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Abstract

We report call option pricing for up-and-out style barrier options through the use of a

neural net model. A synthetic data set was constructed from the real LIFFE standard option

price data by use of the Rubenstein and Reiner analytic model (Risk September (1991) 28).

Unbiased estimates at the 95% confidence level were achieved for realistic barriers (barrier 4%

or more above maxðS0;X Þ).

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This work aims to find an effective way to assess the pricing of up-and-out barrier
call options by models extracted from realistic data by using standard commercial
neural net tools. Some success has already been reported for standard option pricing
[1,2]. Barrier option data is not publicly available so we create a synthetic data set
see front matter r 2004 Elsevier B.V. All rights reserved.
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based upon LIFFE standard European call option data [1]. The synthetic barrier
prices were derived using an analytic model [3]. We investigate a set of barriers
applied to these data for up-and-out call barrier options. Previous investigators have
identified the need to take special adaptive action near the barrier when deploying
multinomial trees for barrier options [4,5]. We find a small fraction of predicted
prices are disproportionately incorrect and we are investigating the source of this
problem, e.g. many of the problematic prices are very close to maturity. Using two
sample t-statistics at the 95% confidence level we find good agreement between
target and predictions. The paired sample t-statistics accept most models of the test
data or fail because of just a few data points; but the predictions for the 2% level
barrier are emphatically rejected.
2. Barrier options

A standard call option gives the holder the right to buy an asset in the future at a
previously agreed price X, known as the exercise price. The payoff of such a call is
maxðST � X ; 0Þ � co where co is the price of the option and ST is the value of the
asset at expiry (see Fig. 1). An out-style barrier option limits the range S can take
over the lifetime of the option. For cup-and-out the option ceases to have value if the
barrier at H on S is crossed from below. The popularity of barrier options can be
attributed to the following advantages: (1) lower cost compared with standard
options; (2) flexibility in setting the barrier level; (3) ability to be linked to any
underlying security; (4) precision to exposures (upside/downside potential).
3. The barrier option price modelling problem

Analytical models have limitations. Rubinstein and Reiner [3] defined an
analytical model for the value of European-style barrier options on stock. The
model is based on the Black–Scholes and Merton approach to pricing European-
style ordinary options. Boundary conditions are added to obtain the path-dependent
feature of barrier options. Appropriate formulae are given by Hull [6]. This
analytical solution makes some assumptions such as the lognormal probability
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Fig. 1. Payoff diagram for an up-and-out call (with zero rebate and showing premium deducted).
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distribution for the asset price, constant volatility and interest rate across the
option’s life span. These assumptions are rarely met in the real world. Moreover not
all types of barrier options are amenable to this approach [6]. Asset prices are
monitored at discrete and contractually specified times, t=m, for barrier crossing.
With t as time to maturity, s as the volatility, and m as number of timesteps. This
means that actual crossings may not be detected in discrete samples. Broadie et al. [7]
have proposed an effective barrier should be used for the case of discrete monitoring.
For an up and out call the adjusted barrier value H ! H expð�0:5826s

ffiffiffiffiffiffiffiffi
t=m

p
Þ. The

binomial method for barrier options converges very slowly as the number of
branches or lattice levels increases, often requiring unattainably high computing
times for even a modest accuracy [4]. There is quantization error associated with
fineness of the grid in time and specification error associated with the position of the
barrier with respect to the asset price grid. Trinomial trees, implicit, explicit and
other finite-difference methods suffer from similar problems. Furthermore, the
numerical accuracy of these methods becomes an important issue. Special adaptive
mesh methods and trees are deployed that require crafting to deal with the need for
higher resolution near the barrier [5].
Barrier options are not exchange traded but depend on over the counter contracts

