

_TRSV: Optimizing triangular solve in CUDA

Jonathan Hogg

STFC Rutherford Appleton Laboratory

ASEArch flagship grant

Aims:

- ▶ Deliver a sparse linear solver on GPUs
- Deliver an interior point solver for linear/quadratic programs on GPUs
- Do so in such a way that they can be easily ported to other architectures

ASEArch flagship grant

Aims:

- ▶ Deliver a sparse linear solver on GPUs
- Deliver an interior point solver for linear/quadratic programs on GPUs
- Do so in such a way that they can be easily ported to other architectures

Relation of this talk:

- Learning project
- Base kernel we need to perform well current CUBLAS implementation is poor.

What is _trsv?

- ► A Level 2 BLAS operation, solves Lx = b. _trsv — <u>tr</u>iangular <u>s</u>ol<u>v</u>e.
- ...or $L^T x = b$ or Ux = b or $U^T x = b$.

Usage

Direct solvers A = LU, or $A = LDL^T$, A = QR.

- Solve Ax = b as Ly = b, Ux = y.
- Sparse solvers use many smaller matrices rather than one large dense one.

Often require 10s or 100s of solves per factorization

- Preconditioning, iterative refinement, FGMRES.
- ▶ Interior Point Methods perform multiple solves.

Current libraries

Basic (in-place) Algorithm

Input: Lower-triangular $n \times n$ matrix L, right-hand-side vector x.

for
$$i = 1, n$$
 do

$$x(i+1:n) = x(i+1:n) - L(i+1:n,i) * x(i)$$

end for

Output: solution vector *x*.

$$\begin{pmatrix}
1 & & & \\
l_{21} & 1 & & \\
l_{31} & l_{32} & 1 & \\
l_{41} & l_{42} & l_{43} & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix}$$

Small matrices are latency bound

1 fmad per entry in $L \Rightarrow$ memory-bound.

- ► C2050 can deliver approx 9 doubles/sec from main memory
- Global memory latency 200 cycles (optimistic?)
- ▶ $n = 32 \Rightarrow 195$ cycles per column waiting for data
- ▶ Require *n* > 1800 to fully hide latency
- ► Cache doesn't help no hardware prefetch.

What can we do?

Small matrices are latency bound

1 fmad per entry in $L \Rightarrow$ memory-bound.

- ► C2050 can deliver approx 9 doubles/sec from main memory
- Global memory latency 200 cycles (optimistic?)
- ▶ $n = 32 \Rightarrow 195$ cycles per column waiting for data
- ▶ Require *n* > 1800 to fully hide latency
- Cache doesn't help no hardware prefetch.

What can we do?

Bring data closer to core, reducing latency

- Shared memory; or
- Registers

C2050 Memory layout

Registers

- Block on use, not on load.
- Allow Instruction Level Parallelism (ILP).
- ► See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!

... typically need half of these for normal operation.

Registers

- Block on use, not on load.
- Allow Instruction Level Parallelism (ILP).
- ► See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!

... typically need half of these for normal operation.

However, doesn't help:

- ➤ To use more than 1 thread, need to communicate via shared memory (so no latency gain).
- ► Adds complications to code ⇒ extra overheads.
- Quite quickly leads to register spill ⇒ slowdown.

Shared Memory

```
A 32 \times 32 matrix of doubles requires 8KiB \Rightarrow lots of room.
Simple code (blkSize = 32):
   template <int blkSize>
   void __device__ dblkSolve(const double *a, int lda,
         double &val) {
      volatile double __shared__ xs;
   #pragma unroll 16
      for(int i=0; i<blkSize; i++) {
          if(threadIdx.x==i) xs = val;
          if (threadIdx.x=i+1)
             val -= a[i*Ida+threadIdx.x] * xs;
```

Just precache a in shared memory!

Shared memory n > 32

Quickly run out of shared memory if we try and hold entire matrix! Instead:

- ► Cache only 32 × 32 tiles down diagonal
- Cache next col while solve performed on diagonal

```
\begin{pmatrix}
L_{11} \\
L_{21} & L_{22} \\
L_{31} & L_{32} & L_{33} \\
L_{41} & L_{42} & L_{43} & L_{44}
\end{pmatrix}
```

Shared memory n > 32

Quickly run out of shared memory if we try and hold entire matrix! Instead:

- ► Cache only 32 × 32 tiles down diagonal
- Cache next col while solve performed on diagonal

$$\begin{pmatrix} L_{11} \\ L_{21} & L_{22} \\ L_{31} & L_{32} & L_{33} \\ L_{41} & L_{42} & L_{43} & L_{44} \end{pmatrix}$$

Execution trace (128 \times 128):

```
Warp 0 Ld(1) Slv(1,1) Mv(2,1) Slv(2,2) Mv(3,2) Slv(3,3) Mv(4,3) Slv(4,4)
Warp 1 Ld(1) Ld(2) Mv(3,1) Ld(3) Mv(4,2) Ld(4)
Warp 2 Ld(1) Ld(2) Mv(4,1) Ld(3) Ld(4)
Warp 3 Ld(1) Ld(2) Ld(3) Ld(4)
```


Small matrix results

32	64	96	128
7	13	19	25
17	37	68	149*
31	58	85	113
	7 17	7 13 17 37	7 13 19 17 37 68

^{*} indicates register spill occurred

Larger matrices

So far using a single SM.

