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ABSTRACT: The resurgence of interest in FFAG type magnets has motivated the desire for high-
order dispersion suppression to aid the development of dispersion-free straight sections to currently
circular designs. In scaling FFAGs, dispersion suppression can only be achieved over a limited
momentum range and breaks down as high-order chromatic aberration terms become significant.
However by breaking the scaling law and varying the individual multipole components, these can be
compensated for and a design for high-order dispersion suppression achieved. This paper presents
a process for doing so and discusses the impact on beta functions, as well as the effect of magnet
positioning errors.
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1 Introduction

There has recently been a resurgence of interest in Fixed Field Alternating Gradient (FFAG) accel-
erators [1, 2] and a number of such accelerators have been designed, builtor are being developed
for various applications including: proton drivers for theNeutrino Factory and spallation neutron
sources; accelerator driven sub-critical nuclear reactors; and charged particle therapy [3–7]. The
fixed fields used in such accelerators naturally lead to a momentum dependence in the equilibrium
position of the beam. A useful addition to such acceleratorswould be FFAG dispersion suppression.
This could lead to the introduction of dispersion-free straights and other applications including, for
example, the delivery of an FFAG beam into a rotating gantry for charged particle therapy [3].
There has been work on FFAG dispersion suppressors for rings[8] and straight transport lines [9].
This paper suggests that a way of improving the momentum range of FFAG dispersion suppres-
sors is to manipulate the multipole components of the FFAG field to compensate for the effects of
chromatic aberration terms that become significant over a larger momentum range.

In conventional ‘scaling’ FFAGs, the tunes are kept constant throughout acceleration by using
a field profile designed to keep the effective gradient:

ke =
1

Bρ
dBz
dr

(1.1)

constant for all energies, whereBρ is the rigidity, r is the radial position andBz is the strength of
the field perpendicular tor. The dispersion created by the field is such that, as the radial position
of a particle increases with increasing momentum, there is acommensurate increase in the field
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gradient. This is called the scaling law, and a mid-plane field profile in which this is achieved is
described by [1]:

Bz(r,θ) = Bz0

(

r
r0

)k

F(θ) (1.2)

wherek is known as the field index, the subscript zero denotes a reference value andF(θ) is a
periodic function around the ring.

This equation is designed for FFAGs with sector shaped magnets, however, this paper consid-
ers rectangular magnets. To create fields suitable for rectangular magnets equation (1.2) is modified
to [9]:

Bz(x,y) = Bz0

(

y0 +y
y0

)k

F(x) (1.3)

wherex,y andz are Cartesian coordinates, withx longitudinal, y horizontal andz vertical. The
reference positiony0 is the radius of curvature of the field multiplied by a large factor andy is
the horizontal position measured from that point. Settingy0 ≫ y ensures that the field lines are
effectively straight and parallel. This can be separated into multipole components using a Taylor
expansion:

Bz0

(

y0 +y
y0

)k

= Bz0

[

1+b1
y
y0

+b2

(

y
y0

)2

. . . bn

(

y
y0

)n
]

(1.4)

where:

bn =
k. . . (k− (n−1))

n!
(1.5)

By considering the quadrupole term here, it can be seen that,in order to conserve focusing
strength when switching fromr0 to the much largery0, the field index must be multiplied by the
same large factor so thatky0

is kept constant. (From now onky0
is referred to simply as k). This

modification to the scaling law can be applied to a straight transport line [9], but can also be used
for circular accelerator designs [10].

The built-in dispersion of FFAGs creates a problem when low dispersion points are required
in a lattice. This paper builds on previous work [3, 9, 11, 12] to show how high-order dispersion
suppression can be achieved with FFAG magnets in which the scaling law has been broken.

