@ Science & Technology
Facilities Council

Fast triangular solve on GPUs

Jonathan Hogg

STFC Rutherford Appleton Laboratory

1/23

Fast triangular solve on GPUs Jonathan Hogg

ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures

Science & Technology
@ Facilities Council

2 /23

Fast triangular solve on GPUs Jonathan Hogg

ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
Relation of this talk:
> Learning project
» Base kernel we need to perform well — current CUBLAS
implementation is poor.

Science & Technology
@ Facilities Council

2 /23

Fast triangular solve on GPUs

Current libraries

Jonathan Hogg

25 [I I I
Host MKL _trsv —+— X
GPU CUBLAS _trsv - -»-- e
GPU MAGMA _trsm ---%-- 7
20
15 - o
) - UL -
~ //X e i
5 e
10 T |
5 o » Beaten by CPU for n < 10, 000.
re > Achieves < 20% of peak.
X}e
0 3 | | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

3/23

n

Science & Technology
@ Facilities Council

Fast triangular solve on GPUs Jonathan Hogg

Basic (in-place) Algorithm

Input: Lower-triangular n x n matrix L, right-hand-side vector x.
fori=1,ndo

end for
Output: solution vector x.

! ()

1

l32
la2 /43 1

Science & Technology
@ Facilities Council

4 /23

Fast triangular solve on GPUs Jonathan Hogg

Small matrices are latency bound

1 fmad per entry in L = memory-bound.
» C2050 can deliver approx 9 doubles/sec from main memory
» Global memory latency 200 cycles (optimistic?)
> n = 32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency
» Cache doesn’t help — no hardware prefetch.
What can we do?

Science & Technology
@ Facilities Council

5 /23

Fast triangular solve on GPUs Jonathan Hogg

Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
> n = 32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency

» Cache doesn’t help — no hardware prefetch.

What can we do?
Bring data closer to core, reducing latency

» Shared memory; or

> Registers

Science & Technology
@ Facilities Council

5 /23

Fast triangular solve on GPUs Jonathan Hogg

C2050 Memory layout

[GPU DRAM 3GB]

T 144GB/s »
4200+ clocks ' .
(Level 2 Cache 760KB]
716.4GB/s
! 100clock5v LV el e LMl Ve LYl ve v
L1 Cache /
Shmem 64KB

msees 14 SMs total
SM 63 registers

Science & Technology
@ Facilities Council

6 /23

Fast triangular solve on GPUs Jonathan Hogg

Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

Ly

Loy Lo

L3y L3> Ls3
Loy Lap Las Laa

Science & Technology
@ Facilities Council

7/23

Fast triangular solve on GPUs Jonathan Hogg

Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

L1y

L3y L33

Lo Laz Lag

Execution trace (128 x 128):

Warp 0
Warp 1

Siv(1,1) Mv(2,1) SIM(2,2) Mv(3,2) SIv(33) Mv(4,3) Siv(44)
Mv(3 1) Mv(4,2)
Warp 2 Mv(4,1)
Warp 3

Science & Technology
@ Facilities Council

7/23

Fast triangular solve on GPUs Jonathan Hogg

Small matrix results

n=132 64 96 128
Shared-memory 7 13 19 25
Registers 17 37 68 149*
CUBLAS dtrsv() | 31 58 85 113

* indicates register spill occurred

Science & Technology
@ Facilities Council

8 /23

Fast triangular solve on GPUs Jonathan Hogg

Larger matrices

So far using a single SM.

» Quickly L1<—L2 bandwidth becomes bounding
(only 16.4GB/s vs 144GB/s global)

» Need to use multiple SMs!

Why not use small matrix kernel then efficient
matrix-vector?

» Driver handles synchronization (different kernels)

» Matrix-vector achieves high bandwidth

Science & Technology
@ Facilities Council

9 /23

Fast triangular solve on GPUs Jonathan Hogg

Kernel-synchronized results

80 T T T T T T
Host MKL _trsv ——+— P
GPU CUBLAS _trsv - -x-- B
70 - GPU MAGMA _trsm ---%-- g2 =
GPU ksync =] g8

60 = .

50 . “ B
o 40 L ° 4
o o

a
30 - & 4
@
o Ut
20 - 7 T i
o o
n A
10 o :
0 ****ﬁ\x% | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
n

Science & Technology
@ Facilities Council

10 / 23

Fast triangular solve on GPUs Jonathan Hogg

We can do better!

n= 512 1024 4096
blkSolve O (is) 1083 2173 9047
dgemv () (us) 37.8 95.1 8420
Execution time (1s) 171.0 370.8 2006.5
Launch overhead 17.0% 18.7% 14.9%
Work in blkSolve () 18% 9% 2%

» Substantial overheads from using kernel launches for
synchronization
» Amount of time in blkSolve() — Amdahl strikes again!

