

Fast triangular solve on GPUs

Jonathan Hogg

STFC Rutherford Appleton Laboratory

ASEArch flagship grant

Aims:

- Deliver a sparse linear solver on GPUs
- Deliver an interior point solver for linear/quadratic programs on GPUs
- Do so in such a way that they can be easily ported to other architectures

ASEArch flagship grant

Aims:

- Deliver a sparse linear solver on GPUs
- Deliver an interior point solver for linear/quadratic programs on GPUs
- Do so in such a way that they can be easily ported to other architectures

Relation of this talk:

- Learning project
- Base kernel we need to perform well current CUBLAS implementation is poor.

Current libraries

Basic (in-place) Algorithm

Input: Lower-triangular $n \times n$ matrix L, right-hand-side vector x. for i = 1, n do x(i+1:n) = x(i+1:n) - L(i+1:n,i) * x(i)end for

Output: solution vector x.

$$\begin{pmatrix} 1 & & \\ l_{21} & 1 & & \\ l_{31} & l_{32} & 1 & \\ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Small matrices are latency bound

- **1** fmad per entry in $L \Rightarrow$ memory-bound.
 - C2050 can deliver approx 9 doubles/sec from main memory
 - Global memory latency 200 cycles (optimistic?)
 - $n = 32 \Rightarrow 195$ cycles per column waiting for data
 - Require n > 1800 to fully hide latency
 - Cache doesn't help no hardware prefetch.

What can we do?

Small matrices are latency bound

- **1** fmad per entry in $L \Rightarrow$ memory-bound.
 - C2050 can deliver approx 9 doubles/sec from main memory
 - Global memory latency 200 cycles (optimistic?)
 - $n = 32 \Rightarrow 195$ cycles per column waiting for data
 - Require n > 1800 to fully hide latency
 - Cache doesn't help no hardware prefetch.

What can we do?

Bring data closer to core, reducing latency

- Shared memory; or
- Registers

C2050 Memory layout

Shared memory n > 32

Quickly run out of shared memory if we try and hold entire matrix! Instead:

- Cache only 32×32 tiles down diagonal
- Cache next col while solve performed on diagonal

Shared memory n > 32

Quickly run out of shared memory if we try and hold entire matrix! Instead:

- Cache only 32×32 tiles down diagonal
- Cache next col while solve performed on diagonal

$$\begin{pmatrix}
L_{11} \\
L_{21} \\
L_{21} \\
L_{31} \\
L_{32} \\
L_{33} \\
L_{41} \\
L_{42} \\
L_{43} \\
L_{44}
\end{pmatrix}$$

Execution trace (128×128) :

Small matrix results

n =	32	64	96	128
Shared-memory	7	13	19	25
Registers	17	37	68	149*
CUBLAS dtrsv()	31	58	85	113

* indicates register spill occurred

Larger matrices

So far using a single SM.

- ► Quickly L1↔L2 bandwidth becomes bounding (only 16.4GB/s vs 144GB/s global)
- Need to use multiple SMs!

Why not use small matrix kernel then efficient matrix-vector?

- Driver handles synchronization (different kernels)
- Matrix-vector achieves high bandwidth

Kernel-synchronized results

We can do better!

<i>n</i> =	512	1024	4096
blkSolve() (μ s)	108.3	217.3	904.7
dgemv() (μ s)	37.8	95.1	842.0
Execution time (μ s)	171.0	370.8	2006.5
Launch overhead	17.0%	18.7%	14.9%
Work in blkSolve()	18%	9%	2%

- Substantial overheads from using kernel launches for synchronization
- Amount of time in blkSolve() Amdahl strikes again!

Global-memory synchronized

Aim: Single kernel-launch

Use global memory for synchronization — costs l2 cache miss + __threadfence().

(Much cheaper than using kernel launches)

- Fine grained synchronization...
- ...hence matrix-vector product runs concurrently with solve.

