intervals for neural nets and related techniques. We have
tested the method empirically using a standard synthetic data set, and compared it
with a method restricted to neural nets [6]. Here, our method is applied to obtain
prediction intervals for pricing options, using a data set of 14,257 LIFFE European
style FTSE 100 index ‘ESX’ options [7]. Our method uses standard regression
procedures to determine local error bars. It is appropriate for target data with non-
constant variance (or volatility).

2. Background

Neural nets are a generalisation of multivariate non-linear regression. Standard
methods of computing confidence intervals such as the ‘delta’, and ‘sandwich’
methods as well as the ‘naive’ bootstrap apply in principle but have practical
problems as discussed in Refs. [6,3]. Nix and Weigend [8] describe a method of using
a neural net to estimate the variance of its own predictions of the target variable,
thereby allowing prediction intervals to be constructed. They proposed a neural
network, with two outputs, that simultaneously estimates the conditional mean of
the specific target and its conditional variance. The architecture and cost functions
used differed from a standard NN with fully connected hidden layers. The outcome
is a model for both y(x), the underlying true regression, and ¢>(x) the true noise
variance function. Nix and Weigend demonstrated good recovery of the target
function and variance function, using the normalised mean squared error, and the
mean cost, as performance criteria. The specific characteristics of the method [§]
mean that it is restricted to NNs and is not generally applicable.
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3. Our model/algorithm

Our model, which is described fully in Ref. [6], has two outputs and
simultaneously estimates the regression function and the noise variance function.
However, it differs from the model described by Nix and Weigend [8]. This is because
it uses a standard fully connected NN architecture. It employs a least-squares cost
function. And, in contrast to Ref. [8], it uses independent training and validation
sets, rather than interchanging validation sets. Finally, we use the following three-
Phase training algorithm:

Phase I Randomly split the training data into two data sets, Set A and Set B.
Using Set A, train a NN model on the target variable d(x). Run the trained NN
model on Set B, to obtain a set of squared residuals. By using squared residuals on a
test set (Set B) as the second target for Phase II, over fitting and consequent
underestimation of the standard error is avoided.

Phase II: Using Set B for training, train a second NN with two output nodes. The
target for the first output node is the variable d(x); the target for the second output
node is the squared residuals obtained in Phase I from set B using the model trained
on Set A.

Phase III (optional): Using Set A for training, train a further NN with two output
nodes. The target for the first output node is the variable d(x); the target for the
second output node is squared residuals for the estimate d*(x) obtained in Phase II
using the model trained on Set B. Set A and B are randomly split into a training and
a validation portion; testing of each Phase is performed on an independent test set,
Set C.

4. Results

We first applied our method to a univariate synthetic example defined by Nix and
Weigend [8], called Example 1 in their paper and here. This uses a one-dimensional
data set where y(x) the true regression, and ¢2(x), the noise variance function, are
known. The true regression is p(x) = Sin(3x)Sin(5x), where x is a uniformly
distributed random number from the interval [0, n/2]. The noise n(x) consists of
numbers from the normal distribution N[0,c%(x)], where ¢?(x)=0.02 +
0.25[1 — Sin(5x))* is the noise variance function. The target value for training is
d(x) = y(x) +n(x). Fig. 1 shows a plot of the data points, the estimated and true
regression y(x), and the true and estimated prediction band obtained using our Phase
IIT model. Fig. 1 illustrates, that our method can recover a good estimate of the
prediction intervals given very noisy data.

5. Option pricing performance

In Example 1 the noise is artificially large and variable, and the data points widely
dispersed compared to option prices. We therefore applied our method to Example
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Fig. 1. Prediction bands for Example 1.

2, fully described in [6], based on synthetic option prices. Tests showed the network
was able to recover the true regression function and noise variance function
analogously to Example 1. In the more realistic, less noisy, context of Example 2 it
was found Phase III training was superfluous, and did not improve the estimate of
the true noise variance function. Here we present Example 3, which uses the same
data set as Example 2, but uses actual observed prices of options in place of the
synthetic prices of Example 2, so there is no underlying (smooth) true noise variance
function. Hence, the estimated noise variance can only be compared with the actual
squared residuals for the fit to the observed option prices. We follow [2] and use
moneyness and time to maturity as input variables. For Example 3, a hidden layer of
10 nodes in Phase I and 20 nodes in Phase IT were used giving values of R = 0.96
and 0.93, respectively, for the option price. Example 4 has the same targets as
Example 3 but uses as inputs the set of Black—Scholes variables and has
corresponding R> = 0.997 and 0.991.

A graphical demonstration is provided in Figs. 2 and 3 of Examples 3 and 4. Here,
the method is used to price a previously unseen option price series. In Figs. 2 and 3,
the crosses are the observed option prices. The solid line ‘Estimated’ is the NN
estimate of the prices. The dashed lines U*, L* are the prediction intervals
constructed from the NN estimate of the noise variance. The dotted lines U, L, are
confidence intervals constructed using actual residuals from the NN estimate of the
option prices. In Fig. 3, BS is the Black—Scholes price estimate. Fig. 2 shows that the
observed prices lie within the prediction band, which is consistent with unbiased
price estimates. In Fig. 3, the improved fit provided by the additional input variables
is reflected by the much narrower prediction intervals. The NN estimates of prices
are particularly good, compared to BS, for the thinly traded deep in the money
options.
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Fig. 2. Example 3: Application to option price series—inputs (, S/X).
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Fig. 3. Example 4. Application to option price series—inputs are BS variables.

6. Conclusions

This paper describes a robust method for determining prediction intervals for
models derived by non-parametric forms of non-linear regression. The method can
be used with general purpose modelling tools and is not restricted to application
specific software. We have demonstrated its utility by constructing prediction
intervals for option prices estimated using neural nets and shown their width is a
much better indicator of model quality than summary statistics such as R>. The
method is also applicable to any comparable regression technique of sufficient
flexibility.
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