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Motivation

I Gaussian elimination with partial pivoting followed by few
steps of iterative refinement (IR) can compute solution of
sparse linear system that is backward stable.

I But if weaker stability test used (threshold partial pivoting or
static pivoting) large number of steps may be needed.

I Or if mixed precision used, number of steps may be very large.

I The solve phase of a direct solver can be bottleneck on
multicore machine.

I Thus want to accelerate the refinement (reduce number of
solves).
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Let A ∈ IRn×n and b ∈ IRn, with rank (A) = n. Then

Ax = b

has a unique solution x̂.
Assume Gaussian elimination is performed using floating-point
arithmetic with relative precision ε.

The computed factors satisfy

A + F = L̂Û = M,

where
|F| ≤ c(n)ε|L̂| |Û|.



Chebychev acceleration Jennifer Scott

It follows that

x = M−1
(
b + Fx

)
= M−1

(
b− Ax + Mx

)
= M−1

(
r(x) + Mx

)
,

where r(x) is the residual b− Ax.

Thus, x is the fixed point of F(x), where

F(x) = x + M−1r(x).
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Iterative refinement algorithm

Let x(0) = M−1b and r(0) = b− Ax(0).
Given a convergence tolerance η > 0.

Initialise k = 0.

while β(k) > η do

δx = M−1r(k);

x(k+1) = x(k) + δx;

r(k+1) = b− Ax(k+1);

β(k+1) = maxi |r
(k+1)
i |/(|A| |x(k+1)|+ |b|)i ;

k = k + 1.
end while
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Convergence of iterative refinement

If the spectral radius of M−1F satisfies

σ(M−1F) < 1

in exact arithmetic, the sequence x(k) converges to x̂.
Furthermore,

r(k+1) = r(k) − AM−1r(k) = FM−1r(k).

Therefore, if σ(FM−1) < 1, the residuals converge to zero.
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Convergence example

Assume σ(M−1F) = 0.5.

To achieve reduction of three orders of magnitude in initial
residual, number of iterations needed is

iter = d log10(10−3)

log10(0.5)
e,

which is approximatively 10.

Cost may be unacceptably high (eg. factors held out-of-core).
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Our objectives

We seek alternatives to IR that require fewer iterations and
preserve two key properties:

I component-wise stability, and

I the absence of scalar products.

Why no scalar products?

They are communication intensive and hence not suited to
parallel computers with high communication costs.

In this talk, we explore possibility of using Chebychev acceleration
of IR.
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Chebychev polynomials

Recall Chebyshev polynomials can be defined by the recurrence
T0(z) = 1

T1(z) = z

Tk+1(z) = 2zTk(z)− Tk−1(z) k ≥ 1.
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Theorem

Let D be the region enclosed by the ellipse(x
a

)2
+
(y
b

)2
= 1,

where b < a < 1. Let Sj be set of all real polynomials pj(z) of
degree at most j such that pj(1) = 1, then

℘j(z) =
Tj(z/c)

Tj(1/c)
, where c2 = a2 − b2,

is the unique polynomial in Sj such that

max
z∈D
|℘j(z)| ≤ max

z∈D
|pj(z)|, pj(z) ∈ Sj .
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Chebychev acceleration

Recall:
x = M−1Fx + M−1b (A + F = M).

Assume the eigenvalues of M−1F lie in the interior of an ellipse(x
a

)2
+
(y
b

)2
= 1,

with b < a < 1 and set c2 = a2 − b2.
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Chebychev acceleration

Can show Chebychev relations for this are:
x(0) = M−1b, %1 = 1

x(j+1) = %j+1

(
M−1Fx(j) + M−1b

)
+ (1− %j+1)x(j−1), j = 0, . . . ,

where

%j+1 =
2

c

Tj(1/c)

Tj+1(1/c)
,

and Tj(z) is the Chebychev polynomial of degree j .
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Chebychev acceleration of iterative refinement
Simple algebraic manipulation gives:

Let x(0) = M−1b, r(0) = b− Ax(0).
Initialise k = 0.

while β(k) > η do

δx(k+1) = %k+1M
−1r(k) − (1− %k+1)δx(k);

x(k+1) = x(k) + δx(k+1);

r(k+1) = b− Ax(k+1);

β(k+1) = maxi |r
(k+1)
i |/(|A| |x(k+1)|+ |b|)i ;

k = k + 1.
end while
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Chebychev acceleration

Observe computing the %j is straightforward:

%j+1 =


1, if j = 0

(1− 1
2c

2)−1, if j = 1

(1− 1
4c

2%j)
−1, if j ≥ 2

Thus computational cost of Chebychev at each iteration is only
marginally more than for IR.
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Convergence example again

Recall if σ(M−1F) = 0.5, approx. 10 steps of IR to reduce residual
by 3 orders of magnitude.

Number of Chebychev iterations to reduce residual by p orders of
magnitude is

iter = d log10(10−p)

log10( a+b
1+
√
1−c2 )

e.

If σ(M−1F) contained in ellipse( x

0.5

)2
+
( y

0.05

)2
= 1

approx. 6 iterations needed for same reduction.
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Choosing the ellipse

For successful convergence must forecast an ellipse that envelops
σ(M−1F).

If σ(M−1F) lies outside the chosen ellipse and c2 � 1 then

%∞ = lim
j→∞

%j = 2/(1 +
√

1− c2) ≈ 1

Thus asymptotic behaviour same as for IR and no acceleration.