Thread block \Rightarrow block row

CAUTION

Thread blocks are not scheduled in order!

Jonathan Hogg

Thread block \Rightarrow block row

CAUTION Thread blocks are not scheduled in order!

Dynamically pick row to avoid deadlock

Fast triangular solve on GPUs

Thread block \Rightarrow block row

CAUTION Thread blocks are not scheduled in order!

Dynamically pick row to avoid deadlock

Only need two scalars for synchronization:

- Row for next thread block
- Latest column for which solution is available

Execution trace

TRADITIVALLA CONTRACTOR CONTRACTOR	
	-
	• • • • • • • • • • • • • • • • • • •

Execution trace

Mode 1 Not waiting on data, constant computation. Mode 2 Stops and starts as each column completes.

Jonathan Hogg

Critical path

-

Critical path is coloured; Executes serially

Critical path

Critical path is coloured; Executes serially

Use tricks from before: **pre-cache values**

Critical path

Critical path is coloured; Executes serially

Use tricks from before: **pre-cache values**

BUT: Maintain high occupancy!

Critical path

 $\begin{array}{l} 48k \text{ shmem} \ \Rightarrow \ At \ most \ 5 \\ 32 \times 32 \ tiles \\ Want \ 4 \ thread \ blocks/SM! \end{array}$

- Use shared memory for diagonal tiles.
- Use registers for subdiagonal tiles.

Global-memory synchronization results

Better yet!

$Memory-bound \Rightarrow spare flops$

Can we do redundant computation to speed the critical path?

Better yet!

Memory-bound \Rightarrow spare flops

Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks (stable see Higham 1995)

- Diagonal solve \rightarrow Matrix-vector multiply
- Same number of memory accesses, *less communication*!

Speedup over previous version

Overall best performance

Overall best performance (zoomed)

Jonathan Hogg

Speedup vs CUBLAS

Conclusions

We've beaten CUBLAS soundly. Achieved 75% of peak bandwidth.

- Can we do even better somehow?
- Could use tasks but register pressure!

Next step is the sparse case

Code will be available under BSD licence

Questions?

Explicit inversion

$$\begin{pmatrix} L_{11} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} X_{11} \\ X_{21} & X_{22} \end{pmatrix} = \begin{pmatrix} L_{11}X_{11} \\ L_{21}X_{11} + L_{22}X_{21} & L_{22}X_{22} \end{pmatrix}$$

Equate to identity.

$$\begin{array}{rcl} X_{11} &=& L_{11}^{-1} & \text{by recursion} \\ X_{22} &=& L_{22}^{-1} & \text{by recursion} \\ L_{22}X_{21} &=& -L_{21}X_{11} & \text{solve is stable - Higham 1995} \end{array}$$

Doesn't require right-hand-side — can be done before needed BUT: takes considerably longer than a solve: useless for small n.

Small matrix — Registers

- Block on use, not on load.
- Allow Instruction Level Parallelism (ILP).
- See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!

... typically need half of these for normal operation.

Small matrix — Registers

- Block on use, not on load.
- Allow Instruction Level Parallelism (ILP).
- See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!

... typically need half of these for normal operation.

However, doesn't help:

- To use more than 1 thread, need to communicate via shared memory (so no latency gain).
 - Adda asserbised to as do a service as the service of the service o
- ► Adds complications to code ⇒ extra overheads.
- Quite quickly leads to register spill \Rightarrow slowdown.

Fast triangular solve on GPUs

Small matrix — Shared Memory

```
A 32 \times 32 matrix of doubles requires 8KiB \Rightarrow lots of room.
Simple code (blkSize = 32):
```

volatile double __shared__ xs;

```
#pragma unroll 16
    for(int i=0; i<blkSize; i++) {
        if(threadldx.x==i) xs = val;
        if(threadldx.x>=i+1)
            val -= a[i*lda+threadldx.x] * xs;
     }
}
```

Just precache a in shared memory!

