
A Service Oriented Architecture for Portals Using Portlets

Asif Akram, Dharmesh Chohan, Xiao Dong Wang, Xiaobo Yang and Rob Allan

CCLRC e-Science Centre, CCLRC Daresbury Laboratory
Warrington WA4 4AD, UK

Abstract

Portals and Portlets are emerging technologies and gaining lot of popularity. Portals are gaining attention
among programmers due to their ease in development, richness in functionality, customization of interface
and pluggable architecture. With this popularity today there are many open source Portal Frameworks
available and list of these open source frameworks is all the time increasing. It is important to evaluate all
these Portal Frameworks in an effective manner, based on core functionality i.e. their compliance with
JSR 168 Portal API and optional features available to the programmers i.e. IDE plug-ins, utility packages,
monitoring tools etc. We have selected a small number of Portal Frameworks based on their popularity
and our experience of using them to evaluate their core and optional functionalities. This paper will
outline our findings and current trends in the feature rich Portal Frameworks. Paper will explain our
criteria for rating different Platforms and then will discuss each selected Platform. In the last section we
have Inter-Platform WSRP compliance test results.

1. Introduction
Portals and Portlets are emerging technologies with
improving specifications and enhanced support from both
open source and commercial software companies. A portal
is a Web-based application that acts as a gateway between
users and a range of different high-level services. It
provides personalisation, single sign-on (SSO), aggregation
and customisation features. A so-called 2nd generation
portal normally consists of different portlets to process
consumer requests to these services and generate dynamic
content from the responses. Portlets are used in portals as
self-contained pluggable user interface components to the
services. Portlets can be developed in different languages
but this paper focuses on portlets based on Java technology
and managed by a Java portlet container, which is the norm.
Java portlets adhere to the Java Specification Request 168
Portlet Specification (JSR 168), which standardises the
interoperability of between portlets and portlet containers.
JSR 168 compliant portlets are therefore container and
framework independent and can be deployed under any
portlet container which adheres to JSR 168 specifications.
See [1].

2. Service Oriented Architecture
Modular software is required to avoid failure in large
systems, especially where there are complex user
requirements. Even in a modular system, inter-dependency
of sub-components may make it difficult to meet changing
requirements without re-engineering most of the code. This
extra effort to maintain software makes re-usability of
components difficult if not impossible. Monolithic
software with its tightly coupled components is therefore
typically specific to its original context and most 1st
generation portals were designed in this fashion. The
failure of some ambitious projects was enough to promote

re-designing of software regardless of its complexity,
context and size based on independent services. This leads
to the concept of a Service Oriented Architecture (SOA). A
SOA is essentially a collection of self contained, pluggable,
loosely coupled services which have well-defined
interfaces and functionality with little side effect. A service
is thus a function that is self-contained and immune to the
context or state of other services. These services can
communicate with each other either by explicit messages
which are descriptive, rather than instructive or there could
be a number of “master” services coordinating or
aggregating activities, e.g. in a workflow. SOA is an
architectural style whose goal is to achieve loose coupling
among interacting software agents. A service invokes a
unit of work done by a service provider to achieve desired
end results for a service consumer. The consumer-provider
role is abstract and the precise relationship relies on the
context of that specific problem. SOA achieves loose
coupling among interacting software agents by employing
two architectural constraints: (i) a small set of simple and
ubiquitous interfaces to all participating software agents; (ii)
the interfaces should be universally available for all
providers and consumers. For a fuller discussion of SOAs
and classification of possible service components for
research, education, collaboration and access to
information see [2].

3. Portal Framework
Software agents which are the building blocks of SOAs are
self-contained, which means they should not be modified,
but they typically lack any presentation layer. A Portal
Framework can provide presentation capabilities for these
software agents. The framework is also responsible for
providing the required resources and environment for
proper functioning of the components plugged into it. The
framework is an extra layer in the architecture that
provides a standard (presentation) interface for business

logic that is independent of programming languages or
platforms. At its core, there is a universal API built on the
top of the application architecture. Where traditional
application development architectures typically have three
layers: database, application logic and interface, a Portal
Framework has this fourth Presentation Layer that sits
between the application logic and the user. The portal not
only presents the application logic contained in the
software agents but can be used to coordinate different
loosely coupled services into a single concrete service, by
providing the related gluing framework.

As mentioned earlier, portals consist of different but
related portlets each encapsulating a different self-
contained function which may be an aggregation of several
base services into a high-level service. One big challenge
for SOAs is to achieve good scalability, performance and
reliability, which is hard because of lack of flexibility to
change independent components (although there are
injection mechanisms like Spring framework which allow
certain modifications). There is always a trade-off between
re-usability, implying many fine-grained services each with
an overhead, and better performance from course-grained
components.