so the prices are not publicly available. Hence we needed to generate a synthetic data
set. We used a LIFFE standard index option daily prices data subset already
described in a previous study to obtain S, X, t, and s [1]. It covered the period March
1992 to April 1997. r was obtained from Datastream’s LIBOR rate and synchronized
with the LIFFE tabulation. Dividend, d, does not apply to LIFFE ESX European
style FSTE100 index calls because it is an implied future. Our 6-input model includes
t; r; s; S; X ; H. And our 7-input model has one more input, the trading date.
Actual OTC (over-the-counter) prices may be affected by factors other than the
standard option price and the level of the barrier. The LIFFE data were cleaned by
removing records for which there were: (1) invalid or missing values; (2) omitted or
mis-reported bid/offer prices; (3) zero or missing volume traded. For s we used the
implied volatility and omitted so ¼ 0:01 or 40:40. The data were randomly
separated into two sets: 7083 option records in the training set and 7171 option
records in the test set.
4. Findings

We show in Fig. 2 a scattergram and straight line fit between the actual synthetic
prices and the predictions from the neural net for the H0 þ 8% for the 6-input model.
Similar scattergrams for the other models were found. Over the whole price range the
neural net gives reasonable predictions. For this case we found 84.8% of differences
lie within the range of �10% to +10%. Fig. 3 shows the overall %–age difference
for H0 þ 8%. We compared a range of barriers from H0 þ 2% to H0 þ 10%. All
models satisfy the 2-sample t-test for 95% confidence but the H0 þ 2% fails the
paired t-test for 5% significance. A seven parameter model, with trading date was
added to the input data, did not appear to give improved prediction. Table 1 reports
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Fig. 3. Price plot % difference between neural net prediction and synthetic actual. % difference is

percentage difference in option price calculated as 100%� (Synthetic ðcup-and-outÞ �NNðcup-and-out))/

Synthetic (cup-and-out).

Table 1

Comparison of barrier option price fit H ¼ H0 � ð100%þ n%Þ where H0 ¼ maxðS0;X Þ

Barrier level 6 Inputs 7 Inputs

H for cup-and-out ðt; r;S;X ;H;sÞ (t; r;S;X ;H;s and trading date)

ðH0 þ 2%Þ y ¼ 0:9925x y ¼ 0:9916x

R2 ¼ 0:9940 R2 ¼ 0:9955
Probability under paired t-test: 0.0 Probability under paired t-test: 0.0

ðH0 þ 4%Þ y ¼ 0:9865x y ¼ 0:9969x

R2 ¼ 0:9902 R2 ¼ 0:9947
Probability under paired t-test: 0.47 Probability under paired t-test: 0.026

ðH0 þ 6%Þ y ¼ 0:9994x y ¼ 0:9974x

R2 ¼ 0:9981 R2 ¼ 0:9966
Probability under paired t-test: 0.34 Probability under paired t-test: 0.057

ðH0 þ 8%Þ y ¼ 1:0011x y ¼ 0:9994x

R2 ¼ 0:9992 R2 ¼ 0:9985
Probability under paired t-test: 0.05 Probability under paired t-test: 0.29

ðH0 þ 10%Þ y ¼ 1:0016x y ¼ 0:9999x

R2 ¼ 0:9982 R2 ¼ 0:9970
Probability under paired t-test: 0.44 Probability under paired t-test: 0.12

y = 1.0011x

R2 = 0.9992
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Fig. 2. Price plot of neural net prediction against synthetic actual level set at

H ¼ maxðX ;S0Þ � ð100%þ 8%Þ; x ¼ Cu-oðH þ 8%Þ.
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the line of best fit gradient for all the scattergrams, R2, and the paired t-test
probability with a significance target of 0.05.
These preliminary findings are encouraging. They show that standard commercial

neural networks can be used to predict unbiased prices for up-and-out style barrier
options defined on market traded standard options. Special adaptive mechanisms
were not needed to deal with the barrier. Further investigations are needed of: (1) the
derivation of prediction intervals for the predicted option prices; (2) the
characteristics of prediction outliers; (3) The use of inputs consisting of combina-
tions of variables e.g. S=X as moneyness to deal with ageing features found in
predictions of standard models.
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