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ASEArch flagship grant

Aims:

I Deliver a sparse linear solver on GPUs

I Deliver an interior point solver for linear/quadratic programs
on GPUs

I Do so in such a way that they can be easily ported to other
architectures

Relation of this talk:

I Learning project

I Base kernel we need to perform well — current CUBLAS
implementation is poor.
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Current libraries
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I Beaten by CPU for n < 10, 000.

I Achieves < 20% of peak.
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Basic (in-place) Algorithm

Input: Lower-triangular n× n matrix L, right-hand-side vector x .
for i = 1, n do

x(i + 1 : n) = x(i + 1 : n) − L(i + 1 : n, i) ∗ x(i)

end for
Output: solution vector x .
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Small matrices are latency bound

1 fmad per entry in L ⇒ memory-bound.

I C2050 can deliver approx 9 doubles/sec from main memory

I Global memory latency 200 cycles (optimistic?)

I n = 32⇒ 195 cycles per column waiting for data

I Require n > 1800 to fully hide latency

I Cache doesn’t help — no hardware prefetch.

What can we do?

Bring data closer to core, reducing latency

I Shared memory; or

I Registers
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C2050 Memory layout

GPU DRAM 3GB

Level 2 Cache 769KB

L1 Cache /
Shmem 64KB

SM 63 registers

144GB/s
200+ clocks

14 SMs total

16.4GB/s
˜100 clocks

73.6GB/s
˜30 clocks
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Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:

I Cache only 32× 32 tiles down diagonal
I Cache next col while solve performed on diagonal

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44





Execution trace (128× 128):
Warp 0 Ld(1) Slv(1,1) Mv(2,1) Slv(2,2) Mv(3,2) Slv(3,3) Mv(4,3) Slv(4,4)

Warp 1 Ld(1) Ld(2) Mv(3,1) Ld(3) Mv(4,2) Ld(4)

Warp 2 Ld(1) Ld(2) Mv(4,1) Ld(3) Ld(4)

Warp 3 Ld(1) Ld(2) Ld(3) Ld(4)
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Small matrix results

n = 32 64 96 128

Shared-memory 7 13 19 25
Registers 17 37 68 149∗

CUBLAS dtrsv() 31 58 85 113
∗ indicates register spill occurred
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Larger matrices

So far using a single SM.

I Quickly L1←→L2 bandwidth becomes bounding
(only 16.4GB/s vs 144GB/s global)

I Need to use multiple SMs!

Why not use small matrix kernel then efficient
matrix-vector?

I Driver handles synchronization (different kernels)

I Matrix-vector achieves high bandwidth
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Kernel-synchronized results
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We can do better!

n = 512 1024 4096

blkSolve() (µs) 108.3 217.3 904.7
dgemv() (µs) 37.8 95.1 842.0
Execution time (µs) 171.0 370.8 2006.5

Launch overhead 17.0% 18.7% 14.9%
Work in blkSolve() 18% 9% 2%

I Substantial overheads from using kernel launches for
synchronization

I Amount of time in blkSolve() — Amdahl strikes again!
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Global-memory synchronized

Aim: Single kernel-launch

I Use global memory for synchronization — costs l2 cache miss
+ threadfence().
(Much cheaper than using kernel launches)

I Fine grained synchronization...

I ...hence matrix-vector product runs concurrently with solve.
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Thread block ⇒ block row

Thread block 2

Thread block 1

Thread block 0

Thread block 4

CAUTION
Thread blocks are not

scheduled in order!

Dynamically pick row to
avoid deadlock

Only need two scalars for synchronization:

I Row for next thread block

I Latest column for which solution is available
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Execution trace

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.
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Critical path

Critical path is coloured;
Executes serially
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Critical path

Critical path is coloured;
Executes serially

Use tricks from before:
pre-cache values

BUT:
Maintain high occupancy!
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Critical path

48k shmem ⇒ At most 5
32× 32 tiles
Want 4 thread blocks/SM!

I Use shared memory
for diagonal tiles.

I Use registers for
subdiagonal tiles.
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Global-memory synchronization results
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Better yet!

Memory-bound ⇒ spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks (stable see Higham 1995)

I Diagonal solve → Matrix-vector multiply

I Same number of memory accesses, less communication!
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Speedup over previous version
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Overall best performance
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Overall best performance (zoomed)
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Speedup vs CUBLAS
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Conclusions

We’ve beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.

I Can we do even better somehow?

I Could use tasks — but register pressure!

Next step is the sparse case

Code will be available under BSD licence
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Explicit inversion

(
L11
L21 L22

)(
X11

X21 X22

)
=

(
L11X11

L21X11 + L22X21 L22X22

)
Equate to identity.

X11 = L−111 by recursion

X22 = L−122 by recursion
L22X21 = −L21X11 solve is stable - Higham 1995

Doesn’t require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.
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Small matrix — Registers

I Block on use, not on load.

I Allow Instruction Level Parallelism (ILP).

I See Volkov’s Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

However, doesn’t help:

I To use more than 1 thread, need to communicate via shared
memory
(so no latency gain).

I Adds complications to code ⇒ extra overheads.

I Quite quickly leads to register spill ⇒ slowdown.
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Small matrix — Shared Memory

A 32× 32 matrix of doubles requires 8KiB ⇒ lots of room.
Simple code (blkSize = 32):

template < i n t b l kS i z e>
v o i d d e v i c e db l kSo l v e ( const double ∗a , i n t lda ,

double &va l ) {

v o l a t i l e double s h a r e d xs ;

#pragma u n r o l l 16
f o r ( i n t i =0; i<b l k S i z e ; i++) {

i f ( t h r e a d I d x . x==i ) xs = v a l ;
i f ( t h r e a d I d x . x>=i +1)

v a l −= a [ i ∗ l d a+th r e a d I d x . x ] ∗ xs ;
}

}

Just precache a in shared memory!
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