A Portal Framework takes responsibility for message
flow from user to service and for inter-portlet
communication. The messages can be stateless or stateful,
but are normally stateless as software agents are context
independent. The framework then either adds state
information to the message for multiple interactions per
user or stores the state information in a persistent way
removing the need for services to maintain state when
invoked from different portlets. Any service failure thus
does not result in loss of state as the state of services is
known. A service providing the software agent can even be
replaced dynamically during the execution with another
equivalent one. This potentially makes recovery from
partial failure relatively easy and services seen by the user
can be made reliable.

Traditional stateful services require both the consumer
and provider to share the same consumer-specific context,
which reduces the overall scalability of the service provider
component and increases the coupling between the service
provider and consumer making switching of service
providers more difficult. Maintaining state through the
Portal Framework and aggregating services as portlets is
however not a large overhead and the main purpose and
benefits of the SOA are then not compromised. The ability
to use stateless idempotent services results in less overhead
on the service-providing component and uniform behaviour
when components are used in different ways. These core
functionalities in a Portal Framework make it a most
appropriate companion to the SOA.

4. Implementation and Standards
The JSR 168 specification [3] is based on the mature
servlet standard following a community review in 2003.
The behaviour of portlets is similar to that of servlets in
many ways, i.e. both portlets and servlets are Java-based
Web components, managed by a container, used to

generate dynamic content and interact with Web clients via
a request/response paradigm. Unlike servlets, portlets have
additional features and limitations, for example, portlets
only generate markup fragments and have pre-defined
modes and states, but there are optional extensions allowed.
Portlets are compatible with J2EE thus providing
additional capabilities to typical the SOA architecture. As
described above portlets provide persistence to the SOA
either through servlet or JSP interacting directly with a
database through JDBC, an abstract interface such as
Hibernate or using Enterprise Java Beans (EJB). Portlets
give new flexibility and extensibility to SOA by enabling
the best use of J2EE. JSR 168 allows legacy Web
applications to be deployed as portlets in a Portal
Framework.

Portlets are not confined to one Portal Framework,
based on standard Web services technology OASIS, Ref.
[4], released the Web Services for Remote Portlets (WSRP)
also in 2003 aiming to define a standard for interactive,
user-facing Web services to make portlets hosted by
different geographically distributed Portal Frameworks
accessible in a single portal, see [1]. Unlike traditional
Web services however, WSRP defines a protocol which is
focused on transferring the markup fragments generated by
portlet producers. Although WSRP is still at an early stage
as far as implementation is concerned, it indicates the
future of portlet/ portal development. Ideally, a deployed
service with a portlet interface can be published and
consumed in many different portals/Portal Frameworks.
This remote sharing of a single portlet will greatly ease the
construction of large-scale portal based systems, or Virtual
Research Environment, enabling them to be more scaleable,
manageable and maintainable.

5. Evaluation Criteria
It is bit difficult to compare different Portal Framework as
each of them addresses different requirements and
technologies. We tried our best to be objective and
compare different Portal Frameworks with a broad range of
criteria to accommodate the speciality of each Portal
Framework and maximum consideration of user
requirements. In the end, the following criteria were used
to evaluate the open source Portal Frameworks mentioned
in this paper. These criteria are based on core and optional
requirements from Portal Framework and are listed in order
of perceived importance. Each Portal Framework has been
given a score of 1 to 5 against each criterion, 5 being the
most effective. The total score of each Portal Framework
is shown at the end of the tabular comparison, with a visual
Bar Graph in Section 7.

(i) JSR 168 compliant: It was felt that JSR 168 is the
most important requirement for portal development to free
developers from vendor specific Portal API and promote
re-usability.

(ii) Ease of installation: Portals are meant to be a
presentation layer to existing business logic and should not
bring complexity to the solution. Here we evaluated the
installation process by efforts required to get started, e.g.
configuring a database, whether the framework includes

built-in Web container or not? Most of the Portal
Frameworks use the Tomcat container and are easy to
install, they come bundled with Tomcat or a compatible
Web Archive (WAR) file.

 (iii) Documentation Standard: Portal Development is
similar to Web Application development i.e. Servlet and
JSP, but still there are some Portal Framework dependent
tweaks to make portals work. Documentation of the Portal
Framework with well written examples is important. This
criterion examines the completeness, relevance and quality
of each Portal Framework’s documentation covering both
Administration and/or User Guides.