2 Dispersion suppression with FFAG magnets

The technique for FFAG dispersion suppression is similar tosimple FODO dispersion suppression,
but with an important difference. Horizontal dispersion isexcited by dipole fields and focused
by horizontally-focusing quadrupole fields. In a simple periodic FODO lattice, split into ‘normal’
and ‘suppression’ sections, dispersion and its derivativecan be brought to zero if: the suppression
section has annπ phase advance (where n = 1,3. . . ); the derivative of dispersion is zero at the
interface of the two sections; the lattice is periodic; and the bend angle of the suppression section
is half that of the normal section [13, p.63]. Halving the bending strengths allows the quadrupoles
to focus the dispersion.
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Figure 1. Schematic of the cell lay-out for the suppressor. There is 22.5◦ bending in each cell.

With FFAG dispersion suppression, the dipole fields are keptconstant, and instead, the strength
of the quadrupole focusing component of the field is doubled.By inspecting equation (1.4) one can
see that this can be achieved by doubling the field indexk.

FFAG dispersion suppression has been discussed in ref. [9], where it is noted that it is only
useful over a limited energy range. This is because of chromatic aberration which, to the first order,
increases with fractional deviation of momentum from the reference orbit andke (equation (1.1)).
Higher order chromatic aberration includes fringe fields, the effects of dispersion functions and
other terms [14, p.172]. This is a general problem for all dispersion suppressors, however, the
multipole components that define the field in the FFAG magnetscan be varied to empirically com-
pensate for the chromatic aberration and so reduce the residual dispersion.

3 Simulation set-up

This study uses triplet cells of rectangular magnets in a focusing-defocussing-focusing (FDF) con-
figuration. An FFAG defocussing field has a negative sign, which not only means negative focusing,
but also negative bending. Figure1 is a schematic of the three cells forming a dispersion suppressor
which were simulated using the particle tracking code Zgoubi [15]. The two ‘Suppressor Cells’ are
designed withπ

2 phase advances andk values double that in the ‘Normal Cell’. The momentum
range considered is the clinically useful range for proton therapy [3, p.5]: 0.369→ 0.729 GeV/c.

Figure2 shows the tracks through one normal cell and two suppressor cells of particles with
five different momenta covering the entire energy range; figure 3 shows how the final position
depends on the momentum of the particle and figure4 shows the final deflection.

4 Fitting method

For simplicity during the fitting process, the dispersion suppressor was considered in reverse; i.e.
the particles were started with zero horizontal position and angle at the end of suppressor cell
2 in figure 1 and passed through suppressor cell 1 into the normal cell. The displacements of
the equilibrium orbits away from the reference orbit in figure 2 must be corrected to improve the
dispersion suppression.
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Figure 2. Tracks through a scaling dispersion suppressor for five different momenta. Significant dispersion
is visible at around 400cm.
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Figure 3. Horizontal position vs momentum at the end of a scaling dispersion suppressor.
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Figure 4. Horizontal deflection vs momentum at the end of a scaling dispersion suppressor.

Using the Taylor expansion in equation (1.4) means the individual multipole components can
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be varied to control the shape of the field profile and empirically compensate for the effect of the
chromatic aberrations (a similar approach has been used here [16] to solve a related problem).
Truncating the series at the decapole term (n = 4) was found to give enough variables in the three
cells to create the required field shapes.

Although the multipole strengths can be varied in all three cells, the amount of overlap of
particle tracks in the suppressor cells (particularly suppressor cell 2) makes them less useful for
fitting. For this reason, it is easier to fit the equilibrium orbits in the normal cell to the positions of
the particles as they exit the suppressor cells than vice versa.

The following multi-step fitting procedure was found to produce the best results. In the first
step, the multipole values in the suppressor cells are varied to ensure the phase advance across the
momentum range is as close toπ as possible.

With the particles being run through the suppressor cells inreverse, the angles of the particles
are fit to zero as they exit suppressor cell 1, ignoring they position. To avoid the fitting function
arriving at a solution with zero field through all magnets, and because of the overlapping particle
tracks in cell 2, only cell 1 was varied to fix the angle. Thek value of suppressor cell 2, however,
can be used to tweak the dispersion in the resulting normal cell. So for example, if the resulting
aperture is too large, thek of suppressor cell 2 could be increased to reduce it. This canonly be
taken so far, however, as varyingk has an effect on the phase advance.

