@ Science & Technology
Facilities Council

_TRSV: Optimizing triangular solve in CUDA

Jonathan Hogg

STFC Rutherford Appleton Laboratory

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

ASEArch flagship grant

Aims:
» Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures

Science & Technology
@ Facilities Council

2 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
Relation of this talk:
» Learning project
» Base kernel we need to perform well — current CUBLAS
implementation is poor.

Science & Technology
@ Facilities Council

2 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

What is _trsv?

> A Level 2 BLAS operation, solves Lx = b.
_trsv — triangular solve.

» .orlTx=borUx=hbor UTx=bh.

A |

Science & Technology
@ Facilities Council

3 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Usage

Direct solvers A= LU, or A= LDL", A= QR.
» Solve Ax =bas Ly =b, Ux=y.

» Sparse solvers use many smaller matrices rather than one
large dense one.

Often require 10s or 100s of solves per factorization
» Preconditioning, iterative refinement, FGMRES.

» Interior Point Methods perform multiple solves.

Science & Technology
@ Facilities Council

4 /29

_TRSV: Optimizing triangular solve in CUDA

Current libraries

5 /29

GB/s

Jonathan Hogg

25 [I I I
Host MKL _trsv —+— X

GPU CUBLAS _trsv ——»-- 7
GPU MAGMA _trsm % - 7

20 /xf’

15 >(//) S

P

10 T |

5 o » Beaten by CPU for n < 10, 000.
re > Achieves < 20% of peak.

s
0 3 | | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

n

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Basic (in-place) Algorithm

Input: Lower-triangular n x n matrix L, right-hand-side vector x.
fori=1,ndo

(ix2:0) - (<4 1:) - (D - (<()

end for
Output: solution vector x.

! ()

1

h32
lan /43 1

Science & Technology
@ Facilities Council

6 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
» n =32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency
» Cache doesn't help — no hardware prefetch.
What can we do?

Science & Technology
@ Facilities Council

7 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
» n =32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency

» Cache doesn't help — no hardware prefetch.

What can we do?
Bring data closer to core, reducing latency

» Shared memory; or

> Registers

Science & Technology
@ Facilities Council

7 /29

TRSV: Optimizing triangular solve in CUDA

C2050 Memory layout

[

Jonathan Hogg

¢GPU DRAM 3GB

'200+ clocks ' .
(Level 2 Cache 769KB]
716.4GB/s
» . 7100.clocks.v... .~v.. _v. . Ve Ve e vl v
L1 Cache /
Shmem 64KB
:73.6GB/s

T3 G/ 14 SMs total

8 /29

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

Science & Technology
@ Facilities Council

9 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

However, doesn't help:

» To use more than 1 thread, need to communicate via shared
memory
(so no latency gain).

» Adds complications to code = extra overheads.

» Quite quickly leads to register spill = slowdown.

Science & Technology
@ Facilities Council

9 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Shared Memory

A 32 x 32 matrix of doubles requires 8KiB = lots of room.
Simple code (blkSize = 32):

template <int blkSize>
void __device__ dblkSolve(const double xa, int Ida,
double &val) {

volatile double __shared__ xs;

#pragma unroll 16
for(int i=0; i<blkSize; i++) {
if(threadldx.x=i) xs = val;
if (threadldx.x>=i+1)
val —= a[ixlda+threadldx.x] = xs;

}

Just precache a in shared memory!

Science & Technology
@ Facilities Council

10 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

Ly Ly
L3y L3 Lss

Loy Lap Laz Laa

Science & Technology
@ Facilities Council

11 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Shared memory n > 32

11 /29

Quickly run out of shared memory if we try and hold entire matrix!
Instead:

» Cache only 32 x 32 tiles down diagonal

» Cache next col while solve performed on diagonal

L1y

L3> L33

Lap Laz Laa

Execution trace (128 x 128):

Warp 0
Warp 1

Slv(1,1) Mv(2,1) SIv(2,2) Mv(3,2) SIv(3,3) Mv(4,3) Slv(4,4)
Mv(3,1) Mv(4,2)
Warp 2 Mv(4,1)
Warp 3

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Small matrix results

n=|32 64 96 128
Shared-memory 7 13 19 25
Registers 17 37 68 149*
CUBLAS dtrsv() | 31 58 85 113

* indicates register spill occurred

Science & Technology
@ Facilities Council

12 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Larger matrices

So far using a single SM.

» Quickly L1+—L2 bandwidth becomes bounding
(only 16.4GB/s vs 144GB/s global)

> Need to use multiple SMs!