(iv) Online Support: Documentation doesn’t answer or
addresses all programmers’ questions and occasionally (in
fact frequently) a programmer may need support from the
framework developers. In this criterion we have examined
the quality, quickness and appropriateness of the
developers’ responses to queries. This also includes
maintenance of Wiki, flexibility to support new features on
demand.

(v) Portal Management: Deploying portlets in the
Portal Framework requires configuration of different
deployment descriptors, some of them are part of the Portal
API, i.e. portlet.xml and J2EE requirements, i.e. web.xml
and the rest of them are specific to the Portal Framework.
This criterion includes administrative functions, i.e. adding
users, assigning roles to users, assigning categories to
portlets etc. and user functionality to customise the portlets
to meet individual requirements. i.e. layout, skin, adding
and deleting portlets etc.

 (vi) Portlet Resources: Most of the Portal Frameworks
either come with re-usable utility portlets or a repository of
portlets such as Mail Portlet, Calendar Portlet, and Search
Portlet. In this criterion we have examined the usefulness
and re-usability of these portlets supplied with the Portal
Framework.

(vii) Performance and Scalability: Architectural design
of a Portal Framework is crucial for its performance.
Portals are an additional layer to SOA and thus have the
capability to slow down the perceived performance of the
services. Providing basic portal functionality is not enough
in a commercial environment where performance and
saleability is also crucial. This criterion examines the
performance of Portal Frameworks in terms of start up time;
portlets load time, database access time, etc.

(viii) Security: Most of the Portal Frameworks come
with default security of user login with password. This
default mechanism of authorization and authentication is
not enough in commercial or e-Science projects. In this
criterion we have examined additional security capabilities
of the Portal Frameworks such as Java Authentication and
Authorization Service (JAAS) [5], Java Open Single Sign-
On (JOSSO) [6] and configuration with SSL.

(ix) Technology Used: Different Portal Frameworks
use different optional technologies for the benefit of
programmers which are not part of portlet API. In this
criterion we have evaluated different popular technologies
used by different Portal Frameworks such as Struts [7],
Java Server Faces (JSF) [8], Spring [9], Hibernate [10],

Tiles [11], Enterprise Java Bean (EJB) [12], and Web
Services [13].

(x) Portal Features: Portal Frameworks are not only
the portal/ portlet containers hosting different portlets. In
fact most of the Portal Frameworks come with additional
functionalities to develop real-life J2EE portals such as
Content Management System (CMS) [14], Workflow,
Administrator Management tools, Framework Monitoring
tools. This criterion will examine the optional features
available in the Portal Framework and their standard and
usability.

(xi) Server Dependency: the portlet API is an
extension of the servlet API and doesn’t need advanced
J2EE features, but in real life most Web Applications are
J2EE applications using EJBs for persistence. Web
Services can be used to encapsulate legacy code,
transactions etc; thus Portal Frameworks are not only
confined to the servlet container like Tomcat. It is useful if
Portal Frameworks can be deployed in variety of servers
and in this criterion we have examined the compatibility of
the Portal Frameworks with different open source and
commercial servers.

(xii) WSRP Standard Compliant: the portlet API is the
presentation layer for the Web Application, but it is not
necessary that clients should only be Web based;
alternative desktop clients are desirable [15]. The Web
Services for Remote Portlets (WSRP) [4] specification
makes it possible to consume portals/portlets in non-Web
applications such as Java Swing Consumer. In this criterion
we have examined WSRP support in the frameworks either
as WSRP consumer, producer or both.

6. Selected Portal Frameworks
Portals are gaining attention among programmers due to
their ease in development, richness in functionality,
customization of interface and pluggable architecture. With
this popularity today there are many open source Portal
Frameworks available and list of these is all the time
increasing. It is not possible to evaluate all these Portal
Frameworks in an effective manner and we have thus have
to select a small number based on their popularity and our
experience of using them for development work. This
doesn’t mean that other frameworks are below standard or
have limitations. Some other commercial and open-source
Portal Frameworks are listed in [1]. We have selected the
following Portal Frameworks for evaluation:

 Sakai 1.5 (Due to its broad use in Virtual Research
Environment (VRE)). See separate report [16].

 uPortal (Due to its tremendous use in Academic
Institutes work wide)

 GridShpere (One of the first JSR 168 compliant open
source European Portal Frameworks)

 eXo Platform (Due to its popularity)
 Liferay (Due to its popularity, user interface and
optional functionality)

 Stringbeans (Due to its ease in use)

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/

• 6.1 Sakai

The Sakai Project [17] in the USA grew out of the CHEF
portal-based Collaborative Learning Environment activity
in the USA. In Sakai the CHEF framework has been
substantially re-written and the course management and
assessment tools developed to be shared by a number of
major US teaching institutions. CHEF and Sakai also
contain interesting collaboration tools and have been
shown to be useful in a research context when augmented
with additional Grid and information management tools. It
is for these reasons that we carried out the original Sakai
Evaluation Exercise [18] on behalf of JISC and are now
developing additional tools perceived to be of relevance to
e-Research.