In the final step, the multipole components in the normal cellare varied to match the equilib-
rium orbits to they positions of the particles as they exit suppressor cell 1.

This is a summary of the procedure:

(i) Fit the tune of the alignment orbit particle toπ through both suppressor cells.

(ii) Fit the angles of the particles, as they exit the suppressor cells, to zero by varying the field
components of suppressor cell 1 only.

(iii) Fit the equilibrium orbit positions in the normal cellto the exit positions from the suppressor
cells (with the particles being run in reverse).

5 Results

The resulting dispersion suppressor restricts the final deviation in horizontal position and angle to
within 0.5mm and 0.03◦ (0.5 mrad), which can be seen in figures6 and7. Figure5 shows the
tracks through the modified dispersion suppressor. The values of the constants for equation1.4are
summarised in table1.

The square root of theβ functions through the dispersion suppressor are shown in figure8 and
the phase advance in figure9. Because each particle’s path through a dispersion suppressor is not
along its equilibrium orbit, there is variation in all of theTwiss functions and the phase advance
dependent on momentum. This might result in periodic orbitsnot being available for all momenta
because the variation in tune may excite a resonance. Other designs might be able to overcome this
problem, but since the design considered here is a single pass lattice, a periodic solution has not
been pursued.
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Figure 5. Tracks through a non-scaling FFAG dispersion suppressor with the multipole components varied
to create zero dispersion at the end.
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Figure 6. Horizontal position vs momentum at the end of a non-scalingdispersion suppressor. Notice the
change in scale from figure3.

Table 1. Values for the multipole constants (bn) in equation 1.4 for a non-scaling dispersion suppressor. For
all cells,y0 is set to 105cm.

Bz0 b1 b2 b3 b4

Cell (T) [F,D] ×103 ×106 ×109 ×1010

Normal Cell 3.39, -4.51 1.907 2.404 2.731 0.115
Suppressor 1 1.26, -3.98 4.143 5.774 23.19 458.9
Suppressor 2 1.32, -4.00 4.003 7.458 8.301 1163

6 Positional errors

To see how positional errors of the magnets may affect the dispersion suppressor, a section of lattice
was studied, comprising of four suppressor cells with a dispersion suppression point between the
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Figure 7. Horizontal deflection vs momentum at the end of a non-scaling dispersion suppressor. Notice the
change in scale from figure4.
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Figure 8. Square root of the beta functions through the non-scaling dispersion suppressor, with initial values
those for the normal cell (ignore graph discontinuities).

second and third cells. The particles were started at they positions of their equilibrium orbits in a
‘normal cell’ and if no errors were present, they would return to thosey positions at the end of the
lattice.

Vertical, horizontal and longitudinal magnet positioningerrors were considered. To simulate
random errors, nine error magnitudes were chosen, ranging from 10µm to 1cm. These were used
as standard deviations on Gaussian distributions with meanvalues of zero. At every magnitude,
a different error pattern was chosen from the distribution,particles at five momenta covering the
range 0.369→ 0.729 GeV/c were tracked and their final positions recorded.This was repeated 500
times to improve the statistics.

Plots of the standard deviations of the resulting errors arepresented in figures10, 11, 12and13.
The first two show the horizontal errors caused by all three types of magnet position error and the
latter two show the vertical errors caused by vertical magnet position errors only, as this was the
only type of error included in this study to have an effect in the vertical plane. The gradients of the
fitted straight lines are known as the the amplification factors and are shown in table2.
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Figure 9. Phase advance through the non-scaling dispersion suppressor. As in figure8 the discontinuities
are artefacts and can be ignored.

Table 2. Amplification factors for all error studies. Key for error types: H = Horizontal, V = Vertical, L =
Longitudinal, Pos = Position, Ang = Angle.