Also, if ellipse degenerates to a circle (a = b), %j = 1 ∀j and no
acceleration.
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Choosing the ellipse

I Want to limit use of scalar products and thus we do not use
adaptive method of Manteuffel (’78).

I Instead, introduce some strong assumptions on parameters
defining the ellipse.

I Because eigenvalues of M−1F are either real or complex
conjugate, centre of ellipse lies on real axis. We choose centre
of ellipse to be zero.
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Choosing the ellipse

If spectral radius σ(M−1F) lies between (0, 1), can scale so that

a = σ(M−1F)
b = t ∗ a

}
,

with t chosen such that spectrum is contained within the ellipse.

This choice is based on our empirical experience: Gaussian
elimination frequently produces M−1F with a spectrum
characterised by large cluster of very small eigenvalues and for
remaining eigenvalues λ+ iη, |λ| � |η|.
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Choosing the ellipse

But this is not always the case.

If |η| � |λ|, Chebychev algorithm using our choice of ellipse will
diverge immediately

So exchange a and b (rotating the ellipse by π/2) and restart.
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Asymptotic rate of convergence for reducing residual by 10−1
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Asymptotic rate of convergence for reducing residual by 10−8
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Conclude:

If σ sufficiently large, potential saving offered by Chebychev IR is
significant.
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Estimating σ

In our experiments, we use a = σ(M−1F), b = t ∗ a.

So want to estimate a = σ(M−1F).

After one step of Chebychev IR (which is equal to first step of IR),
can estimate σ to be

σ(M−1F) ≈ ρ1 =
||̄r(1)||
||̄r(0)||

.

More generally, use ratio between successive computed residuals

ρk =
||̄r(k)||
||̄r(k−1)||
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Tests on sparse symmetric matrices

I Factorize symmetric A using single precision version of new
sparse multifrontal solver HSL MA97, store computed factors in
double precision and then perform refinement using double
precision arithmetic. Mixed precision.

I Examples from University of Florida Sparse Matrix Collection
chosen that require ≥ 10 steps of IR to achieve
component-wise scaled residual β < 5 ∗ 10−15.

I In Chebychev tests, b = 0.01 ∗ a and experimented with range
of values of a.
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Chebychev IR versus IR

Problem IR Chebyshev IR
a = ρ1 a = abest

iter iter ρ1 iter abest (k)
HB/nos7 28 15 0.53 13 0.54
HB/bcsstm27 30 15 0.56 14 0.57
GHS indef/bratu3d 25 20 0.34 17 0.25 (2)
Cylshell/s3rmq4m1 14 10 0.25 10 0.25 (1)
GHS indef/cont-300 218 213 0.08 65 0.87 (9)
Oberwolfach/gyro 25 19 0.28 13 0.46 (3)
GHS indef/sparsine 38 21 0.51 20 0.50 (2)

Highlighted where iteration count reduced by at least 40 per cent.
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Can Chebyshev acceleration improve rate of convergence when ρk ≈ 1?

Problem β(0) β
(200)
IR

Boeing/crystk03 1.42 ∗ 10−7 7.03 ∗ 10−10

Oberwolfach/t2dal 1.13 ∗ 10−7 5.64 ∗ 10−10

Oberwolfach/t3dh a 3.10 ∗ 10−7 1.54 ∗ 10−9

Problem β
(200)
C (a)

a = 0.99 0.9999 0.999999

Boeing/crystk03 9.98 ∗ 10−11 1.22 ∗ 10−11 7.83 ∗ 10−12

Oberwolfach/t2dal 8.01 ∗ 10−11 9.74 ∗ 10−12 3.18 ∗ 10−12

Oberwolfach/t3dh a 2.18 ∗ 10−10 2.63 ∗ 10−11 1.55 ∗ 10−11

Note: with a ≥ 0.9999, after 15 steps β
(k)
C (a) is less than β

(200)
IR .
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What about FGMRES?

I Well-known that for some problems, FGMRES able to
compute backward stable solutions when IR fails to converge.

I But FGMRES does not preserve either of the desirable
properties:

I FGMRES gives rapid convergence but only possible to prove
that norm-wise stability, and implementation involves scalar
products.
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Comparison of the number of steps

Problem IR Chebyshev IR FGMRES
HB/nos7 28 13 8
HB/bcsstm27 30 14 12
GHS indef/bratu3d 25 17 12
Cylshell/s3rmq4m1 14 10 8
GHS indef/cont-300 218 65 28
Oberwolfach/gyro 25 13 12
GHS indef/sparsine 38 20 12

An efficient restarted version of FGMRES used here that we developed
for the mixed precision solver HSL MA79.
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Concluding remarks

I Aim of our study was to consider possibility of using Chebychev
accelerated IR when IR needs large number of iterations.

I We have developed theory (not presented here) to prove method is
component-wise backward stable.

I Experiments on sparse symmetric problems illustrate that using
inexpensive estimate of spectral radius obtained by performing small
number of steps of IR gives good convergence.

I FGMRES generally requires fewer iterations, but involves scalar
products that are inefficient when implemented in parallel.

I When σ(M−1F) ≈ 1 or is > 1, FGMRES recommended.
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Thank you!

Report available: RAL-TR-2011-10 at

http://www.stfc.ac.uk/CSE/randd/nag/36276.aspx
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