Sakai is a large Java-based project using a number of
standards such as Hibernate [10] (for persistence and
database access), Spring [9] (for code injection and late
binding) and Java Server Faces [8] (for the presentation
layer). It is however not using JSR 168 as the developers
found that it did not support their requirements of full
integration of the tool interfaces into the Sakai kernel.
Iframes are currently used instead of JSP 168. The kernel
itself has been designed along similar lines to JBOSS, but
is relatively lightweight and provides a set of essential
services used by all the tools. It was found necessary to
maintain all the code in a single Tomcat Web Application
for persistent session management. The OKI OSIDs are
used to guide the design of APIs to the individual tools.

Sakai v2.0 was released on 15th June 2005, but the
results in this paper are based on experiences with v1.5. In
the future Sakai will offer support for export of WSRP via
a thin WSRP4J layer integrated above the kernel. It will
then be possible to embed Sakai into uPortal v3.0 towards
the end of 2005.

Issues with Sakai, in addition to the lack of a JSR 168
interface, include the variable support for database back
ends. Whilst Hibernate is used internally and there is good
support for Oracle, much of the SQL is hard-wired and we
were unable to get it to work with PostgreSQL. Another
issue is that because the Sakai architecture code base is still
evolving rapidly it is hard to find reliable documentation
and to migrate tools and data from one release to the next
in an easy way.

From the users' point of view, the most appealing
feature of Sakai is its group-based structure. Each group
has its own "worksite" within the portal which is secure
from others. Users belonging to more than one group can
see an "aggregated" view in their own "personal worksite".
Groups can also be set up on-the-fly for specific purposes
and be published and maid "joinable". Groups can
customise the tools they see from the available pool to
meet their own purposes. In an educational and
community portal this is particularly important and appears
to be quite scalable in Sakai.

• 6.2 uPortal

uPortal [19] is a widely used Portal Framework in
academic institutes and it mainly addresses the
requirements of those organisations. uPortal is a very stable

Portal Framework and was released even before the JSR
168 specification, due to which uPortal has applied non-
standard mechanisms, which they call channels. uPortal is
JSR 168 compliant but still most of the features available
in the uPortal are based on custom and home grown
solution with channel adaptors rather than native portlets.
uPortal supports portlets via the Pluto Portal Framework
[20]. uPortal is the only open source Portal Framework
which supports maximum type of portals ranging from
Java portals to HTML portals, text portals to XML portals.

Figure 1: Support for different types of Portals in uPortal

uPortal is widely used in academic institutes due to its
built-in support for these institutes and their requirements.
uPortal can be used with Central Authentication Service
(CAS) [21] to control the access to CASified applications,
based on "when", "who", "from where", "what service", in
conjunction with LDAP attributes and so on. This kind of
"Central Authorization Scheme" is quite powerful for
heterogeneous environment like universities/colleges. It is
very easy to configure the groups and permissions services
which are crucial requirement of University environment in
uPortal with the local source of information, e.g., LDAP.

uPortal supports JSR 168 compliant portals/portlets
through adapter, and requires standard configuration files
i.e. portlet.xml and web.xml. uPortal comes with utility
Ant build file which examine and validate the portlet and
deployed it in the uPortal Framework.

Documentation of uPortal is not considered to be good
and is not up to date. Most of the tutorials for uPortal are
written by students doing their theses and are based on the
version available at that time so can’t be used directly for
latest releases. Documentation related to uPortal is
scattered about in several places; the uPortal Web site, a
confluence-based Wiki, email lists, the uPortal issue
management system (using Jira), and external sources. For
beginners it is very difficult to search the related
information and it will be nice if all information and
tutorials can be grouped together at one place.

uPortal supports partial specification of WSRP, and uPortal
can be only used as a WSRP consumer with the WSRP4J
reference implementation. We tested this partial WSRP
implementation and find it is stable, and it works in
consistent manner with Remote Portlets of enough
complexity. The documentation related to WSRP is
virtually none existent and the best information related to
uPortal and WSRP is available from external sources such
as Oxford University. uPortal v3.0 is in the pipeline and
some of these issues will be addressed. The current stable
version of uPortal is 2.5.

