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ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
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Fast triangular solve on GPUs Jonathan Hogg

ASEArch flagship grant

Aims:
> Deliver a sparse linear solver on GPUs
» Deliver an interior point solver for linear/quadratic programs
on GPUs
» Do so in such a way that they can be easily ported to other
architectures
Relation of this talk:
> Learning project
» Base kernel we need to perform well — current CUBLAS
implementation is poor.
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Fast triangular solve on GPUs

Current libraries

Jonathan Hogg
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Basic (in-place) Algorithm

Input: Lower-triangular n x n matrix L, right-hand-side vector x.
fori=1,ndo

end for
Output: solution vector x.
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Small matrices are latency bound

1 fmad per entry in L = memory-bound.
» C2050 can deliver approx 9 doubles/sec from main memory
» Global memory latency 200 cycles (optimistic?)
> n = 32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency
» Cache doesn’t help — no hardware prefetch.
What can we do?
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Small matrices are latency bound

1 fmad per entry in L = memory-bound.

v

C2050 can deliver approx 9 doubles/sec from main memory

v

Global memory latency 200 cycles (optimistic?)
> n = 32 = 195 cycles per column waiting for data
» Require n > 1800 to fully hide latency

» Cache doesn’t help — no hardware prefetch.

What can we do?
Bring data closer to core, reducing latency

» Shared memory; or

> Registers

Science & Technology
@ Facilities Council

5 /23



Fast triangular solve on GPUs Jonathan Hogg

C2050 Memory layout

[ GPU DRAM 3GB ]

T 144GB/s »
4200+ clocks ' .
( Level 2 Cache 760KB ]
716.4GB/s
! 100clock5v LV el e LMl Ve LYl ve v
L1 Cache /
Shmem 64KB

msees 14 SMs total
SM 63 registers
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Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

Ly

Loy Lo

L3y L3> Ls3
Loy Lap Las Laa
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Shared memory n > 32
Quickly run out of shared memory if we try and hold entire matrix!
Instead:
» Cache only 32 x 32 tiles down diagonal
» Cache next col while solve performed on diagonal

L1y

L3y L33

Lo Laz Lag

Execution trace (128 x 128):

Warp 0
Warp 1

Siv(1,1) Mv(2,1) SIM(2,2) Mv(3,2) SIv(33) Mv(4,3) Siv(44)
Mv(3 1) Mv(4,2)
Warp 2 Mv(4,1)
Warp 3
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Small matrix results

n=132 64 96 128
Shared-memory 7 13 19 25
Registers 17 37 68 149*
CUBLAS dtrsv() | 31 58 85 113

* indicates register spill occurred
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Larger matrices

So far using a single SM.

» Quickly L1<—L2 bandwidth becomes bounding
(only 16.4GB/s vs 144GB/s global)

» Need to use multiple SMs!

Why not use small matrix kernel then efficient
matrix-vector?

» Driver handles synchronization (different kernels)

» Matrix-vector achieves high bandwidth
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Kernel-synchronized results
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We can do better!

n= 512 1024 4096
blkSolve O (is) 1083 2173 9047
dgemv () (us) 37.8 95.1 8420
Execution time (1s) 171.0  370.8 2006.5
Launch overhead 17.0% 18.7% 14.9%
Work in blkSolve () 18% 9% 2%

» Substantial overheads from using kernel launches for
synchronization
» Amount of time in blkSolve() — Amdahl strikes again!
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Global-memory synchronized

Aim: Single kernel-launch

» Use global memory for synchronization — costs 12 cache miss
+ __threadfence().
(Much cheaper than using kernel launches)

» Fine grained synchronization...

» ...hence matrix-vector product runs concurrently with solve.
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Thread block = block row

Thread block 2
CAUTION
Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Thread block 4

lH&V
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Thread block = block row

Thread block 2
CAUTION
Thread blocks are not
scheduled in order!

Thread block 1

Thread block 0

Dynamically pick row to

Thread block 4 avoid deadlock

lH&V
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Thread block = block row

Thread block 2 B
CAUTION

Thread block 1 n Thread blocks are not
' scheduled in order!
Thread block 0

Dynamically pick row to
Thread block 4 .

avoid deadlock

Only need two scalars for synchronization:
» Row for next thread block

» Latest column for which solution is available
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Execution trace
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Execution trace
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Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.
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Critical path

h

Critical path is coloured;
Executes serially
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Critical path

h

Jonathan Hogg

Critical path is coloured;
Executes serially

‘ Use tricks from before:

pre-cache values
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Critical path

h

Critical path is coloured;
Executes serially

‘ Use tricks from before:
pre-cache values

BUT:
Maintain high occupancy!
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Critical path

h

48k shmem = At most 5
32 x 32 tiles
Want 4 thread blocks/SM!

‘ » Use shared memory

for tiles.

Use registers for
tiles.

>
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Global-memory synchronization results
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Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?
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Better yet!

Memory-bound = spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks (stable see Higham 1995)

» Diagonal solve — Matrix-vector multiply

» Same number of memory accesses, less communication!
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Fast triangular solve on GPUs

Speedup over previous version
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Overall best performance

Jonathan Hogg
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Overall best performance (zoomed)
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Speedup vs CUBLAS
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Conclusions

We've beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.

» Can we do even better somehow?

» Could use tasks — but register pressure!

Next step is the sparse case

Code will be available under BSD licence
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Fast triangular solve on GPUs

Explicit inversion

( L11 ) < X11 > _ < L11X11 >
Lr1 Ly Xo1 X2 Lo X1 + LopXo1 Lo Xoo

Equate to identity.

X111 = Lfll by recursion
Xon = ngl by recursion
LooXo1 = —Lp1X11 solve is stable - Higham 1995

Doesn't require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.
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Small matrix — Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.
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Small matrix — Registers

» Block on use, not on load.
» Allow Instruction Level Parallelism (ILP).
» See Volkov's Better Performance at Lower Occupancy.

Each thread only has 63 registers!
... typically need half of these for normal operation.

However, doesn't help:

» To use more than 1 thread, need to communicate via shared
memory
(so no latency gain).

» Adds complications to code = extra overheads.

» Quite quickly leads to register spill = slowdown.
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Small matrix — Shared Memory

A 32 x 32 matrix of doubles requires 8KiB = lots of room.
Simple code (blkSize = 32):

template <int blkSize>
void __device__ dblkSolve(const double *a, int Ida,
double &val) {

volatile double __shared__ xs;

#pragma unroll 16
for(int i=0; i<blkSize; i++) {
if (threadldx.x=i) xs = val;
if(threadldx .x>=i+1)
val —= a[ixlda+threadldx.x] * xs;

}

Just precache a in shared memory!
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