Magnet Position Particle Error 0.369 0.459 0.549 0.639 0.729
Error Type Type (GeV/c) (GeV/c) (GeV/c) (GeV/c) (GeV/c) Units

H H Pos 3.84 3.65 3.49 3.36 3.26
V H Pos 0.37 0.38 0.46 0.70 1.03
V V Pos 9.93 6.11 4.61 4.01 3.99
L H Pos 1.05 1.08 1.02 0.90 0.75
H H Ang 2.24 2.10 2.11 2.17 2.26 deg/cm
V H Ang 0.32 0.21 0.15 0.14 0.20 deg/cm
V V Ang 4.35 2.97 3.22 4.24 5.71 deg/cm
L H Ang 1.07 0.73 0.64 0.71 0.83 deg/cm

7 Discussion of the effects of positional errors

The largest amplification factors are those from errors in the vertical plane caused by vertical mag-
net misalignments. This is due to the behaviour of the vertical betatron function in the dispersion
suppressor (see figure8). A 0.369 GeV/c particle has an almost 10:1 ratio of positional error to
magnet misalignment. This means that a realistic alignmentaccuracy of 50 microns would cause a
positional error of around 0.5mm. More importantly, the worst vertical angular error caused by ver-
tical magnet misalignments is approximately 11:2 degrees to cm. A 50 micron misalignment here
could cause 0.03◦ deflection, which would result in a 1.5mm displacement aftera 3m drift. Hor-
izontal misalignments of 50 microns would cause a maximum positional displacement of 0.2mm,
while the maximum deflection caused would result in a 0.6mm displacement after a 3m drift. The
longitudinal misalignments are the least important of the types studied, with the deflection caused
creating a 0.3mm displacement after a 3m drift.

For comparison, the target positioning error found acceptable for the scanning system of a
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Figure 10. Sensitivity of horizontal particle position to errors in the magnet positions in an FFAG dispersion
suppressor. The effect of three types of magnet position error are shown: horizontal, vertical and longi-
tudinal. Errors were simulated for five momenta in the range 0.369→ 0.729GeV/c at each magnet error
magnitude, however for clarity, lines were fitted to the averages and the amplification factors shown in the
legend are the gradients of those lines. Individual amplification factors can be found in table2. The magnet
misalignments have a Gaussian distribution and the standard deviations of the resulting positional errors are
shown.
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Figure 11. Sensitivity of horizontal particle deflection to errors inthe magnet positions in an FFAG dis-
persion suppressor. The effect of three types of magnet position error are shown: horizontal, vertical and
longitudinal. Errors were simulated for five momenta in the range 0.369→ 0.729GeV/c at each magnet
error magnitude, however for clarity, lines were fitted to the averages and the amplification factors shown in
the legend are the gradients of those lines. Individual amplification factors can be found in table2.

proton therapy complex is 0.3mm [3, p.12], so an error of 1.5mm would have to be compensated.
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Figure 12. Sensitivity of vertical particle position to vertical errors in the magnet positions in an FFAG
dispersion suppressor. Errors were simulated for five momenta, shown in the legend, and amplification
factors can be found in table2.
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Figure 13. Sensitivity of vertical particle deflection to vertical errors in the magnet positions in an FFAG
dispersion suppressor. Errors were simulated for five momenta, shown in the legend, and amplification
factors can be found in table2.

8 Conclusion

High-order dispersion suppression for FFAG optics has beenachieved in a simulation of a three
cell lattice by compensating for the effects of chromatic aberration using the multipole components
of the fields in the suppressor cells and the normal cell. Thisprocess successfully increased the
momentum range of an FFAG dispersion suppressor to the clinically useful range for proton ther-
apy [3, p.5]. The price paid for this is the possible loss of periodicity of some of the beta functions
(see figure8). Sensitivity to random errors in horizontal, vertical andlongitudinal magnet positions
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have been explored and it was found to be comparable to positioning errors found acceptable for
the scanning system of a proton therapy complex [3]. Sensitivity was greatest in the vertical plane
and it was found that a 50 micron alignment accuracy could cause around a 0.5mm positional error
and a 0.03◦ deflection. This could be reduced by further optimising the vertical betatron function.
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