• 6.3 GridSphere

GridSphere [22] is a very stable Portal Framework initially
funded by the EU GridLab project spanning 3 years from
year 2002. GridSphere has very impressive user interface
and it is very easy to use. GridSphere is 100% JSR 168
compliant since the first quarter of year 2004. GridSphere’s
functional portal prototype is based on Portal API
borrowed from WebSphere API, which makes it fully
compatible with IBM's WebSphere® 4.2. Portlet
customisation and personalisation is very simple and is
Web interface based and requires no complex
configuration and deployment descriptors. GridSphere
comes with its on API and higher-level model for building
complex portlets using visual beans and the GridSphere
User Interface (UI) tag library. This tag library makes
portlet development very simple but then portlets are not
JSR compliant, which is similar to Liferay Enterprise
which provides its own utility package. GridSphere is
mainly deployable with Tomcat and with little
configuration it can be deployed on fully J2EE compliant
server like JBoss, but there is no documentation related to
this, and only information available is from user mail list.
GridSphere is not supporting many latest technologies or at
least not mentioned and claimed by GridSphere team like
Struts [7], Tiles [11], Spring [9] but they are supporting
portlet development using JSF [8]. GridSphere supports
persistence of data provided using Hibernate [10]
JDO/OQL for database support, which means any JDBC
compliant database, can be used with it without any
complicated configuration and modification of code. The
biggest portlet feature available for programmers is
Integrated Junit/Cactus unit tests for complete server side
testing of portlet services including the generation of test
reports. GridSphere supports different type of
authentication mechanisms, by default it is username and
password. It also supports Role Based Access Control
(RBAC) to separate users into guests, users, administrators
and super users. GridSphere has flexible support for
customisation and presentation which is XML based portal
presentation description that can be easily modified to
create customised portal layouts.

GridSphere has well managed website, with updated
tutorials, information, news and all other required
information. GridSphere also comes with many utility
portlets and they maintain portlet repository. GridSphere
has released latest version of Portal Framework 2.0.3 in
June 2005.

• 6.4 eXo Platform

The eXo Platform [23] is defined as a portal and content
management system (CMS) [14]. Current version of eXo
Platform is 1.0 which was released on Febrruary 2005.
Typically eXo Platform has been used as a corporate portal;
eXo provides users with a customisable single point of
access to the company’s information systems and resources.
Through the Web environment, eXo provides business
information to the firm’s employees, allows the exchange
and management of its data, as well as the execution of
critical business processes.

eXo is a JSR 168 compliant enterprise portal built
from several modules. It is based on JSF, Pico Container,
JBossMX and AspectJ. WSRP is also supported in eXo.
eXo Platform supports different technologies by
implementing different bridges. Fig. 2 gives an overview of
eXo Platform.

Figure 2: Overview of the eXo Platform, source [23]

The development of the Grid portlet applications for
the NGS Portal release 2.0 [24] was mostly based on the
eXo Platform because of its support for hot-deployment of
portlet applications.

The eXo Platform comes with two pre-compiled
distributions, the “express” and the “enterprise” editions.
There is in fact no difference between the two editions in
terms of functionality and features, but the flavours are for
different type of container i.e. Servlet Container and EJB
Container. The express edition is to be deployed inside a
servlet engine whist the enterprise edition is to be deployed
inside a full J2EE 1.3+ application server. Both editions
have been successfully deployed under Tomcat 5.0 and
JBoss 4.01sp1 accordingly.

Like other Portal Frameworks, there are sets of portlets
coming with the eXo Platform, e.g., Web-related,
communication-related, content-related, navigation-related,
user/admin-related and MVC-related portlets. Workflow
and WSRP-related portlets are also included.

eXo brings a layer (Struts bridge) between the portal
and any existing Struts application within the portlet,
existing Struts applications can be embedded in a portlet
with a minimal amount of change. Another bridge, the
Cocoon bridge is also included in eXo to embed existing
cocoon applications in a portlet fragment.

http://www.gridsphere.org/gridsphere/images/gridsphere_tck_final.jpg
http://www.gridsphere.org/gridsphere/images/gridsphere_tck_final.jpg
http://www.hibernate.org/

The support of WSRP in eXo is reported in the next
section. At the time this paper was written, WSRP support
seems to be limited in eXo.

In general, the eXo Platform is a powerful open-source
Portal Framework with many cutting-edge technologies
supported. eXo Platform was found best in performance
with minimum portal upload time. eXo also comes with
eclipse plug-in, which is very convenient for developers
and can be extended and tailored to accommodate custom
requirements.

