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ASEArch flagship grant

Aims:
» Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
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ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
Relation of this talk:
» Learning project
» Base kernel we need to perform well — current CUBLAS
implementation is poor.
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What is _trsv?

> A Level 2 BLAS operation, solves Lx = b.
_trsv — triangular solve.

» .orlTx=borUx=hbor UTx=bh.
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Usage

Direct solvers A= LU, or A= LDL", A= QR.
» Solve Ax =bas Ly =b, Ux=y.

» Sparse solvers use many smaller matrices rather than one
large dense one.

Often require 10s or 100s of solves per factorization
» Preconditioning, iterative refinement, FGMRES.

» Interior Point Methods perform multiple solves.
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Current libraries
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Basic (in-place) Algorithm

Input: Lower-triangular n x n matrix L, right-hand-side vector x.
fori=1,ndo

(ix2:0) - (<4 1:) - (D - (<()

end for
Output: solution vector x.

! ()

1

h32
lan /43 1
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Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
» n =32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency
» Cache doesn't help — no hardware prefetch.
What can we do?
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Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
» n =32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency

» Cache doesn't help — no hardware prefetch.

What can we do?
Bring data closer to core, reducing latency

» Shared memory; or

> Registers
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C2050 Memory layout

[

Jonathan Hogg

¢GPU DRAM 3GB

___
'200+ clocks ' .
( Level 2 Cache 769KB ]
716.4GB/s
» . 7100.clocks.v... .~v.. _v. . Ve Ve e vl v
L1 Cache /
Shmem 64KB
:73.6GB/s

T3 G/ 14 SMs total
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Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.
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Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

However, doesn't help:

» To use more than 1 thread, need to communicate via shared
memory
(so no latency gain).

» Adds complications to code = extra overheads.

» Quite quickly leads to register spill = slowdown.
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Shared Memory

A 32 x 32 matrix of doubles requires 8KiB = lots of room.
Simple code (blkSize = 32):

template <int blkSize>
void __device__ dblkSolve(const double xa, int Ida,
double &val) {

volatile double __shared__ xs;

#pragma unroll 16
for(int i=0; i<blkSize; i++) {
if(threadldx.x=i) xs = val;
if (threadldx.x>=i+1)
val —= a[ixlda+threadldx.x] = xs;

}

Just precache a in shared memory!
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Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

Ly Ly
L3y L3 Lss

Loy Lap Laz Laa
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Shared memory n > 32

11 /29

Quickly run out of shared memory if we try and hold entire matrix!
Instead:

» Cache only 32 x 32 tiles down diagonal

» Cache next col while solve performed on diagonal

L1y

L3> L33

Lap Laz Laa

Execution trace (128 x 128):

Warp 0
Warp 1

Slv(1,1) Mv(2,1) SIv(2,2) Mv(3,2) SIv(3,3) Mv(4,3) Slv(4,4)
Mv(3,1) Mv(4,2)
Warp 2 Mv(4,1)
Warp 3
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Small matrix results

n=|32 64 96 128
Shared-memory 7 13 19 25
Registers 17 37 68 149*
CUBLAS dtrsv() | 31 58 85 113

* indicates register spill occurred
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Larger matrices

So far using a single SM.

» Quickly L1+—L2 bandwidth becomes bounding
(only 16.4GB/s vs 144GB/s global)

> Need to use multiple SMs!

Why not use small matrix kernel then efficient
matrix-vector?

» Driver handles synchronization (different kernels)

» Matrix-vector achieves high bandwidth
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Kernel-synchronized results
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We can do better!

n= 512 1024 4096
blkSolve () (us) 1083 2173 9047
dgemv () (us) 37.8 95.1 8420
Execution time (us) 171.0  370.8 2006.5
Launch overhead 17.0% 18.7% 14.9%
Work in blkSolve () 18% 9% 2%

» Substantial overheads from using kernel launches for
synchronization

» Amount of time in blkSolve() — Amdahl strikes again!
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Global-memory synchronized

Aim: Single kernel-launch

» Use global memory for synchronization — costs 12 cache miss
+ __threadfence().
(Much cheaper than using kernel launches)

> Fine grained synchronization...

> ...hence matrix-vector product runs concurrently with solve.
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Thread block = block row

Thread block 2
CAUTION

Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Thread block 4

lH&V
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Thread block = block row

Thread block 2
CAUTION

Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Dynamically pick row to

Thread block 4 avoid deadlock

lH&V
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Thread block = block row

Thread block 2 B
CAUTION

Thread block 1 n Thread blocks are not
’ scheduled in order!
Thread block 0

Dynamically pick row to
Thread block 4 . avoid deadlock

Only need two scalars for synchronization:
» Row for next thread block

» Latest column for which solution is available
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Execution trace
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Execution trace
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Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.
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Performance bounds

4 blocks per SM with different behaviours:
Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

Mode 1 is bandwidth bound.
Only takes one thread block per SM to saturate.
Competitive with CUBLAS _gemv.

Little room for improvement.

v

v

v

v
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Performance bounds

4 blocks per SM with different behaviours:
Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

» Mode 2 has short bursts of activity, but is mostly idle.
> Has to wait for data on the critical path.
» Significant at start of computation as affects all blocks.

» 14 SMs x 4 blocks each x 32 rows/block =
n = 1792 before any Mode 1 occurs.
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Critical path

h

Critical path is coloured;
Executes serially
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Critical path

h

Jonathan Hogg

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values
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Critical path

h

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values

BUT:
Maintain high occupancy!
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Critical path

h

48k shmem = At most 5
32 x 32 tiles
Want 4 thread blocks/SM!

‘ > Use shared memory

for tiles.

Use registers for
tiles.

>
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Global-memory synchronization results
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Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?
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Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

> Diagonal solve — Matrix-vector multiply

» Same number of memory accesses, less communication!

Science & Technology
@ Facilities Council

22 /29



_TRSV: Optimizing triangular solve in CUDA

Explicit inversion

Jonathan Hogg

< L11 > < X11 > _ < L11X11 >
L1 Lo Xo1 X2 L1 X11 + Lo Xo1 Lo X22
Equate to identity.
X1 = L1_11 by recursion
Xoo = L2_21 by recursion
LopXo1 = —L1X11 solve is stable - Higham 1995
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Explicit inversion

< L11 > < X11 > _ < L11X11 >
Ly1 Lo Xo1 X2 L1 X11 + Lo X1 Lo2 X2

Equate to identity.

X1 = L1_11 by recursion
Xoo = L2_21 by recursion
LopXo1 = —L1X11 solve is stable - Higham 1995

Doesn't require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.
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Speedup over previous version
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Overall best performance
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Overall best performance (zoomed)
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Speedup vs CUBLAS
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Conclusions

We've beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.

» Can we do even better somehow?

» Could use tasks — but register pressure!

Next step is the sparse case

Code will be available under BSD licence
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Questions?
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