- ► Quickly L1←→L2 bandwidth becomes bounding (only 16.4GB/s vs 144GB/s global)
- ► Need to use multiple SMs!

Why not use small matrix kernel then efficient matrix-vector?

- Driver handles synchronization (different kernels)
- Matrix-vector achieves high bandwidth

Kernel-synchronized results

We can do better!

n =	512	1024	4096
blkSolve() (μ s)	108.3	217.3	904.7
$dgemv() (\mu s)$	37.8	95.1	842.0
Execution time (μs)	171.0	370.8	2006.5
Launch overhead	17.0%	18.7%	14.9%
Work in blkSolve()	18%	9%	2%

- Substantial overheads from using kernel launches for synchronization
- Amount of time in blkSolve() Amdahl strikes again!

Global-memory synchronized

Aim: Single kernel-launch

- Use global memory for synchronization costs I2 cache miss + __threadfence().
 (Much cheaper than using kernel launches)
- Fine grained synchronization...
- ▶ ...hence matrix-vector product runs concurrently with solve.

Thread block \Rightarrow block row

CAUTION

Thread blocks are not scheduled in order!

Thread block \Rightarrow block row

CAUTION

Thread blocks are not scheduled in order!

Dynamically pick row to avoid deadlock

Thread block \Rightarrow block row

CAUTION

Thread blocks are not scheduled in order!

Dynamically pick row to avoid deadlock

Only need two scalars for synchronization:

- Row for next thread block
- ▶ Latest column for which solution is available

Execution trace

Execution trace

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

Performance bounds

- 4 blocks per SM with different behaviours:
 - Mode 1 Not waiting on data, constant computation.
 - Mode 2 Stops and starts as each column completes.
 - Mode 1 is bandwidth bound.
 - Only takes one thread block per SM to saturate.
 - Competitive with CUBLAS _gemv.
 - Little room for improvement.

Performance bounds

- 4 blocks per SM with different behaviours:
 - Mode 1 Not waiting on data, constant computation.
 - Mode 2 Stops and starts as each column completes.
 - ▶ Mode 2 has short bursts of activity, but is mostly idle.
 - Has to wait for data on the critical path.
 - Significant at start of computation as affects all blocks.
 - ▶ 14 SMs × 4 blocks each × 32 rows/block ⇒ n = 1792 before any Mode 1 occurs.

Critical path is coloured; Executes serially

Critical path is coloured; Executes serially

Use tricks from before: **pre-cache values**

Critical path is coloured; Executes serially

Use tricks from before: **pre-cache values**

BUT:

Maintain high occupancy!

48k shmem \Rightarrow At most 5 32×32 tiles Want 4 thread blocks/SM!

- Use shared memory for diagonal tiles.
- Use registers for subdiagonal tiles.

Global-memory synchronization results

Better yet!

Memory-bound \Rightarrow spare flops

Can we do redundant computation to speed the critical path?

Better yet!

Memory-bound \Rightarrow spare flops

Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

- ▶ Diagonal solve → Matrix-vector multiply
- ► Same number of memory accesses, less communication!

Explicit inversion

$$\left(\begin{array}{cc} L_{11} \\ L_{21} \end{array}\right) \left(\begin{array}{cc} X_{11} \\ X_{21} \end{array}\right) = \left(\begin{array}{cc} L_{11}X_{11} \\ L_{21}X_{11} + L_{22}X_{21} \end{array}\right)$$

Equate to identity.

$$X_{11}=L_{11}^{-1}$$
 by recursion $X_{22}=L_{22}^{-1}$ by recursion $L_{22}X_{21}=-L_{21}X_{11}$ solve is stable - Higham 1995

Explicit inversion

$$\left(\begin{array}{cc} L_{11} \\ L_{21} \end{array}\right) \left(\begin{array}{cc} X_{11} \\ X_{21} \end{array}\right) = \left(\begin{array}{cc} L_{11}X_{11} \\ L_{21}X_{11} + L_{22}X_{21} \end{array}\right)$$

Equate to identity.

$$X_{11} = L_{11}^{-1}$$
 by recursion $X_{22} = L_{22}^{-1}$ by recursion $L_{22}X_{21} = -L_{21}X_{11}$ solve is stable - Higham 1995

Doesn't require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.

Speedup over previous version

Overall best performance

Overall best performance (zoomed)

Speedup vs CUBLAS

Conclusions

We've beaten CUBLAS soundly. Achieved 75% of peak bandwidth.

- ▶ Can we do even better somehow?
- Could use tasks but register pressure!

Next step is the sparse case

Code will be available under BSD licence

Questions?