• 6.5 Liferay

The Liferay Portal Enterprise [25] is more than just a portal
container; which comes with lot of helpful features like
Content Management System (CMS) [14], WSRP
compliant producer and consumer, Single Sign On (SSO),
support for Aspect-Oriented Programming (AOP), and
many other latest technologies. Liferay has a very clean
architectural design based on best practises of J2EE, which
allows it to be used with a variety of containers ranging
from lightweight servlet containers like Tomcat and Jetty,
to fully fledged J2EE-compliant servers like Borland ES,
JBoss, JOnAS, JRun, Oracle9iAS, Orion, Pramati, RexIP,
Sun JSAS, WebLogic, and WebSphere. In fact Liferay is
the only open source portal container which supports
nearly all commonly used open source and commercial
Java Servers.

Flexibility in design allows implementation of
business logic in any suitable and appropriate technology
like Struts [7], Tiles [11], Spring [9] and EJB [12] which in
turn can be based on Hibernate [10], Java Messaging
Service (JMS) [26], JavaMail and Web Services. Liferay
makes it possible to give Portal Presentation to any type of
Java application with no or minimum changes.

Figure 3: Architecture of Liferay, source [26].

Customisation of portal pages and potlets in some
open sources Portal Framework e.g. eXo Platform [24] is
not easy, and can involve a lot of configuration, but for

Liferay layout management is very easy. Liferay Portal
has a Web-based Graphical User Interface for user
interaction to design the layout of Portal Pages without
modifying any configuration files, which is similar to
Stringbeans Portal.

Liferay Portal Enterprise comes with many useful
portlets, and in fact Liferay portal has maximum utility
portlets as compared to other open source Portal
Frameworks, which are JSR 168 compliant and can be used
in any Portal Framework with little changes.

Liferay supports WSRP specification as long as both
WSRP consumer and WSRP producer are a Liferay portal
instance. This is not the true essence of WSRP
specification and WSRP support should not be only limited
to Liferay. Liferay configuration requires some non-
standard deployment descriptors which are mainly to
accommodate Struts and Tiles, which can make
development more complicated.

Like most of the other Portal Frameworks Liferay uses
a default database Hypersonic 1.7, which is fine for
development purposes but lacking in functionalities
required for production use. Liferay can also be used with
any database with minimum efforts due to the use of
Hibernate [10] in its design. Liferay has JSP portal tag
libraries and lot of utility classes in different packages to
assist programmer in developing the portals/ portlets. Use
of these utility packages eases the development of portals
but then those portals are tightly coupled to Liferay and
portlets are no longer JSR 168 compliant.

• 6.6 Stringbeans

Stringbeans Portal [27] is composed of a JSR 168
compliant portlet container, and a framework for
effectively administering portal applications. Stringbeans is
deployed as a J2EE Web application in a container that
supports Servlets 2.3 and Java Server Pages (JSP) 1.2
specification. For evaluation purposes Stringbeans was
easily deployed and tested on Tomcat 5.0.28 servlet
container by placing the Stringbeans Web Archive (WAR)
file in the $TOMCAT_HOME/webapps directory, without
any additional configuration. By default, Stringbeans uses
a pre-configured Hypersonic database. Stringbeans should
however work with any JDBC 2.0 compliant relational
databases and was tested with PostgreSQL 7.4 database
with satisfactory results, Stringbeans has no support for
Hibernate [10], so shifting from one database to another
database requires manual configuration. Stringbeans has a
well documented set of user guides which can be browsed
online or downloaded for later use, in fact Stringbeans has
the best documentation of all open source portal containers
tested. Online support from Stringbeans team was found
very helpful and effective in terms of timely responses to
bugs, queries and in implementing additional requested
features. Stringbeans includes many user and developer
friendly features and some of them are listed below:
• Easy layout management;
• Supporting themes for personalized look and feel;
• JAAS-based user authentication;
• Multi-column, menu, and full page layouts;
• Logging “user login” to simple file as well as a database;

• Per-portlet access control based on user ID, roles, and
arbitrary database relations;

• Portal views based on user ID, roles, and relationships;
• Portlets capable of displaying RSS headlines, multi-page

tabular data from database tables, reports, charts, XML
documents via XSL transformations;

• Mobile client support (WML 1.1 and XHTML P1.0).
However this has not been tested.

Stringbeans Portal can be deployed in a J2EE server
with EJB container and we have tested Stringbeans Portal
with JBoss 4.01sp1. Deployment was very easy and
straightforward. Portlet deployment in Stringbeans Portal is
very simple and truly JSR 168 compliant, which requires
only two configuration files portlet.xml and web.xml. Most
of the other Portal Frameworks come with many
configuration files which make development and
deployment very cumbersome, for example, JBoss Portal
Framework requires as many as 6 to 7 different
configuration files.