Why not use small matrix kernel then efficient
matrix-vector?

» Driver handles synchronization (different kernels)

» Matrix-vector achieves high bandwidth

Science & Technology
@ Facilities Council

13 /29

_TRSV: Optimizing triangular solve in CUDA

Kernel-synchronized results

14 / 29

80

70

T T T
Host MKL _trsv —+—

GPU CUBLAS _trsv --*--

~ GPU MAGMA _trsm ---*--
GPU ksync a
L fay
=
o
L .
=]
x)
o)
L Jal
i
jal
5}
a
= 2
i
jul

A e
r g ET

***iiiiiiiiitx/

X | | |

T T
g8
& a
15) —
35}
o
-
8 ,
R
x== T
e —
X T
—=x
(R b
| | | | |

0
0 2000 4000 6000 80

!
00 10

000 12000 14000 16000 18000 20000

n

Jonathan Hogg

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

We can do better!

n= 512 1024 4096
blkSolve () (us) 1083 2173 9047
dgemv () (us) 37.8 95.1 8420
Execution time (us) 171.0 370.8 2006.5
Launch overhead 17.0% 18.7% 14.9%
Work in blkSolve () 18% 9% 2%

» Substantial overheads from using kernel launches for
synchronization

» Amount of time in blkSolve() — Amdahl strikes again!

Science & Technology
@ Facilities Council

15 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Global-memory synchronized

Aim: Single kernel-launch

» Use global memory for synchronization — costs 12 cache miss
+ __threadfence().
(Much cheaper than using kernel launches)

> Fine grained synchronization...

> ...hence matrix-vector product runs concurrently with solve.

Science & Technology
@ Facilities Council

16 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Thread block = block row

Thread block 2
CAUTION

Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Thread block 4

lH&V

Science & Technology
@ Facilities Council

17 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Thread block = block row

Thread block 2
CAUTION

Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Dynamically pick row to

Thread block 4 avoid deadlock

lH&V

Science & Technology
@ Facilities Council

17 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Thread block = block row

Thread block 2 B
CAUTION

Thread block 1 n Thread blocks are not
’ scheduled in order!
Thread block 0

Dynamically pick row to
Thread block 4 . avoid deadlock

Only need two scalars for synchronization:
» Row for next thread block

» Latest column for which solution is available

Science & Technology
@ Facilities Council

17 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Execution trace

18 / 29

Bl S R I AP

(RN CATETE R ERRERAERH b kbt ALLALL A [
EIIIIIIIIIIWIII!IlﬂWWl&HﬂH 1 SUAMAL AADAd (LFh L L
I

|

DD At LA 1 A MR e o i
A ECEEET EITEREE bk .M}!;MWMMIAEWMW"--nmr

I EHFCHOEL G| CCRCECEE bbb A L s e
LITE IHIIIIII!HHH“ILHHH'H-mwmm)

DR CHLEN) R o CEETATECTLY Mk MMMNMWHHHM
A A 0
[Tkt e R A i .
{UER IR CTIT Pl AL LA (g Lt £
(b LRIt A LALLM e e A

LAy A L) LML b L Rl WL
AR o bl AL AN AL AR L 1 fuMOIF B M
Science & Technology

@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Execution trace

18 / 29

Bl S R I AP

(RN CATETE R ERRERAERH b kbt ALLALL A [
EIIIIIIIIIIWIII!IlﬂWWl&HﬂH 1 SUAMAL AADAd (LFh L L
I

|

DD At LA 1 A MR e o i
A ECEEET EITEREE bk .M}!;MWMMIAEWMW"--nmr

I EHFCHOEL G| CCRCECEE bbb A L s e
LITE IHIIIIII!HHH“ILHHH'H-mwmm)

DR CHLEN) R o CEETATECTLY Mk MMMNMWHHHM
A A 0
[Tkt e R A i .
{UER IR CTIT Pl AL LA (g Lt £
(b LRIt A LALLM e e A

LAy A L) LML b L Rl WL
AR o bl AL AN AL AR L 1 fuMOIF B M

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Performance bounds

4 blocks per SM with different behaviours:
Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

Mode 1 is bandwidth bound.
Only takes one thread block per SM to saturate.
Competitive with CUBLAS _gemv.

Little room for improvement.

v

v

v

v

Science & Technology
@ Facilities Council

19 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Performance bounds

4 blocks per SM with different behaviours:
Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

» Mode 2 has short bursts of activity, but is mostly idle.
> Has to wait for data on the critical path.
» Significant at start of computation as affects all blocks.