Science & Technology
@ Facilities Council

11 /23

Fast triangular solve on GPUs Jonathan Hogg

Global-memory synchronized

Aim: Single kernel-launch

» Use global memory for synchronization — costs 12 cache miss
+ __threadfence().
(Much cheaper than using kernel launches)

» Fine grained synchronization...

» ...hence matrix-vector product runs concurrently with solve.

Science & Technology
@ Facilities Council

12 /23

Fast triangular solve on GPUs Jonathan Hogg

Thread block = block row

Thread block 2
CAUTION
Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Thread block 4

lH&V

Science & Technology
@ Facilities Council

13 /23

Fast triangular solve on GPUs Jonathan Hogg

Thread block = block row

Thread block 2
CAUTION
Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Dynamically pick row to

Thread block 4 avoid deadlock

lH&V

Science & Technology
@ Facilities Council

13 /23

Fast triangular solve on GPUs Jonathan Hogg

Thread block = block row

Thread block 2 B
CAUTION

Thread block 1 n Thread blocks are not
' scheduled in order!
Thread block 0

Dynamically pick row to
Thread block 4 .

avoid deadlock

Only need two scalars for synchronization:
» Row for next thread block

» Latest column for which solution is available

Science & Technology
@ Facilities Council

13 /23

Fast triangular solve on GPUs

Jonathan Hogg

Execution trace

14 /23

LA AT T8 ORI b
DS EATCOTV A b AL WWHWN‘-"”TI""mmm- T,
LRGN CrCEEETET 1By o bbb)L LA D SRR (U
DL LCCEECEL A ARt L LD ALLI L A
|||||||[l.|m||||||||||tHﬂﬂEMHMWMHH\JNWWMW"l""llF LR
TR A PALLLLL b A A SRR e s
Jif ﬂlllllli.khﬂﬂuﬂlllllllilIIIII!Hulﬂll.l.lummm-mm
T EHIIEIIEWEMHWMWWMMM

[EAI stk A LALLM]

e A o 0000 i T AN AN

1001 Lt A LV e ——

§ LN LI g ko abbbabk M A AL L SR NREY

G T 00000y CCCEEED Ui A L AL ML AR v L Ly AL T LT,

AL ERDERDYRRRIRI L ECEEEECCEkoktchffi AL AR A4 A (UL 10 (P N D
Science & Technology

@ Facilities Council

Fast triangular solve on GPUs

Jonathan Hogg

Execution trace

14 /23

LA AT T8 ORI b
DS EATCOTV A b AL WWHWN‘-"”TI""mmm- T,
LRGN CrCEEETET 1By o bbb)L LA D SRR (U
DL LCCEECEL A ARt L LD ALLI L A
|||||||[l.|m||||||||||tHﬂﬂEMHMWMHH\JNWWMW"l""llF LR
TR A PALLLLL b A A SRR e s
Jif ﬂlllllli.khﬂﬂuﬂlllllllilIIIII!Hulﬂll.l.lummm-mm
T EHIIEIIEWEMHWMWWMMM

L1 0 LI
M v T

00 ot A 0 G
e T A TR
01t Al U L
.t A M L o T

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

Science & Technology
@ Facilities Council

Fast triangular solve on GPUs Jonathan Hogg

Critical path

h

Critical path is coloured;
Executes serially

AN

H N
AN
AN
AN
AN

Science & Technology
@ Facilities Council

15 / 23

Fast triangular solve on GPUs

Critical path

h

Jonathan Hogg

Critical path is coloured;
Executes serially

‘ Use tricks from before:

pre-cache values

Science & Technology
@ Facilities Council

15 / 23

Fast triangular solve on GPUs Jonathan Hogg

Critical path

h

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values

BUT:
Maintain high occupancy!

Science & Technology
@ Facilities Council

15 / 23

Fast triangular solve on GPUs Jonathan Hogg

Critical path

h

48k shmem = At most 5
32 x 32 tiles
Want 4 thread blocks/SM!

‘ » Use shared memory

for tiles.

Use registers for
tiles.

>

Science & Technology
@ Facilities Council

15 / 23

Fast triangular solve on GPUs Jonathan Hogg

Global-memory synchronization results

120 I I I I I I I
Host MKL _trsv —+—
GPU CUBLAS trsv —-x-- BB BB
GPU kernel sync ---*--- [e 28
100 GPU gmem sync ———S o |
a 2l
o
80 |- i
DD, . JRURUPE S
0 e} *‘_,*— - %=
o 60 i et :
© d L
,‘E Lo® ’
R |
d Kal
s **"
[aa - X
20 - s I
il — k=T
0 oo™ \ \ \ \ \ \
0 2000 4000 6000 8000 10000 12000 14000 16000 1800020000
n

Science & Technology
@ Facilities Council

16 / 23

Fast triangular solve on GPUs Jonathan Hogg

Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

Science & Technology
@ Facilities Council

17 /23

Fast triangular solve on GPUs Jonathan Hogg

Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks (stable see Higham 1995)

» Diagonal solve — Matrix-vector multiply

» Same number of memory accesses, less communication!