The current version of Stringbeans is 2.4.2 doesnot
support WSRP specification, which means it cannot be
used as WSRP producer and consumer; however there is an
intention to provide a Web Services framework in future
releases of StringBeans.

7. Evaluation Result
Following the evaluation criteria described in section 5, we
have developed different portlets and hosted them in
different Portal Framework, and these portlets are both test
portlets and online live portlets available to users. Below is
the result of our thorough and non biased evaluation:

Table1: Evaluation Result

Criteria Portal Framework

Sakai

1.5 uPortal Gridsphere Exo Liferay Stringbeans
JSR-168

Compliance 0 5 5 5 5 5
Ease of

Installation 3 5 5 5 5 5
Ease of Use 3 5 4 5 4 5

Documentation 2 2 4 3 3 5
Support
Services 3 3 4 4 3 5

Administration
of Portal 3 5 4 5 4 5

Customisation 4 3 4 3 5 4
Free Useful

Portlets 4 3 4 3 5 3
Performance 2 4 3 4 3 3

Security 3 4 3 4 4 4
Technology

Use 3 3 4 5 4 3
Portal

Features 2 2 3 5 4 2
Server

Dependency 3 3 3 4 5 3
WSRP

Compliance 0 3 0 3 3 0

Total 35 49 51 57 58 51

8. WSRP Inter Framework Test
Different WSRP Inter Framework tests were applied in the
uPortal and eXo Portal Framework to validate consumption
of Remore Portlets. uPortal only provides WSRP
consumer service, the basic uPortal WSRP test scenario
was to deploy WSRP4J producer service as our test WSRP
producer. WSRP4J uses reference implementation of Portal
API called Pluto; therefore Pluto Portal Framework was
working as WSRP producer by the mechanism of
deploying proxy portlet. We deployed Information Service
portlet and OGSA-DAI portlet which are Globus Toolkit
(GT3) [28] based as remote portlets in the WSRP4J
producer. The test results were very encouraging uPortal
consumer can call the WSRP4J producer and get back the
portlet mark-up from WSRP4J producer and display them
properly in the browser.

To test the compliance of uPortal consumer with
WSRP specifications, we deployed eXo Platform as WSRP
producer and called different portlets from uPortal
consumer. Results were satisfactory, although there were
occasions when we failed to get the mark-up from eXo
Platform producer.

When we did the test, we found that although uPortal
and eXo framework claims to support WSRP, but there
support is not 100% compliant to WSRP specification. It
was found that if the portlet mark-up includes links
referencing to external resource, these two Portal
Frameworks will transform remote link to the local link.
Another issue is the current WSRP mechanism does not
properly supports user interaction like button actions.

9. Summary
We have outlined the work done in evaluating portals and
portlets as a presentation layer to SOAs. The importance of
the JSR 168 specification has been stressed as it makes it
possible to deploy Java portlets in different Java Portal
Frameworks without modification of the portlet source
code.

In the second part we presented an evaluation of
various open source Portal Frameworks, e.g. eXo platform,
uPortal, Liferay, GridSphere and Stringbeans. Our
comparison criteria are based on the ease of installation,
user interface, standard of documentation, customisation
and compliance to JSR 168 specification. We are now
developing services and portlets to support the UK
National Grid Service (NGS) and the JISC-funded Sakai
VRE Demonstrator and have tested portability between all
the frameworks mentioned. A separate evaluation of high-
level frameworks for the development of VREs was
recently completed for JISC and compared Sakai, CHEF,
OGCE and GridSphere.

In the third part we outlined the results of a pilot
investigation of WSRP based on inter-framework tests with
WSRP4J, uPortal and eXo platform.
We will conclude the paper with a summary of experiences
and observations and suggestions for further work. This
will be explained in the context of the development and

0 10 20 30 40 50 6

Feature Rating
0

Sakai 1.5

uPortal

Gridsphere

Exo

Liferay

Stringbeans
Po

rt
al

 F
ra

m
ew

or
k

JSR-168 Standard Compliance Ease of Installation
Ease of Use Documentation - Administration and user guide
Support Services Administration of Portal
Customisation/Layout/Personalisation Free Useful Portlets
Performance Security
Technology Use Portal Features
Server Dependency WSRP Standard Compliance

Figure 3: Evaluation Result as Bar Chart

deployment of JSR 168 compliant portals/ portlets for the
NGS, VREs [29], ReDRESS [30], etc. Suggestions are
made for the practical usability of WSRP which may form
the basis of future in-depth investigations.