» 14 SMs x 4 blocks each x 32 rows/block =
n = 1792 before any Mode 1 occurs.

Science & Technology
@ Facilities Council

19 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Critical path

h

Critical path is coloured;
Executes serially

AN

H N
AN
AN
AN
AN

Science & Technology
@ Facilities Council

20 / 29

_TRSV: Optimizing triangular solve in CUDA

Critical path

h

Jonathan Hogg

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values

Science & Technology
@ Facilities Council
20 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Critical path

h

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values

BUT:
Maintain high occupancy!

Science & Technology
@ Facilities Council

20 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Critical path

h

48k shmem = At most 5
32 x 32 tiles
Want 4 thread blocks/SM!

‘ > Use shared memory

for tiles.

Use registers for
tiles.

>

Science & Technology
@ Facilities Council

20 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Global-memory synchronization results

120 I \ \ \ I I I
Host MKL _trsv ——+—
GPU CUBLAS trsv - -—*-- B, BB
GPU kernel sync ---%-- g Es o)
100 GPU gmem sync 8 e -
Y B g
80 |- ,
o e we
n o e
o 60 - - T 4
(&) d - T
D ,’*’ ’
T i
s K
d &
E B
20 b oy e
D** Ve ===
0 x%xwfxw&xx%\x) | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
n

Science & Technology
@ Facilities Council

21 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

Science & Technology
@ Facilities Council

22 /29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

> Diagonal solve — Matrix-vector multiply

» Same number of memory accesses, less communication!

Science & Technology
@ Facilities Council

22 /29

_TRSV: Optimizing triangular solve in CUDA

Explicit inversion

Jonathan Hogg

< L11 > < X11 > _ < L11X11 >
L1 Lo Xo1 X2 L1 X11 + Lo Xo1 Lo X22
Equate to identity.
X1 = L1_11 by recursion
Xoo = L2_21 by recursion
LopXo1 = —L1X11 solve is stable - Higham 1995

23 /29

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Explicit inversion

< L11 > < X11 > _ < L11X11 >
Ly1 Lo Xo1 X2 L1 X11 + Lo X1 Lo2 X2

Equate to identity.

X1 = L1_11 by recursion
Xoo = L2_21 by recursion
LopXo1 = —L1X11 solve is stable - Higham 1995

Doesn't require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.

Science & Technology
@ Facilities Council

23 /29

_TRSV: Optimizing triangular solve in CUDA

Speedup over previous version

Jonathan Hogg

1.4
| ~% Medium matrices: _
13 | o
; \, faster critical path
¥
12 |/ ki 4
+ \
/ A
¥ ¥ .
2 11 | | Large matrices: -
o] I o
8):5. | RO too fe\ilvghreaﬁis
1 ! s el N |
(Vp] | R
00 E Small matrices: slower
1 than straightforward solve |
08 |- |
07 | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

n

24 /29

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA

Overall best performance

120 I I I I
. E»; o Q _,./Q‘;—‘;{ i) . G CReeB
100 | o]
BRI
o ,l I*—‘ *
80 D'v",*/
e
" mm ,f Host MKL _trsv ——+—
~ 1 ¥ GPU CUBLAS %=
@ 60 - ED ,** GPU Best w/o |r?\1/resr‘1l: SRR
5 GPU Best -8
@ *'*
20 - L -
7
,D,*/ VRN
2 4 T -
0 oo ! | | ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

25 /29

n

Jonathan Hogg

Science & Technology
@ Facilities Council

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Overall best performance (zoomed)

Host MKL _trsv —0;
20 L GPU CUBLAS trsv --x-- |
GPU MAGMA _trsm ---%*--
GPU Best 8
15 |- e 4
"
o 10
(@)
5 L
0 L =T - i
| | | | |
0 200 400 600 800 1000
n

Science & Technology
@ Facilities Council

26 / 29

_TRSV: Optimizing triangular solve in CUDA Jonathan Hogg

Speedup vs CUBLAS

16

14

12

10

Speedup
[e¢]

\ \
00 6000 8000 10000 12000 14000 16000 18000 20000
n

0 \
0 2000 40

Science & Technology
@ Facilities Council

27 /29

_TRSV: Optimizing triangular solve in CUDA

Conclusions

We've beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.

» Can we do even better somehow?

» Could use tasks — but register pressure!

Next step is the sparse case

Code will be available under BSD licence

28 / 29

Jonathan Hogg

Science & Technology
@ Facilities Council

@ Science & Technology
Facilities Council

Questions?

29 /29

	Introduction
	Small matrices
	Large matrices
	Explicit inversion