Science & Technology
@ Facilities Council

17 /23

Jonathan Hogg

Fast triangular solve on GPUs

Speedup over previous version

1.4

13 |, Medium matrices:
© faster critical path
.

/

/

—¥

1.2
+ \
/l jL\,JR
t [N .
o 1.1 | Large matrices:
o] I b
g | Tl e, too few threads
L% 1 L o ;+’+\\+——+7—+/+\\+/*\\¥7
I

00 ;. Small matrices: slower
7 ' than straightforward solve

(
i

0.8 ¥

00 10000 12000 14000 16000 18000 20000

n

0.7 | |
0 2000 4000 6000 80

Science & Technology
@ Facilities Council

18 / 23

Fast triangular solve on GPUs

Overall best performance

Jonathan Hogg

120 \ \ \ \
Jn e I e E
e * R
100 P S n
vD“‘*‘ - e
80 DDDD‘:,I# .
0
" g 4 Host MKL _trsy ——+—
-~ 60 O ¥ GPU CUBLAS _trsv --x-- _|
8 g x GPU Best w/o invert ---%--
g x GPU Best 8
¥
by
40 - 44 _
I
Px
¥ e
20 *Ef . L xmoe X -
7 77*_9(//*’
: L HROKH T -
Etuataiertl i | | | | | | | |

19 /23

0
0 2000 4000 6000 8000 10000 12000 14000 16000 1800020000

n

Science & Technology
@ Facilities Council

Fast triangular solve on GPUs

Overall best performance (zoomed)

Host MKL _trsv —»—‘
20 | GPU CUBLAS trsy --x-- |
GPU MAGMA _trsm ---+--
GPU Best .-
= ”
15 +~ |
(2]
o 10 F) |
[©)
5
0 + e SeAREUEEEEE L |
| | ‘ ‘ |
0 200 400 600 800 1000
n

20 / 23

Jonathan Hogg

Science & Technology

@ Facilities Council

Fast triangular solve on GPUs Jonathan Hogg

Speedup vs CUBLAS

16

14

12

10

Speedup
[oe]

0 \ \ \ \ \ \ \ \ \
0 2000 4000 6000 8000 10000 12000 14000 16000 18000.20000
n

Science & Technology
@ Facilities Council

21 /23

Fast triangular solve on GPUs

Conclusions

We've beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.

» Can we do even better somehow?

» Could use tasks — but register pressure!

Next step is the sparse case

Code will be available under BSD licence

22 /23

Jonathan Hogg

Science & Technology
@ Facilities Council

@ Science & Technology
Facilities Council

Questions?

23 /23

Jonathan Hogg

Fast triangular solve on GPUs

Explicit inversion

(L11) < X11 > _ < L11X11 >
Lr1 Ly Xo1 X2 Lo X1 + LopXo1 Lo Xoo

Equate to identity.

X111 = Lfll by recursion
Xon = ngl by recursion
LooXo1 = —Lp1X11 solve is stable - Higham 1995

Doesn't require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.

Science & Technology
@ Facilities Council

1/3

Fast triangular solve on GPUs Jonathan Hogg
Small matrix — Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

Science & Technology
@ Facilities Council

2/3

Fast triangular solve on GPUs Jonathan Hogg
Small matrix — Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

However, doesn't help:

» To use more than 1 thread, need to communicate via shared
memory
(so no latency gain).

» Adds complications to code = extra overheads.

» Quite quickly leads to register spill = slowdown.

Science & Technology
@ Facilities Council

2/3

Fast triangular solve on GPUs

Small matrix — Shared Memory

A 32 x 32 matrix of doubles requires 8KiB = lots of room.
Simple code (blkSize = 32):

template <int blkSize>
void __device__ dblkSolve(const double *a, int Ida,
double &val) {

volatile double __shared__ xs;

#pragma unroll 16
for(int i=0; i<blkSize; i++) {
if (threadldx.x=i) xs = val;
if(threadldx .x>=i+1)
val —= a[ixlda+threadldx.x] * xs;

}

Just precache a in shared memory!

Jonathan Hogg

Science & Technology

@ Facilities Council

3/3

	Introduction
	Small matrices
	Large matrices
	Explicit inversion
	Appendix