References
[1] R.J. Allan, C. Awre, M. Baker and A. Fish
Portals and Portlets 2003. Proc. NeSC Workshop 14-
17/7/2003 (CCLRC and NeSC, 2004),
http://www.nesc.ac.uk/technical_papers/UKeS-2004-
06.pdf.
 [2] R.J. Allan, A. Hardisty, S. Wilson and A. Powell
Service Component Classification,
http://www.grids.ac.uk/ETF/public/WebServices/classes.ht
ml.
[3] Portal specification JSR 168 and API,
http://www.jcp.org/en/jsr/detail?id=168.
[4] WSRP Specification 1.0 by OASIS, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp.
[5] Java Authentication and Authorisation Service,
http://java.sun.com/products/jaas/.
[6] Java Open Single Sign-On, http://www.josso.org/.
[7] Struts, http://struts.apache.org/.
[8] Java Server Faces, http://www.jcp.org/en/jsr/detail?id=127.
[9] Spring, http://www.springframework.org/.
[10] Hibernate, http://www.hibernate.org/.
[11] Tiles, http://www.lifl.fr/~dumoulin/tiles/.
[12] Enterprise Java Bean, http://java.sun.com/products/ejb/.
[13] Web Services, http://www.w3.org/2002/ws/.
[14] Content Management System,

http://www.jcp.org/en/jsr/detail?id=170.
[15] A. Akram, D. Chohan, X.D. Wang, D. Meredith and R.
Allan, CCLRC Portal Infrustructure to Support Research
Facilities, GGF14, Chicago, USA, 2005.
[16] R.Crouchley, A.Fish, R.J. Allan and D. Chohan Sakai
Evaluation Exercise. Report to JISC (December 2004),
http://www.grids.ac.uk/Sakai/sakai_doc.pdf.
[17] Sakai, http://www.sakaiproject.org/.
[18] Sakai VRE Demonstrator,
http://www.grids.ac.uk/Sakai.
[19] uPortal, http://www.uportal.org/.
[20] Pluto, http://portals.apache.org/pluto/index.html.
[21] Central Authentication Service, http://www.yale.edu/tp/auth/.
[22] GridSphere, http://www.gridsphere.org/.
[23] eXo Platfrm, http://www.exoplatform.com/.
[24] X. Yang, D. Chohan, X.D. Wang and R. Allan, A Web
Portal for the National Grid Service, UK e-Science AHM2005,
Nottingham, UK, 2005, accepted.
[25] Liferay Portal Enterprise, http://www.liferary.com/.
[26] Java Messaging Service, http://java.sun.com/products/jms/.
[27] StringBeans Portal, http://www.nabh.com/projects/sbportal.
[28] Globus Toolkit, http://www.globus.org/toolkit/.
[29] M. Baker, H. Ong, R.J. Allan and X.D. Wang, Virtual
Research in the UK: Advanced Portal Services.UK e-
Science AHM2004, Nottingham, UK, 2004.
[30] R. Crouchley, A. Fish, R.J. Allan and D. Chohan,
Virtual Research in the UK: Portal Services for Awareness
and Training in e-Science, UK e-Science AHM2004,
Nottingham, UK, 2004.

http://www.nesc.ac.uk/technical_papers/UKeS-2004-06.pdf
http://www.nesc.ac.uk/technical_papers/UKeS-2004-06.pdf
http://www.grids.ac.uk/ETF/public/WebServices/classes.html
http://www.grids.ac.uk/ETF/public/WebServices/classes.html
http://www.jcp.org/en/jsr/detail?id=168
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://java.sun.com/products/jaas/
http://www.josso.org/
http://struts.apache.org/
http://www.jcp.org/en/jsr/detail?id=127
http://www.springframework.org/
http://www.hibernate.org/
http://www.lifl.fr/~dumoulin/tiles/
http://java.sun.com/products/ejb/
http://www.w3.org/2002/ws/
http://www.jcp.org/en/jsr/detail?id=170
http://www.grids.ac.uk/Sakai/sakai_doc.pdf
http://www.sakaiproject.org/
http://www.grids.ac.uk/Sakai
http://www.uportal.org/
http://portals.apache.org/pluto/index.html
http://www.yale.edu/tp/auth/
http://www.gridsphere.org/
http://www.exoplatform.com/
http://www.liferary.com/
http://java.sun.com/products/jms/
http://www.nabh.com/projects/sbportal
http://www.globus.org/toolkit/

	Abstract

	Introduction

	Service Oriented Architecture

	Portal Framework

	Implementation and Standards

	Evaluation Criteria

	Selected Portal Frameworks

	Evaluation Result

	WSRP Inter Framework Test

	Summary

	References

